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ABSTRACT Here, we develop a data-centric approach to analyse which activities, functions, and char-
acteristics of the environment surrounding the slow charging infrastructure impact the distribution of the
electricity consumed at slow charging infrastructure. We analysed the probability distribution of energy
consumption and its relation to indicators characterising charging events to gain basic insights. The energy
consumption can be satisfactorily modelled by a transformed beta distribution and the number of charging
transactions is the driving factor among the characteristics constituting the energy consumption.We collected
geospatial datasets and prepared a large number of candidate features modelling the spatial context in which
the charging infrastructure operates. Using statistical methods, we identified and interpreted a relatively small
subset of the most influential features correlated with energy consumption. The majority of these features are
related to the economic prosperity of residents. Residents and businesses with high (low) income, situated
nearby charging infrastructure, are linked to a positive (negative) impact on energy consumption. Similarly,
charging infrastructure located close to expensive newly built housing shows higher energy consumption.
The largest adverse impact has the high concentration of residents receiving social assistance. By applying
the methodology to a specific charging infrastructure class, e.g. determined by the used rollout strategy,
we differentiated the selected features. Business types, working sector of residents and public venues in
the proximity are linked to higher consumption of energy at charging infrastructure deployed strategically.
Characteristics linked with the age structure of the population are linked to the energy consumption at
charging infrastructure placed based on the demand. Data collection and data processing are among the
most time-consuming activities. The paper provides valuable insights into which data to collect and use as
features when developing prediction models to inform charging infrastructure deployment and planning of
power grids.

INDEX TERMS Electric vehicles, charging infrastructure, energy consumption, variable selection.

I. INTRODUCTION
The European Union (EU) is moving towards commitments
adopted under the Paris Agreement by aiming at domestic
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CO2 cuts of at least 40% below 1990 levels by 2030 [1].
To tackle this challenge, the deployment of plug-in hybrid
electric vehicles (PHEVs), battery electric vehicles (BEVs)
and fuel cell electric vehicles (FCEVs) appears to be
inevitable [2, p. 91]. Electric mobility is growing at a rapid
speed. In 2018, the number of new electric car sales almost
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doubled compared to 2017, and the global electric car fleet
exceeded 5.1 million [3, p. 33]. The world’s largest electric
car market is the People’s Republic of China, followed by the
EU and the United States (US). The global leaders in terms
of electric car market share are Norway, Sweden, and the
Netherlands, which is also dominant in terms of the charg-
ing infrastructure density, not only in Europe but globally
[3, p. 4]. In 2018, the global EV fleet consumed 58 TWh
of electricity, which is comparable to Switzerland’s total
electricity demand in 2017 [3, p. 9]. The majority of out-
looks envisions growing trend. In 2030, the global electric
car sales are expected to reach 23 million, the stock will
exceed 130 million vehicles (excluding two/three-wheelers),
and electricity demand from EVs is estimated to reach
almost 640 TWh [3, p. 6]. In this scenario, slow chargers,
which can provide flexibility services to power systems [4],
are estimated to account for more than 60% of the total elec-
tricity consumed globally to charge electric vehicles (EVs).
Consequently, the number of new applications for predic-
tion algorithms in the domain of EV charging is steadily
increasing.

A. LITERATURE REVIEW
Although electric vehicles have a longer history than fos-
sil fuel vehicles, their mass adoption has started only
recently [5]. With the growing number of EVs on roads in
the last few years, a lot of research in the EV domain has
based on data-centric (i.e. machine learning or data science)
approaches. Several recent review papers [6]–[8] provide a
comprehensive overview of data sources and summarise data
science (machine learning) literature in the domain of EV
charging.

Applications of data science methods to EV charging
already include the whole spectrum of supervised learning
methods (e.g. K-nearest neighbour [9], linear regression [10],
decision trees and their aggregations [11], support vector
regression [12], etc.), unsupervised learning methods (e.g.
clustering [13], Gaussian mixture models [14], and kernel
density estimator [15]), and deep learning [16]. Determin-
istic models, providing scalar predictions, dominate, while
the probabilistic models have not received the same atten-
tion [17]. Problems addressed by data science methods in EV
domain range from forecasts of EV sales [18], EV battery-
related problems (e.g. prediction of the state of charge [19]
and prediction of battery cycle life before capacity degrada-
tion [20]), EV load analysis (e.g. EV load prediction [21],
detection of households charging EV [22]) to charging infras-
tructure planning [23]–[25], planning of power grids [26] and
predictions of usage patterns [27].

