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1 Introduction

Consider a compound search problem with a deadline, where a searcher searches not only se-

quentially but chooses her search intensity adaptively in each period. There are many such

examples in the real world. For instance, consumer searches usually involve a deadline, such

as gifts for anniversary and holiday hotel bookings, and consumers may adjust their search in-

tensity from time to time. A football club, if having not signed the ideal players, may increase

its recruitment intensity before the transfer window closes. In academia, a junior researcher

needs to choose her research effort from time to time, depending on her research outputs and

the remaining probation periods. Empirical studies have also suggested that economic agents

commonly conduct compound, rather than purely sequential, searches in practice (Honka and

Chintagunta, 2016; Gavazza et al., 2018), and that the majority of online consumers appear to

be searching under deadline pressures (Coey et al., 2019).

In this paper, we develop a tractable framework for analyzing this category of compound

search problems. We fully characterize the optimal search rule and value, in both cases of search

with full and no recall, and derive some previously undiscovered properties of the optimal search

intensity and value. We also discuss some extensions and potential applications of our results.

The theoretical literature on search has mainly concentrated on purely sequential search

problems, where a searcher explores random prizes one-by-one sequentially. For example, the

classic paper of Weitzman (1979) studied a so-called Pandora’s problem: Pandora faces a num-

ber of closed boxes, which are heterogeneous in both search cost and prize distribution; in each

period, she decides whether to open just a box or not; and her objective is to maximize the

expected search value. Weitzman fully characterized the optimal search rule in this case. In

contrast, the literature on compound search problems is relatively small, which seems unusual

as compound search models are more general and would have more applications.

A strand of literature has adopted a reduced-form approach to model search intensity in

compound search problems. In a seminal paper, Lippman and McCall (1976) considered search

intensity in job searches, and assumed an exogenous relationship between search intensity and

success probability. Likewise, continuous-time job search models usually assume that search

intensity affects only the arrival rate of job offers, yet not their values (Rogerson et al., 2005, for

a survey). Due to its tractability, the reduced-form approach has been widely applied to various
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settings, yet it does not reveal the intrinsic mechanism through which search intensity affects

search outcomes.

By applying sampling theory, another strand of literature investigates compound search

problems with a more solid micro-foundation, where the choice of search intensity endoge-

nously determines the distribution of search outcomes. This literature can be further divided

into two groups. The first group investigates infinite-horizon compound search problems, and a

common conclusion is that constant search intensity is optimal. Vishwanath (1992) re-examined

Pandora’s problem, yet allowing a searcher to adopt a compound search strategy. She provided a

sufficient condition of prize distributions, e.g., second-order stochastic dominance, under which

the optimal compound search order remains the same as the sequential one, but she did not fully

characterize the optimal search rule. Poblete and Spulber (2017) considered compound search

strategies in a sequential innovation problem without a deadline, and showed the optimality of

constant search intensity with full recall. Benkert et al. (2018) instead interpreted the choice

of search intensity as the choice of prize distribution, and again showed that constant search

intensity is optimal, as a searcher will sample from the same distribution in every period until a

constant reservation value is reached.1

The second group introduces a finite deadline to Pandora’s problem à la Weitzman (1979).

The resulted finite sequential search model necessitates a searcher’s adoption of a compound

search strategy, as a purely sequential one is generally not optimal. Solving this problem is

technically challenging, as it is no longer a stationary search process. For this finite sequential

search model, Gal et al. (1981) and Benhabib and Bull (1983) considered the case of search with

no recall, and Morgan (1983) and Morgan and Manning (1985) further studied the case of search

with full recall.2 These papers identified some monotonic properties of optimal search intensity,

yet did not provide complete analyses to some key questions, such as optimal search value, the

interaction between different effects determining the dynamics of optimal search intensity, and

the role of recall. Moreover, the complexity of their analyses may have also impeded follow-up

theoretical explorations and applications of their model.

This paper contributes to the literature by developing a simple framework for analyzing the

1The denumerable-armed bandit model of Banks and Sundaram (1992) includes a similar interpretation of search
intensity, as the prize distributions are allowed to vary across different arms.

2With full recall, a searcher can reclaim a previously declined outcome at no extra search cost. With no recall,
in contrast, a previously declined outcome is not reclaimable in later periods.
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finite sequential search problems. With its tractability, we not only provide richer characteri-

zations but deliver new insights of the optimal search rules and outcomes. Our results can be

applied to a large set of related problems.

First, we fully characterize the optimal search rule and value in the case of search with full

recall (Theorem 1). Based on the optimal search rule, we investigate the interaction between the

deadline effect and the fall-back value effect that jointly determine the inter-temporal change

of optimal search intensity.3 The deadline effect suggests that a searcher will search more in-

tensively when the deadline approaches, as there are fewer search opportunities left. On the

other hand, the fall-back value effect suggests that a searcher will search less intensively when

her fall-back value increases, as it becomes less likely for an additional search to increase her

search outcome. We provide a decomposition result of the two effects (Lemma 1 and Equation

(8)). Notably, we show that the optimal search intensity is submodular in fall-back value and

time (Proposition 1). It then implies that the fall-back value effect gets stronger when the dead-

line approaches, and the deadline effect becomes weaker when the fall-back value increases.

We further show that the search value is supermodular in fall-back value and time (Propo-

sition 2). Define the value of time as the additional value of conducting an optimal search in a

certain period, which also measures a searcher’s willingness-to-pay for such a search opportu-

nity. The supermodularity result then suggests that the value of time is decreasing in a searcher’s

fall-back value and is increasing over time.

There is an intrinsic connection between search with full and no recall. Specifically, a

searcher with no recall behaves as if she is searching with full recall in the last period, with

her continuation value being the fall-back value. With this property, we can easily characterize

the optimal search rule and value in the case of no recall (Proposition 3). Define the value of

recall as the difference in search values across the two cases of search with full and no recall.

We show that it is single-peaked, i.e., the value of recall first increases until the fall-back value

reaches a threshold, decreases thereafter, and eventually turns to zero when the fall-back value

becomes sufficiently large (Proposition 4).

Moreover, we find Morgan (1983)’s conjecture, that a searcher with full recall will search

less intensively than one with no recall, is not always true. His conjecture is true only when

3These two effects were reported in Gal et al. (1981) and Morgan (1983), though not under the same terminology.
Yet, the interaction between the two effects has not been investigated in the literature.
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the fall-back value is relatively small, such that it is optimal to continue searching in both cases

of full and no recall. When the fall-back value increases, a searcher with no recall may stop

searching, while one with full recall may still continue and hence induce higher search intensity.

We term this as the encouragement and discouragement effect of recall, and provide relevant

characterizations (Proposition 5).

Finally, we introduce some potential applications and extensions of our model. First, we

can model an agent’s endogenous and non-stationary time preference within our framework,

without introducing any behavioral assumption (Section 5.1). There is also a natural connection

between our model and contests.

Our approach can extend standard contest models in various directions, especially dynamic

ones (Section 5.2). We further re-investigate our model without imposing a finite deadline,

and characterize the optimal search outcomes (Section 5.3). Moreover, we also explore other

possible applications of our results in various dynamic decision-making problems (Section 5.4).

We relegate all the proofs to Appendix A.1, and provide additional numerical examples that

help to illustrate the theoretical results in Appendix A.2.

2 The Model

A risk-neutral searcher, endowed with an initial fall-back value y1 ∈R+, has T periods to search.

Her search technology is characterized by (C,F), where C : R+→ R+ is a search cost function

and F is the distribution of a unit search outcome defined on a real interval [0,B]. F is absolutely

continuous with full support, i.e., F(x) > 0 for any 0 < x ≤ B. In each period, the searcher

chooses a search intensity m ∈ R+ at the cost of C(m), and the search outcome Xm is a random

draw from the distribution Fm := F(·)m. When m is an integer, Xm is just the first order statistic,

i.e., the largest outcome of m independent draws from F . We allow m to take real values,

and hence the search intensity in our analysis can be interpreted as search effort, work hour,

expenditure, and so on. We assume the search cost function C(m) satisfies C(0) = 0, C′ ≥ 0,

C′′ ≥ 0, and C′′′ ≤ 0.4 The marginal search cost function is denoted by c(m) :=C′(m).

When the search is with full recall, a searcher can reclaim a previously discovered value at

no extra search cost. The fall-back value yt (i.e., the highest value she has discovered till the

4This technical assumption of C′′′ is required only for the submodularity of optimal intensity (Proposition 1).
All other results in this paper do not depend on this assumption.
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beginning of period t) then evolves according to: for t = 2, · · · ,T ,

(Fall-Back Value with Full Recall) yt := max
{

yt−1,xmt−1

}
,

where xmt−1 is the realized search outcome in period t − 1 with search intensity mt−1. Our

analyses in Section 2 and 3 focus on the case of full recall, and we will explore the other case

of no recall in Section 4. For simplicity, we do not consider time discounting in our model.5

Without causing confusion, we may suppress the subscript t in mt and yt sometimes.

