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Abstract: 

Forecasting tourist demand for multiple tourist attractions on an hourly basis provides 

important insights for effective and efficient management, such as staffing and 

resource optimization. However, existing forecasting models are not well equipped to 

hand the hourly data, which is dynamic and nonlinear. This study develops an 

improved, artificial intelligent-based model, known as Correlated Time Series 

oriented Long Short-Term Memory with Attention Mechanism, to solve this problem. 

The validity of the model is verified through a forecasting exercise for 77 attractions 

in Beijing, China. The results show that our model significantly outperforms the 

baseline models. The study advances the tourism demand forecasting literature and 

offers practical implications for resource optimization while enhancing staff and 

customer satisfaction. 

Keywords: Tourism demand forecasting; Spatial-temporal effect; Correlated time 

series; Long-short-term-memory; Attention mechanism. 

 

1 Introduction 

Accurate demand forecasting enables tourism organizations to properly arrange 

resources in advance to serve the demand (Jiao, Li, & Chen, 2020; Song & Li, 2008). 

Numerous forecasting models have been suggested and tested (Bi, Liu, & Li, 2020), 

including econometric models, time series models, and artificial intelligence (AI) 

models (Jiao & Chen, 2019). Despite the rapid progress in tourism demand 

forecasting research in recent years, many issues remain (Huang, Wang, Wu, & Tang, 

2019). 

First, most existing models aim at relatively long time spans, such as monthly 

and annual forecasting (Alvarez Diaz & Mateu-Sbert, 2011; Bi et al., 2020; Divino & 

McAleer, 2010). However, for daily operations, finer time granularity and higher 

frequency tourism demand forecasting are required. For example, based on the hourly 

tourism demand forecasting results, tourist attraction managers can formulate 

effective real-time crowd management strategies, and optimize staff and resource 

arrangements (Song & Li, 2008; Wu, Song, & Shen, 2017). Hourly data is more 

dynamic and non-linear than other granular data (e.g., monthly, quarterly, or annual 

tourist arrivals) (Pereira & Nobre, 2016; Yang, Pan, & Song, 2014), making the 

forecasting more challenging. To date, little research has been devoted to hourly 

demand forecasting. 
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Second, most existing studies focus on the prediction of tourism demand for a 

single entity, e.g., a tourism destination (Assaf, Li, Song, & Tsionas, 2019; Li & Law, 

2020; Song, Wen, & Liu, 2019), a tourist attraction (Bi et al., 2020; Li, Hu, & Li, 

2020), or hotel (Assaf & Tsionas, 2019; Yang et al., 2014), rather than multiple ones. 

Tourist attractions in a destination are geographically connected and tourists prefer 

multi-attraction visits (Jiao & Chen, 2019; Long, Liu, & Song, 2019; Yang & Wong, 

2012). Therefore, incorporating spatial information could potentially improve the 

accuracy of forecasting (Long et al., 2019; Stewart & Vogt, 1997; Yang & Zhang, 

2019). Empirical research on this issue has not appeared until recently (Jiao et al., 

2020). The few studies that consider the spatial effect are still based on the traditional 

time series model (Jiao et al., 2020; Yang & Zhang, 2019) or the econometric model 

(Emili, Gardini, & Foscolo, 2020; Long et al., 2019). However, these traditional 

models are unsuitable for handling nonlinear patterns and exogenous variables (Jiao 

& Chen, 2019). 

This study aims to narrow the gaps in the demand forecasting literature by 

developing an improved AI-based model, known as the Correlated Time Series 

oriented Long Short-Term Memory with Attention Mechanism (CTS-LSTM-AM), to 

solve the research problem. The model compensates for the lack of spatial dependence 

characteristics between sequences extracted by LSTM (Wan, Guo, Yin, Liang, & Lin, 

2020) and could perfectly fit into tourism demand forecasting (Law, Li, Fong, & Han, 

2019). The validity of the model is verified through its application to forecasting the 

hourly visitor numbers for 77 attractions in Beijing, China. 

The main contribution of the present study is the development of an improved 

model that incorporates spatial effects. Forecasting the demand of multiple tourist 

attractions with spatial effect from the hourly granularity is challenging because the 

hourly data is dynamic and nonlinear (Höpken, Eberle, Fuchs, & Lexhagen, 2020), 

and intra-sequence time and inter-sequence space dependencies should be captured 

for forecasting (Wan et al., 2020). Our study improves the architecture of LSTM and 

expands the application of AI-based models in demand forecasting. The proposed 

model expands demand forecasting literature by focusing on hourly granularity, and 

such an approach is particularly helpful for managers’ decision-making. 

2 Literature review 

2.1 Tourism demand forecasting 

Tourism demand forecasting is an important research topic with highly practical 
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implications (Song, Dwyer, Li, & Cao, 2012), and various models have been proposed 

to advance forecasting accuracy in the past few decades. The most commonly used 

models are econometric and time series models (Jiao & Chen, 2019). Using historical 

data, time series models look for trends to predict the future (Song & Li, 2008). 

Econometric models identify tourist arrival relevant factors to forecast demand (Cao, 

Li, & Song, 2017; Pan & Yang, 2017; Song & Wong, 2003). These models require 

advanced diagnosis and fixed time lag to realize the prediction. However, the time 

dependence may change, which suggests that the above models might not make full 

use of the time dependence of time series (Bi et al., 2020). 

Recently, AI-based models have gained popularity, and a variety of models have 

been designed, including artificial neural networks (ANN), fuzzy time series, grey 

theory, support vector machines, rough sets approach, and hybrid models (Jiao et al., 

2020). These traditional AI-based models have several weaknesses. With the increase 

of data frequency, handling the data becomes very challenging for these models, due 

to the non-stationarity, seasonality, and complexity of the data (Yang et al., 2014). 

They cannot easily learn the tourist flow time series’ long-term dependency (Bi et al., 

2020). They cannot automatically extract the data features, and many such models 

encounter problems of overfitting or local optima (Zhang, Li, Shi, & Law, 2020a; 

Zhang, Li, Muskat, & Law, 2020c). Comparatively, deep learning techniques have the 

capability to extract discriminative features without the need for much human effort 

and domain knowledge (Pouyanfar et al., 2019). Research based on deep learning 

methods is becoming popular, among which LSTM is a typical one (Bi et al., 2020; 

Law et al., 2019). For instance, Law et al. (2019) put forward a deep network 

architecture to forecast tourist arrivals in Macau, demonstrating the superiority of this 

approach over traditional ones. Bi et al. (2020) incorporate multivariate time series 

data into the LSTM network, further improving forecasting performance. 

However, the use of LSTM in tourism demand forecasting still presents several 

challenges, e.g., the deficiency of information processing (Kulshrestha, 

Krishnaswamy, & Sharma, 2020), model overfitting, and high complexity (Zhang et 

al., 2020c; Zhang, Li, Muskat, Law, & Yang, 2020d). Thus, Several scholars have 

attempted to improve the forecasting performance by improving LSTM to address the 

challenge. Kulshrestha et al. (2020) proposed a variant of LSTM, namely, Bayesian 

Bidirectional LSTM (BBiLSTM), to predict quarterly tourist arrivals. In their model, 

either backward or forward information can be utilized, and the hyperparameters can 
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be optimized. Zhang and colleagues have also done considerable constructive work: 

they incorporated the group-pooling method into LSTM structure to predict the tourist 

arrival volumes (Zhang et al., 2020d); and introduced a decomposed deep learning 

approach that combines trend and seasonal decomposition through the Loess and duo 

attention layer structure (Zhang et al., 2020c). 