Studies related to charging infrastructure focus on tempo-
ral and spatial aspects of EV charging. Typically, temporal
aspects refer to the utilisation of charging infrastructure.
Predictability of energy consumption at the level of single
chargers was investigated in [28], finding potentially useful
results only for some chargers. Reference [29] identified and
evaluated the time-series seasonal auto-regressive integrated

moving average (ARIMA) models of EV load aggregated
over 2400 chargers. The long-term models (for two years)
were found decidedly less accurate than the near-termmodels
(for the most recent 60 weekdays and 24 weekend days).
Comparison of ARIMAmodels with decision trees, consider-
ing some exogenous features, concluded that former models
are a better choice for forecasting aggregated EV charging
loads [21]. Commonly used machine learning algorithms
(K-nearest neighbour, pattern sequence-based forecasting,
support vector regression and random forest), yielded very
similar prediction errors when applied to forecasts of EV
charging load based on customer profile and charger mea-
surements [30]. In [31], the day-ahead EV charging load
is forecasted as EV charging occurrence-time and the ‘‘no
charge’’ day respectively, by several widely used machine
learning algorithms. The best performance achieved the
hybrid model combining random forest, naive Bayes and
XGBoost. In [22] authors used a data-driven approach to
identify households charging EVs. Utilising the historical
electricity consumption data, including the kurtosis of the
residential electricity load, a random forest classifier reached
a prediction accuracy over 90%.

Spatial analyses of charging infrastructure utilisation are
less developed in the literature than temporal. A set of key
performance indicators characterising utilisation of chargers
was defined and used to compare two rollout strategies:
demand-driven and strategic rollout [32]. No rollout strategy
is favourable over the other on all metrics, and the difference
between strategies reduces as the EV adoption progresses.
A preliminary exploratory analysis of spatial patterns formed
by energy consumption on charging stations was presented
in [33]. A study found a heterogeneous pattern, observing
higher energy intensity in a small number of urban areas and
50% of the energy supplied comes from 19.6% of chargers.

Location features, i.e. features that characterise the close
vicinity of charging infrastructures, are frequently used to
improve EV charging predictions. Reference [23] employs
XGBoost model and five features describing the location
and parameters of the charging infrastructure to predict its
utilisation. It also demonstrates how the model support deci-
sions on locating the charging infrastructure at the level of
zones with a radius of 3 km. Only two location features
were used, the number of points of interest and the number
of competitive charging stations. Regression models (linear
regression, XGBoost, artificial neural networks) were used to
predict the departures of vehicles to improve smart charging
heuristic [10]. The set of considered features consisted of five
categorical and four numerical features, among them three
location features (floor of the car park, car park and charge
point) were used. The multinomial logistic regression was
used by [34] to determine key factors explaining heterogene-
ity in the charging duration of categorised charging sessions.
The time-of-day-related variables and the type of charging
station have themost substantial effect. Some location-related
features such as type of the urban area, the density of charg-
ers and parking possibilities were considered in this study.
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FIGURE 1. Schematics illustrating the terminology suggested in [37] to denote the main components of the charging infrastructure for electric vehicles.

The ability of machine learning methods (random forest, gra-
dient boosting and XGBoost) to predict the idle time (i.e. the
time when an EV is connected to a charger without charging)
was evaluated by [35]. The best model is XGBoost, reaching
R2 score of 0.603. The most influential features are time-
of-day-related features and the total energy supplied. Only
one location feature, namely the type of the closest road
segment, was considered. Using the location features, authors
in [36] built prediction models for the popularity of charging
infrastructure (i.e. the number of unique users). In summary,
the research gaps can be summarized as follows:
• Location features used by prediction models in the EV
charging domain vary from model to model.

• Researchers select location features intuitively, without
having a clear idea about their significance.

• The number of location features used in prediction mod-
els is typically very small.

B. OUR CONTRIBUTION
Recently, several prediction models appeared in the litera-
ture [10], [23], [34]–[36] explaining performance indicators
of charging infrastructure also from location features. The
candidate set of influence factors that can be described by
location features is large. In general, the decision which data
to collect when developing a model is difficult, and data
collection and data processing are the most time-consuming
activities. Hence, providing insights which data can be used to
derive useful features is highly beneficial. This paper brings
the following contributions:
• Our primary contribution is in extending the avail-
able knowledge of location factors, potentially affecting
the energy consumption at public charging infrastruc-
ture. From the collected data, we extracted more than
120 location features. We employ available statistical
methods, specifically designed to explore a large set of
potentially influential features, and we identified a rela-
tively small relevant subset. We provide interpretations
of significant location features.