Given a fall-back value y at the beginning of period t, define the search value Wt(y) as the

searcher’s expected search payoff by following an optimal search rule from period t till the

deadline. The Bellman equation for the search problem is: for t = 1, · · · ,T ,

(1) Wt(y) = max
m≥0

{
EWt+1 (max{y,Xm})−C(m)

}
,

and WT+1(y) = y, as the searcher keeps whatever she has after the deadline. For any t, note that

Wt(y) is convex, strictly increasing in y, and therefore, its derivative W ′t (y) is well defined almost

everywhere.6

For given y at the beginning of period t, we define the expected revenue of choosing intensity

m by Rt(m;y) := EWt+1 (max{y,Xm}). It then follows from the monotonicity of Wt+1 that

Rt(m;y) = Emax{Wt+1(y),Wt+1(Xm)}

= Wt+1(y)+Emax{Wt+1(Xm)−Wt+1(y),0},(2)

where the first term Wt+1(y) is the minimum search value guaranteed by choosing m = 0, and

the second term is the expected surplus Wt+1(Xm) above Wt+1(y) by continuing searching with

m≥ 0.
5The introduction of time discounting would not change our results qualitatively. Moreover, our model can be

easily extended to allow stationary time discounting. For example, after introducing a constant discounting factor δ ,
the Bellman equation (1) becomes

Wt(y) = max
{

y,δ max
m≥0

{
EWt+1 (max{y,Xm})−C(m)

}}
.

6We can prove it by mathematical induction. Observe that WT+1(y) = y is convex and strictly increasing in y,
and its derivative is well defined. As an induction hypothesis, suppose Wτ+1(y) is convex and strictly increasing in
y for any t ≤ τ ≤ T . We next show the properties also hold for Wt(y). From (1), Wt(y) is strictly increasing in y,
as EWt+1(max{y,Xm}) = Emax{Wt+1(y),Wt+1(Xm)} is strictly increasing in y for any m ≥ 0. Moreover, Wt(y) is
convex, as a maximum of a family of convex functions. As a convex function, Wt(y) is absolutely continuous and
W ′t (y) is well defined almost everywhere. See Proof of Theorem 1 for more details and related technical references.
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Alternatively, we have the following equivalent expression7

Rt(m;y) = y+
∫ B

y
[1−W ′t+1(x)F(x)m]dx.(3)

As (3) is differentiable in m, the (expected) marginal revenue rt(m;y) is given by

(4) rt(m;y) :=
∂Rt(m;y)

∂m
=
∫ B

y
W ′t+1(x)F(x)m| lnF(x)|dx.

A search rule is a sequence of contingent plans of search intensity, denoted by {mt}T
t=1. To

be specific, at the beginning of each period t, contingent on the fall-back value y, a searcher

chooses her search intensity mt : [0,B]→R+ of that period. In principle, she can skip searching

in that period by choosing mt = 0, or stop searching permanently by choosing {mτ = 0}T
τ=t . In

our setting, however, it is never optimal to resume a previously stopped search, as search cost

does not depend on past search decisions, and search outcomes are determined by independent

draws from the same distribution. We will formally show this result in the next section.

3 The Optimal Search Rule and Value

In this section, we characterize the optimal search rule and value in the case of full recall in

Theorem 1 and further explore their properties in Proposition 1 and Proposition 2.

First, we derive the optimal search rule and value by backward induction. To be specific, let

m∗t (y) denote the optimal search intensity in period t with a fall-back value y. In the last period T ,

a searcher with a fall-back value y would stop searching, i.e., m∗T (y) = 0, if the marginal revenue

rT (0;y) is greater than the marginal cost c(0). Otherwise, she would continue searching with an

intensity m∗T (y) > 0 that equates the marginal revenue and the marginal cost. To ease notation,

denote X∗T := Xm∗T (y), the best search outcome by choosing m∗T (y). In the case of full recall, the

search value in period T is thus

WT (y) = Emax{y,X∗T}= y+Emax{X∗T − y,0},

which consists of the fall-back value y and the expected surplus in search outcome X∗T above y.

7Integrating by parts and noting that Wt+1(B) = B, the definition of Rt(m;y) yields

EWt+1
(

max{y,Xm}
)
=Wt+1(y)F(y)m +

∫ B
y Wt+1(x)dF(x)m

=Wt+1(y)F(y)m +[Wt+1(B)−Wt+1(y)F(y)m]−
∫ B

y W ′t+1(x)F(x)mdx

= B−
∫ B

y W ′t+1(x)F(x)mdx = y+
∫ B

y [1−W ′t+1(x)F(x)m]dx.
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Let ξ denote the optimal cutoff value for stopping in period T . As rT (0,y) is decreasing in y

by (4), it is evident that ξ is the unique solution to rT (0,ξ ) = c(0) if rT (0,0)> c(0); and ξ = 0

otherwise. Therefore, a searcher with a fall-back value y stops searching in period T if and only

if y ≥ ξ . Interestingly, it turns out that this cutoff value is constant over time.8 For instance,

in period T − 1, if she has a fall-back value y ≥ ξ , then it would be her last period of search

if she intends to, as she will certainly stop searching in period T given that her fall-back value

will increase. Therefore, in period T −1, the cutoff value for optimal stopping is also ξ . In any

period t, as long as y < ξ , the searcher will continue searching, and the optimal search intensity

m∗t (y) is determined by the unique solution to rt(m;y) = c(m).

Theorem 1 formally states the optimal search rule and the search value in the case of full

recall.

Theorem 1 (Search with Full Recall). Let ξ be the unique solution to
∫ B

ξ
| lnF(x)|dx = c(0) if∫ B

0 | lnF(x)|dx > c(0); and ξ = 0 otherwise. The optimal search rule {m∗t }T
t=1 is determined as

follows

i. if y≥ ξ , then m∗t (y) = 0;

ii. if y < ξ , then m∗t (y)> 0 is the unique solution to rt(m;y) = c(m).

Moreover, the search value is

Wt(y) = Emax{y,X∗t }

= y+Emax{X∗t − y,0}

= y+
∫ max{y,ξ}

y

(
1−

T

∏
τ=t

F(x)m∗τ (x)

)
dx,(5)

where X∗t is the best search outcome by following the optimal search rule {m∗τ}T
τ=t from period

t till the last period T , which has a distribution Pr[X∗t ≤ x] = ∏
T
τ=t F(x)m∗τ (x).

Remark. If the marginal search cost c(0) is zero, then ξ = B, and hence the searcher will con-

tinue searching as long as possible unless she obtains the highest possible value B. On the other

hand, when the marginal search cost is large enough (i.e., c(0) ≥
∫ B

0 | lnF(x)|dx), then ξ = 0

and the searcher never conducts a search. It is noteworthy the cost function does not explicitly

appear in (5), as it is already eliminated through the optimal condition rt(m;y) = c(m).
8In the case of search with no recall, Proposition 3 and Corollary 2 show the optimal cutoff value for stopping

is strictly decreasing over time.
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The best future search outcome X∗t is drawn from the distribution ∏
T
τ=t Fm∗τ which is en-

dogenously determined by the optimal plan {m∗τ}T
τ=t .

9 This is different from the distribution F ,

which is exogenously given as the search technology. Importantly, the distribution of the best

future search outcome X∗t is just equal to the marginal search value, as (5) yields the following

corollary.

Corollary 1. The marginal search value satisfies

(6) W ′t (y) =
T

∏
τ=t

F(y)m∗τ (y).

By introducing the new random variable X∗t , we simplify the presentation and calculation

of search value Wt(y) in (5), if compared with that using the Bellman equation. To be specific,

formula (5) embeds the solution to the Bellman equation (1) into a single random variable X∗t ,

which has a distribution W ′t as shown in (6). It further yields the recurrence relationship between

two adjacent periods t and t +1,

(7) W ′t (y) = F(y)m∗t (y)W ′t+1(y),

which enables to solve the search value Wt(y) recursively.

3.1 Dynamics of Optimal Search Intensity

When the fall-back value y increases, a searcher intends to search less intensively, because it

becomes less likely that a further search would generate a better outcome. On the other hand,

for a given y, the searcher will search more intensively when the deadline approaches, as she has

fewer opportunities to improve her search outcome. We term the former as the fall-back value

effect and the latter as the deadline effect on the optimal choice of search intensity. The two

effects are formally summarizes in Lemma 1 below and also illustrated in Figure 4 and Figure

5 in Appendix A.2.10

Lemma 1. The optimal intensity m∗t (y) is decreasing in y and increasing in t (strictly if and

only if y < ξ ).