2.2 Spatial effects in tourism demand 

Spatial effects, including spatial spillover and spatial heterogeneity, have been 

well examined in previous studies (Balli, Curry, & Balli, 2015; Li, Chen, Li, & Goh, 

2016; Yang & Fik, 2014). Spatial dependence and regional interactions are important 

areas of research in tourism geography and economics (Fingleton & López‐Bazo, 

2006), particularly in regional tourism growth (Ma, Hong, & Zhang, 2015; Zhang, 

Xu, & Zhuang, 2011) and destination tourism flows (Yang & Fik, 2014; Yang & 

Wong, 2012). 

The spillover effect is mainly a result of multi-destination tourism (Yang, Fik, & 

Zhang, 2017). As an economic externality, spatial spillovers may occur through the 

sharing of common infrastructure and resources, collaboration or competition among 

destinations, or various events that happened in the area (Chhetri, Arrowsmith, 

Chhetri, & Corcoran, 2013). Spatial proximity and attraction compatibility help drive 

the spillover effects in tourist flow from one attraction or destination to another 

(Weidenfeld, Butler, & Williams, 2009), because tourists generally visit multiple 

attractions or destinations in a single trip (Santos, Ramos, & Rey-Maquieira, 2011). 

Empirical evidence has confirmed the spillover effects. For example, Balli et al. 

(2015) reveal the spillovers of tourism demand from three main hubs to other regions 

in the country. Gooroochurn and Hanley (2005) found the spiller overs of tourism 

demand between the two main regions in the Irish island are significant. Cao et al. 

(2017) showed evidence to support the tourism demand interdependence across 

countries. More recently, Assaf et al. (2019) reported the spillovers of international 

tourism demand in nine Southeast Asian countries. 

Spatial heterogeneity is associated with spatial differentiation that is due to each 

location’s unique characteristics. It reflects the differences between regions (Zhang et 

al., 2011). These differences can be reflected in the distributions and means of a set of 

variables and their variance and covariance. For instance, the various geographic 

regions in China have large heterogeneity in terms of history, culture, and economic 

growth (Lin, Yang, & Li, 2018). Using panel data, Li et al. (2016) revealed the 
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tourism income inequality between different regions in China. Examining the 

environmental characteristics and historical evolution of places in Italy, Considering 

the social, economic and cultural, economic diversity of Spain, Cotos-Yáñez, Alén, 

Domínguez, and Losada (2018) revealed the geographic heterogeneity in senior 

tourists’ travel patterns. 

Previous studies identifying spatial spillover and spatial heterogeneity have 

provided important insights for tourism development (Capone & Domenech, 2008; 

Khadaroo & Seetanah, 2008). However, research on incorporating spatial effects into 

forecasting models is at an early stage. Only four recent studies have taken into 

account the spatial effects. Specifically, Yang and Zhang (2019) used dynamic spatial 

panel models and STARMA. Long et al. (2019) adopted the pooled ordinary least 

squares model by incorporating spatial and temporal effects. Emili et al. (2020) used a 

dynamic panel model through the Difference Generalized Method of Moments 

estimation approach. Jiao et al. (2020) further extended the basic ARIMA model and 

applied spatial lag in response variables and moving average terms. 

Despite the advances made by the recent studies (Emili et al., 2020; Jiao et al., 

2020; Long et al., 2019; Yang & Zhang, 2019), the extant literature of tourism 

demand forecasting considering spatial effect has several limitations. First, the spatial-

temporal models adopted in these studies rely on time series (Jiao et al., 2020; Yang & 

Zhang, 2019) or econometric models (Long et al., 2019), which cannot easily 

adequately capture nonlinear patterns and exogenous variables (Jiao & Chen, 2019). 

Second, these studies focus on long-term forecasting of relatively large areas, whereas 

very few models forecast tourist demand at the attraction level at a short time scale, 

such as hourly. Thus, this study attempts to advance the field by proposing a new 

model that can capture temporal and spatial dependencies and simultaneously predict 

the demand of multiple tourist attractions within a destination from hourly granularity. 

3 Proposed model 

3.1 Architecture of standard LSTM 

As an improved version of traditional neural networks, recurrent neural networks 

(RNN) have good performance in dealing with timing prediction problems due to 

their ability to capture the time correlation between events that are far apart in the 

sequence (Li & Law, 2020). However, RNN has inherent problems, such as vanishing 

gradients or exploding ones, when capturing the long-term dependence of time series 

(Wan et al., 2020; Xu, Ji, & Liu, 2018). 
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LSTM networks, first proposed by Hochreiter and Schmidhuber (1997), are 

capable of learning long-term dependencies, overcoming RNNs’ inherent problems. 

LSTM networks remember information for long durations and run well to solve many 

different practical problems (Bi et al., 2020). Unlike RNNs, but the LSTM networks 

have four layers of chain structure: a memory cell and three basic structures named 

“gates” (forget, input, and output gates) to realize the protection and control of 

information (shown in Fig. 1). The gate allows selective passage of information, 

largely through a point-by-point multiplication operation. First, the forget gate (
f ) 

determines the removal of specific cell state information. The information source of 

the forget gate is the hidden layer vector at time t-1 (ht-1) and the time series 

information at time t (xt) (Xu et al., 2018). Second, the input gate ( i ) decides the 

addition of new information to the cell state, which involves an input gate layer and a 

tanh level. The tanh level is used as an excitation function to determine the increase 

or decrease of information (Wan et al., 2020). According to the cell state, the output 

gate ( o ) controls the output information. Finally, we get the hidden layer vector (ht) 

and the cell state of the current time (Ct). For more details of LSTM, please refer to 

Law et al. (2019) and Bi et al. (2020). 

+

f i 

Ct-1

ht-1

Ct

ht

tanh

o tanh

xt

Neural 
Network Layer

Pointwise 
Operation

Vector 
Transfer  

Fig. 1 Network structure of LSTM. 

3.2 Architecture of CTS-LSTM-AM 

The tourist attractions in a destination are geographically connected. They may 

demonstrate strong relevance of tourism demand given the competitive and 

cooperative relations between attractions (Jiao & Chen, 2019; Long et al., 2019; Yang 

& Wong, 2012). The time series of tourism demand in attractions are influenced and 

dependent on each other, which can be denoted as correlated time series. Therefore, to 

improve the forecasting performance, attention should be paid to the correlated time 

series of tourists’ attractions in the destination rather than a single time series of an 
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attraction. However, in correlated time series, the conventional LSTM is unable to 

capture the spatial-temporal features fully (Wan et al., 2020). In addition, LSTM 

cannot learn the importance of different input elements in the same time series.   

To deal with these challenges, inspired by the study of Wan et al. (2020) and Law 

et al. (2019), this study proposed a novel AI-based model named CTS-LSTM-AM.  

This model adds an attention mechanism on the original CTS-LSTM proposed by 

Wan et al. (2020) to distinguish the differences in the impact of different time nodes in 

the same time series on the prediction performance, thus making it better adapted to 

the scenario of tourism demand forecasting. In other words, in addition to the ability 

of CTS-LSTM that can simultaneously capture inter-sequence space dependencies 

and intra-sequence dependencies in time series, our model is able to disregard 

irrelevant information and as a result, it is highly interpretable. Fig. 2 illustrates the 

architecture of our model, with three paramount modules: attention mechanism, 

spatio-temporal cells (ST-cell), and spatio-temporal fusion (ST-fusion). 