• As our secondary contribution, we analyse the distribu-
tion of energy consumption and reveal how it is shaped
by indicators characterising the charging events.

• Our last contribution is methodological. In the analy-
sis, we consider the influence of multicollinearity and
statistical stability of selected regression coefficients to
improve the reliability of results. These two problems
are very well known in statistics, however, they are
often overlooked in field studies that employ regression
approaches combined with variable selection.

II. MATERIALS AND METHODS
A. TERMINOLOGY
Charging of electric vehicles is a new field and various ter-
minologies can be found in the literature. We follow [37],
where a connector is defined as a physical interface between
an electric vehicle and charging infrastructure through which
electricity is delivered. Due to the incompatibilities of con-
nector types used by different car manufacturers, several
connectors might be available at a charging point, however,
no more than one connector can be active at a time. A charg-
ing point is an energy delivery device equipped with one
or more connectors. The charging point can charge an EV
with a power which is less or equal to the maximum power,
given in kW, referred to as the charging capacity. A charging
station is composed of one ormultiple charging points. A user
identification interface and all human-machine interfaces are
attributed to the charging station and are shared by all charg-
ing points. A charging pool is one or a collection of charging
stations including the adjacent parking lots. Components of
the charging infrastructure are visualised in Figure 1. A charg-
ing transaction starts by plugging a connector into an EV
at a start time and ends by unplugging the EV at an end
time. The difference between end time and start time is the
connection time. A part of the connection time when EV was
charging is referred to as the charging time. The idle time
is the connection time minus the charging time. An RFID
card identifies EV driver and is used to initiate and terminate
charging session.

B. EVnetNL DATASET
The EVnetNL dataset has been provided to us for research
purposes by ElaadNL, a Dutch research organisation involved
in the development, deployment and operation of EV
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charging infrastructure. The data is organised into two tables.
The table Transactions contains 1 060 763 rows, each char-
acterising an individual charging event, with columns such
as an identifier of a charging point, GPS coordinates of
charging station, start time, end time, connection time, idle
time, charging time, the number of the used RFID cards,
consumed energy and unique identifier of the charging event.
The second table,Meterreadings, has 32 440 911 rows, each
corresponding to ameter reading that is taken each 15minutes
if a vehicle is connected. A meter reading is described by the
transaction’s identifier, the charging point’s identifier, UTC
timestamp and value of the meter.

The EVnetNL dataset covers 1747 charging stations
equipped with 2893 charging points (identified by unique
labels) operated by the ElaadNL in the period from Jan-
uary 2012 until March 2016. Some charging stations are
located close to each other (e.g. in one parking lot). Con-
sequently, the urban context of charging stations cannot be
distinguished. Therefore, we considered the charging pools
as the main object of the analysis. Locations of charging
pools we estimated by aggregating the charging stations. For
each charging station, we identified a set of neighbouring
stations located within the radius of 50 meters. For every
pair of stations distant more than 50 meters from each other,
we found an empty intersection of neighbouring stations’
sets. Therefore, we selected one representative charging sta-
tion in each set of neighbouring stations, and all stations in
the set were merged and formed a charging pool.

In the analysis of energy consumption, we consider only
the period from January 1, 2015, until December 31, 2015,
as this is the latest available complete year, when the number
of charging pools was reasonably stable (see Figure 2A).
As shown in Figure 2B, the number of active users, esti-
mated from the number of RFID cards in use, exceeded the
value 15 000 and it has been relatively stable throughout
the year 2015 as well. We obtained a set of 1604 charging
pools (accommodating 1660 charging stations) operational
in 2015 while being distributed across the entire area of the
Netherlands (see Figure 2C). In Figure 2D we analyse spatial
representativeness of the EVnetNL dataset by calculating
the ratio between the number of EVnetNL charging pools
operational in 2015 and the number of charging pools in the
Charging pools 2015 dataset (for more information about
the dataset, please refer to the Section S1 I of the SI file)
for cells of a regular square grid. The ratio takes higher
values in the east and south of the Netherlands. The EVnetNL
dataset covers smaller cities better, while in large cities, such
as Amsterdam and Rotterdam, only a small percentage of
charging stations is covered.

We excluded 40 charging transactions for which either
meter values or charging start and stop times were inconsis-
tent across Meterreadings and Transactions tables. To elimi-
nate charging pools with sparse usage patterns, we excluded
from the analyses 218 pools with either less than 30 charging
transactions in 2015 or less than 1 kW charging capacity.
To minimise the effects of the transition period that follows

the introduction of a new charging pool, we consider only
charging pools that have been in use before January 1, 2015
(we excluded 87 pools established in 2015 and later). After
these rearrangements, we retained 369 550 transactions tak-
ing place on 1 386 EVnetNL charging pools. The large
majority of charging pools possess 1 or 2 charging points
and deliver power ranging up to 12.5 kW. Often, the fast
charging is declared when the power is exceeding the value
of 22 kW [37], hence, all considered charging pools are used
for slow charging (see Figure 3A-B ).

