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Abstract

Employing methods of differential geometry, we propose a new framework for co-

variance dynamics modeling. Our approach respects the intrinsic geometric properties

of the space of covariance matrices and allows their natural evolution. We develop co-

variance models that exploit either asset returns or realized covariances and propose a

new estimation method that minimizes the length of the geodesic between the forecast

and the realization. The geodesic length is equivalent to the Fisher information metric

under the Gaussian assumption and is deemed a proper measure of similarity between

two covariance matrices. Empirical studies involving three data samples and various

performance metrics suggest that our models outperform existing ones.

Keywords: Geometric covariance dynamics; Realized covariance; Manifold; Rieman-

nian metric; Geodesic

1 Introduction

Multivariate volatility models need to preserve the positive definiteness of the covariance

matrix as it propagates. Several methods have been proposed to achieve this. Bollerslev
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et al. (1988) impose constraints on the model parameters to ensure positive definiteness.

The BEKK model (Engle and Kroner, 1995) assumes a positive definite quadratic form

for the model parameters. The DCC model (Engle, 2002) specifies the time series of the

variances and that of the correlation matrix independently using a scalar GARCH model and

the BEKK model. The GO-GARCH (van der Weide, 2002), as well as other factor models

(e.g., Vrontos et al. (2003), Lanne and Saikkonen (2007)), preserve positive definiteness by

transforming the original data to independent factors and applying scalar GARCH models

to those factors individually. Kawakatsu (2006) extends the exponential GARCH of Nelson

(1991) to a multivariate case by exploiting the fact that the matrix exponential of a symmetric

matrix is always positive definite.

Covariance models based on realized covariance can handle the issue more conveniently.

Chiriac and Voev (2011) decompose realized covariance matrices using the Cholesky de-

composition to construct a multivariate vector fractionally integrated ARMA (VARFIMA)

process. The HEAVY model proposed by Noureldin et al. (2012) resembles the BEKK but

utilizes realized covariances instead of daily returns. The RARCH model of Noureldin et al.

(2014) extends the BEKK and DCC models by rotating the returns prior to applying these

models. Modeling the matrix logarithm of realized covariance matrices has also been widely

adopted, e.g., Chiriac and Voev (2011), Bauer and Vorkink (2011), Callot et al. (2017).

While these models preserve the positive definiteness of covariance matrices, some of

them appear to lack justification. For instance, factor models apply a scalar GARCH model

to independent factors, but there is no reason to believe that the transformed data would

follow a GARCH process. BEKK-type models update all components of the covariance

matrix in a linear fashion. However, this approach is unsatisfactory since it implicitly treats

covariance matrices to be elements of a standard Euclidean vector space without attention

to the geometric structure of covariance matrices.

Consider a problem where the forecast of a covariance matrix needs to be updated given

a current forecast Ht and an observation Ct (e.g., a realized covariance matrix). An obvious
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approach must be to combine the two matrices in a linear fashion such that Ht+1 = aHt +

(1− a)Ct (plus a constant covariance matrix), 0 ≤ a ≤ 1. This idea is in the spirit of Engle

and Kroner (1995), Noureldin et al. (2014), and many other covariance models. However,

with the constraint that covariance matrices should remain positive definite, this is not a

geometrically consistent way of combining covariance matrices as Ht+1 does not extrapolate

naturally, i.e., Ht+1 is no longer positive definite if a > 1 or a < 0 (geodesically incomplete).

In fact, there exists a notion of straight line in the space of covariance matrices, i.e.,

geodesic. Geodesic can serve as a path connecting Ht and Ct, and its length can be used to

measure the distance (similarity) of the pair. Han et al. (2017) adopt this idea and develop

a new framework for covariance dynamics using methods of differential geometry. We follow

their approach but extend their work in several important aspects as described below.

Firstly, we explain basic concepts of differential geometry and geometric properties of the

covariance space in a descriptive, accessible manner so that anyone without a background in

differential geometry can quickly grasp the idea behind our model. We also provide further

justification for the geometric approach.

Second, we improve the model of Han et al. (2017). Our model is economically more

meaningful and numerically more stable. We also develop a new model exploiting realized

covariances. Since realized covariance matrices are positive definite and lie in the space of

covariance matrices, they are better accommodated in our geometric framework. In contrast,

the outer product of asset returns is singular and therefore it is less straightforward to incor-

porate it in the framework. Associated with the new model is a new estimation method that

minimizes the geodesic length between the forecasted and the observed (realized) covariance

matrices. As illustrated later, the geodesic length is considered a better measure of error

than the Frobenius norm.

Third, we demonstrate the performance of our model via various empirical analyses. For

the assessment of covariance matrices, we develop novel performance measures. Empirical

studies involving three data samples show that our models outperform existing models such
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as BEKK, DCC, and the matrix exponential GARCH.

The rest of the paper is organized as follows. Section 2 describes geometric properties

of the covariance space and provides motivating examples. It then develops covariance

dynamics models. Section 3 explains the evaluation methods used in the empirical studies,

and Section 4 describes the data and models. Section 5 conducts empirical studies and

evaluates the models, and Section 6 concludes. Appendix A provides the basics of differential

geometry.

2 Geometric Modeling of Covariance Dynamics

In this section, we describe geometric properties of the covariance space that are particu-

larly relevant to the development of our covariance dynamics model. We then motivate the

geometric framework via examples and develop covariance models. Readers unfamiliar with

differential geometry are encouraged to read the appendix first.

2.1 Space of Covariance Matrices

Covariance space Let P (n) denote the space of n× n covariance matrices:1

P (n) =
{
P ∈ Rn×n | P = P>, P > 0

}
. (1)

P (n) is a differentiable manifold whose tangent space at a point P ∈ P (n) can be identified

with n×n symmetric matrices, S(n). For the space of covariance matrices, the Riemannian

metric at P ∈ P (n) is defined as

〈X, Y 〉P = tr(P−1XP−1Y ), (2)

1We only consider nonsingular covariance matrices with n > 1. The geometric properties of the covariance
space do not apply to the univariate case (n = 1).
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where X, Y ∈ S(n) are tangent vectors at P . For two covariance matrices, A,B ∈ P (n), the

minimal geodesic γ(t) : [0, 1]→ [A,B] connecting A and B is given by

γ(t) = G
(
G−1BG−>

)t
G>, (3)

where G is a positive-definite invertible matrix that satisfies GG> = A, and G−> denotes

(G−1)>. G can be obtained from the eigenvalue decomposition by setting G = V
√
D, where

V is the matrix of the eigenvectors and
√
D is a diagonal matrix whose diagonal entries are

the square roots of the eigenvalues.

The tangent vector of the above geodesic at A is given by the Riemannian log map

LogA(B) = G log
(
G−1BG−>

)
G>. (4)

The log map LogA(B) is the direction from A to B under the Riemmanian metric and is

equivalent to (B − A) under the flat metric, i.e., when A and B are treated as elements

in a vector space. Given a tangent vector X ∈ S(n) at A ∈ P (n), the minimal geodesic

emanating from A in the direction X is defined by the Riemannian exponential map

ExpA(X) = G exp
(
G−1XG−>

)
G>. (5)

Note that if X = LogA(B), ExpA(X) = B. Defining the distance between A and B in the

usual way by the length of the minimal geodesic, we have

d(A,B) =

(
n∑
i=1

(log λi)
2

)1/2

, (6)

where λ1, . . . , λn are the eigenvalues of the matrix AB−1. This distance corresponds to the

Fisher information metric for the multivariate normal distribution (Smith, 2005). Note that

d(A, γ(t)) = t d(A,B). Therefore, the internal point on the minimal geodesic that divides A
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and B in the ratio α : 1− α is given by

I(A,B, α) = G
(
G−1BG−>

)α
G> = ExpA(αLogAB). (7)

If A is an identity matrix, the Riemannian log and exponential maps respectively become

the usual matrix logarithm and exponential. In this regard, covariance models that employ

the matrix logarithm, e.g., Chiriac and Voev (2011), Bauer and Vorkink (2011), Callot et al.

(2017), are essentially modeling the times series of the tangent vectors emanating from the

identity matrix towards covariance matrices.

It is important to note that the Riemannian metric in Equation (2) is equivalent to the

Fisher information metric (FIM) for Gaussian covariance matrix estimation (Smith, 2005).