9Proof of Theorem 1 confirms that ∏
T
τ=t Fm∗τ indeed defines a distribution function.

10Lemma 1 corresponds to Morgan (1983, Proposition 3 and 4), yet under different terminology. Proof of Lemma
1 provides a simple derivation of these results based on Theorem 1.
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yt y′t ξ

Deadline Effect
with yt Deadline Effect

with y′t > yt

Fall-back Value Effect at t +1

Fall-back Value Effect at t

y

m∗

m∗t+1
m∗t

NOTES: When the fall-back value increases from yt to y′t , the deadline effect, m∗t+1(y)−m∗t (y), decreases. Moreover,
m∗t+1(y) drops at a faster rate in y than m∗t (y).

Figure 1: Submodularity of Optimal Intensity

As the two effects are opposite to each other, their relative magnitudes determine whether

the optimal intensity will increase or decrease in the next period. For an inter-temporal change

of optimal intensity, e.g., from m∗t (yt) to m∗t+1(yt+1), we can decompose it into the fall-back

value effect and the deadline effect, as follows

m∗t+1(yt+1)−m∗t (yt) =
[
m∗t+1(yt+1)−m∗t+1(yt)

]︸ ︷︷ ︸
Fall-back value effect

+
[
m∗t+1(yt)−m∗t (yt)

]︸ ︷︷ ︸
Deadline effect

.(8)

If the deadline effect dominates, the optimal intensity will increase, i.e., m∗t (yt) < m∗t+1(yt+1);

otherwise, it will decrease. As the search outcome is ex-ante random, the sequence of {m∗t (yt)}1≤t≤T

is necessarily a stochastic process, which is in general non-monotonic. Figure 6 in Appendix

A.2 presents some sample paths.

We now establish an important property on the interactions between the two effects. Propo-

sition 1 below shows that the optimal intensity m∗t (y) is submodular in y and t.

Proposition 1 (Submodularity of Optimal Intensity). For any t and y < y′,

(9) m∗t+1(y)−m∗t (y)≥ m∗t+1(y
′)−m∗t (y

′),

where the inequality holds strictly if and only if y < ξ .

The submodularity of optimal intensity implies that the deadline effect, m∗t+1(y)−m∗t (y),

becomes smaller when the fall-back value y increases, or equivalently, the fall-back value ef-
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fect, m∗t (y)−m∗t (y
′), becomes stronger when the deadline approaches. Figure 1 illustrates the

submodularity of optimal search intensity.

3.2 Properties of Search Value

Based on Theorem 1, we next provide some further properties of the search value Wt(y). Denote

DtW (y) :=Wt+1(y)−Wt(y) as the difference of the search value between two adjacent periods.

Proposition 2 below summarizes the first-order and the second-order properties of Wt(y), which

are also illustrated in Figure 2 (a).

Proposition 2 (Properties of Search Value). The search value Wt(y) is

i. increasing and convex in y, that is, W ′t (y)≥ 0 is increasing in y;

ii. decreasing and concave in t, that is, DtW (y)≤ 0 is decreasing in t; and

iii. supermodular in y and t, that is, W ′t (y) is increasing in t and DtW (y) is increasing in y.

The results hold strictly if and only if y < ξ .

We define the absolute value |DtW (y)| = Wt(y)−Wt+1(y) as the value of time in period t,

which measures the value of an optimal search in that period. For instance, given a fall-back

value y, the search value at the beginning of period t is Wt(y). If the searcher has one less period

for search, then the search value decreases to Wt+1(y). Therefore, |DtW (y)| measures the value

of an optimal search in that period, which is also a searcher’s “willingness-to-pay” for such a

search opportunity.11

Proposition 2 suggests some interesting properties of the value of time. First, the super-

modularity of Wt(y) implies that, when y increases, it becomes less likely to achieve a better

search outcome through an extra search, and therefore, the value of time decreases. Second, the

concavity of Wt(y) in t further implies that the value of time is increasing in t. The intuition is

that, when the deadline gets closer, the searcher will have fewer opportunities to improve her

search value. Therefore, she is willing to pay more for an extra search opportunity.

Example 1 below considers an oil firm that needs a license to explore a new oil field for a

finite period of time.12 The numerical results illustrate how the value of time, or the value of a

11It is evident that the value of time is 0 in an infinite horizon search problem without time discounting, if all the
objects are homogeneous in terms of F and unit search cost.

12This example is inspired by Morgan (1983).
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y = 0 y = 0.2 y = 0.4 y = 0.5 y = 0.55
Wt |DtW | Wt |DtW | Wt |DtW | Wt |DtW | Wt |DtW |

t = 1 0.54738 0.01074 0.54739 0.01071 0.54849 0.00954 0.55413 0.00615 0.56487 0.00250
t = 2 0.53664 0.01963 0.53668 0.01947 0.53895 0.01599 0.54798 0.00893 0.56236 0.00312
t = 3 0.51701 0.04946 0.51721 0.04759 0.52296 0.03204 0.53906 0.01405 0.55925 0.00399
t = 4 0.46745 0.46745 0.46962 0.26962 0.49093 0.09093 0.52501 0.02501 0.55527 0.00527

Table 1: The Search Value (Wt) and the Value of Time (|DtW | = Wt −Wt+1): C(m) = 0.1m,
F(x) = x ·1(0≤ x≤ 1), T = 4

license, changes with t and y.

Example 1 (Value of License). An oil firm wishes to explore a new oil field for four months.

The firm can choose the monthly exploration intensity m at the cost of C(m) = 0.1m. For

an exploration intensity m, the outcome is a random draw from Fm, where the unit explo-

ration technology is given by a uniform distribution F(x) = x · 1(0 ≤ x ≤ 1). The value of

time |DtW (y)| measures the firm’s willingness-to-pay for an exploration opportunity in period

t, when its fall-back value is y. Table 1 provides the numerical results on how the firm values

the license over time and across different current fall-back value y’s.13 For instance, when the

firm has zero fall-back value, the firm’s willingness-to-pay for the license for the first month

is |D1W (0)|=W1(0)−W2(0) = 0.54738−0.53664 = 0.01074. The willingness-to-pay for the

license increases when the deadline approaches, and it increases dramatically in the last period

(e.g., |D3W (0)| = 0.04946 and |D4W (0)| = 0.46745). However, when the firm has a high fall-

back value y, the value of time is marginal even in the last period (e.g., |D3W (0.55)|= 0.00399

and |D4W (0.55)|= 0.00527).

4 The Role of Recall

This section considers the other important case of search with no recall, where a previous dis-

covered outcome is not reclaimable in later periods. In the case of no recall, it is evident that

the fall-back value yt is equal to the best search outcome in period t−1, that is, y1 = 0 and for

t = 2, · · · ,T ,

(Fall-Back Value with No Recall) yt := xmt−1 .

13See Figure 7 for its Mathematica code.
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Given a fall-back value y at the beginning of period t, in the case of no recall, denote Ŵt(y) as

the search value of following an optimal search rule from period t on. The Bellman equation is

thus: for t = 1, · · · ,T ,

Ŵt(y) = max
m≥0

{
y,EŴt+1 (Xm)−C(m)

}
,(10)

and ŴT+1(y) = y, as a searcher keeps whatever she has in period T +1.

In the case of no recall, we first derive the optimal cutoff for stopping in period t, denoted by

ξ̂t . In any period t ≤ T , the searcher can either opt for the fall-back value y or continue searching

by discarding y. In the latter case, she expects the search value of Ŵt(0) because her fall-back

value turns to zero. Therefore, the search value with a fall-back value y is, for any t ≤ T ,

(11) Ŵt(y) = max{y,Ŵt(0)}.

Clearly, it is optimal to stop searching if y≥ Ŵt(0).14 Therefore, the optimal cutoff for stopping

is determined by ξ̂t = Ŵt(0). It then follows from (10) that

ξ̂t = Ŵt(0) = max
m≥0

{
EŴt+1 (Xm)−C(m)

}
= max

m≥0

{
Emax{Xm,Ŵt+1(0)}−C(m)

}
= WT (Ŵt+1(0)),(12)

where the second line is due to (11) and the last one is from (1). Substituting Ŵt+1(0) = ξ̂t+1

into (12), we have a recurrence relation between the optimal cutoffs of two adjacent periods,

that is, for any t < T ,

(13) ξ̂t =WT (ξ̂t+1).