We define the input series at time t as 
N

t
x

, where   indicates the number 

of embedding representation dimensions, and N  denotes the correlated time series in 

terms of their number. Then, the input matrix tx  passes the attention mechanism, 

which is to assign different weights to the time steps within the intra-sequence. 

Subsequently, the ST-cell module is modified based on the standard LSTM so that it 

can encapsulate the inter-sequence space and intra-sequence time dependencies in the 

correlated time series. ST-fusion is located at the top of the ST-cell module, and its 

main function is to fuse the information captured by the ST-cell. Finally, the predicted 

value of matrix x was obtained, denoted as ˆ
tx . Backpropagation and Adam algorithm 

are used to train our network, to reduce the mean square error between the actual 

matrix 
tx  and the predicted matrix ˆ

tx . Thus, a loss level is introduced to evaluate 

the forecasting performance. 
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ST-cell ST-cell ST-cell
Cintra-1, hintra-1

Cinter-1, hinter-1

 
Cintra-n, hintra-n

Cinter-n, hinter-n

Attention mechanism

 

x1

N  

x2

N  
xn

N

ST-Fusion ST-Fusion ST-Fusion  

h1 h2 hn

Loss level

x1+k x2+k xn+k

 

Fig. 2 The architecture of CTS-LSTM-AM. 

3.2.1 Attention mechanism 

As a feature engineering method, the attention mechanism can be integrated into 

the model and works along with models that are LSTM-based. The standard LSTM 

cannot pay special attention to the important features of the sequence, which can be 

compensated by the attention mechanism. This is very important in tourism demand 

forecasting, because the attention mechanism enables the model to capture the entire 

flow dynamics in the input sequence and pay attention to factors related to tourism 

demand to improve the interpretation of the model (Law et al., 2019). Specifically, in 

the attention mechanism, the context vector v from the given time series (X= (x1, x2, ..., 

xi)) is extracted. vt is the weighted sum of each column xi in X, representing information 

related to the present time step. And vt is then incorporated with the current state xt to 

generate predictions (Shih, Sun, & Lee, 2019). We can formulate this process based on 

Eq. (1), where ai is the attention weight, which can automatically capture the correlation 

between xi and the predicted target ˆ
ix . For more details of the attention mechanism, 

please refer to Law et al. (2019). 

 
1

t

i

i

x
=

= t iv a   (1) 

3.2.2 Spatio-temporal cell 

The spatio-temporal cells are equipped with two channels to obtain the spatial-

temporal dependencies. As shown on the left-hand side of Fig. 3, the intra-sequence 

cell state captures time dependence, consistent with the conventional LSTM. 
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Similarly, we define three gates Iintra-t, Fintra-t, Ointra-t to determine the amount of 

information of each embedded feature contained in each time series to be retained in 

the cell state in each time step. As shown in Eqs. (2) - (7), ST-cell basically retains the 

architecture of LSTM. Its biggest difference from LSTM is that ST-cell builds a 

separate representation for each sequence. The advantage of this is that the update of 

each cell depends on the characteristics of each sequence, and the information is 

extracted to the maximum. 

 ( [ , ] )sigmoid= +intra_t i intra_t intra_t -1 iI W X h b  (2) 

 
( [ , ] )sigmoid= +intra_t f intra_t intra_t -1 fF W x h b

  (3) 

 
( [ , ] )sigmoid= +intra_t o intra_t intra_t -1 oO w x h b

  (4) 

 
( [ , ] )crelu= +intra_t intra_t intra_t -1 cC W x h b

  (5) 

 
= +intra_t intra_t intra_t intra_t intra_t -1C I C F C

  (6) 

 
( )relu=intra_t intra_t intra_th O C

  (7) 

In the right-hand side of Fig. 3, the channel models the inter-sequence spatial 

effect. The largest difference from the basic LSTM is that the characterization of each 

series is reconstructed by fusing the information of all series through the spatial 

matrix S before the sequence enters the ST-cell. Here, N NRS  reflects the paired 

influence between related series. A fixed matrix can be set to reflect a domain’s 

knowledge a priori. For example, the geospatial correlated time series S may represent 

an inter-attraction similarity or proximity matrix in our case. Specifically, we use the 

inverse physical distances between attractions to develop an S matrix. This step 

enables the representation of each series to include information about the other series, 

thereby capturing the interactions between related sequences, that is, the spatial 

dependencies between sequences. As with the intra-sequence temporal channel, we 

define three gates Iintra_t, Fintra_t, Ointra_t to determine the amount of information for 

each embedded feature within each time series to be retained in the cell state in each 

time step, using sigmoid as the activation function. 
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f i 

Ct-1

hintra-t

Relu

o Relu

Fintra-t

Iintra-t

Ointra-t

+

Cintra-t

f i 

Ct-1

hinter-t

Relu

o Relu

Finter-t

Iinter-t

Ointer-t

+

Cinter-t

ht-1

xt

hintra-t-1xintra-t

 s

hinter-t-1 xinter-t

 

Fig. 3 Architecture of ST-cell. 

3.2.3 Spatio-temporal fusion 

ST-fusion is located at the top of the ST-cells, and its function is to fuse the 

information obtained in ST-cells. Two tasks are contained in the fusion module, as 

shown in Fig. 4. First, the information of intra-sequence temporal channel ( intra_th ) and 

inter-sequence spatial channel ( inter_th ) achieved in ST-cells are assigned different 

weights. Then, they are fused to obtain the fusion matrix F_tx  according to the 

weights, as shown in Eq. (8). The weights involved in this process are learnable 

parameters. Second, the fusion matrix F_tx  is flattened to achieve a new matrix 


F_tx , which serves as the input of the fully connected (FC) layer. Through the FC 

layer, the spatio-temporal features of the sequences can be better extracted, and the 

predicted value ˆ
t+k

x  can be calculated according to Eq. (9). In this equation,   

represents the weight of 
F_tx , b is the bias, ReLU is the activation function, and “ ” 

denotes element-wise multiplication. 

= +F_t 1 intra_t 2 inter_tx w h w h                         (8) 

ˆ ( )b =  +ReLu t+k F_tx x                        (9) 

hintra_t

hinter_-t

Fusion
xF_t

 Flatten
FC  Prediction


F_tx ˆ

t+k
x

 

Fig. 4 Process of ST-Fusion. 

4 Empirical test 

Empirical research was conducted based on tourist attractions in Beijing, the 
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capital of China. Its numerous world-famous tourist attractions attract a large number 

of international tourists every year (Zhang, Chen, & Li, 2019; Zhang, Yang, Zhang, & 

Zhang, 2020b). A map of Beijing with the distribution of 77 tourist attractions is 

shown in Fig. 5. 

 
Fig. 5 Map of Beijing City. 