Let f(z|µ,H) be a multivariate normal distribution parametrized by µ ∈ Rn and H ∈ P (n),

and l = log f be the log-likelihood function. For an affine connection ∇ and tangent vectors

at P ∈ P (n), X, Y ∈ S(n), the Fisher information metric is defined as

FIM(X, Y ) := E[dl(X)dl(Y )], dl(X) :=
d

dt

∣∣∣∣
t=0

l(γ(t)), (8)

where γ(t) is the geodesic emanating from P in the direction X. It can be shown that

(Smith, 2005)

FIM(X,X) = −E[∇2l] = K · tr(P−1X)2 = K · 〈X,X〉P (9)

for some constant K. This equivalence implies that the distance measured by the length of

the minimal geodesic between a pair of covariance matrices corresponds to the Fisher infor-

mation metric and measures the similarity of the pair, or the similarity of two multivariate

normal distributions with the same mean and different covariance matrices.
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2.2 Properties of the Geodesic

As evidenced by the equivalence between the Riemannian metric and the Fisher information

metric, respecting geometric properties of covariance matrices is not only mathematically

appealing but also econometrically well-defined. Our covariance dynamics framework in

Section 2.3 is inspired by this idea and assumes that the covariance matrix evolves along a

geodesic and measures the distance (similarity) of two covariance matrices by the geodesic

length. To understand the properties of the geodesic, this section computes the length of

the geodesic between two arbitrary covariance matrices and compares it with the Frobenius

norm (distance with respect to the flat metric). It is revealed that the geodesic length is

better aligned with economic intuition.

Consider two 2× 2 covariance matrices2

A =

2.0 1.0

1.0 2.0

 , B =

 V1 V12

V12 V2

 .
We compute the distance between A and B via two methods for various values of B: the

length of the shortest path (minimal geodesic) between A and B, DG, and the Frobenius

norm of (A−B), DF . DG corresponds to the root-mean-square error (RMSE) with respect

to the Riemmanian metric and DF corresponds to the RMSE with respect to the flat metric.

The Frobenius norm is widely used as a measure of error in realized covariance models: e.g.,

Chiriac and Voev (2011); Bollerslev et al. (2016).

Figure 1(a) shows the distance between A and B for different values of V12, assuming B

has smaller variances than A. Figure 1(b) assumes B has larger variances. The Frobenius

norm is minimized when the covariance in B is the same as in A, i.e., V12 = A(1, 2) = 1.0,

regardless of the variances in B. This causes DF to have its minimum when the two assets

are perfectly correlated if V1 = V2 = 1.0, and when the correlation is 0.33 if V1 = V2 = 3.0.

2We fix A and the variances of B, while varying the covariance term of B. This is only to facilitate
visualization and the findings here can be generalized for any two arbitrary covariance matrices.
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(a) V1 = V2 = 1.0 (b) V1 = V2 = 3.0

(c) V1 = 1.0, V2 = 3.0 (d) V1 = V2 = 2.0

Figure 1: Comparison of covariance distance measures: Frobenius norm (DF ) vs. geodesic
length (DG)
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These correlations are considerably different from the correlation of A, i.e., 0.5. In contrast,

the length of the minimal geodesic DG is minimized at V12 ≈ 0.4 < A(1, 2) if V1 = V2 = 1.0

and at V12 ≈ 2.0 > A(1, 2) if V1 = V2 = 3.0. The corresponding correlation coefficients are

0.4 and 0.66, respectively, which are comparably closer to 0.5. From an economic perspective,

the covariance matrices minimizing DG are clearly more similar to A than those minimizing

DF .

Interestingly, B at the minimum DG has lower correlation than A when its variances

are smaller than those of A, while it has higher correlation when its variances are larger.

This positive relationship between the correlation and the variances is consistent with what

we observe in the market: assets tend to be more highly correlated when the market is

turbulent, and less so when the market is calm. Furthermore, DG goes to infinity when

assets are perfectly correlated, which makes sense as it is extremely unlikely to happen. The

Frobenius norm DF , on the other hand, is unable to incorporate correlation in an intuitive

manner.

We also calculate the distances when the variance of one asset is smaller while the other

is larger, and when both remain the same (Figure 1(c), (d)). In the first case, DF is again

minimized when V12 = 1, which corresponds to the correlation of 0.58, whereas DG is mini-

mized when the correlation is around 0.4. When the variances do not change, both measures

have their minimum at the correlation of 0.5. The difference is that DF increases linearly as

the correlation drifts away from 0.5, whereas DG increases exponentially approaching infinity

when the two assets are perfectly correlated.3

The Frobenius norm is an unsatisfactory measure of error since it treats covariance matri-

ces as elements of a vector space without respecting their geometric structure. On the other

hand, the length of the minimal geodesic respects the geometric structure and corresponds

to the Fisher information metric, making itself a more appropriate measure of similarity.

Likewise, linear combination is not a geometrically consistent way of interpolating two co-

3DG looks linear when V12 < 1, but it is only because the curvature is small around the minimum.
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variance matrices. As one would typically assume that a point in a vector space moves

towards another point along the straight line between them, a geometrically consistent way

is to connect a pair using the minimal geodesic between them. The following sub-section

develops a covariance dynamics model based on this idea.

2.3 Dynamics of Covariance Matrix

Suppose that an n-dimensional vector of asset returns rt is governed by the following equa-

tion:

rt = µ+ et, et ∼ N(0, Ht), (10)

where Ht ∈ P (n) is the covariance matrix of et. We assume

Ht+1 = ExpHI (Ft), (11)

where HI ∈ P (n) is a constant covariance matrix (a long-term mean), and Ft ∈ S(n) is a

tangent vector emanating fromHI , which depends on the information at time t. That is, Ht+1

is a point on the direction Ft from HI . We call this framework Geometric Covariance

Dynamics (GCD). In what follows, two specifications of the tangent vector, one that

utilizes asset returns and the other that utilizes realized covariances are developed.

2.3.1 Geometric Covariance Dynamics Based on Asset Returns

This model assumes that the tangent vector Ft is determined by the return shocks et and

the covariance matrix Ht such that (see Figure 2)

Ft = αLogHI (H
′
t), 0 < α < 1, (12)

H ′t = I(Ht, Ct(et), a
2), a2 < 1, (13)
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where Ct(et) is a covariance matrix derived from the return shocks. In particular, we consider

the following form:

Ct(et) = C ◦
(
(1− b2)ete

>
t + b2ηtη

>
t

)
, b2 < 1, (14)

where ηt = 1/2(|et| − et) is a variable to reflect the asymmetric effect of the shocks, and

C ∈ Rn×n is an adjustment term required to make Ct positive definite, which is assumed to

have 1 on the diagonal and c, 0 < c < 1, elsewhere. The operator ◦ denotes the Hadamard

product. Under this specification, the covariance matrix at time t + 1, Ht+1, is a point

between HI and H ′t, and H ′t is a point between Ht and Ct. Therefore, ignoring C, GCD can

be considered a geometrically consistent version of BEKK, where Ht+1 is a linear function

of HI , Ht, and Ct.

𝐻!"# 𝐻𝐼

𝐻!

𝐻!"#$ 	

𝐸!"#(𝑒!"#)	

𝐻! 𝐻𝐼

𝐻!"#

1 − 𝑎2 𝐻𝑡 + 𝑎2𝐶𝑡	
=𝐻!$

𝐶! 	

𝐹𝑡

𝐻!$	= 𝐼(𝐻! , 𝐶! , 𝑎2)

𝐻!"#

𝐹𝑡

Figure 2: Geometric covariance dynamics

This figure describes how a covariance matrix evolves in the covariance space under the GCD framework.
Covariance matrices are treated as points in the covariance space, where a straight line in the Euclidean
sense becomes a curved (the black solid line between Ht and Ct).
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A pitfall of the above specification is that Ct can become singular in a rare event of some

elements of et being zero, in which case Equation (13) is not well defined. To avoid this

problem, we replace (13) with the following equation

H ′t = (1− a2)Ht + a2Ct(et), a2 < 1. (15)

In the empirical studies, we find that a2 is close to 0, in which case Equation (13) can

be approximated by Ht + a2LogHt(Ct).
4 Hence, by using Equation (15), we are effectively

replacing the tangent vector LogHt(Ct) with the tangent vector in the Euclidean space,

(Ct −Ht). Although LogHt(Ct) is different from (Ct −Ht), the effect on H ′t is limited since

it is multiplied by a small a2.

Putting together, Ht+1, is given by

Ht+1 = ExpHI (αLogHI ((1− a
2)Ht + a2Ct)). (16)

Equation (15) can be generalized by allowing the impact of et on H ′t to vary across assets:

H ′t = (ιι> − dd>) ◦Ht + dd> ◦ Ct, (17)

where d = (d1, . . . , dn) is an n-dimensional vector with d2
i < 1, and ι denotes a vector of

ones.