It is interesting to observe that ξ̂t and ξ̂t+1, the optimal cutoffs in the case of no recall, are linked

through WT , the last-period search value in the case of full recall. By recursively applying (13)

with the initial condition of ξ̂T = WT (0), we can solve for ξ̂t as an iterated function value of

WT (0):

ξ̂t =W T−t+1
T (0) :=WT (WT (· · ·(WT︸ ︷︷ ︸

T−t+1 times

(0)))).(14)

14At y = ξ̂t , both searching with a positive intensity and stopping are optimal, because they yield the same search
value Ŵt(y). For convenience, we assume that a searcher stops at the cutoff ξ̂t .
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(a) Search Value with Full Recall
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(b) Search Values with No Recall

NOTES: With full recall, the search value Wt(y) is strictly increasing and convex for y < ξ , with a slope smaller
than 1. With no recall, in contrast, the search value Ŵt(y) is constant for y < ξ̂t . Moreover, the cutoff value ξ̂t with
no recall is determined by the search value WT (ξ̂t+1) with full recall in period T having the next period cutoff value
ξ̂t+1 as a fall-back value.

Figure 2: The Search Value: C(m) = 0.1m, F(x) = x ·1(0≤ x≤ 1), T = 4

We next derive the optimal search intensity, denoted by m̂∗t (y), in the case of no recall. Given

a fall-back value y at the beginning of period t, if a searcher decides to search, the expected

revenue of choosing intensity m is, from (10),

(15) R̂t(m;y) := EŴt+1 (Xm) = Emax{Xm, ξ̂t+1}= RT (m; ξ̂t+1),

where the second equation is implied by (11) with ξ̂t+1 = Ŵt+1(0), and the third by (2) with

WT+1(y) = y. That is, R̂t(m;y), the expected revenue with no recall, is equal to RT (m; ξ̂t+1), the

last-period search revenue with full recall with ξ̂t+1 as her fall-back value instead.15 As a result,

if a searcher with no recall continues searching (i.e., y < ξ̂t), the optimal search intensity is

determined by m̂∗t (y)=m∗T (ξ̂t+1), which does not depend on y. In the case of no recall, therefore,

the fall-back value effect vanishes, and the deadline effect solely determines the dynamics of

optimal intensity. Proposition 3 characterizes the optimal search rule and search value with no

15Using (2), we can decompose the expected revenue with no recall

R̂t(m;y) = RT (m; ξ̂t+1) = ξ̂t+1 +Emax{Xm− ξ̂t+1,0}

into the next-period cutoff ξ̂t+1 for stopping and the expected surplus Xm above ξ̂t+1 by searching with m ≥ 0 in a
single-period problem.
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recall.16

Proposition 3 (Search with No Recall). For any t ≤ T , the optimal cutoff for stopping with no

recall is determined by ξ̂t =W T−t+1
T (0), as given in (14), and the optimal search rule {m̂∗t }T

t=1

is given by

(16) m̂∗t (y) =

{
m∗T (ξ̂t+1) if y < ξ̂t

0 if y≥ ξ̂t ,

with ξ̂T+1 = 0. Furthermore, the search value by following the optimal search rule is

(17) Ŵt(y) = max{y, ξ̂t}.

Theorem 1 and Proposition 3 enable us to examine the role of recall in affecting the optimal

search rules and the search values. First, Corollary 2 compares the optimal cutoffs for stopping

between the two cases of no and full recall.

Corollary 2. If
∫ B

0 | lnF(x)|dx > c(0), then it holds

(18) ξ > ξ̂1 > ξ̂2 > · · ·> ξ̂T > 0.

Otherwise, ξ̂t = ξ = 0 for all t.

Note that
∫ B

0 | lnF(x)|dx is the largest possible marginal revenue rT (0;0) with full recall,

as suggested by (4) and Corollary 1. If it is greater than the smallest possible marginal search

cost c(0), then the optimal cutoff ξ > 0 and searching is desirable when y < ξ . Otherwise, the

expected revenue is always dominated by the search cost. In this case, a searcher with full recall

never initiates a search (i.e., ξ = 0), neither does a searcher with no recall (i.e., ξ̂t = 0).

In the non-trivial case of
∫ B

0 | lnF(x)|dx > c(0), Corollary 2 shows that the optimal cutoff ξ̂t

with no recall is decreasing over time, and is strictly bounded above by ξ . The intuition of this

monotonicity is as follows. As shown in (17), for a searcher with no recall, ξ̂t represents her

continuation value of search in period t, which naturally gets smaller over time, as the searcher

has fewer opportunities to increase her payoff when approaching T . Moreover, by (14), the

highest cutoff ξ̂1 = WT (0) is strictly smaller than ξ = WT (ξ ). Therefore, when ξ > 0, all the

cutoff values with no recall are strictly smaller than that with full recall.

16Gal et al. (1981) and Morgan (1983) studied the optimal search rule with no recall. However, our characteriza-
tion reveals the connection between the two cases of search with full and no recall.
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We next examine the impacts of a recall option on the search values. Specifically, we define

the value of recall as the difference in search values between the two cases of full and no recall,

as follows

(Value of Recall) V Rt(y) :=Wt(y)−Ŵt(y).

It is clear that V Rt(y) is non-negative, as a searcher always benefits from the option of recalling

a fall-back value. Furthermore, we are interested in how V Rt(y) changes with y. We answer this

question by comparing the shapes of Wt(y) and Ŵt(y).

For a search with full recall, if it is optimal to continue searching, a searcher has a positive

probability that the best search outcome X∗t is greater than her fall-back value y (i.e., Pr[X∗t >

y]> 0). On the other hand for any y > 0, X∗t may not exceed y with a positive probability (i.e.,

Pr[X∗t ≤ y] > 0). From Theorem 1 and Corollary 1, the marginal search value is then, for any

0 < y < ξ ,

(19) 0 <W ′t (y) = Pr[X∗t ≤ y]< 1.

For a search with no recall, it is clear from (17) in Proposition 3 that

(20) Ŵ ′t (y) =

{
0 if y < ξ̂t

1 if y > ξ̂t .

Figure 2 (a) and (b) illustrate the shapes of Wt(y) and Ŵt(y) respectively.

When ξ > 0, we know from Corollary 2 that 0< ξ̂t < ξ for all t ≤ T . The simple comparison

between (19) and (20) then shows that V Rt(y) first increases in y for y≤ ξ̂t , then decreases, and

eventually turns to zero when y≥ ξ . Proposition 4 below summarizes the properties of V Rt(y),

as also illustrated in Figure 3 (a).

Proposition 4 (Value of Recall). Suppose
∫ B

0 | lnF(x)|dx > c(0). For any t and y, the value of

recall V Rt(y)≥ 0. Moreover, for any t:

i. V Rt(y) is strictly increasing in y on [0, ξ̂t ];

ii. V Rt(y) is strictly decreasing in y on [ξ̂t ,ξ ]; and

iii. V Rt(y) = 0 for any y≥ ξ .
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sively for any y ∈ [ξ̂t ,ξ ).

Figure 3: Role of Recall in Search: C(m) = 0.1m, F(x) = x ·1(0≤ x≤ 1), T = 4

The next question is how the presence of a recall option would affect optimal search inten-

sity. Morgan (1983) conjectured that a search with full recall induces lower search intensity

than one with no recall ceteris paribus. We find that the conjecture is not always true. The-

orem 1 shows that, for a search with full recall, the optimal search intensity m∗t (y) decreases

continuously in y and turns to zero when y ≥ ξ . Proposition 3 shows that, for a search with no

recall, the optimal search intensity m̂∗t is constant when y < ξ̂t and drops to zero when y ≥ ξ̂t .

Furthermore, in the non-trivial case of
∫ B

0 | lnF(x)|dx > c(0), Corollary 2 shows that 0 < ξ̂t < ξ

for all t ≤ T .

As a result, when the fall-back value is small, i.e., 0 < y < ξ̂t , a recall option discourages

search intensity as Morgan conjectured, where m̂∗t (y)> m∗t (y)> 0. When ξ̂t ≤ y < ξ , however,

a searcher with no recall stops searching while one with full recall still continues. In this case,

a recall option encourages search intensity instead, as m∗t (y) > m̂∗t (y) = 0. Finally, when y ≥

ξ , it is optimal to stop searching in both cases. Proposition 5 below summarizes the en/dis-

couragment effect of a recall option on optimal search intensity, as also illustrated in Figure 3
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(b).17

Proposition 5 (En/Dis-couragement Effect of Recall). Suppose
∫ B

0 | lnF(x)|dx > c(0). For

any t ≤ T :

i. for any 0 < y < ξ̂t , recall discourages search intensity, that is, m∗t (y)< m̂∗t (y);

ii. for any ξ̂t ≤ y < ξ , recall encourages search intensity, that is, m∗t (y)> m̂∗t (y); and

iii. for any y≥ ξ , m∗t (y) = m̂∗t (y) = 0.

In addition, for any t < T , m̂∗t (0)> m∗t (0); and m̂∗T (0) = m∗T (0).

5 Discussion

5.1 Endogenous Time Preferences

We do not consider time discounting in this paper, although its introduction will not change

our results qualitatively. An interesting observation is that we can define an agent’s endogenous

time preference based on the framework of our model. Our results would suggest that an agent’s

time preference is non-stationary, with no need to introduce any behavioral assumption.