4.1 Data collection and preprocessing 

Hourly tourist arrival volumes of tourist attractions in Beijing are available from 

the Beijing Tourism Network (http://www.visitbeijing.com.cn/), which provides real-

time visitor flow and congestion information of 233 x 2A and above-rated attractions 

in the city (5A is the highest rating, based on the tourism attraction classification 

system in China). The data is updated every 15 minutes. We collected the data from 

October 1st, 2020 to October 31st, 2020. Among these 233 attractions, 81 of them were 

4A or 5A, 115 are 3A, and the remaining 37 are 2A attractions. Four highly-rated 

attractions (4A and above) were not open to the public during this period. Therefore, 

we focused on the 77 attractions with 4A or 5A ratings, and their distributions are 

shown in Fig. 5. 

The raw data of 15-minute granularity was transformed into the data of hourly 

granularity using the average method. Fig. 6 shows the samples of six of these 

attractions (Summer Palace, The Old Summer Palace, Olympic Forest Park, Prince 

Gong Mansion, Forbidden City, and Temple of Heaven). The figure indicates that 

these time series have different degrees of correlations. We only used the data from 

http://www.visitbeijing.com.cn/
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9:00 to 18:00 every day as the dataset for this study, based on the opening hours of 

most attractions. We used Python to predict the time series. By normalizing the zero-

mean value of the data, we divided them into training and test datasets. The 180 

samples from October 1st to October 20th were collected to train the model, while 

another 99 samples from October 21st to October 31st were used to test the model. 

 

Fig. 6 Tourist arrival volumes of different tourist attractions. 

4.2 Performance evaluations 

Several key parameters such as time step, batch size, and learning rate should be 

set in advance for training the LSTM networks. We used historical data to forecast the 

hourly demand from 9:00 to 18:00 each day following a window rolling approach. We 

set the timestep as 9, based on the period of the most common opening hours of all the 

attractions. For the selection of batch size [16, 32, 64, 128, 256, 512] and learning rate 

[0.1, 0.01, 0.005, 0.001, 0.0005, 0.0001], we determined through an exhaustive grid 

method and calculated the RMSE value of each combination (as shown in Fig. 7). The 

results were as follows: the lighter the color, the better the prediction effect of the 

parameter combination. The parameter combination we chose is batch size 64 and 

learning rate 0.005. 

 

Fig. 7 The values of RMSE concerning different parameter combinations. 
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To achieve a better prediction of tourist demand, we focused on the different 

weights of time steps and the spatial correlation between attractions. We added the 

attention mechanism to implement allocate different weights of time steps. Spatial 

correlation was obtained by assigning spatial matrix S to sequences, where S is 

composed of the reciprocal of the geospatial distance between sequences (Wan et al., 

2020). Many traditional LSTM models encounter problems of overfitting, to deal with 

this problem, our model adds a dropout regularization in the recurring layer. Dropout 

regularization refers to the random deletion of input elements in each update to reduce 

the possibility of overfitting (Xu et al., 2018). However, the dropout may lead to the 

randomness of model training, which makes the results of the model fluctuate (Bi et 

al., 2020). Therefore, this study obtains the model results by averaging those over five 

runs, following the practices used in prior studies (e.g. Bi et al., 2020). 

To investigate the model’s performance, we used SARIMAX (Tsui & Balli, 

2015), ANN (Law, 2000), LSTM (Bi et al., 2020), LSTM-AM (Law et al., 2019), and 

CTS-LSTM (Wan et al., 2020) as the baseline models. SARIMAX (p, d, q) (P, D, Q)s 

is a variant of the autoregressive integrated moving average (ARIMA) model. Three 

parameters are involved in SARIMAX: p is the autoregression order, q represents the 

moving average’s order, and d denotes the number of differences made when time 

becomes stationary; (p, d, q) indicates the model’s non-seasonal component, and (P, 

D, Q) indicates the seasonal component. In this study, a fully automated procedure 

provided in R, called auto.arima, was adopted to select the parameters of SARIMAX. 

We used an automatic traversal of the parameter combinations to obtain the model 

with the minimum AIC value. The ANN model was trained with the back-propagation 

algorithm to predict +9ty . Relu was selected as the excitation function, and a fully 

connected layer is built in the ANN model. The LSTM model has been widely used in 

previous studies. Thus, we used this model as the baseline. To maintain consistency, 

we set the parameters of LSTM to be the same as those of CTS-LSTM-AM, that is, 

learning rate = 0.005, batch size = 64. LSTM-AM is an improved LSTM by adding 

AM, which enables the model to increase the explanatory power by focusing on the 

important features of the time series. The setting was consistent with the that of 

LSTM. The CTS-LSTM model, proposed by Wan et al. (2020), is capable of 

capturing the spatial correlation of sequences. Hence it is also used as a benchmark 

model. As with CTS-LSTM-AM, the batch size and learning rate of CTS-LSTM were 

64 and 0.005, respectively. 
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In this study, the rolling window method was served for the prediction to better 

imitate reality (Law et al., 2019). Three commonly used criteria were used to assess to 

model performance evaluation, namely, mean absolute deviation (MAE), root mean 

square error (RMSE) and mean absolute percentage error (MAPE), as described in 

Eqs. (10)–(12): where if  is the actual tourism demand data, ˆ
if  is the tourism 

demand to be predicted, and n is the number of test samples. The original normalized 

data were restored to calculate the above indicators. A smaller value indicates a better 

performance. Even if the operating hours of most attractions were selected for 

forecasting, there were still situations where the demand for some attractions is 0. 

Therefore, in order to accurately calculate the MAPE value, we added 1 for the 

demand of all attractions before forecasting. 

i 1

1 ˆ| |
n

i iMAE f f
n =

= −                       (10) 

1

2 2

1

1 ˆ[ | | ]
n

i i

i

RMSE f f
n =

= −                     (11) 

1

ˆ1
| |

n
i i

i i

f f
MAPE

n f=

−
=                       (12) 

4.3 Results 

4.3.1 Model performance test 

Using the obtained parameters, the CTS-LSTM-AM model was first trained 

using a training sample set. The hourly tourist volume from October 21st to October 

31st, 2020 was then forecasted. In accordance with the optimal parameters, the 99 

samples were forecasted using our model and five baseline models (SARIMAX, 

ANN, LSTM, LSTM-AM, and CTS-LSTM), respectively. The discrepancy between 

the predicted and actual tourism volume of the 77 attractions obtained by the six 

models is presented in Fig. 8, where the color and the degree of deviation from the 0-

horizontal plane reflect the discrepancy between the predicted and actual volume. The 

MAE/RMSE/MAPE values for each attraction obtained by these six models are 

shown in Fig. 9. 
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Fig. 8 Difference comparison between models. 
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Fig. 9 MAE, RMSE, and MAPE comparison between models. 

Table 1 Average of MAE, RMSE and MAPE for each model. 

 
SARIMA

X 
ANN LSTM 

LSTM-

AM 

CTS-

LSTM 

CTS-LSTM-

AM 

MAE 0.022  0.065  0.022  0.021  0.014  0.008  

RMSE 0.066  0.081  0.072  0.075  0.013  0.054  

MAPE 

(%) 

0.304  0.388  0.355  0.336  0.275  0.186 

The average MAE/RMSE/MAPE values of each model are presented in Table 1 

and the MAE/RMSE/MAPE values of each attraction are presented in Appendix 1. The 

results show that the CTS-LSTM-AM model achieved minimal errors compared with 

the baseline models. The precision of MAPE drops from 0.388 to 0.186, which is a 

significant achievement. 