If Ht is positive definite, it is trivial to show that H ′t is also positive definite. Then,

by definition, Ht+1 is also positive definite. Since Ht+1 is an internal point on the geodesic

between HI and H ′t, and HI is constant, Ht+1 is bounded.

4By the definition of the log and exponential maps, H ′t = ExpHt
(a2LogHt

Ct) = Ht+a2LogHt
(Ct)+O(a4).
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2.3.2 Geometric Covariance Dynamics Based on Realized Covariance

When assets are traded during the same trading hours, e.g., stocks traded on the same

exchange, realized covariance can be computed and exploited for the development of covari-

ance dynamics. Replacing Ct in (13) with a realized covariance measure Rt, we construct a

realized covariance-based GCD model as follows:

Ft = αLogHI (H
′
t), 0 < α < 1, (18)

H ′t = I(Ht, Rt, a
2), a2 < 1. (19)

The covariance matrix at t+ 1, Ht+1, is then given by

Ht+1 = ExpHI (αLogHI (I(Ht, Rt, a
2))

= ExpHI (αLogHI (ExpHt(a
2LogHtRt)).

(20)

This specification is analogous to the scalar version of the HEAVY model of Noureldin

et al. (2012) in that both combine the covariance matrix with a realized measure in a “linear”

fashion, but the GCD model is defined in the covariance space, whereas the HEAVY model

is defined in the vector space.

2.4 Estimation

2.4.1 Maximum Likelihood Estimation

Both versions of GCD can be estimated via the maximum likelihood estimation (MLE):

max
θ

TI∑
t=1

−1

2

(
n log(2π) + log |Ht|+ e>t H

−1
t et

)
, (21)

where θ is the model parameters, and TI is the sample size. For the GCD based on asset

returns, θ = {HI , α, a, b, c} (scalar version) or θ = {HI , α, d, b, c} (diagonal version), and for
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the GCD based on realized covariance, θ = {HI , α, a}.

2.4.2 Geodesic Minimization

When realized covariance measures are available, another estimation method is to minimize

the distance between the forecast Ht and the realization Rt. Following the discussion in the

previous section, we estimate the model by minimizing the length of the minimal geodesic

between Ht and Rt:
5

min
θ

TI∑
t=1

d(Ht, Rt). (22)

2.4.3 Covariance Targeting

The GCD models have the number of parameters of O(n2) due to the inclusion of the

constant covariance matrix. This number can be reduced to O(n) via covariance targeting.

Unlike BEKK and DCC, covariance targeting is not straightforward for the GCD models as

the unconditional expectation of Ht is difficult to obtain due to the exponential mapping.

As Figure 2 shows, Ht+1 can also be defined as an internal point on the geodesic emanating

from H ′t towards HI :

Ht+1 =ExpHI
(
αLogHI (H

′
t)
)

=ExpH′t

(
(1− α)LogH′t(HI)

)
.

(23)

Applying LogHt′(·) to both sides, we have

LogHt′(Ht+1) = (1− α)LogH′tHI . (24)

Diving both sides by (1−α) and applying ExpH′t(·), we obtain the equation for HI as follows.

HI = ExpH′t

(
1

1− α
F̃t

)
, F̃t = LogH′t(Ht+1), (25)

5We test the Frobenius norm in an unreported empirical study and find the geodesic length outperforms
the Frobenius norm.
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where the matrix F̃t is the tangent vector emanating from H ′t towards Ht+1. Let H̄ and M̄

denote E[ete
>
t ] and E[ηtη

>
t ], respectively. Then,

E[Ht+1] = H̄,

E[H ′t] =
(
ιι> − dd>

)
◦ H̄ + dd> ◦ C ◦ ((1− b2)H̄ + b2M̄).

The constant covariance matrix HI is approximated by substituting Ht+1 and H ′t in (25)

with their expected values:

HI = ExpH̄′

(
1

1− α
F̃

)
, F̃ = LogH̄′(H̄), (26)

where H̄ ′ denotes E[H ′t]. Sample analogs are used to estimate H̄ and M̄ .

For GCD with realized covariance, we have E[Ht] = E[Rt] = H̄, which results in H ′t = H̄

as H ′t is an internal point between Ht and Rt. Then F̃t becomes a n × n zero matrix and

HI = H ′t = H̄ from Equation (25). This can also be derived graphically from Figure 2.

When Ht, Ht+1 and Rt (Ct in the figure) are equal to H̄, both H ′t and HI also have to be

equal to H̄ for Equation (20) to hold.

3 Evaluation

As the primary purpose of volatility estimation is to measure risk, we evaluate covariance

models via out-of-sample performance metrics, especially in the context of risk and portfolio

management.

3.1 Out-of-Sample Log-Likelihood

The first performance metric is the out-of-sample log-likelihood, which is obtained from the

one-day forecasts of the covariance matrix during the out-of-sample period. Given one-day
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forecasts Ht, t = 1, · · · , T , the out-of-sample log-likelihood is given by the formula

logL =
TI
T

T∑
t=1

−1

2

(
n log(2π) + log |Ht|+ e>t H

−1
t et

)
, (27)

where TI and T are respectively the in-sample and out-of-sample sizes. The scaling factor

TI/T is multiplied to make the out-of-sample log-likelihood comparable to the in-sample

value.

3.2 Portfolio Variance

The next performance metric is based on the variance of portfolio returns. During the out-of-

sample period, a portfolio return is computed and normalized by the forecast of the portfolio

variance every day. The standard deviation of the normalized returns Sp is then calculated

as follows:

Sp =

√√√√ 1

T − 1

T∑
t=1

(rpt − r̄p)2, (28)

where

rpt =
w>rt√
w>Htw

, r̄p =
1

T

T∑
t=1

rpt, (29)

and w is the portfolio weight vector. If the forecasts Ht are accurate, Sp will converge to 1

as the sample size increases. The performance metric is defined as the difference between Sp

and 1:

dSp = |Sp − 1|. (30)

For empirical studies, the equal-weight portfolio is considered.

3.3 Portfolio Conditional Expectation

An accurate estimation of the covariance matrix does not necessarily lead to an accurate

estimation of tail distribution unless the actual distribution of the data is equal to the
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assumed distribution, which is normal in our case. Nonetheless, evaluating the models

based on the tail distribution is important from a risk management perspective as most

risk measures are derived from the covariance matrix. More generally, it is informative to

compare the distribution implied by the model with the observed distribution.

In order to measure the distribution’s overall goodness of fit, conditional expectation-

based performance metrics are defined. For the normalized return defined in (29), conditional

means at different probability levels are calculated on both sides of the distribution: given a

probability level α > 0.5, the conditional mean on the positive side, CEp
α, and the conditional

mean on the negative side, CEn
α, are computed using the formulae

CEp
α =

∑T
t=1 rpt · δrpt>zα∑T
t=1 δrpt>zα

, CEn
α =

∑T
t=1−rpt · δ−rpt>zα∑T

t=1 δ−rpt>zα
, (31)

where δi is the Kronecker delta, and zα is the z-score at the probability level α. The portfolio

return rpt in CEn
α is premultiplied by -1 so that CEn

α > 0. When α is large, e.g., 0.95 or

0.99, CEn
α becomes the conditional Value-at-Risk, also known as the expected shortfall.

If the covariance dynamics is correctly specified and asset returns normally distributed,

CEp
α and CEn

α will converge to their theoretical value

CEα =
1

1− α

∫ ∞
zα

zΦ(z)dz, (32)

where Φ(z) is the standard normal probability density function. A natural choice of the

performance metric is then the difference between the estimated value and the theoretical

value:

dCEp
α =
|CEp

α − CEα|
CEα

, dCEn
α =
|CEn

α − CEα|
CEα

. (33)

In the empirical studies, dCEp
α and dCEn

α are measured for equal-weight portfolios.
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3.4 Minimum Variance Portfolio

The next two performance metrics are related to the minimum variance portfolio. The

standard deviation of the minimum variance portfolio return is often employed to assess

covariance models, e.g., Chiriac and Voev (2011). When there are no constraints other than

the budget constraint, the minimum variance portfolio has the closed form:

wmin
t =

H−1
t ι

ι>H−1
t ι

, (34)

where the superscript “min” denotes the minimum variance portfolio, and ι denotes a vector

of ones of an appropriate size. Note that the minimum variance portfolio is invariant to

a scalar multiplication of Ht. Therefore, the standard deviation of the minimum variance

portfolio return is invariant to the overall level of the covariance matrix and only evaluates

the cross-sectional variation within the covariance matrix.