To be specific, we can think of Wt(y) as an agent’s perceived utility of her fall-back value

y in period t. Suppose she is indifferent between having a fall-back value y in period t and

another value z in a later period t ′ > t. It then follows that Wt(y) = Wt ′(z), or equivalently

y = W−1
t (Wt ′(z)), which implies that a future value of z in period t ′ is equivalent to the value

of W−1
t (Wt ′(z)) at the present period t.18 Thus, following the same spirit of discounted utility

theory, we can define a time discounting function

(21) δt,t ′(z) :=W−1
t (Wt ′(z))/z,

which depends on the wealth level z as well as the time periods of t and t ′. Note that the dis-

counting function in (21) incorporates the agent’s optimal search plan as well as the exogenous

search environment.
17On the role of recall, Morgan (1983, Proposition 6) only derived the result for the last period T . By implicitly

assuming y ≤ ξ̂T , he showed that m∗T (y) ≤ m∗T (0) = m̂∗T (y). We formally prove his conjecture for any period t,
provided that it is optimal to continue searching in both cases. In addition, we find this comparative result is not true
for ξ̂T < y < ξ .

18The inverse function W−1
t exists as Theorem 1 confirms Wt is strictly increasing.
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In Lee and Li (2020), we formally derive the non-stationary and context-dependent time

preference using this finite sequential search model, which provides a rational foundation of

empirical/behavioral evidence such as procrastination and wealth effect in inter-temporal deci-

sion making.

5.2 A Search Contest Model

There is a natural connection between our search model and contest models. Consider a contest

among n homogeneous searchers, who have a common search technology (C,F) and an initial

fall-back value y ≥ 0. Each searcher i simultaneously chooses her search intensity mi, and the

one with the highest search outcome wins. With full recall, the search outcome Yi := max{y,Xi}

where Xi is a random draw from Fmi . Let M−i := ∑ j 6=i m j and Y−i := max j 6=i{Yj}. A searcher

i’s winning probability by choosing mi is

Pr(Yi ≥ Y−i) = F(y)M−i

[
F(y)mi

n
+(1−F(y)mi)

]
+
∫ B

y
F(x)M−idF(x)mi .

When y = 0, it is clear that the winning probability is mi/(mi +M−i), which coincides with the

Tullock contest success function (Tullock, 1980).19

Our model can be applied to the extensions of standard contest models in various directions:

for example, asymmetric contests where searchers are heterogeneous in yi; and contests under

complete or incomplete information, depending on whether yi is private information or not.

To be concrete, consider the above example in a case where there is a single leader 1 in the

sense that y1 > max j 6=1{y j}. The other setting remains unchanged, and a searcher i’s winning

probability by choosing mi is thus

Pr(Yi ≥ Y−i) =
∫ B

y1

F(x)M−idF(x)mi +F(y1)
M−1F(y1)

m1 ·1(i = 1).

When all the searchers choose the same intensity level, the single leader 1 has a strictly higher

winning probability than others.

Moreover, there is a close link between our single-agent sequential search model and dy-

namic contest models that involve dynamic competition among multiple players. For example,

19In fact, Baye and Hoppe (2003, Theorem 1) have shown the strategic equivalence between a Tullock contest
and an innovation tournament, where they modeled innovation the same way as we did for a search problem, except
that they implicitly assumed y = 0. Moreover, there has been other literature trying to provide a solid theoretical
foundation for contest success functions. Jia et al. (2013, Section 3) provided a clear discussion of the related
literature.
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one can apply our results to dynamic R&D tournaments, which are usually bounded by a dead-

line, and innovations are modeled as sequential search processes. The extant literature on R&D

tournaments usually assumes a binary choice of search effort (i.e., m = 0 or 1), while ignores the

possibility that agents may adjust their effort inputs adaptively and continuously over time.20

5.3 Infinite Horizon Search

We re-investigate our model without a finite deadline, i.e., T → ∞. To ease discussion, we

explicitly specify the deadline T in notations. For a search with no recall, by (14), we have that

for any finite t, the cutoff for stopping ξ̂t,T = W T−t+1
T (0), which is the (T − t + 1)-th iterate of

WT (0). As WT (y) is the search value of the last-period search problem, it does not depend on

T in fact. Furthermore, from Corollary 1, a self-mapping WT on [0,ξ ] is contractive, i.e, for all

distinct y,y′ ∈ [0,ξ ], |WT (y)−WT (y′)| < |y− y′|. By Edelstein (1962)’s Fixed Point Theorem,

the iterate of WT (y) converges to the fixed point ξ .

As a result, when T → ∞, the optimal cutoff ξ̂t,T = W T−t+1
T (0) for stopping with no recall

converges to the optimal cutoff ξ with full recall, which is constant over time. The intuition is

that, in an infinite horizon problem, a searcher with no recall faces the same decision problem

at the beginning of each period, and therefore, the optimal cutoff value for stopping does not

change over time. This result is in sharp contrast to the result of strictly decreasing cutoffs when

T is finite. Applying the results of Theorem 1 and Proposition 3, we then have, for any y

lim
T→∞

Ŵt,T (y) = max{y,ξ}.

For a search with full recall, as Ŵt,T (y)≤Wt,T (y)≤max{y,ξ}, it also follows that for any y

lim
T→∞

Wt,T (y) = max{y,ξ}.

In summary, in an infinite horizon search problem, i.e., T → ∞, the search values of full and no

recall will converge to the same value.

5.4 Further Applications

There are potentials to apply our results to a large set of dynamic decision-making problems that

involve the adaptive decisions of economic agents. For example, in judicial decision-making,
20For example, Taylor (1995) studied a dynamic R&D tournament model, yet imposed a restrictive assumption

that contestants can only make a binary choice of effort level in each period. Benkert and Letina (2020) studied
the design of optimal R&D tournaments by introducing interim transfers in every period, yet they did not consider
agents’ adaptive choice of effort either.
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Chen and Eraslan (2020) considered an infinite-horizon problem in which a decision-maker

chooses between investigation or not in each period. Applying our model, one can study a

more general situation where the decision-maker may decide her “investigation intensity” (e.g.,

investigation hour, amount of document read, and so on) adaptively in each period.

In scheduling interviews for a job vacancy, an employer usually conducts “compound”

searches for potential job candidates. For example, the employer may invite candidates for

interviews batch by batch; depending on past interview outcomes, the employer may either stop

searching and make job offers, or continue searching with adjusted intensity in the next round.

Morgan (2017) studied a related problem of optimal interviewing, yet the employer does not

directly select the sample size in each period. Our results can be applied to this kind of optimal

scheduling problem.

In search-bargaining literature, such as Baucells and Lippman (2004) and Gantner (2008),

players can search for an outside option while bargaining with each other. Applying our results,

one can develop a dynamic search-bargaining model in which players can choose their search

intensity for outside options. In particular, it would be interesting to investigate the case where

players can observe other players’ search intensity, while the realized outside options are each

player’s private information.

Our results can also be applied to the studies of auditing. Since Simunic (1980) and Dye

(1993), it is a standard assumption in auditing literature that auditors can directly choose the

quality or the informativeness of their audit reports, which is measured by the probability of the

“correct attestation.” In practice, however, auditors choose their audit efforts instead, which then

stochastically affects the quality of their reports. The distinction between audit effort as a control

variable and the quality of the audit report as a stochastic outcome is particularly important in

modeling dynamics audit problems.

For instance, Schwartz (1997) and Pae and Yoo (2001) consider the strategic interaction

between an auditee and an auditor, where the auditee and the auditor sequentially choose the

quality of the internal control system and the audit effort level. By applying our results, one

can develop a dynamic audit model, in which auditors can adjust their effort level adaptively in

each period after assessing the internal control system and updating information from previous

auditing outcomes.
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A Appendix

A.1 Proofs

Proof of Theorem 1.

We prove it by backward induction, starting from the last period T .

Step 1: Let t = T . As WT+1(y) = y, by definition of RT (m;y), integrating by parts yields the

expected revenue

(22) RT (m;y) = Emax{y,Xm}= yF(y)m +
∫ B

y
xdF(x)m = y+

∫ B

y
(1−F(x)m)dx,

which is differentiable with respect to m. The marginal revenue is thus well-defined and it

follows

(23) rT (m;y) :=
∂RT (m;y)

∂m
=
∫ B

y
F(x)m| lnF(x)|dx,

which is non-negative and continuous in m and y, and limm→∞ rT (m;y) = 0. Moreover,

(24)
∂ rT

∂m
=−

∫ B

y
F(x)m ln2 F(x)dx≤ 0 and

∂ rT

∂y
=−F(y)m| lnF(y)| ≤ 0,

where both inequalities hold strictly if and only if y < B. Recall also that the marginal search

cost c(m) is continuous and increasing in m.