C. GEOSPATIAL DATASETS
To characterise the area and human activities taking place in
the vicinity of charging pools distributed across the territory
of the Netherlands, we collected potentially relevant publicly
available geospatial datasets illustrated in Figure 4.

The geospatial datasets describe locations on the Earth’s
surface by geometric objects (points, polylines, polygons)
and associate geometric objects with alphanumeric attributes.
We inspected all available attributes, and if multiple datasets
contained the same or very similar data, we considered a
complete source or the source providing data with higher
resolution. Moreover, we excluded attributes that lead to mul-
ticollinearity (e.g. from the triplet of attributes the total pop-
ulation, the population of men and the population of women,
we considered only the first attribute as the populations of
men and women tend to be very similar, hence, constitute
one half of the total population). As we focus on the spatial
distribution of energy consumption at the long time scale (we
analyse the annual spatial distribution of energy consumption
among charging pools), we excluded from the analysis factors
that affect the charging behaviour at short time scales such as
air temperature or other weather characteristics. Such factors
would be more appropriate for temporal analysis of energy
consumption.

In what follows, we briefly describe each geospatial
dataset. The complete list of selected attributes for each of
9 datasets is given in the SI file, Tables S2- S10. We do not
apply any criteria other than described in the Supplementary
information file (Section S2) to decide which attributes are
selected for the analysis. The used methodology addresses
potential data problems and selects relevant features.

1) POPULATION CORES
The population cores are continuous spatial units with at
least 25 homes or 50 registered residents [39]. The dataset
associates the population cores with the information about
the households (e.g. size and composition), the cardinality
of population age groups, and family and civil status of resi-
dents. It also includes the information about the employment
rate of residents, type of their occupation and characteristics
of real-estate properties. The spatial resolution of this dataset
is rather low (typically, a population core corresponds to a
municipality) and we use it to investigate whether aggregate
characteristics of municipalities can explain the usage pattern
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FIGURE 2. A The number of charging pools in active use as a function of time. To estimate the number of
active charging pools, the presence of each charging pool is bounded by the start time of the first charging
transaction and the end time of the last charging transaction recorded in the EVnetNL dataset. B The
number of active users as a function of time (estimated from the first and the last recorded use of RFID
cards). The number of active users is peaking in 2015 as in this period many RFID cards are used only a few
times. C A map of the Netherlands showing the geographical locations of EVnetNL charging pools
operational in the year 2015 (triangles) together with the charging pools from the dataset Charging
pools 2015 (crosses). In the Netherlands, 17 786 slow charging points were operational in 2015, according
to [38]. In the Charging pools 2015 dataset, we identified 8 366 unique positions of charging pools.
Considering the distribution of charging points at charging pools observed in the EVnetNL dataset,
we estimate that the Charging pools 2015 dataset covers about 78.3% of all charging pools. D The spatial
representativeness of the EVnetNL dataset estimated by calculating the ratio between the number of
stations in the EVnetNL and in the Charging pools 2015 datasets for square cells of a regular grid.

of charging pools. From this dataset, we selected 45 attributes
for further analysis (see Table S2 of the SI file).

2) NEIGHBOURHOODS
The neighbourhoods are spatial units that are approximately
uniform when considering the type of built-up area or the
socio-economic indicators [40]. The neighbourhoods are
used by the Dutch national statistical office to collect,
maintain and distribute the statistical data. In addition to
the population data, the Neighbourhoods dataset maintains
information about the number of address points within the

neighbourhoods, level of the income of the residents, num-
ber of registered private and company vehicles and so on.
From the available attributes, we selected 63 attributes listed
in Table S3 of the SI file.

3) ENERGY CONSUMPTION
The Energy consumption dataset contains records of the
annual natural gas and electricity consumption in residential
houses and industrial facilities, together with the number of
buildings equipped with metering devices [41]. The spatial
resolution is identical with the Neighbourhoods dataset. For
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FIGURE 3. A The number of charging pools in use on January 1, 2015 with a given number of charging points
in the EVnetNL dataset. B Histogram of charging capacities of charging points estimated from the meter
reading values.