The minimum variance portfolio is rebalanced when the covariance model is calibrated

(every 22 days as illustrated in Section 4.3) and held until the next rebalancing date. The

portfolio return is computed every day during the out-of-sample period, and its sample

standard deviation is calculated as follows:

Smin
p =

√√√√ 1

T − 1

T∑
t=1

(rmin
pt − r̄min

p )2, (35)

where rmin
pt = r>t w

min
t . A more accurate covariance model will lead to a smaller standard

deviation.

Another performance metric associated with portfolio rebalancing is turnover. A covari-

ance model that yields inconsistent forecasts over time will result in high turnover. Although

turnover is not directly related to the accuracy of the model, an unstable covariance fore-

cast is not only counter-intuitive but also harmful to portfolio management as it incurs high

transaction costs. In this regard, measuring the stability of the covariance model via turnover
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is worthwhile. When a portfolio is rebalanced at time t, the turnover is defined as

dwt = |wt − wt− |>ι, (36)

where wt− and wt are the portfolio weights immediately before and after rebalancing at

time t. The performance metric is defined as the average turnover during the out-of-sample

period:

dw =
1

K

K∑
k=1

dwtk , (37)

where K is the number of rebalancing during the out-of-sample period, and tk is the k-th

rebalancing time.

3.5 Distance Metrics

The last performance metrics are based on distance measures and applicable when a realized

covariance matrix is available. Using the Frobenius norm or the geodesic length as the

distance measure, the average distance over the out-of-sample period is calculated as follows:

DF =
1

T

T∑
t=1

||Ht −Rt||F , (38)

DG =
1

T

T∑
t=1

d(Ht, Rt), (39)

where || · ||F denotes the Frobenius norm.

4 Data and Models

4.1 Data

For the empirical part of the paper, three data samples; global stock market indexes, cur-

rencies, and individual stocks are chosen. The assets in the last two samples are traded
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during the same trading hours and realized covariances can be obtained from high-frequency

trading data.

4.1.1 Stock Market Indexes

The first data sample consists of three stock market indexes; S&P 500, FTSE 100, and

NIKKEI 225. These indexes are also used in Kawakatsu (2006). Daily index values are

collected from DataStream, and daily index returns are generated during the period from

1997-01-02 to 2014-12-31. Descriptive statistics are reported in Table 1. S&P 500 and

FTSE 100 have a similar level of variance and are highly correlated with each other, whereas

NIKKEI 225 has a relatively higher variance and a lower return-to-risk ratio. The correla-

tions between NIKKEI 225 and the other two indexes are also much lower compared to the

correlation between S&P 500 and FTSE 100.

Table 1: Descriptive statistics of the stock index daily returns

The indexes are S&P 500 (S&P), FTSE 100 (FTSE), and NIKKEI 225 (NIKKEI). The sample period is from
1997-01-02 to 2014-12-31, and the mean (Mean) and the standard deviation (Stdev) values are annualized,
assuming 250 business days per year.

Mean Stdev Correlation
S&P FTSE NIKKEI

S&P 0.074 0.197 1.000 0.512 0.112
FTSE 0.043 0.190 0.512 1.000 0.284

NIKKEI 0.023 0.240 0.112 0.284 1.000

4.1.2 Currencies

The second data sample consists of three currencies; euro (EUR), British pound (GBP), and

Japanese yen (JPY) expressed as US dollar price per unit currency. Laurent et al. (2012)

also analyze the covariance of these currencies. The currency sample is distinct from the

other data samples in that it features a negative correlation. The sample period is from

2002-01-02 to 2014-12-31.6 These currencies are traded 24 hours, so both daily returns and

6The sample starts from 2002-01-02 because euro was introduced in a non-physical form on 1999-01-01,
and the new euro notes and coins were introduced on 2002-01-01.
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realized covariances are calculated. In an extensive empirical study, Liu et al. (2015) find

little evidence that a simple 5-minute realized variance is outperformed by other measures.

Based on their findings, we employ a simple 5-minute realized covariance.

Descriptive statistics are reported in Table 2. While EUR and GBP are highly correlated

with each other, they are negatively correlated with JPY. All three currencies have a similar

level of variance.

Table 2: Descriptive statistics of the currency daily returns

The currencies are euro (EUR), British pound (GBP), and Japanese yen (JPY). The sample period is from
2002-01-02 to 2014-12-31, and the mean (Mean) and the standard deviation (Stdev) values are annualized
assuming 250 business days per year.

Mean Stdev Correlation
EUR GBP JPY

EUR 0.024 0.099 1.000 0.673 -0.237
GBP 0.016 0.091 0.673 1.000 -0.128
JPY -0.008 0.102 -0.237 -0.128 1.000

4.1.3 Individual Stocks

The last data sample consists of six stocks from the Dow Jones Industrial Average (DJIA)

index; General Electric (GE), American Express (AXP), JP Morgan (JPM), Home Depot

(HD), Citi Bank (C), and IBM (IBM). These stocks are chosen for their liquidity following

Chiriac and Voev (2011). The sample period is from 2002-01-02 to 2014-12-31. During

the sample period, stock prices are collected every minute during the trading hours (09:30

to 16:00 EST) from Thomson Reuter Tick History, and the daily returns and the 5-minute

realized covariances are computed. The daily return is defined as the open-to-close return and

overnight jump is ignored. For the close-to-close return, one could introduce an additional

parameter in the model to scale up the covariance matrix: e.g., the covariance matrix of the

close-to-close returns could be modeled as λHt with λ being a scalar or a diagonal matrix.

Descriptive statistics are reported in Table 3. All the stocks are highly correlated with

each other, with correlation coefficients being greater than 0.5. Four out of six stocks (GE,
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HD, C, and IBM) show negative mean returns during the sample period, and the standard

deviations of the returns range between 0.166 and 0.376. Citi (C) has a significantly low

mean return (-0.426) and a high standard deviation (0.376) compared to the other stocks.

Table 3: Descriptive statistics of the DJIA stock returns

The stocks are General Electric (GE), American Express (AXP), JP Morgan (JPM), Home Depot (HD),
Citi Bank (C), and IBM (IBM). The sample period is from 2002-01-02 to 2014-12-31, and the mean (Mean)
and the standard deviation (Stdev) values are annualized assuming 250 business days per year.

Mean Stdev Correlation
GE AE JPM HD C IBM

GE -0.055 0.215 1.000 0.595 0.629 0.559 0.567 0.596
AE 0.073 0.276 0.595 1.000 0.722 0.579 0.642 0.576

JPM 0.046 0.301 0.629 0.722 1.000 0.592 0.698 0.582
HD -0.014 0.218 0.559 0.579 0.592 1.000 0.457 0.588
C -0.426 0.376 0.567 0.642 0.698 0.457 1.000 0.442

IBM -0.018 0.166 0.596 0.576 0.582 0.588 0.442 1.000

4.2 Models

Four GCD specifications are considered in the empirical analysis: three from Section 2.3,

i.e., Equation (15), (17), and (19), and a hybrid model of the DCC and GCD, where the

correlation matrix is assumed to follow the scalar GCD process in (15) and the variances

follow the GJR-GARCH (Glosten et al., 1993) process. These models are compared with

the matrix exponential GARCH of Kawakatsu (2006), two versions of the BEKK of Engle

and Kroner (1995), and the DCC extension of Cappiello et al. (2006). We chose BEKK

because its specification is similar to our GCD model except it is defined in the Euclidean

space, so we can reveal how defining the dynamics in the covariance space can improve the

estimation. The DCC model is chosen because it is one of the most widely used models

and performs well. Finally, the matrix exponential GARCH is chosen as it is similar to the

GCD framework in that it uses matrix logarithm. A crucial difference is that the matrix

exponential GARCH defines the dynamics in the tangent space.

In all models, the covariance matrix is assumed to be a function of only the first lags of

the covariance matrix and return shocks, and the asymmetric effect term, ηt, is included.
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The test models are summarized in Table 4, together with the number of model parameters.