We used Diebold-Mariano (DM) test to assess whether there were statistically 

significant differences between the new model and the baseline models. The DM 

method (Diebold & Mariano, 2002) is widely used in the studies of tourism demand 

forecasting (Bangwayo-Skeete & Skeete, 2015; Kulshrestha et al., 2020). Its null 

hypothesis is that two models have the same predictive power. Thus, a pairwise 

comparison between our model and the baseline model was performed. The results were 

all negative (see Appendix 2), indicating that the CTS-LSTM-AM achieved better 

prediction performance than all the baseline models. Specifically, our model 

outperforms ANN in all (100%) attractions, SARIMAX in 99% of the attractions (i.e., 

76 out of 77), LSTM in 97% of the attractions (i.e., 75 out of 77), LSTM-AM in 95% 
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of the attractions (i.e., 73 out of 77), and CTS-LSTM in 71% of the attractions (i.e., 55 

out of 77). 

4.3.2 Model discussion 

There is a spatial effect in tourism demand due to the interaction of supply with 

neighboring areas (Long et al., 2019; Yang & Zhang, 2019). Therefore, our model 

considers the spatial effect by introducing correlated time series and attention 

mechanisms. To verify whether the consideration of spatial effect can improve 

forecasting performance, a baseline model was introduced for comparison. Compared 

with our model, this baseline model did not consider the demand series of the 76 other 

tourist attractions when forecasting the demand of an attraction. The prediction results 

of the two models are shown in Fig. 10, which indicates the discrepancy between the 

predicted and actual tourism volume of the 77 attractions. The mean values of MAE, 

RMSE and MAPE of the baseline model are 0.104, 0.068 and 0.452. The forecast 

accuracy of MAPE is 0.452, which is significantly larger than that of our model 

(0.186). Similarly, we further utilized the DM test to compare the two models’ 

predictive accuracy (see the seventh column of Table. A2-1 in Appendix 2). The 

results suggest that our proposed model is statistically better than the baseline model 

in 99% of the attractions (i.e., 76 out of 77), which confirms that considering spatial 

effects in the model helps to improve the forecasting performance. 

 
Fig. 10 Forecasting performance comparison 

To further verify the model’s robustness, we made detailed observations on the 

prediction results under different prediction time intervals. We selected the time 

intervals of 1 hour, 3 hours, and 6 hours for comparative experiments. The MAPE 

values of the six models at different time intervals are shown in Fig. 11. The different 

line colors represent different models. The results demonstrate that our method 

outperforms all baseline models at different forecasting time intervals, confirming that 

our model has good robustness. Moreover, for all the six models, when the time 
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interval was set as 9 hours, its forecasting performance was better than the other three 

time intervals, confirming that setting the time interval to 9 hours in the above 

analysis was appropriate. 

 

Fig. 11 Forecasting performance comparison for different time intervals 

5 Conclusion 

This study addresses the challenges of forecasting hourly tourist arrivals in 

multiple tourist attractions. Our proposed model uses the spatial effect via correlated 

time series and attention mechanism to the forecasting model to simultaneously 

forecast the tourist volume for multiple attractions in a destination. The empirical test 

shows that our model outperforms the baseline models. Previous studies often only 

target the demand forecast of a single area, such as a single attraction or a single 

tourist destination. Our study considers the time series of a tourist attraction and that 

of other attractions in the destination; thus, the model simultaneously forecasts the 

demand of multiple attractions. Moreover, the extant studies mainly focus on long-

term and mid-term forecasts. Short-term forecasts were relatively few. The major 

challenges are a) short-term data are more difficult to obtain and b) short-term data 

are more complex, with greater nonlinearity and randomness. Our proposed model 

effectively handles hourly data. 

This study has several contributions. First, we advance the demand forecasting 

literature by proposing a model that captures both intra-sequence time and inter-

sequence space dependencies, which have not been adequately addressed in prior 

studies. Second, we improve the architecture of LSTM and expand the application of 
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the AI-based model, which can be widely applied with the capability to accommodate 

additional predicting variables. Two major improvements have been made: a) We 

consider correlated time series in LSTM to handle the historical demand data of 

multiple tourist attractions in a destination. b) We introduce an attention mechanism 

that can evaluate the importance of different elements of a time series so different 

weights are determined for different elements. Third, we further advance the demand 

forecasting field by presenting a model that is well equipped to handle the dynamic 

and non-linear characteristics of hourly data, thus providing finer granularity in the 

forecasting performance. 

Our research also has practical implications. First, the model proposed in this 

study helps destination managers to perform micro-level forecasts based on high-

frequency data, and to improve their resource planning and daily operation efficiency, 

thereby achieving higher levels of staff and tourist satisfaction. Second, the empirical 

results support that considering spatial effects can positively influence tourism 

demand forecasts. This suggests that destination managers should consider the spatial 

relevance between attractions in their planning and marketing. For example, 

attractions that are closely relevant and complementary with each other can be 

clustered together for joint promotion, while attractions that compete with each other 

with similar appeals can be repositioned. 

One of the limitations of the study is our model’s reliance on historical data. 

Future studies should consider several other variables that are not captured in our 

data, for instance, the data of search index (Yang et al., 2014) and weather (Bi et al., 

2020). The data used in the study is based on short time intervals, which suits our 

research aims, however, tourism demand is highly influenced by seasonality (Xie, 

Qian, & Wang, 2020), future studies may take seasonality into account by using 

longer interval tourist data to improve forecasting performance. 
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Appendix 1: The MAE/RMSE/MAPE values of each attraction 

Table. A1-1 MAE values of each attraction. 