FIGURE 4. Overview of geospatial datasets that have been compiled to characterise the geographical area and human activities in the vicinity of
charging pools.

further analyses, we selected 12 attributes that are detailed
in Table S5 of the SI file.

4) LIVEABILITY
The Liveability dataset has been introduced by the Dutch
Ministry of the Interior and Kingdom Relations to mon-
itor the quality of living in Dutch neighbourhoods [42].
We use the liveability index 2016, that was revised in 2015.
The liveability is quantified by a composite index and by
five specific indices evaluating categories such as housing,
socio-economic background of residents, services, safety,
and the environment. Hence, from the liveability dataset,
we extracted 6 attributes listed in Table S6 of the SI file.

5) LANDSCAN
We use the LandScan 2015 [43] high resolution population
raster grid estimating the 24-hour average of population count
with a spatial resolution of approximately 1 km × 1 km.

In contrast to the Population cores or the Neighbourhoods
datasets that capture the residential population only, the Land-
scan considers the mobility of residents.

6) LAND USE
The Land use dataset describes the occupation of land in the
Netherlands by polygons [44]. Each polygon is assigned an
attribute value taking one out of predefined classes of land
use. Examples of land use categories are traffic areas,building
sites, recreational areas and business areas. Complete list of
25 categories is given in Table S4 of the SI file.

7) TRAFFIC FLOWS
To model the impact of traffic on the usage of charging
pools, we consider the traffic flows dataset [45]. The dataset
is organised around a high resolution model of the road
network and the traffic flow information is added in the
form of attributes that are associated with the road segments.
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The description of 9 attributes that have been selected to
compile features is given in Table S7 of the SI file.

8) OpenStreetMap
The OpenStreetMap (OSM) is one of the most successful
free maps [46]. From the OpenStreetMap of the Nether-
lands, we extracted all points of interest (POIs) considering
2 km × 2 km squared areas centred at the positions of the
EVnetNL charging pools. We identified 593 different POI
types, some of them appearing in only very few instances.
For this reason, we associated manually POI types with one
of the 15 categories listed in Table S9 of the SI file. The
POIs, organised in these 15 categories, were used to model
the venues in the proximity of charging pools that are often
visited by EV drivers.

9) CHARGING POOLS 2015
Aiming at estimating the positions of all available charg-
ing pools present in the Netherlands by the end of the
year 2015, the Charging pools 2015 dataset was com-
piled from the EVnetNL, OpenChargeMap [47] and Oplaad-
Palen [48] datasets. Utilising the date when a charging station
was added to the dataset, we extracted from the Open-
ChargeMap and OplaadPalen positions of all charging sta-
tions that were available by the end of 2015. As with the
EVnetNL dataset, we estimated the position of charging pools
from the positions of charging stations, while utilising the
information about the geographical proximity. In the first
step, we added to the Charging pools 2015 all EVnetNL
charging pools available in 2015. In the second step, we added
one-by-one to the Charging pools 2015 dataset the charging
stations from the OpenChargeMap and OplaadPalen datasets,
if their position was more than 50 meters distant from already
added pools. This way, we obtained positions of 8 366 charg-
ing pools (see Figure 2C).

D. DATA PRE-PROCESSING
To prepare the data for the analyses, we applied the
pre-processing procedure composed of three stages: the miss-
ing value handling, the extraction of features and the analysis
of potential data modelling problems, described in the follow-
ing subsections.

1) MISSING VALUES HANDLING
Values of some attributes associated with geometric objects
in geospatial datasets are missing. By visualising the geo-
metric objects with missing attribute values on the map,
we identified two main sources of problems. Some geometric
objects with missing data represent water landscape. In such
a case, we excluded the geometric objects from datasets.
The second source of specific problems with missing data
are cities of Baarle-Nassau and Baarle-Hertog with peculiar
borders between the Netherlands and Belgium. In this case,
we ignored missing values as the EVnetNL dataset does not
feature any charging pool in this area. We applied a two-step
approach to handle missing values (see section S2 A of the

SI file). In the first step, when it was possible, we estimated
the missing values from the available data. Further analysis
revealed that the attribute values in the geospatial data tend
to be missing in areas with low intensity of human activities
(e.g. low population, low density of buildings, low electricity
consumption, etc.). Therefore, in the second step, we applied
simple rules that set the missing values of some attributes to
zero (or lowest possible value) in areas with low intensity
of human activities. Remaining missing values are addressed
after generating features characterising the vicinity of charg-
ing pools.