Table 4: Test models

Model No. Parameters Description

GCDS 1/2n(n + 1) + 4 GCD with scalar coefficients (Eq. (15)).
GCDD 1/2n(n + 3) + 3 GCD with diagonal coefficients (Eq. (17)).
EXP n(3n + 1) Matrix exponential GARCH (Kawakatsu, 2006).
BEKKS 1/2n(n + 1) + 3 BEKK with scalar coefficients (Engle and Kroner, 1995).
BEKKD 1/2n(n + 7) BEKK with diagonal coefficients (Engle and Kroner, 1995).
DCC 1/2n(n + 7) + 3 DCC with scalar coefficients (Cappiello et al., 2006).
DCCG 1/2n(n + 7) + 4 DCC-GCD with scalar coefficients.
GCRM 1/2n(n + 1) + 2 GCD based on realized covariance estimated via MLE (Eq. (19)).
GCRG 1/2n(n + 1) + 2 GCD based on realized covariance estimated via geodesic length

minimization (Eq. (19)).

4.3 Model Estimation and Evaluation

Model parameters are estimated monthly (every 22 days) during the sample period rolling a

three-year estimation window.7 Hence, the out-of-sample period starts from 2000-01-02 for

the stock index dataset and 2005-01-02 for the currency and DJIA stock datasets. Between

estimation dates, the covariance matrix is updated daily with the arrival of new returns

and realized covariances while the model parameters are fixed to the last estimates. The

performance metrics defined in Section 3 are calculated during the out-of-sample period.

5 Empirical Results

This section analyzes empirical results. For the sake of space, parameter estimation results

are not reported, and the focus is given to out-of-sample evaluation.

5.1 Performance Evaluation

Table 5, 6, and 7 report the out-of-sample performance of the test models evaluated respec-

tively using the stock index, currency, and DJIA stock samples. GCRM and GCRG are

7A five-year estimation window was also tested and the results were qualitatively similar.
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applied only to the currency and DJIA samples, for which realized covariances are available.

EXP is applied only to the first two samples as its parameters do not converge in the DJIA

sample. The tables also report the ranks of the models under each evaluation metric and

Hansen et al. (2011)’s model confidence set (MCS) p-values when applicable. When the

MCS test is conducted on all models, the realized covariance-based models (GCRM, GCRG)

dominate the asset return-based models and the p-values of the latter become near zero.

Therefore, to compare the asset return-based models, we report p-values obtained from the

MCS tests conducted on the asset return-based models only.

Table 5: Performance evaluation using the stock index sample

The rows represent the evaluation metrics defined in Section 3 except the first row, logL0, which is the
average in-sample likelihood. dSp and dCEn

99 are calculated from the equal-weight portfolio and reported
without taking absolute value to show the direction of the errors. The second row of each evaluation metric
is the ranks of the models based on the associated metric. ‘mcs p-val’ denotes the MCS p-value. The MCS
test is conducted on the asset return-based models only.

GCDS GCDD EXP BEKKS BEKKD DCC DCCG

logL0 7386 7391 7425 7345 7375 7395 7397
logL 7449 7453 7420 7407 7427 7459 7460

4 3 6 7 5 2 1
mcs p-val 0.00 0.06 0.00 0.00 0.00 0.06 1.00

dSp 0.676 0.658 1.795 -3.468 -1.536 -0.557 -0.668
4 2 6 7 5 1 3

dCEn
99 8.251 6.805 12.978 7.875 9.520 9.879 10.077

3 1 7 2 4 5 6
Smin
p 15.057 15.025 18.545 15.302 15.146 15.115 15.115

2 1 7 6 5 3 4
dw 3.481 3.865 4.376 4.242 4.285 4.793 4.734

1 2 5 3 4 7 6

In terms of the out-of-sample log-likelihood, logL, GCRM and GCRG perform best, fol-

lowed by DCCG. Other models show inconsistent results across samples. To our surprise, the

out-of-sample log-likelihood is usually greater than the mean of the in-sample log-likelihood,

logL0. This can be attributed to the fact that logL is calculated using the parameters up-

dated every 22 days, whereas only one set of parameters are used to calculate the in-sample

likelihood in each parameter estimation.

The error of the portfolio variance measured by dSp is trivial in most models. For

instance, the largest error in the stock index sample is only -3.5% of BEKKS. The only
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Table 6: Performance evaluation using the currency sample

The rows represent the evaluation metrics defined in Section 3 except the first row, logL0, which is the
average in-sample likelihood. dSp and dCEn

99 are calculated from the equal-weight portfolio and reported
without taking absolute value to show the direction of the errors. The second row of each evaluation metric
is the ranks of the models based on the associated metric. ‘mcs p-val’ denotes the MCS p-value. The MCS
test is conducted on the asset return-based models only.

GCDS GCDD EXP BEKKS BEKKD DCC DCCG GCRM GCRG

logL0 8764 8767 8785 8757 8773 8772 8776 8780
logL 8777 8778 8697 8776 8777 8775 8786 8811 8797

6 4 9 7 5 8 3 1 2
mcs p-val 0.71 0.71 0.00 0.71 0.71 0.00 1.00

dSp 0.542 1.098 -0.289 -1.330 0.428 2.998 1.306 0.640 -0.494
4 6 1 8 2 9 7 5 3

dCEn
99 13.826 12.962 9.530 12.645 9.940 12.011 10.095 6.650 8.268

9 8 3 7 4 6 5 1 2
Smin
p 6.262 6.268 6.346 6.360 6.318 6.325 6.300 6.199 6.188

3 4 8 9 6 7 5 2 1
dw 2.781 3.107 3.600 3.036 3.459 3.395 3.436 2.239 2.081

3 5 9 4 8 6 7 2 1
DF 0.435 0.435 0.505 0.435 0.436 0.438 0.432 0.385 0.367

5 4 9 6 7 8 3 2 1
mcs p-val 0.56 0.60 0.00 0.60 0.10 0.00 1.00

DG 0.874 0.887 1.042 0.870 0.906 0.895 0.902 0.806 0.660
4 5 9 3 8 6 7 2 1

mcs p-val 0.00 0.00 0.00 1.00 0.00 0.00 0.00
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Table 7: Performance evaluation using the DJIA stock sample

The rows represent the evaluation metrics defined in Section 3 except the first row, logL0, which is the
average in-sample likelihood. dSp and dCEn

99 are calculated from the equal-weight portfolio and reported
without taking absolute value to show the direction of the errors. The second row of each evaluation metric
is the ranks of the models based on the associated metric. ‘mcs p-val’ denotes the MCS p-value. The MCS
test is conducted on the asset return-based models only.

GCDS GCDD BEKKS BEKKD DCC DCCG GCRM GCRG

logL0 14257 14265 14197 14146 14260 14262 14325
logL 14354 14346 14277 14075 14336 14345 14465 14416

3 4 7 8 6 5 1 2
mcs p-val 1.00 0.77 0.00 0.00 0.00 0.13

dSp 1.706 -0.453 -2.236 2.132 -1.380 -1.565 0.530 19.893
5 1 7 6 3 4 2 8

dCEn
99 9.075 7.448 6.807 13.514 6.202 5.642 3.534 11.105

6 5 4 8 3 2 1 7
Smin
p 15.012 14.905 14.956 15.395 15.520 15.522 15.091 15.259

3 1 2 6 7 8 4 5
dw 5.120 5.332 6.457 7.446 8.753 8.791 6.265 5.329

1 3 5 6 7 8 4 2
DF 9.320 9.590 10.249 10.363 10.380 10.399 8.151 7.602

3 4 5 6 7 8 2 1
mcs p-val 1.00 0.01 0.01 0.00 0.01 0.00

DG 1.855 1.872 1.943 2.099 1.872 1.868 1.655 1.485
3 6 7 8 5 4 2 1

mcs p-val 1.00 0.00 0.00 0.00 0.03 0.03
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exception is the significant error (19.9%) from GCRG in the DJIA stock sample. GCRG is

the only model that minimizes the distance from the realized covariance and performs best

in terms of DF and DG. This contradicting performance of GCRG suggests that the realized

covariance may not be a good proxy for the true covariance in this particular sample. This

result, however, does not mean the realized covariance is uninformative. The GCRM model,

which is also based on the realized covariance but estimated via MLE utilizing both the

returns and realized covariance, outperforms most other models.

Contrary to the results from dSp, the error in the tail region measured by dCEn
99 is

much larger, often exceeding 10%. GCRM performs best in both the currency and DJIA

stock samples, but the error is still substantial compared to dSp. This casts a doubt on the

conditional normality assumption of asset returns. Possible remedies to reduce the error at

the tail is discussed later in Section 5.2.

The rankings based on Sminp and dw are generally similar and consistent across samples

favoring GCD models; GCRM, GCDS, and GCDD, in particular. As a robustness check,

daily rebalancing and rebalancing subject to short-sale constraints were also tested, and the

results were qualitatively similar to those reported here. Compared to other performance

metrics, the variation of Smin
p across the models is trivial. This is because the minimum

variance portfolio is invariant to the overall level of the covariance matrix and depends only

on the cross-sectional variation, which is comparably stable over time.