Attractions SARIMAX ANN LSTM LSTM-AM CTS-LSTM CTS-LSTM-AM 

1 0.009  0.005  0.157  0.184  0.130  0.016  

2 0.060  0.360  0.096  0.080  0.045  0.041  

3 0.070  0.085  0.024  0.000  0.013  0.002  

4 0.005  0.005  0.005  0.003  0.017  0.011  

5 0.017  0.303  0.026  0.023  0.062  0.007  

6 0.010  0.017  0.013  0.018  0.008  0.004  

7 0.005  0.159  0.016  0.028  0.004  0.019  

8 0.003  0.005  0.004  0.007  0.010  0.001  

9 0.012  0.005  0.003  0.003  0.011  0.001  

10 0.001  0.016  0.005  0.004  0.008  0.000  

11 0.003  0.002  0.006  0.001  0.009  0.002  

12 0.008  0.296  0.017  0.029  0.019  0.008  

13 0.017  0.029  0.012  0.013  0.008  0.002  

14 0.005  0.005  0.004  0.004  0.005  0.001  

15 0.010  0.005  0.002  0.020  0.007  0.001  

16 0.004  0.005  0.001  0.005  0.009  0.001  

17 0.005  0.005  0.000  0.001  0.002  0.001  

18 0.007  0.015  0.005  0.001  0.008  0.002  

19 0.014  0.005  0.004  0.002  0.005  0.001  

20 0.004  0.008  0.002  0.000  0.009  0.001  

21 0.015  0.010  0.045  0.070  0.038  0.023  

22 0.189  0.391  0.070  0.085  0.010  0.015  

23 0.006  0.122  0.018  0.020  0.031  0.021  

24 0.062  0.008  0.016  0.003  0.019  0.006  

25 0.143  0.010  0.145  0.011  0.111  0.173  

26 0.005  0.105  0.000  0.036  0.013  0.017  

27 0.001  0.010  0.020  0.003  0.005  0.009  

28 0.005  0.005  0.003  0.009  0.006  0.003  

29 0.029  0.005  0.003  0.001  0.007  0.001  

30 0.029  0.143  0.014  0.002  0.006  0.008  

31 0.079  0.183  0.025  0.032  0.008  0.007  

32 0.007  0.009  0.008  0.000  0.012  0.001  

33 0.003  0.075  0.021  0.002  0.002  0.003  

34 0.025  0.005  0.010  0.002  0.005  0.001  

35 0.003  0.005  0.010  0.002  0.006  0.002  

36 0.007  0.005  0.013  0.012  0.009  0.001  

37 0.005  0.005  0.006  0.004  0.009  0.000  

38 0.001  0.005  0.006  0.009  0.006  0.000  

39 0.020  0.012  0.005  0.002  0.004  0.004  

40 0.004  0.027  0.015  0.045  0.009  0.012  

41 0.009  0.015  0.011  0.002  0.011  0.000  

42 0.022  0.006  0.009  0.004  0.013  0.004  

43 0.047  0.021  0.002  0.007  0.007  0.002  

44 0.016  0.078  0.002  0.009  0.011  0.002  

45 0.036  0.001  0.018  0.010  0.012  0.006  
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46 0.067  0.201  0.055  0.052  0.003  0.001  

47 0.009  0.441  0.059  0.085  0.018  0.007  

48 0.012  0.005  0.002  0.002  0.010  0.000  

49 0.005  0.078  0.036  0.026  0.014  0.002  

50 0.005  0.018  0.003  0.003  0.011  0.004  

51 0.009  0.008  0.001  0.001  0.010  0.001  

52 0.009  0.002  0.004  0.003  0.006  0.002  

53 0.005  0.005  0.003  0.002  0.007  0.002  

54 0.012  0.015  0.008  0.004  0.009  0.002  

55 0.052  0.490  0.047  0.047  0.001  0.016  

56 0.017  0.677  0.028  0.037  0.013  0.001  

57 0.010  0.000  0.002  0.002  0.009  0.003  

58 0.040  0.010  0.030  0.015  0.020  0.000  

59 0.021  0.081  0.030  0.025  0.012  0.001  

60 0.012  0.010  0.001  0.006  0.006  0.001  

61 0.028  0.010  0.146  0.185  0.015  0.038  

62 0.005  0.010  0.002  0.001  0.005  0.001  

63 0.155  0.010  0.178  0.154  0.025  0.021  

64 0.008  0.010  0.006  0.008  0.001  0.003  

65 0.007  0.076  0.011  0.014  0.001  0.004  

66 0.005  0.000  0.001  0.008  0.008  0.000  

67 0.005  0.062  0.033  0.020  0.005  0.001  

68 0.049  0.008  0.001  0.000  0.010  0.005  

69 0.005  0.005  0.001  0.003  0.007  0.001  

70 0.005  0.120  0.012  0.023  0.004  0.002  

71 0.005  0.004  0.008  0.010  0.008  0.004  

72 0.038  0.010  0.026  0.044  0.018  0.008  

73 0.021  0.010  0.021  0.013  0.015  0.007  

74 0.014  0.005  0.003  0.002  0.009  0.001  

75 0.014  0.005  0.002  0.004  0.009  0.001  

76 0.023  0.005  0.011  0.002  0.010  0.000  

77 0.008  0.005  0.005  0.001  0.006  0.003  

 

Table. A1-2 RMSE values of each attraction. 

Attractions SARIMAX ANN LSTM LSTM-AM CTS-LSTM CTS-LSTM-AM 

1 0.927  0.005  0.889  0.997  0.755  0.751  

2 0.224  0.424  0.175  0.181  0.130  0.144  

3 0.089  0.105  0.075  0.040  0.036  0.039  

4 0.005  0.005  0.031  0.037  0.040  0.032  

5 0.257  0.429  0.230  0.283  0.201  0.136  

6 0.010  0.059  0.044  0.043  0.030  0.031  

7 0.005  0.195  0.114  0.099  0.080  0.087  

8 0.007  0.005  0.015  0.019  0.014  0.009  

9 0.012  0.005  0.011  0.010  0.012  0.004  

10 0.018  0.027  0.034  0.019  0.017  0.015  

11 0.007  0.018  0.011  0.017  0.013  0.010  

12 0.054  0.338  0.165  0.151  0.109  0.112  

13 0.054  0.053  0.040  0.032  0.031  0.025  
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14 0.005  0.005  0.007  0.005  0.005  0.003  

15 0.017  0.005  0.017  0.030  0.014  0.013  

16 0.006  0.005  0.011  0.013  0.011  0.005  

17 0.005  0.005  0.011  0.007  0.002  0.003  

18 0.011  0.028  0.020  0.023  0.022  0.015  

19 0.014  0.005  0.010  0.012  0.009  0.002  

20 0.006  0.010  0.012  0.011  0.010  0.005  

21 0.177  0.010  0.127  0.155  0.172  0.139  

22 0.334  0.452  0.213  0.239  0.189  0.173  

23 0.072  0.212  0.079  0.067  0.081  0.082  

24 0.077  0.043  0.045  0.040  0.034  0.024  

25 0.352  0.010  0.339  0.258  0.240  0.312  

26 0.007  0.132  0.076  0.089  0.062  0.054  

27 0.012  0.065  0.066  0.082  0.035  0.045  

28 0.005  0.005  0.026  0.027  0.017  0.014  

29 0.033  0.005  0.013  0.019  0.013  0.011  

30 0.065  0.153  0.049  0.042  0.038  0.051  

31 0.116  0.199  0.089  0.081  0.076  0.065  

32 0.011  0.018  0.018  0.014  0.017  0.010  

33 0.022  0.102  0.054  0.066  0.046  0.043  

34 0.040  0.005  0.025  0.031  0.018  0.020  

35 0.021  0.005  0.029  0.026  0.016  0.017  

36 0.011  0.005  0.019  0.021  0.016  0.010  

37 0.015  0.005  0.029  0.019  0.015  0.012  

38 0.012  0.005  0.012  0.037  0.046  0.034  

39 0.028  0.023  0.031  0.027  0.018  0.016  

40 0.028  0.120  0.087  0.115  0.071  0.066  

41 0.010  0.029  0.024  0.012  0.011  0.004  

42 0.024  0.026  0.028  0.019  0.018  0.011  

43 0.058  0.034  0.030  0.034  0.025  0.022  

44 0.028  0.087  0.036  0.033  0.021  0.021  

45 0.077  0.048  0.051  0.052  0.041  0.034  

46 0.108  0.219  0.117  0.123  0.064  0.062  

47 0.167  0.459  0.145  0.167  0.093  0.113  

48 0.012  0.005  0.009  0.009  0.010  0.003  

49 0.032  0.093  0.054  0.041  0.037  0.023  

50 0.005  0.026  0.020  0.022  0.019  0.015  

51 0.010  0.017  0.014  0.012  0.015  0.009  

52 0.010  0.017  0.014  0.013  0.011  0.009  

53 0.005  0.005  0.009  0.010  0.009  0.005  

54 0.016  0.020  0.012  0.009  0.010  0.006  

55 0.093  0.498  0.077  0.079  0.072  0.067  

56 0.118  0.688  0.100  0.101  0.123  0.103  

57 0.010  0.038  0.025  0.053  0.032  0.031  

58 0.105  0.010  0.071  0.058  0.078  0.060  

59 0.028  0.089  0.050  0.037  0.019  0.015  

60 0.015  0.019  0.017  0.020  0.010  0.008  

61 0.130  0.010  0.360  0.398  0.240  0.268  

62 0.005  0.010  0.009  0.009  0.005  0.003  
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63 0.357  0.010  0.333  0.370  0.229  0.210  