Solving the Kuhn-Tucker condition that

rT (m;y)− c(m)≤ 0, m≥ 0, and (rT (m;y)− c(m))m = 0,

we get the solution m∗T (y) as follows.

(i) If rT (0;0) =
∫ B

0 | lnF(x)|dx ≤ c(0), then for any y ≥ 0 and m > 0, rT (m;y) < rT (0;0) ≤

c(0) ≤ c(m). The Kuhn-Tucker condition then implies that m∗T (y) = 0 for any y. Hence,

the optimal cutoff for stopping is ξ = 0.

(ii) If rT (0;0)> c(0), as rT is continuous and strictly decreasing in y with rT (0;B) = 0, there

exists a unique ξ ∈ (0,B] that satisfies rT (0;ξ ) =
∫ B

ξ
| lnF(x)|dx = c(0). For any y ≥ ξ

and m > 0, as rT (m;y)< rT (0;ξ )≤ c(0)≤ c(m), from the Kuhn-Tucker condition again,

we have m∗T (y) = 0. For any y < ξ , we have rT (0;y) > c(0). As c(m) is increasing and

rT (m;y) is strictly decreasing in m, with limm→∞ rT (m;y) = 0, there then exists a unique

m∗T (y) that solves rT (m;y) = c(m).
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Next we derive WT (y). For any y≥ ξ , we have from (1) that WT (y) =WT+1(y) = y as m∗T (y) = 0.

From (22), ∂RT (m;y)/∂y = F(y)m, which is increasing in y. It then follows that RT (m;y)−

C(m) is convex in y, and WT (y), as the maximum of a family of convex functions, is also convex

in y.21 As a convex function, WT (y) is absolutely continuous, and W ′T (y) is defined almost

everywhere.22 As such, WT (y) can be represented by a definite integral of its derivative,23 i.e.,

for any y≤ ξ ,

(25) WT (y) =WT (ξ )−
∫

ξ

y
W ′T (x)dx = ξ −

∫
ξ

y
W ′T (x)dx,

where we use the boundary condition WT (ξ ) = ξ . Applying envelop theorem to (1) and (22),24

we then have

W ′T (x) =
∂RT (m∗T (x);x)

∂x
= F(x)m∗T (x).

Substituting it back into (25) gives

(26) WT (y) = ξ −
∫

ξ

y
F(x)m∗T (x)dx = y+

∫
ξ

y

(
1−F(x)m∗T (x)

)
dx.

Combining (26) for y < ξ and WT (y) = y for y≥ ξ , we have (5) for the last period T .

Finally, we show that F(y)m∗t (y) is continuous and increasing in y, in order to verify it indeed

defines a distribution function on [0,ξ ]. For any y ∈ (0,ξ ), recall m∗T (y) satisfies

(27) rT (m;y)− c(m) = 0,

and by (23) we have

∂ [rT (m;y)− c(m)]

∂m
=−

∫ B

y
F(x)m ln2 F(x)dx− c′(m)< 0,

as c′(m)≥ 0. Applying implicit function theorem to (27),25 m∗T (y) is continuously differentiable

on (0,ξ ) with

dm∗T (y)
dy

= − ∂ [rT (m;y)− c(m)]/∂y
∂ [rT (m;y)− c(m)]/∂m

∣∣∣∣∣
m=m∗T (y)

= − F(y)m∗T (y)| lnF(y)|∫ B
y F(x)m∗T (y) ln2 F(x)dx+ c′(m∗T (y))

< 0.(28)

21See Aliprantis and Border (2006, p.187).
22See Varberg and Roberts (1973, p.4,5) and Royden and Fitzpatrick (2010, p.124,131,132).
23See Royden and Fitzpatrick (2010, p.125).
24See Simon and Blume (1994, Theorem 19.4).
25See Simon and Blume (1994, Theorem 15.2).
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By taking a derivative of F(y)m∗T (y), it follows

dF(y)m∗T (y)

dy
= F(y)m∗T (y)

[
dm∗T (y)

dy
lnF(y)+m∗T (y)

f (y)
F(y)

]
> 0,

where the density function f exists as F is absolutely continuous. Therefore, F(y)m∗T (y) =W ′T (y)

is a distribution function with a strictly positive density.

Step 2: t < T . Consider any t < T . As an induction hypothesis, assume

(29) Wt+1(y) = y+
∫ max{y,ξ}

y

(
1−

T

∏
τ=t+1

F(x)m∗τ (x)

)
dx,

where, for any τ = t + 1, · · · ,T , m∗τ(y) = 0 if y ≥ ξ ; and m∗τ(y) > 0 is the unique solution to

rτ(m;y) = c(m) otherwise. We also assume that

(30) rt+1(m;y) =
∫ B

y

T

∏
τ=t+2

F(x)m∗τ (x)F(x)m| lnF(x)|dx.

Following the same process of integrating by parts as (22), we have

Rt(m;y) = EWt+1
(

max{y,Xm}
)

= Wt+1(y)F(y)m +
∫ B

y
Wt+1(x)dF(x)m

= y+
∫ B

y
(1−W ′t+1(x)F(x)m)dx

= y+
∫ B

y
(1−

T

∏
τ=t+1

F(x)m∗τ (x)F(x)m)dx,(31)

where the last equality is from (29). Rt is differentiable with respect to m and the marginal

revenue is

rt(m;y) :=
∂Rt(m;y)

∂m
=

∫ B

y
W ′t+1(x)F(x)m| lnF(x)|dx

=
∫ B

y

T

∏
τ=t+1

F(x)m∗τ (x)F(x)m| lnF(x)|dx,(32)

which is non-negative and continuous in m and y, with limm→∞ rt(m;y) = 0. Moreover, we have

∂ rt(m;y)
∂m

= −
∫ B

y

T

∏
τ=t+1

F(x)m∗τ (x)F(x)m ln2 F(x)dx≤ 0 and

∂ rt(m;y)
∂y

= −
T

∏
τ=t+1

F(y)m∗τ (y)F(y)m| lnF(y)| ≤ 0,

where both inequalities hold strictly if and only if y < B. From (32), we also observe that

rt(m;y)≤ rT (m;y) =
∫ B

y F(x)m| lnF(x)|dx.
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With the monotonicity and the continuity of rt and c, again by solving the Kuhn-Tucker condi-

tion that

rt(m;y)− c(m)≤ 0, m≥ 0,and (rt(m;y)− c(m))m = 0,

we get the solution m∗t (y) as follows.

(i) If rT (0;0) =
∫ B

0 | lnF(x)|dx ≤ c(0), then for any y ≥ 0 and m > 0, rt(m;y) ≤ rT (m;y) <

rT (0;0) ≤ c(0) ≤ c(m). The Kuhn-Tucker condition then implies that m∗t (y) = 0 for any

y. Hence, the cutoff for stopping is ξ = 0.

(ii) If rT (0;0) > c(0), then for any y ≥ ξ and m > 0, as rt(m;y) ≤ rt(m;ξ ) ≤ rt(0;ξ ) ≤

rT (0;ξ ) = c(0) ≤ c(m), from the Kuhn-Tucker condition again, we have m∗T (y) = 0. For

any y < ξ , we have

rt(0;y) = rt+1(m∗t+1(y);y) = c(m∗t+1(y))≥ c(0),

where the first equality is from (30) and (32), and the second equality is due to the induc-

tion hypothesis that m∗t+1(y) solves rt+1(m;y) = c(m). The monotonicity and continuity of

rt and c ensure the uniqueness of m∗t (y), as a solution of rt(m;y) = c(m), which maximizes

Rt(m;y)−C(m).

Next we derive Wt(y). For any y≥ ξ , we have Wt(y) = y as m∗τ(y) = 0 for any τ ≥ t. As Rt(m;y)

is differentiable with respect to y, from (31) we have

∂Rt(m;y)
∂y

=
T

∏
τ=t+1

F(y)m∗τ (y)F(y)m ≥ 0,

Rt(m;y)−C(m) is convex in y for any m ≥ 0. As in Step 1, Wt(y) is convex and absolutely

continuous, and W ′t (y) is defined almost everywhere. Similarly, for any y≤ ξ , we can represent

Wt(y) by

(33) Wt(y) =Wt(ξ )−
∫

ξ

y
W ′t (x)dx = ξ −

∫
ξ

y
W ′t (x)dx,

where we use the boundary condition Wt(ξ ) = ξ . Applying envelop theorem to (1) and (31), we

then have

(34) W ′t (x) =
∂Rt(m∗t (x);x)

∂x
=

T

∏
τ=t+1

F(x)m∗τ (x)F(x)m∗t (x) =
T

∏
τ=t

F(x)m∗τ (x).
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Substituting it back into (33) gives

(35) Wt(y) = ξ −
∫

ξ

y

T

∏
τ=t

F(x)m∗τ (x)dx = y+
∫

ξ

y

(
1−

T

∏
τ=t

F(x)m∗τ (x)

)
dx.