As expected, GCRG performs best in terms of the distance metrics, DF and DG, followed

by GCRM. The rankings based on DF and DG are similar but not identical. Although both

measures are valid, DG is preferred in our context as it is consistent with the geometric

framework.

When we conduct the MCS test on all models, the p-values of the asset return-based mod-

els are almost 0, indicating that the realized covariance models dominate these. Therefore,

we report the p-values obtained from the MCS test conducted only on the asset return-based

models. For the stock indexes, DCCG is the only model in the 90% MCS. For the currencies,

27



many models are contained in the 90% MCS implying that these models are not significantly

different. Still, all GCD models are included in the MCS based on logL or DF . For the

DJIA stocks, only the GCD models are in the 90% MCS. In particular, GCDS performs best

in terms of all losses.

Comparing overall performances of the models, we find that the models based on realized

covariance, i.e., GCRM and GCRG, dominate the other models in terms of most performance

metrics. While these models are expected to perform well in terms of DF and DR, the high

ranking of GCRG with respect to LogL is remarkable as it does not maximize the likelihood

function. Noureldin et al. (2012) also find that their realized covariance-based HEAVY

model outperforms conventional GARCH models based on daily returns. Between GCRM

and GCRG, GCRM performs more consistently, which is perhaps because GCRM exploits

information from both returns and realized covariances. GCRG, on the other hand, uses

only realized covariance, and its performance depends heavily on the quality of the realized

covariance as a proxy for the true covariance.

Apart from GCRM and GCRG, it is difficult to pinpoint the best performing model at

first glance. It is rather striking that the performances of the models vary widely not only

across data samples but also across performance metrics. Table 8 reports the correlation

between the model rankings. To our surprise, logL is highly correlated with both DF and

DG, whereas dSp and dCEn
99 are weakly, sometimes even negatively correlated with other

metrics. The inconsistent performance across performance metrics suggests that it is crucial

to evaluate models using multiple criteria and choose the most appropriate metric for a given

purpose.

Nevertheless, the GCD models appear to outperform the benchmark models, especially

in terms of the out-of-sample log-likelihood: as models are estimated via MLE except for

GCRG, logL is most relevant to the objective function. Comparison between GCDS and

BEKKS and between GCDD and BEKKD reveals that the GCD models outperform their

BEKK counterparts. Incorporating the GCD model into the DCC framework (DCCG) also
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Table 8: Correlation between rankings

Correlations are calculated from the model rankings reported in Table 5, 6, and 7.

logL dSp dCEn
99 Smin

p dw DF DG

logL 1.00
dSp 0.31 1.00
dCEn

99 0.26 0.41 1.00
Smin
p 0.60 0.34 0.21 1.00

dw 0.40 -0.15 0.08 0.63 1.00
DF 0.86 -0.10 0.07 0.72 0.81 1.00
DG 0.71 -0.14 0.17 0.31 0.77 0.69 1.00

improves the performance, as evidenced by the increased log-likelihoods in all three samples.

EXP, contrary to its high in-sample log-likelihood values, performs worst out-of-sample.

In general, good in-sample performance does not imply good out-of-sample performance.

Another important observation is that the diagonal versions of GCD and BEKK, despite

more parameters, do not outperform their scalar counterparts. Overall, the GCD models

perform best followed by the BEKK models and DCC, and EXP performs worst.

Table 9 provides a summary of the results, in which the numbers are average rankings

across data samples. GCRM, GCRG, and EXP are excluded as they are applied to only

some of the three data samples, and their out/under-performance is apparent. Without these

models, the remaining six models are ranked from 1 (best) to 6 (worst) in each sample, and

the ranks are averaged across the samples. The table clearly shows that the best performance

is usually associated with the GCD models, while the worst performance is associated with

the BEKK models, which confirms the previous conclusion.

Table 9: Average ranking of the test models

Without GCRM, GCRG, and EXP, the remaining six models are ranked again from 1 (best) to 6 (worst) in
each sample, and the ranks are averaged across the samples.

GCDS GCDD BEKKS BEKKD DCC DCCG

logL 3.0 2.3 5.3 4.7 4.0 1.7
dSp 3.3 2.0 5.7 3.7 3.0 3.3
dCEn

99 4.7 3.3 3.0 3.7 3.3 3.0
Smin
p 2.0 1.3 4.7 4.3 4.3 4.3

dw 1.0 2.3 2.7 4.7 5.0 5.3
DF 2.0 2.0 3.5 4.5 5.5 3.5
DG 1.5 3.5 3.0 6.0 3.5 3.5
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Covariance Targeting The results of covariance targeting for some selected models are

reported in Table 10. It is remarkable that fixing the constant matrix does little harm to

the overall performance regardless of the model. The fixed constant matrix models often

outperform their counterparts in terms of some performance metrics. The loss in flexibility

appears to be offset by the gain in robustness.

Table 10: Covariance targeting

Est columns are the results without covariance targeting, and Fix columns are the results from covariance
targeting.

GCDS GCDD DCC DCCG GCRM
Est Fix Est Fix Est Fix Est Fix Est Fix

logL 14354 14334 14346 14312 14336 14341 14345 14345 14465 14424
3 9 4 10 8 7 6 5 1 2

dSp 1.706 -1.651 -0.453 -0.886 -1.380 -1.859 -1.565 -2.020 0.530 -1.198
8 7 1 3 5 9 6 10 2 4

dCEn
99 9.075 9.354 7.448 9.465 6.202 6.034 5.642 5.469 3.534 3.496

8 9 7 10 6 5 4 3 2 1
Smin
p 15.012 14.928 14.905 14.923 15.520 15.544 15.522 15.538 15.091 14.915

5 4 1 3 7 10 8 9 6 2
dw 5.120 5.542 5.332 5.593 8.753 8.814 8.791 8.877 6.265 6.011

1 3 2 4 7 9 8 10 6 5
DF 9.320 9.733 9.590 9.516 10.380 10.438 10.399 10.461 8.151 8.190

3 6 5 4 7 9 8 10 1 2
DG 1.855 1.922 1.872 1.933 1.872 1.871 1.868 1.871 1.655 1.734

3 9 8 10 7 6 4 5 1 2

Paths of the Forecasts Figure 3 displays one-day forecasts of the standard deviation of

the return on GE, and Figure 4 displays one-day forecasts of the correlation between GE

and AE obtained from selected models. We report the results from only one pair to save the

space, but the findings below can be generalized to other pairs.

When GCDS is compared with BEKKS, the standard deviation forecast from GCDS is

more responsive to the shocks, whereas the correlation from GCDS is more stable. The

difference between the models is more prominent during volatile market periods. This can

be attributed to two facts. Firstly, the geodesic length between two matrices increases

exponentially as one matrix approaches a singular point. This prevents a sudden increase

in correlation. Secondly, with the covariance adjustment term C, GCDS is able to produce
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Figure 3: One-day forecast of the standard deviation of GE
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Figure 4: One-day forecast of the correlation between GE and AE

32



stable correlations while allowing volatile movements of the standard deviations.

Treating variances and correlations independently, DCC allows variances to be responsive

to the shocks while maintaining stable correlations. As a result, it generates the most stable

correlations among the models tested.

GCRM features the most responsive variance and correlation forecasts. This suggests

that the realized covariance contains more information about the future covariance than the

return shocks. The loading on Rt in GCRM approximated by αa2 is 0.244 on average, while

the loading on ete
>
t in GCDS is only 0.024. Even though the magnitude of ete

>
t is much

larger than that of Rt, the difference in loadings is substantial. It is worth noting that the

volatile forecasts from GCRM does not result in high turnover of the minimum variance

portfolio.

5.2 Risk Measurement

As evidenced by the previous results, the forecast error at the tail measured by dCEn
99 is

substantially larger than that of variance (dSp), and there is a lack of consistency in ranking

between these performance metrics. The significant tail error necessitates validation of the

models in terms of risk measures, especially if the primary purpose of covariance estimation

is to measure risk. Figure 5 displays the conditional expectations defined in (33), without

the absolute value operation in the numerator.

If a model were correctly specified, the errors would be close to zero across all probability

levels. However, the graphs show that all models underestimate the conditional expecta-

tion at both tails, and the underestimation is severer on the negative side. This finding is

consistent with the well-known fat-tailed, left-skewed distribution of asset returns.