64 0.130  0.010  0.114  0.136  0.132  0.116  

65 0.049  0.104  0.051  0.061  0.050  0.044  

66 0.005  0.022  0.016  0.019  0.012  0.009  

67 0.005  0.074  0.052  0.047  0.027  0.024  

68 0.058  0.036  0.028  0.033  0.024  0.020  

69 0.005  0.005  0.013  0.014  0.013  0.006  

70 0.005  0.148  0.091  0.094  0.091  0.066  

71 0.005  0.010  0.031  0.022  0.030  0.022  

72 0.118  0.010  0.073  0.079  0.085  0.071  

73 0.068  0.010  0.068  0.056  0.066  0.047  

74 0.018  0.005  0.015  0.016  0.011  0.007  

75 0.018  0.015  0.015  0.014  0.013  0.007  

76 0.025  0.021  0.018  0.015  0.011  0.005  

77 0.010  0.005  0.005  0.012  0.011  0.007  

Table. A1-3 MAPE values of each attraction (%). 

Attractions SARIMAX ANN LSTM LSTM-AM CTS-LSTM CTS-LSTM-AM 

1 0.192  0.001  0.194  0.184  0.160  0.152  

2 0.693  0.820  0.435  0.371  0.226  0.239  

3 0.373  0.487  0.356  0.171  0.155  0.166  

4 0.116  0.119  0.325  0.307  0.311  0.204  

5 0.476  0.628  0.372  0.429  0.181  0.235  

6 0.173  0.697  0.388  0.262  0.263  0.240  

7 0.021  0.516  0.266  0.209  0.203  0.219  

8 0.327  0.279  0.580  0.490  0.469  0.318  

9 0.667  0.315  0.544  0.506  0.676  0.224  

10 0.150  0.263  0.422  0.254  0.231  0.195  

11 0.278  0.422  0.366  0.488  0.411  0.199  

12 0.049  0.732  0.333  0.278  0.189  0.195  

13 0.253  0.596  0.501  0.354  0.223  0.190  

14 0.452  0.462  0.525  0.438  0.452  0.236  

15 0.158  0.072  0.192  0.332  0.147  0.136  

16 0.234  0.222  0.362  0.475  0.393  0.144  

17 0.456  0.460  0.831  0.518  0.182  0.189  

18 0.372  0.511  0.461  0.445  0.400  0.182  

19 0.698  0.253  0.424  0.516  0.431  0.082  

20 0.305  0.459  0.501  0.526  0.486  0.209  

21 0.163  0.015  0.161  0.169  0.162  0.141  

22 0.681  0.692  0.336  0.341  0.227  0.217  

23 0.157  0.320  0.146  0.129  0.150  0.162  

24 0.917  0.528  0.463  0.344  0.266  0.216  

25 0.384  0.101  0.256  0.223  0.206  0.236  

26 0.039  0.498  0.323  0.376  0.245  0.213  

27 0.122  0.171  0.289  0.459  0.247  0.259  

28 0.221  0.224  0.525  0.394  0.377  0.244  

29 0.841  0.174  0.298  0.394  0.346  0.240  

30 0.243  0.606  0.160  0.126  0.137  0.199  

31 0.290  0.763  0.421  0.273  0.194  0.217  

32 0.429  0.573  0.585  0.466  0.391  0.194  
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33 0.117  0.468  0.228  0.294  0.234  0.207  

34 0.402  0.138  0.474  0.439  0.281  0.262  

35 0.274  0.106  0.439  0.360  0.223  0.200  

36 0.312  0.151  0.423  0.478  0.311  0.104  

37 0.233  0.096  0.455  0.262  0.210  0.168  

38 0.166  0.111  0.145  0.285  0.273  0.214  

39 0.238  0.140  0.305  0.266  0.184  0.155  

40 0.111  0.487  0.312  0.333  0.340  0.225  

41 0.202  0.503  0.474  0.194  0.243  0.073  

42 0.287  0.276  0.322  0.201  0.200  0.112  

43 0.814  0.488  0.443  0.460  0.286  0.297  

44 0.135  0.564  0.207  0.165  0.112  0.118  

45 0.201  0.237  0.230  0.265  0.163  0.144  

46 0.239  0.657  0.343  0.325  0.160  0.161  

47 0.208  0.720  0.206  0.209  0.111  0.137  

48 0.599  0.274  0.411  0.361  0.519  0.142  

49 0.181  0.639  0.361  0.254  0.194  0.137  

50 0.138  0.510  0.420  0.415  0.362  0.212  

51 0.490  0.617  0.517  0.444  0.472  0.277  

52 0.459  0.566  0.429  0.419  0.411  0.231  

53 0.299  0.313  0.435  0.433  0.399  0.240  

54 0.325  0.587  0.312  0.287  0.329  0.154  

55 0.111  0.764  0.093  0.096  0.098  0.090  

56 0.122  0.859  0.093  0.105  0.122  0.106  

57 0.188  0.263  0.245  0.529  0.381  0.302  

58 0.194  0.040  0.244  0.164  0.191  0.156  

59 0.149  0.556  0.269  0.202  0.101  0.079  

60 0.237  0.326  0.266  0.278  0.146  0.127  

61 0.078  0.016  0.266  0.284  0.258  0.240  

62 0.430  0.877  0.562  0.565  0.430  0.182  

63 0.221  0.012  0.323  0.282  0.173  0.174  

64 0.106  0.010  0.087  0.102  0.099  0.089  

65 0.173  0.371  0.177  0.215  0.177  0.148  

66 0.148  0.353  0.348  0.347  0.300  0.184  

67 0.055  0.597  0.441  0.331  0.219  0.166  

68 0.878  0.524  0.428  0.430  0.267  0.206  

69 0.309  0.312  0.461  0.686  0.646  0.253  

70 0.028  0.561  0.375  0.323  0.246  0.197  

71 0.180  0.226  0.461  0.450  0.399  0.210  

72 0.185  0.033  0.205  0.235  0.157  0.159  

73 0.181  0.030  0.181  0.124  0.144  0.104  

74 0.437  0.190  0.410  0.417  0.327  0.174  

75 0.485  0.566  0.548  0.579  0.395  0.201  

76 0.631  0.475  0.402  0.336  0.288  0.099  

77 0.516  0.261  0.252  0.399  0.454  0.207  
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Appendix 2: The Diebold–Mariano test results for each attraction 

Table. A2-1 Values of the Diebold–Mariano test based on MAE (h=9). 