2) PREPARATION OF FEATURES
We modelled each charging pool as a single point defined by
GPS coordinates.We used a buffer, circular area centred at the
position of charging pool and having the radius r , to model
the vicinity of charging pools. Values of features were cal-
culated from GIS polygon data, considering spatial intersec-
tions between the area of buffers and GIS geometric objects,
while assuming a uniform spatial distribution of considered
quantities over the area represented byGIS geometric objects.
For POI data (OpenStreetMap and Charging Stations 2015),
the features are defined two ways: as the distance from the
pool to the closest point of interest and as the density of
points of interest within the buffer area. We set the buffer
radius to r = 350 meters. For more details, please refer
to Section S2 B of the SI file.

To ensure that the handling of missing values cannot influ-
ence the results of the analysis significantly, we applied to
each feature the following rule: The feature is used in the
analysis if areas with missing values of the attribute take
less than 15% of the buffer areas, otherwise it is excluded.
To make sure that features are not built based on GIS data
with a large proportion of missing values, if there was less
than 1.5% of feature values missing after applying the estima-
tions, missing values were imputed by a median value, oth-
erwise, the feature was discarded. Finally, we obtained 195
features.

3) ANALYSIS OF POTENTIAL DATA MODELLING PROBLEMS
Adopting the notation from [49, p. 5], features are organ-
ised in a matrix X = (x1, . . . , xp), where the column xj
corresponds to the feature j = 1, . . . , p and xij is
the i-th observation of the feature j, for i = 1, . . . , n,
where n is the number of observations (charging pools). The
response vector y represents the energy consumption in kWh
on charging pools during the year 2015, i.e. yi is the energy
consumption of the charging pool i.
When a dataset is fit with a regression model, many prob-

lems may occur. Several steps, recommended in the litera-
ture [50]–[52], were applied to the feature matrix X and the
response vector y, to explore and address potential problems.
The sequence of steps is illustrated in Figure 5.

First, uninformative features, i.e. thosewithmore than 95%
of zero values, were excluded. Dependencies between fea-
tures can cause serious problems when interpreting results

VOLUME 9, 2021 53891



M. Straka et al.: Analysis of Energy Consumption at Slow Charging Infrastructure for EVs

FIGURE 5. Schematic illustrating the workflow applied to the feature
matrix X and response vector y to analyse potential data modelling
problems.

obtained by regression methods, referred to as collinearity
and multicollinearity. Despite the potential to bias the inter-
pretation of results, these problems tend to be overlooked in
the data analysis [53]. We identified groups of features with
absolute value of the Pearson correlation coefficient between
each pair of features in the group greater than 0.95 [51, p. 47].
For each group, we chose one feature as a representative of
the group. The selected feature was included, while other
group members were excluded from further analysis. Iden-
tified groups and selected representative features are listed
in Table S11 of the SI file. To mitigate multicollinearity,
we applied a procedure composed of two steps: in the first
step, the values of the variance inflation factor (VIF) [50]
were calculated. In the second step, we identified feature with
the maximum value of the VIF. If the maximum VIF was
greater than or equal to value 10, the corresponding feature
was excluded from further analysis and the procedure was
repeated, otherwise, the procedure was terminated. The list
of excluded features is provided in Section S2 C of the SI
file. These steps reduced the multicollinearity to the level
recommended in the literature, while quantified not only by
the values of the VIF but also by values of measures derived
from eigenvalues of the correlation matrix [54, p. 252].

To explore whether a nonlinear function ofX could explain
response vector y better than the linear function, we trans-
formed original features j = 1, . . . , p, except binary
features, using functions

√xj, x2j and log(xj + 1) and the
feature matrix X was extended by transformed features (in
this section, functions are applied to vectors element-wise).
By combining the ordinary least squares (OLS) with 10-fold
cross-validation [50], the extended feature matrix was fit to
the response vector y and the mean squared error (MSE) was
evaluated on the test data. From the results, we concluded that
the basic non-linear transformations do not improve the fit
sufficiently to compensate for additional model complexity
and for making the model more likely to overfit the data.
Hence, we do not apply any non-linear transformation to the
feature matrix X . Furthermore, we evaluated several trans-
formations of the response vector:

√
y, y2, log(y) and the

Box-Cox transformation [51, p. 32]. By analysing the residual
plots (see Figure S3 of the SI file) we concluded that the
transformation log(y) significantly improves the fit and we
apply it in the regression analyses when fitting the energy
consumption with the feature matrix, presented in Section III.

Finally, we obtained 1259 observations and 119 features
derived from geospatial datasets characterising the vicinity
of charging pools and 5 features derived from EVnetNL
dataset specifying the location and basic characteristics of
charging pools. We have published the feature matrix X with
EVnetNL features together with the response vector on the
Mendeley Data repository (http://dx.doi.org/10.
17632/kdx92hmgkx).