For risk management, it is worth considering a tailored estimation method to enhance

the accuracy at the tail. Four methods that aim to achieve this are considered.

The first method is to replace the normal distribution with a fat-tailed distribution. In
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(a) Stock Indexes

(b) Currencies

(c) DJIA stocks

Figure 5: Conditional expectations CEp
α and CEn

α
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particular, the student t-distribution is considered, in which case, the QMLE is given by

max
θ

TI∑
t=1

c(n, d)− 1

2
log |Ht| −

n+ d

2
log

(
1 +

e>t H
−1
t et

d− 2

)
, (40)

where

c(n, d) = log Γ

(
n+ d

2

)
− log Γ

(
d

2

)
− n

2
log π − n

2
log(d− 2),

Γ(·) is the gamma function, and d is the degree of freedom of the distribution, which is

estimated simultaneously with other parameters.8 When the t-distribution is used, the

probability density function in (32) also needs to be replaced by the probability density

function of the t-distribution.

The second and third methods select samples around the tail of the distribution while

retaining the normality assumption. More specifically, the second method uses historical

returns only when the absolute value of the portfolio return exceeds its sample standard

deviation:

|w>et| >
√
w>H̄w, (41)

where H̄ is the sample covariance of et. The third method chooses samples only when at

least one asset return is below the negative of its sample standard deviation:

eit < −
√
h̄i, (42)

where h̄i is the sample variance of eit. One drawback of these methods is the loss of infor-

mation from the omitted data.

The last method borrows the idea of importance sampling. Importance sampling is a

simulation technique that reduces simulation error by drawing more samples from the region

of interest, which is done by replacing the original density function f with a new density

8Following Kawakatsu (2006), we use a likelihood function slightly different from the usual form so that
the variance of et becomes Ht.
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function g, and multiplying the samples from the new density function by the likelihood

ratio: f → g f
g
. For the application of importance sampling in risk measurement, the reader

is referred to Glasserman (2003) and Glasserman and Li (2005).

The final method applies importance sampling reversely to assign more weights to the

samples from the tail. This is done by i) defining a new density function that has a higher

density around the tail; ii) calculating the likelihood ratio; iii) multiplying the data by the

inverse of the likelihood ratio. The procedure is summarized below.

• Likelihood Ratio. Assume that et are random samples from N(0, H̄). The new

density function is defined by shifting the mean of et by λ. The likelihood ratio is then

given by

l(et) = exp

(
−e>t H̄−1λ+

1

2
λ>H̄−1λ

)
.

• New Density Function. Following Glasserman et al. (1999), λ is determined by

solving

λ = argmax
x

exp

(
−1

2
x>H̄−1x

)
subject to x>w ≤ L,

where w is the portfolio weights, and L is a loss level. The above problem has a

closed-form solution

λ =
LH̄w

w>H̄w
.

L is set to −0.5
√
w>H̄w.

• Estimation. In the ML estimator, multiply the log-likelihood function at time t by

1/l(et).

The results from these four alternative estimation methods applied to GCDS are reported

in Table 11 and Figure 6. All four methods reduce the error at the tail compared to the origi-

nal method (Normal), and the first (t-dist) method makes the most noticeable improvement.
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Using the t-distribution significantly improves tail risk measurement without any substantial

performance loss in terms of other metrics. Figure 6 shows that the t-distribution fits the

negative side of the distribution remarkably well, while it underestimates the positive side

only slightly. Except for the t-distribution, all other methods incur significant overestima-

tion of the variance (negative dSp). In fact, these methods perform much worse than the

original method in terms of other metrics. These results suggest that, even after accounting

for heteroscedasticity, the asset returns are skewed and fat-tailed. As far as risk is concerned,

the t-distribution appears to be a better choice than the normal distribution.

Table 11: Performance evaluation of the alternative estimation methods applied to GCDS

“Normal” refers to the original MLE, and the other four columns refer to the four alternative methods
depicted in Section 5.2.

Normal t-dist Tail Negative IS

Stock Indexes

dSp 0.676 0.895 -40.106 -24.900 -15.511
dCEn

99 8.251 2.716 0.357 4.686 7.594

Currencies

dSp 0.542 0.766 -41.824 -22.713 -16.136
dCEn

99 13.826 0.773 -0.568 8.082 12.832

DJIA Stocks

dSp 1.706 3.072 -42.867 -21.845 -16.784
dCEn

99 9.075 -2.251 -2.377 5.819 4.565

5.3 Portfolio Performance

This section compares the covariance models from a perspective of portfolio management.

Two types of portfolios, minimum variance portfolio and tangent portfolio, are considered.

For the tangent portfolios, the expected return is assumed known: the sample mean over the

out-of-sample period is used as the expected return. We make this assumption so that the

performance of the tangent portfolio is affected only by the estimation error of the covariance

matrix. Table 12 reports the results.

From all three samples, we find that the GGARCH models usually outperform the bench-
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(a) Stock Indexes

(b) Currencies

(c) DJIA stocks

Figure 6: Conditional expectations of the alternative estimation methods applied to GCDS
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marks in terms of the Sharpe ratio. For the minimum variance portfolio, the highest Sharpe

ratio is attained by GCDD, GCRG, and GCRG, respectively under the stock index, currency,

and DJIA stock samples. For the tangent portfolio, the highest Sharpe ratio is attained by

GCDS, GCRM, and GCDS, respectively for the three samples. Other GGARCH models

also perform better or comparably with the benchmarks. The fact that DCCG outperforms

DCC further supports the advantages of the GGARCH models.

The tangent portfolios generally outperform the minimum variance portfolios but they

are also much more volatile. This result is anticipated since we assume that the expected

returns are known. The equally-weighted portfolio (EW) does not perform very well in all the

samples. This is partly because the global market did not perform well in the out-of-sample

periods.

6 Conclusion

In this paper, we develop new covariance dynamics models (GCD) using methods of dif-

ferential geometry. These models preserve the geometric structure of the covariance matrix

without any arbitrary restrictions by respecting the inherent geometric features of the covari-

ance matrix. The GCD models are tested on three data samples and compared with existing

models; BEKK, DCC, and the matrix exponential GARCH, using various out-of-sample

performance metrics including new ones that are particularly relevant to risk management.

Empirical results suggest that the GCD models outperform the existing models, and re-

alized covariance based models outperform return based models. In particular, a realized

covariance-based GCD model estimated via MLE performs best. These findings imply that

realized covariances carry more information on the future covariance, but they do not cover

the informational contents of asset returns. Another important finding is the lack of consis-

tency across the performance metrics, which suggests that it is crucial to evaluate models

using multiple criteria and choose the most relevant metric for a given purpose.
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Table 12: Portfolio performance

This table reports the performance of the minimum variance portfolios and the tangent portfolios, which are
constructed using different covariance models. For the tangent portfolios, the expected return is assumed
known: the sample mean over the out-of-sample period is used as the expected return. We make this
assumption so that the performance of the tangent portfolio is affected only by the estimation error of the
covariance matrix. The mean return (Mean) and the standard deviation (Std) are annualized assuming 250
business days per year. EW denotes the equally-weighted portfolio.

GCDS GCDD EXP BEKKS BEKKD DCC DCCG EW

Minimum Variance
Mean 0.012 0.012 0.013 0.008 0.008 0.009 0.010 0.083
Std 0.151 0.150 0.185 0.153 0.151 0.151 0.151 0.460
Sharpe 0.077 0.078 0.072 0.051 0.055 0.057 0.068 0.180
Tangent Portfolio
Mean 0.046 0.043 0.055 0.022 0.034 0.033 0.038 0.083
Std 0.183 0.182 0.719 0.223 0.187 0.183 0.182 0.460
Sharpe 0.251 0.238 0.076 0.098 0.179 0.179 0.210 0.180

(a) Stock indexes

GCDS GCDD EXP BEKKS BEKKD DCC DCCG GCRM GCRG EW

Minimum Variance
Mean 0.002 0.002 -0.011 0.004 -0.003 -0.002 0.004 0.005 0.005 -0.003
Std 0.063 0.063 0.063 0.064 0.063 0.063 0.063 0.062 0.062 0.192
Sharpe 0.024 0.027 -0.174 0.065 -0.048 -0.029 0.062 0.076 0.080 -0.014
Tangent Portfolio
Mean 2.166 1.164 0.917 -0.954 2.109 0.387 1.265 3.668 1.326 -0.003
Std 9.218 4.712 5.159 2.696 10.621 1.441 5.222 4.419 2.816 0.192
Sharpe 0.235 0.247 0.178 -0.354 0.199 0.269 0.242 0.830 0.471 -0.014

(b) Currencies

GCDS GCDD BEKKS BEKKD DCC DCCG GCRM GCRG EW

Minimum Variance
Mean 0.026 0.045 0.017 0.035 0.034 0.045 0.030 0.049 -0.536
Std 0.150 0.149 0.150 0.154 0.155 0.155 0.151 0.153 1.293
Sharpe 0.176 0.304 0.113 0.228 0.222 0.287 0.196 0.318 -0.415
Tangent Portfolio
Mean 6.887 4.968 13.390 6.969 5.428 5.452 8.644 8.379 -0.536
Std 3.580 5.770 20.025 8.140 4.795 3.971 5.678 4.995 1.293
Sharpe 1.924 0.861 0.669 0.856 1.132 1.373 1.522 1.677 -0.415

(c) DJIA stocks
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This paper demonstrates the advantages of taking an intrinsic geometric approach in

covariance modeling. There are many areas of research that can be developed based on this

paper, e.g., an extension of the GCD model for a large dimensional system. We hope to see

more papers in this direction.