Attractions 

CTS-LSTM-

AM vs 

SARIMAX 

CTS-

LSTM-AM 

vs ANN 

CTS-

LSTM-AM 

vs LSTM 

CTS-

LSTM-

AM vs 

LSTM-

AM 

CTS-

LSTM-AM 

vs CTS-

LSTM 

CTS-

LSTM-AM 

vs Baseline 

1 -18.045***  -15.622***  -4.860***  -4.725***  -0.763  -3.185***  

2 -29.078***  -13.055***  -6.870***  -6.372***  -0.571  -4.794***  

3 -8.381***  -13.717***  -8.322***  -8.814***  -2.200**  -6.386***  

4 -11.854***  -9.956***  -7.408***  -6.548***  -3.126***  -9.008***  

5 -18.899***  -7.956***  -6.391***  -6.578***  -2.028**  -8.080***  

6 -16.219***  -11.126***  -4.582***  -5.605***  -0.182  -5.780***  

7 -9.375***  -8.672***  -8.424***  -6.625***  -4.888***  -7.516***  

8 -31.683***  -11.802***  -7.461***  -8.960***  -21.009***  -15.206***  

9 -21.706***  -7.702***  -8.596***  -5.120***  -3.233***  -4.684***  

10 -15.876***  -8.360***  -6.949***  -5.326***  -4.799***  -10.823***  

11 -7.516***  -16.665***  -6.694***  -7.005***  0.038  -5.236***  

12 -36.811***  -6.754***  -8.224***  -6.770***  -2.372**  -5.784***  

13 -16.784***  -36.523***  -10.109***  -8.463***  -21.997***  -10.140***  

14 -24.741***  -19.066***  -3.769***  -5.332***  -0.994  -3.355***  

15 -15.270***  -21.615***  -5.689***  -8.299***  -12.998***  -13.855***  

16 -16.289***  -26.144***  -8.755***  -5.326*** -25.430***  -23.890***  

17 -15.224***  -10.227***  -8.494*** -6.640***  -5.914***  -7.240***  

18 -17.428***  -10.204***  -13.345***  -9.985***  -47.705***  -20.679***  

19 -40.179***  -6.358***  -5.888***  -5.554***  -10.379***  -8.945***  

20 -17.879***  -38.456***  -3.081***  -5.212***  -2.872***  -4.575***  

21 -28.971***  -13.040***  -5.905***  -5.943***  -0.877  -5.442*** 

22 -19.704***  -36.348***  2.978*** -0.663  -0.121  -0.945  

23 -21.192***  -7.146***  -8.656***  -7.916***  -5.179***  -5.115*** 

24 -21.276***  -21.047***  -2.771**  -0.020  -1.024  -19.493***  

25 -9.671***  -10.919***  -3.944***  -4.979***  -2.899***  -8.617***  

26 -5.855***  -12.555***  -8.799***  -6.901***  -2.778**  -7.548***  

27 -17.255***  -8.958***  -10.222***  -7.904***  -4.237***  -8.043***  

28 -25.998***  -14.938***  -7.461***  -3.888***  -3.687***  -9.628***  

29 -17.123***  -17.070***  -0.967  -1.328  -2.342**  -3.979***  

30 -23.377***  -17.472***  -4.895***  -4.814***  0.096  -21.532***  

31 -17.168***  -8.223***  -7.588***  -9.073***  -7.359***  -7.639***  

32 -12.627***  -9.966***  -5.158***  -5.276***  -0.547  -12.894***  

33 -15.348***  -16.324***  -5.341*** -5.801***  -1.643  -7.780***  

34 -17.123***  -13.541***  -6.182***  -5.596***  -0.697  -9.927***  

35 -4.105***  -16.565***  -12.272***  -9.819***  -8.336***  -11.769***  

36 -3.001***  -13.310***  -9.324***  -3.433***  -2.899***  -5.288*** 

37 -8.480***  -12.622***  -10.556***  -8.250***  -2.489**  -7.039*** 

38 -14.381***  -16.807***  -7.294***  -5.651***  -2.822**  -10.172*** 

39 -6.000***  -6.855***  -7.181***  -7.126***  -1.706*  -12.028***  

40 -25.711***  -15.360***  -13.099***  -4.673***  -16.730***  -12.817***  

41 -20.121***  -6.548***  -5.813***  -4.543***  -8.792***  -11.922***  

42 -12.129***  -8.072***  -4.783***  -5.196***  -0.535  -10.055***  
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43 -0.245  -19.749***  -4.068***  -3.531***  -0.184  -5.696***  

44 -22.042***  -3.398***  -4.421***  -4.117***  -2.102**  -9.216***  

45 -32.324***  -21.336***  -5.486***  -5.321***  -0.253  -11.848***  

46 -33.981***  -25.430***  -2.948***  -4.157***  -2.221**  -10.725***  

47 -33.065***  -11.379***  -7.881***  -5.752***  -19.161***  -9.255***  

48 -35.531***  -21.368***  -9.448***  -4.414***  -4.313***  -20.377***  

49 -12.090***  -6.123***  -3.585***  -5.941***  -5.298***  -11.676***  

50 -21.539***  -4.642***  -7.687***  -4.021***  -4.944***  -6.710***  

51 -30.311***  -9.318***  -8.491***  -6.827*** -4.941***  -6.356***  

52 -15.035***  -18.868***  -11.468***  -6.333***  -6.151***  -10.701***  

53 -14.801***  -9.846***  -18.299***  -5.486***  -8.785***  -8.494***  

54 -51.269***  -42.278***  -2.177** -1.195  -1.390  -44.715***  

55 -56.993***  -45.571***  -1.408  -2.977***  -1.280  -28.266***  

56 -5.339***  -9.441***  -6.781***  -5.377***  -1.203  -10.134***  

57 -17.850***  -24.780***  -5.447***  -4.460***  -3.441***  -9.591***  

58 -74.852***  -26.202***  -11.307***  -6.494***  -3.815***  -68.800***  

59 -17.306***  -11.082***  -7.757***  -4.979***  -2.069**  -4.436***  

60 -6.477***  -17.043***  -4.528***  -6.331***  -1.266  -18.875***  

61 -35.204***  -16.205***  -8.755***  -6.827*** -18.327***  -5.626***  

62 -27.316***  -25.072***  -5.712***  -5.975***  -0.137  -4.568***  

63 -53.492***  -52.730***  -2.896***  -3.834***  -1.074  -40.461***  

64 -38.905***  -10.617***  -2.995***  -2.251***  -1.796*  -33.606***  

65 -32.177***  -8.196***  -5.642***  -4.403***  -4.861***  -10.521***  

66 -20.775***  -15.087***  -7.980***  -6.827***  -3.607***  -12.500***  

67 -18.901***  -7.935***  -8.731***  -6.697***  -3.781***  -7.645***  

68 -17.197***  -10.474***  -8.076***  -6.843***  -10.713***  -8.369***  

69 -14.165***  -11.902***  -7.253***  -6.072***  -1.903*  -12.477***  

70 -49.943***  -11.184***  -8.755***  -7.437***  -4.738***  -5.587***  

71 -28.851***  -30.941***  -4.826***  -5.307***  -0.396  -6.292***  

72 -43.707***  -41.498***  -2.770**  -3.302***  -4.134***  -5.011***  

73 -12.625***  -16.122***  -5.566***  -7.814***  -7.285***  -13.394***  

74 -19.917***  -8.568***  -8.445***  -5.482***  -6.752***  -8.734***  

75 -59.162***  -15.477***  -8.727***  -8.031***  -13.465***  -11.353***  

76 -17.376***  -20.676***  -8.755***  -6.234***  -13.311***  -12.987***  

77 -9.375*** -8.672***  -8.424*** -6.625***  -4.888***  -6.356***  

Note: ***Significant at 1%; **significant at 5%; *significant at 10%. 
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