E. DATA ANALYSES METHODS
This paper aims at explaining consumed energy on charging
pools using features derived from the geospatial datasets. This
task can be formulated as a regression problem combined
with the statistical inference, indicating the statistical strength
of features. The flow chart in Figure 6 illustrates the data anal-
ysis procedure. From the geospatial datasets, we extracted
a relatively large number of features. To facilitate the inter-
pretation of results, features that have a higher potential to
explain the response variable shall be selected. We assume
that from all features, only a relatively small number plays
an important role. To minimize the uncertainty that incorrect
features are selected, we apply the bootstrap method [49]

FIGURE 6. A schematic illustrating the workflow followed by the data
analysis. The rectangles represent input or output data, and rectangles
with rounded corners represent the execution of methods. The items
inside the large dashed rectangle are replicated b times via bootstrap.
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to create b samples of the dataset. To each bootstrap sam-
ple we apply the Lasso method [55], which combines the
parameter fitting with the variable selection functionality.
The consistency of the selected regression coefficient across
bootstrap samples is evaluated, and the conclusions about the
significance of features are derived.

1) THE LASSO METHOD
Considering the input data {(xi, yi)}ni=1, for some λ ≥ 0 the
Lasso method solves the optimisation problem

minimise
β0,β

 1
2n

n∑
i=1

(yi−β0−
p∑
j=1

xijβj)2+λ
p∑
j=1

|βj|

 , (1)

where the scalar β0 (intercept) and vector β (regression
coefficients) are optimisation variables. The first term corre-
sponds to the least squares objective function and its role is to
ensure a good fit between the linear regression model η(xi) =
β0+

∑p
j=1 xijβj and response value yi, while the second term

regularises the estimated values of regression coefficients in
a way that leads to a variable selection (i.e. some regression
coefficients are set to zero). The parameter λ determines the
trade-off between goodness of the fit and strength of the vari-
able selection. Often, the factor 1

2n in (1) is replaced, with 1/2
or 1. Although this corresponds to a simple reparametrisation
of λ, the factor 1

2n makes λ values comparable across different
sample sizes, which is useful for cross-validation [49]. The
solution of problem (1), β̂0 and β̂, constitutes the estimate of
the model parameters.

The Lasso method tends to have some difficulties with
the identification of relevant features on datasets with highly
correlated features [49, p. 55]. The Elastic Net method, i.e.
adding the term λ2

∑p
j=1 |βj|

2 (with λ2 ≥ 0) to (1), may
help to identify correlated features [49, p. 56]. In numerical
experiments, the Elastic Net method was tested as well, how-
ever, it selected largely the same set of features as the Lasso
method.

2) MODEL SELECTION
The parameter λ in (1) controls the complexity of the model.
A smaller value of λ results in a larger number of non-zero
regression coefficients and allows the model to adapt more
closely to data, however, it can lead to overfitting. On the
contrary, a larger value of λ leads to a sparser and more
interpretablemodel with the risk of preventing the Lasso from
capturing the main signal in the data. Hence, the value of
λ should be carefully chosen. To estimate a suitable value
of λ, we evaluated a range of values using log spacing.
For each value, we used the k-fold cross-validation [49] to
evaluate the MSE of the model. Finally, we found the λCV

for which the minimum MSE was achieved and we selected
the corresponding β̂CV0 and β̂CV .

3) STATISTICAL INFERENCE
Traditional methods, such as OLS, determine the statisti-
cal strength of features by evaluating p-values. The results

obtained by the OLS regression on features selected by
the Lasso method cannot be fully used in post-selection
analysis as the exclusion of some features causes a bias
[49, p. 155]. The adaptive nature of the Lasso method makes
the problem of estimating p-values difficult–both conceptu-
ally and analytically. Reference [49, p. 139] describes three
basic statistical inference approaches applicable together
with the Lasso method: Bayesian Lasso, non-parametric
bootstrap and parametric bootstrap. As we do not know the
distribution of regression coefficients and considering the
computational complexity of the Bayesian Lasso, we decided
to use non-parametric bootstrap method. The bootstrap was
recommended as a suitable method for the assessment of
the stability of selected regression coefficients in [53], even
though there it has not been used in the analysis while taking a
risk of presenting an unreliable set of significant coefficients.
The bootstrap is a generic tool for assessing the statistical
properties of complex estimators. First, the dataset is sam-
pled. Second, the k-fold cross-validation is applied to each
sample, to find λCV , β̂CV0 and β̂CV . The frequency by which
the regression coefficients take the value of zero in bootstrap
samples captures the uncertainty regarding the selection of
the corresponding feature [49, p. 153]. A small frequency
of zero values or their absence increases the confidence
that a feature should be selected. The consistency of the
coefficients’ sign across the bootstrap samples can be used
as a measure of uncertainty regarding the interpretation of
the corresponding feature. The higher is the occurrence of
positive (negative) signs of regression coefficients, the higher
is the evidence for the positive (negative) correlation between
the feature and the response variable. Thus, in the numerical
experiments, we evaluate the frequency of zero values of
regression coefficients and their probability distributions.