A Basics of Differential Geometry

This section explains concepts from differential geometry that are essential to understand

the model of the paper. The exposition below is by no means rigorous but intended to

make the concepts as accessible as possible to the reader with no background in differential

geometry. A more complete description can be found in Fletcher et al. (2003), Fletcher and

Joshi (2004), Moakher (2005), Smith (2005), Lenglet et al. (2006a), Lenglet et al. (2006b),

Pennec et al. (2006), Dryden et al. (2009), Ben-David and Marks (2014) and the references

therein.

Manifold A manifold M is a space that looks like Rn (Euclidean space) locally. To under-

stand the notion of “locally Euclidean,” imagine looking at the earth from a rocket. When

the rocket is far from the earth, you can see the entire shape of the earth, which is a sphere,

but when it lands, the surface of the earth around looks like a flat plane. That is, a sphere

(2-dimensional curved space) looks like a 2-dimensional Euclidean space locally. Examples

of manifolds are a sphere, a flat plane, a torus, and so forth. A manifold is differentiable if

it is everywhere smooth and continuous so that one can define a differentiation operator in

a consistent manner. Figure 7 compares manifold with Euclidean space.

Tangent Space The tangent space of a manifold at p ∈M , denoted by TpM , is the set of

vectors tangent to the point. It is a vector space with the same dimension as M . For a flat

plane, the manifold and its tangent space coincide. When the manifold is a curved space, the

tangent spaces at different points are different from each other (see Figure 8 (a)). This makes
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𝑞

𝛾 𝑡 = Exp𝑝𝑡𝑋

𝑀

𝑝X = Log𝑝𝑞

𝑇𝑝𝑀

(a) Manifold

𝑞
𝛾 𝑡 = 𝑝 + 𝑡𝑋𝑝

𝑋 = 𝑞 − 𝑝

𝑀 = 𝑇𝑝𝑀 = 𝑅𝑛

(b) Euclidean space

Figure 7: Manifold vs. Euclidean space

comparing two tangent vectors at different points or taking their difference complicated. To

illustrate this, consider a tangent vector moving along a closed loop on a sphere (Figure 8

(b)). When the tangent vector moves parallel from A → N → B → A, the tangent vector

at the end does not coincide with the tangent vector at the beginning even though they are

at the same point.

Because a tangent vector at one point is not necessarily tangent at another, the differen-

tiation of tangent vectors is not well defined: subtraction between two different vector spaces

is not intrinsically defined. The additional structure required to differentiate tangent vectors

is called the affine connection, which is defined later in this section.

Riemannian metric Let M be a differentiable manifold of dimension n. A Riemannian

metric (or Riemannian metric tensor) on M is a family of (positive-definite) inner products

on the manifold’s tangent space:9

g : TpM × TpM → R. (43)

If X is a tangent vector, the square of its length is given by 〈X,X〉 := g(X,X). The

Riemannian metric becomes the dot product in a Euclidean space.

9A Riemannian metric depends on the location (p) of the tangent vector, and some texts use gp instead
of g to emphasize the dependency.
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(a) Transportation on a manifold (b) Transportation along a closed loop

Figure 8: Location dependency of the tangent space

In a system of coordinates x1, x2, . . . , xn, the vector fields
{

∂
∂x1
, ∂
∂x2
, . . . , ∂

∂xn

}
serve as a

basis of tangent vectors at each point of M , and tangent vectors X, Y ∈ TpM can be written

as

X =
∑
i

X i ∂

∂xi
, Y =

∑
j

Y j ∂

∂xj
. (44)

Then, the Riemannian metric can be expressed as a sum of n× n components:

g(X, Y ) =
∑
i,j

X iY jg

(
∂

∂xi
,
∂

∂xj

)
=
∑
i,j

gij(p)X
iY j, (45)

where gij(p) := g
(
∂
∂xi
, ∂
∂xj

)
. In the Euclidean space, ∂

∂xi
is identified with the basis vector

ei = (0, ..., 1, ..., 0), and gij = 〈ei, ej〉 = δij.

A Riemannian metric allows us to define several geometric notions on a Riemannian

manifold, such as angle at an intersection, length of a curve, area of a surface, and so forth.

A real, smooth manifold M equipped with a Riemannian metric g is called a Riemannian

manifold (M, g).
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Affine Connection An affine connection ∇ is an operator on a smooth manifold that

connects nearby tangent spaces:

∇ : TM × TM → TM, (46)

where TM is the tangent bundle, i.e., the union of all tangent spaces of a manifold M . It

identifies a tangent vector at one point with a unique tangent vector at another point, so

allowing differentiation of tangent vectors.

If (M, g) is a Riemannian manifold, there exists a unique affine connection, which is called

the Levi-Civita connection. Under the Levi-Civita connection, the differentiation (covariant

differential) of a tangent vector is defined as follows. Given a coordinate system x1, x2, . . . , xn,

the ij-th component of the covariant derivative of X = (X1, X2, . . . , Xn) ∈ TpM is given by

∇jX
i =

∂X i

∂xj
+
∑
k

ΓijkX
k, (47)

where

Γkij =
∑
s

1

2
gks
(
∂gis
∂xj

+
∂gjs
∂xi
− ∂gij
∂xs

)
(48)

are the Christoffel symbols of the second kind, and gks denote the ks-th entry of the inverse

of gij.

The covariant differential is a generalization of the Hessian: the covariant derivative∇jX
i

is the sum of the partial derivative ∂X i/∂xj and a term to account for the change of the

tangent space. If the manifold is flat, the second term vanishes and the covariant derivative

becomes the partial derivative.

Geodesic A notion of straight line on a manifold is called a geodesic. A geodesic curve

γ(t) : [0, 1] → M on a smooth manifold M must satisfy the equation ∇γ̇ γ̇ = 0, where
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γ̇ = dγ/dt. It can be shown that ∇γ̇ γ̇ = 0 implies the differential equations

γ̈k +
∑
i,j

Γkij γ̇
iγ̇j = 0, k = 1, 2, . . . , n, (49)

where γ̈ = d2γ/dt2. Equation (49) has a unique solution given an initial position and an

initial velocity (tangent vector). The solution of Equation (49) is a curve with its Hessian

(curvature) equal to zero, i.e., “straight line.”

A geodesic connecting two points on a manifold is not always unique: e.g., a geodesic on

a sphere is a great circle, and there are two segments of the great circle that connect two

points. The minimal geodesic is a geodesic with the shortest path.

From a classical mechanics perspective, a geodesic can be thought of as a path of a free

particle on a manifold, i.e., the trajectory of a particle when there is no external force and

the bending of the surface entirely determines its motion.

Distance In a Riemannian manifold (M, g), the length of a continuously differentiable

curve γ(t) : [0, 1]→M is defined as

L(γ) =

∫ 1

0

√
g(γ̇(t), γ̇(t))dt. (50)

The distance between two points on a manifold is defined as the length of the shortest path

connecting them, i.e., the length of the minimal geodesic.

Exponential map The (Riemannian) exponential map Expp : TpM → M is a map from

the tangent space at a point p ∈ M to points on M . If X ∈ TpM , the map Expp(X)

transports p to a point in the direction X. Consider a geodesic curve γ(t) : [0, 1] → [p, q]

emanating from p in a direction X. It follows that γ(1) = q = Expp(X). More generally,

γ(t) = Expp(tX). (51)

45



The log map Logp : M → TpM is the inverse of the exponential map. For the example

above,

Logp(q) = X. (52)
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