Combining (35) for y < ξ and Wt(y) = y for y≥ ξ , we have (5) for period t.

Finally, we show that ∏
T
τ=t F(y)m∗τ (y) is continuous and increasing in y, in order to verify it

indeed defines a distribution function on [0,ξ ]. For any y ∈ (0,ξ ), recall m∗t (y) satisfies

(36) rt(m;y)− c(m) = 0,

and
∂ [rt(m;y)− c(m)]

∂m
=−

∫ B

y

T

∏
τ=t+1

F(x)m∗τ (x)F(x)m ln2 F(x)dx− c′(m)< 0.

Applying implicit function theorem to (36), m∗t (y) is continuously differentiable on (0,ξ ) with

dm∗t (y)
dy

= − ∂ [rt(m;y)− c(m)]/∂y
∂ [rt(m;y)− c(m)]/∂m

∣∣∣∣∣
m=m∗t (y)

= − ∏
T
τ=t F(y)m∗τ (y)| lnF(y)|∫ B

y ∏
T
τ=t+1 F(x)m∗τ (x)F(x)m∗t (y) ln2 F(x)dx+ c′(m∗t (y))

< 0.(37)

By taking a derivative of ∏
T
τ=t F(y)m∗τ (y), it follows that

d ∏
T
τ=t F(y)m∗τ (y)

dy
=

T

∏
τ=t

F(y)m∗τ (y)

[(
∑
τ≥t

dm∗τ(y)
dy

)
· lnF(y)+

(
∑
τ≥t

m∗τ(y)

)
f (y)
F(y)

]
> 0.

Therefore, ∏
T
τ=t F(y)m∗τ (y) =W ′t (y) is a distribution function with a strictly positive density.

Proof of Corollary 1

The proof is embedded in Proof of Theorem 1, with the result shown in (34).

Proof of Lemma 1

If y ≥ ξ , the results hold as m∗t (y) = 0 for any t. Suppose y < ξ . By (28) and (37) in Proof of

Theorem 1, for any t, we have dm∗t (y)/dy < 0. By (23) and (32) in Proof of Theorem 1, for any

t, we have

(38) rt(m;y) =
∫ B

y

T

∏
τ=t+1

F(x)m∗τ (x)F(x)m| lnF(x)|dx,

which implies that rt(m;y) is strictly increasing in t. As a solution to rt(m;y) = c(m), m∗t (y) is

also strictly increasing in t.
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Proof of Proposition 1.

If y≥ ξ , it is clear that (9) hold with equality as m∗t (y) = 0 for any t. For y < ξ , it follows from

(37) that

dm∗t (y)
dy

=− ∏
T
τ=t F(y)m∗τ (y)| lnF(y)|∫ B

y ∏
T
τ=t+1 F(x)m∗τ (x)F(x)m∗t (y) ln2 F(x)dx+ c′(m∗t (y))

=− ∏
T
τ=t+1 F(y)m∗τ (y)| lnF(y)|∫ B

y

[
∏

T
τ=t+2 F(x)m∗τ (x)

] F(x)m∗t+1(x)F(x)m∗t (y)

F(y)m∗t (y)
ln2 F(x)dx+ c′(m∗t (y))

F(y)m∗t (y)

>− ∏
T
τ=t+1 F(y)m∗τ (y)| lnF(y)|∫ B

y

[
∏

T
τ=t+2 F(x)m∗τ (x)

]
F(x)m∗t+1(y) ln2 F(x)dx+ c′(m∗t (y))

F(y)m∗t (y)

>− ∏
T
τ=t+1 F(y)m∗τ (y)| lnF(y)|∫ B

y

[
∏

T
τ=t+2 F(x)m∗τ (x)

]
F(x)m∗t+1(y) ln2 F(x)dx+ c′(m∗t+1(y))

=
dm∗t+1(y)

dy
,

where the first inequality comes from F(x)m∗t+1(x)F(x)m∗t (y) > F(x)m∗t+1(y)F(y)m∗t (y) for y < x, and

the second comes from F(y)m∗t (y) < 1, m∗t+1(y)> m∗t (y), and c′ (m) is non-increasing in m (i.e.,

C′′′ ≤ 0). Thus, we have dm∗t+1(y)/dy < dm∗t (y)/dy < 0. Furthermore, for any y < y′, it follows

that

m∗t+1(y
′)−m∗t+1(y) =

∫ y′

y
dm∗t+1(x)<

∫ y′

y
dm∗t (x) = m∗t (y

′)−m∗t (y),

which implies (9), by arranging the terms.

Proof of Proposition 2.

For part i, Proof of Theorem 1 has shown that Wt(y) is increasing and convex in y.

For part ii, from (5), if y ≥ ξ , then Wt(y) = Wt+1(y) = y and hence DtW (y) = 0. If y < ξ ,

then

DtW (y) =

[
y+

∫
ξ

y

(
1−

T

∏
τ=t+1

F(x)m∗τ (x)

)
dx

]
−

[
y+

∫
ξ

y

(
1−

T

∏
τ=t

F(x)m∗τ (x)

)
dx

]

=
∫

ξ

y

(
T

∏
τ=t

F(x)m∗τ (x)−
T

∏
τ=t+1

F(x)m∗τ (x)

)
dx

= −
∫

ξ

y

(
1−F(x)m∗t (x)

) T

∏
τ=t+1

F(x)m∗τ (x)dx < 0.(39)
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Moreover, for any y < ξ , we have

DtW (y)−Dt−1W (y)

=
∫

ξ

y

(
1−F(x)m∗t−1(x)

) T

∏
τ=t

F(x)m∗τ (x)dx−
∫

ξ

y

(
1−F(x)m∗t (x)

) T

∏
τ=t+1

F(x)m∗τ (x)dx

<
∫

ξ

y

(
1−F(x)m∗t−1(x)

) T

∏
τ=t

F(x)m∗τ (x)dx−
∫

ξ

y

(
1−F(x)m∗t−1(x)

) T

∏
τ=t+1

F(x)m∗τ (x)dx

= −
∫

ξ

y

(
1−F(x)m∗t−1(x)

)(
1−F(x)m∗t (x)

) T

∏
τ=t+1

F(x)m∗τ (x)dx < 0,

where the first inequality is from m∗t (x)> m∗t−1(x) due to the deadline effect (Lemma 1). Thus,

DtW (y) is decreasing in t (strictly if and only if y < ξ , as m∗t (y)> 0).

For part iii, from Corollary 1, we have

W ′t (y) =
T

∏
τ=t

F(y)m∗τ (y) = F(y)m∗t (y)
T

∏
τ=t+1

F(y)m∗τ (y) ≤
T

∏
τ=t+1

F(y)m∗τ (y) =W ′t+1(y).

Therefore, W ′t (y) is increasing in t (strictly if and only if y < ξ ). Again from (39),

dDtW (y)
dy

=−(1−F(y)m∗t (y))
T

∏
τ=t+1

F(y)m∗τ (y) ≤ 0.

we then have DtW (y) is decreasing in y (strictly if and only if y < ξ , as m∗t (y)> 0).

Proof of Proposition 3.

From (11) and (14), the optimal cutoff for stopping is determined by ξ̂t = Ŵt(0) = W T−t+1
T (0)

and the search value is Ŵt(y) = max{y, ξ̂t}. To complete the proof, we derive the optimal inten-

sity m̂∗t (y) for any y < ξ̂t . In period T , it is clear that m̂∗T (y) = m∗T (0) for any y < ξ̂T . In any

period t < T , by (15), we have R̂t(m;y) = RT (m; ξ̂t+1). The marginal search revenue r̂t(m,y) is

then

(40) r̂t(m;y) :=
∂ R̂t(m,y)

∂m
=

∂RT (m, ξ̂t+1)

∂m
= rT (m; ξ̂t+1).

It follows that m̂∗t (y) = m∗T (ξ̂t+1) as a solution to r̂t(m;y) = c(m), for any y such that m̂∗t (y) >

0.

Proof of Corollary 2.

When
∫ B

0 | lnF(x)|dx > c(0), Theorem 1 implies ξ > 0, and Corollary 1 implies that, for any

0 < y < ξ , 0 < W ′T (y) < 1 and y < WT (y) < ξ . Hence, the iterated function value W T−t+1
T (0)
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is strictly decreasing in t. As ξ̂t = W T−t+1
T (0) from (14), ξ̂t is then strictly decreasing in t.

Furthermore, as W T−t+1
T (0)< ξ for any t, ξ̂t is always strictly smaller than ξ . If

∫ B
0 | lnF(x)|dx<

c(0), Theorem 1 defines ξ = 0. Hence, it follows WT (0) = 0 and ξ̂t = W T−t+1
T (0) = 0 for any

t.

Proof of Proposition 4.

Comparing (1) and (10) recursively, it is clear that Wt(y)−Ŵt(y) ≥ 0 for any y. It is also clear

that Wt(y)−Ŵt(y) = 0 for y≥ ξ , due to Theorem 1 and Proposition 3. Now focus on 0 < y < ξ .

Recalling 0 < W ′(y) < 1 from Theorem 1, due to Proposition 3, if y < ξ̂t then Ŵ ′t (y) = 0 and

hence Wt(y)−Ŵt(y) is strictly increasing on [0, ξ̂t ]. Similarly, if y> ξ̂t then Ŵ ′t (y) = 1 and hence

Wt(y)−Ŵt(y) is strictly decreasing on [ξ̂t ,ξ ].

Proof of Proposition 5.

By Theorem 1 and Proposition 3, part ii is straightforward as

ξ̂t ≤ y < ξ =⇒ m̂∗t (y) = 0 and m∗t (y)> 0.

For other parts, recalling Rt and R̂t defined in (3) and (15), we have

(41) Rt(m,y)≥ Rt(m,0)≥ R̂t(m;0) = RT (m, ξ̂t+1),

where the first inequality is from the monotonicity of Rt(m;y) in y, the second one is from the

fact that the revenue with no recall can also be obtained by recall. For any m > 0 and y < ξ ,

there exists a unique ζ that solves Rt(m,y) = RT (m,ζ ), as RT (m;ζ ) is continuous and strictly

decreasing in ζ for ζ < ξ . Let ζt(m,y) denote the unique solution. By definition, we then have

y+
∫ B

y

(
1−W ′t+1(x)F(x)m)dx = ζt(m,y)+

∫ B

ζt(m,y)
(1−F(x)m)dx.

Furthermore, by inequality (41), we have RT (m,ζt(m,y)) = Rt(m,y) ≥ RT (m, ξ̂t+1). It then

follows that, for any m > 0 and any y < ξ ,

(42) ζt(m,y)≥ ξ̂t+1.

Note that m∗t (y) maximizes Rt(m,y)−C(m), and for given value of ζt(m,y), m∗t (y) also maxi-

mizes RT (m,ζt(m,y))−C(m). Therefore, it follows that

(43) rt(m∗t (y),y) = rT (m∗t (y),ζt(m∗t (y),y)) = c(m∗t (y))≤ rT (m∗t (y), ξ̂t+1) = r̂t(m∗t (y)),
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solves c(m) = rt(0;ξ ). That is, if y≥ ξ then m∗t (y) = 0; otherwise, m∗t (y)> 0.

Figure 4: Fall-back Value Effect: C(m) = 0.1m, F(x) = x ·1(0≤ x≤ 1), T = 4

where the inequality is due to the monotonicity of rT (m;y) in y and (42) and the last equality is

from (40). As r̂t(m∗t (y))≥ c, for any y< ξ̂t , it must be m̂∗t (y)≥m∗t (y) to maximize R̂t(m)−C(m).

Recalling ξ̂T+1 = 0, the inequality (42) holds strictly if and only if t = T and y = 0. Thus, for

t = T and y = 0, we have m̂∗t (y) = m∗t (y), otherwise m̂∗t (y)> m∗t (y), as desired.

A.2 Numerical Examples

This section provides a few figures of numerical examples, which help to illustrate some results

of this paper. In these examples, we consider a search problem with a linear search cost C(m) =

0.1m and a uniform distribution F(x) = x ·1(0≤ x≤ 1).26

Figure 4 illustrates the fall-back value effect in the last period T . In panel (a), the horizontal

axes is the search intensity m, and the downward sloping curves plot the marginal search revenue

rT (m;y) across different y’s. Their crossing points with the constant marginal search cost c= 0.1

determine the optimal intensity m∗T (y) (Theorem 1). With increasing y, the rT (m;y) curve shifts

downwards, as shown in (24). Therefore, m∗T (y) is decreasing in y. Panel (b) also plots the

fall-back value effect, i.e., the optimal search intensity keeps on decreasing in y, and equals 0

when y≥ ξ .

26The Mathematica code for computing rt , m∗t , and Wt can be found in Figure 7.
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the difference of m∗t+1(y)−m∗t (y), namely the deadline effect, is diminishing as the fall-back value y increases.

Figure 5: Deadline Effect: C(m) = 0.1m, F(x) = x ·1(0≤ x≤ 1), T = 4

Figure 5 illustrates the deadline effect with T = 4. In panel (a), for given y = 0, the down-

ward sloping curves plot the marginal search revenue rt(m;0) across different period t. With

increasing t, the rt(m;0) curve shifts upwards, as shown in (38). Panel (b) then shows the

deadline effect, i.e., for given y, the optimal intensity m∗t (y) is increasing over time.

Figure 6 shows some sample paths of the sequences of optimal search intensity, the search

outcomes, the accumulated search costs, and the ex-post payoff with T = 5. For example, along

sample path (iii), the searcher stops searching from period 3 on, as her realized fall-back value

surpasses the cutoff for stopping at the end of period 2, as shown in panel (a) and (b) respectively.
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Figure 6: Some Sample Paths: y1 = 0, C(m) = 0.1m, F(x) = x ·1(0≤ x≤ 1), T = 5
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1 (∗ The marginal cost and the search value after the deadline (T=4) are given ∗)
2 c = 0.1;
3 W5[y_] := y;
4 (∗ The marginal revenue r4 at T=4 is obtained from Equation (2) ∗)
5 r4[m_ , y_] := −((−1 + y^(1 + m) (1 − (1 + m) Log[y]))/(1 + m)^2);
6 (∗ The optimal cutoff , xi , for stopping is constant ∗)
7 xi = FindRoot [r4[0, y] == c, {y, 0.5}][[1 , 2]];
8 (∗ The optimal intensity equates the marginal revenue and the marginal cost ∗)
9 mP4[y_? NumericQ ] := FindRoot [r4[m, y] == c, {m, 1}][[1 , 2]];

10 (∗ The optimal intensity , m4 , is obtained by interpolation of sample points ∗)
11 mI4 = Interpolation [ Table [{y, mP4[y]}, {y, 0.01 , xi , 0.01}]];
12 m4[y_] := Piecewise [{{ mI4[y], y < xi}, {0, y >= xi }}];
13 (∗ The search value is obtained with interpolation of the sample points ∗)
14 W4[y_] := y + NIntegrate [1 − x^m4[x], {x, y, 1}];
15 (∗ Using m4 , recursively solve r3 , m3 , and W3 ∗)
16 r3[m_ , y_] := −Integrate [x^(m + m4[x])∗Log[x], {x, y, 1}];
17 mP3[y_? NumericQ ] := FindRoot [r3[m, y] == c, {m, 1}][[1 , 2]];
18 mI3 = Interpolation [ Table [{y, mP3[y]}, {y, 0.01 , xi , 0.01}]];
19 m3[y_] := Piecewise [{{ mI3[y], y < xi}, {0, y >= xi }}];
20 W3[y_] := y + NIntegrate [1 − x^( m3[x] + m4[x]) , {x, y, 1}];
21 (∗ Using m4 and m3 , recursively solve r2 , m2 , and W2 ∗)
22 r2[m_ , y_] := −Integrate [x^(m + m3[x] + m4[x])∗Log[x], {x, y, 1}];
23 mP2[y_? NumericQ ] := FindRoot [r2[m, y] == c, {m, 1}][[1 , 2]];
24 mI2 = Interpolation [ Table [{y, mP2[y]}, {y, 0.01 , xi , 0.01}]];
25 m2[y_] := Piecewise [{{ mI2[y], y < xi}, {0, y >= xi }}];
26 W2[y_] := y + NIntegrate [1 − x^( m2[x] + m3[x] + m4[x]) , {x, y, 1}];
27 (∗ Using m4 , m3 , and m2 , recursively solve r1 , m1 , and W1 ∗)
28 r1[m_ , y_] := −Integrate [x^(m + m2[x] + m3[x] + m4[x])∗Log[x], {x, y, 1}];
29 mP1[y_? NumericQ ] := FindRoot [r1[m, y] == c, {m, 1}][[1 , 2]];
30 mI1 = Interpolation [ Table [{y, mP1[y]}, {y, 0.01 , xi , 0.01}]];
31 m1[y_] := Piecewise [{{ mI1[y], y < xi}, {0, y >= xi }}];
32 W1[y_] := y + NIntegrate [1 − x^( m1[x] + m2[x] + m3[x] + m4[x]) , {x, y, 1}];

NOTES: Based on Theorem 1, the code recursively solves the marginal revenue functions rt(m;y), the optimal search
intensity m∗t (y), and the search value Wt(y).

Figure 7: Mathematica Code for Numerical Example
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