III. RESULTS
A. SOFTWARE LIBRARIES AND SETTINGS
We prepared and modelled the data using the R language.
We processed the GIS data with sf, raster and osmar pack-
ages. The distribution of energy consumption was fitted with
the fitdistrplus package. The Lasso method, including model
selection, is implemented in the glmnet package. For the
k-fold cross-validation we used k = 10. We considered the
values 10i, for i in the interval from −4 to 0 in steps of
0.02, when applying the cross-validation to explore the values
of the parameter λ in the Lasso method. When studying
the stability of coefficients selected by the Lasso method,
we used the bootstrap method with b = 10 000 realisations.

B. METRICS OF CONSUMED ENERGY
AT CHARGING POOLS
Charging pools differ in the maximum capacity and in the
number of charging points (see panels A and B of Figure 3),
potentially leading to differences in the consumed energy.
As illustrated in Figure 7A, charging pools with a higher
number of charging points tend to have slightly higher energy

VOLUME 9, 2021 53893



M. Straka et al.: Analysis of Energy Consumption at Slow Charging Infrastructure for EVs

FIGURE 7. The empirical probability distribution of energy consumed at charging pools. A We show two separate
probability distributions, one for charging pools with only one charging point and one for charging pools with more
than one charging point. The inset shows the stacked bar plot of the number of EVs charged in parallel with other
EVs on a charging pool. B The empirical probability distribution of the total energy consumed at charging pools. The
red line represents the fit obtained using Eq. (2).

TABLE 1. Response vectors characterising the energy consumed at a
charging pool. The coefficient of determination, R2, was obtained by
fitting the logarithmic transformation of the response vector (see
Figure S3 of the SI file) with the feature matrix by applying the ordinary
least squares method.

consumption. Moreover, the number of cases when two trans-
actions run on a charging pool in parallel is not negligible (see
inset of Figure 7A). To analyse to what extent it is important
to account for these effects, we define several simple metrics
of the consumed energy at charging pools in Table 1. To
gain some basic understanding, whether some measures can
be better explained with the feature matrix, we ran the OLS
regression. In Table 1 we report the values of the coefficient
of determination, R2. The highest R2 we obtained for the
consumed energy at a charging pool. High similarity in R2

values we attribute to the high correlations between response
vectors. The Pearson correlation coefficient for all pairs of
response vectors ranges from 0.86 to 0.98. Hence, for further
analyses, we chose the consumed energy at a charging pool
as the response vector y.

C. DISTRIBUTION OF CONSUMED ENERGY OVER
CHARGING POOLS
The total electric energy consumption is 2.84 GWh. To intro-
duce a simple model describing how is the consumption
distributed over charging pools, we investigate the proba-
bility distribution. The density histogram indicates that the
distribution is rather heterogeneous and positively skewed

(see Figure 7B). We observe high consumption on a small
number of charging pools and small consumption is observed
for a large group of charging pools. To model the distribution
of energy consumed at charging pools, we considered original
data and five transformations (y2, y3,

√
y, 3
√
y and log(y))

and parametrised density functions of three known proba-
bilistic distributions (Weibull, beta and gamma). We used the
Kolmogorov-Smirnov goodness of fit test together with the
inspection of the P-P and the Q-Q plots [56] to conclude that
the transformation 3

√
y combined with the beta distribution

provides the best fit to the data. The fitting procedure is
detailed in Section S3 of the SI file. The functional form of
the probability density function is derived in Appendix and
takes the form

f (y, α, β) =

(
3√y−ymin
ymax−ymin

)α−1(
1−

3√y−ymin
ymax−ymin

)β−1
B(α, β)2(ymax − ymin)y

2
3

. (2)

The symbol B(α, β) denotes the beta function and the esti-
mates of parameters take the following values: α = 2.58,
β = 4.53, ymin = 91.55 kWh and ymax = 16 649.40 kWh.

D. EXPLAINING THE ENERGY CONSUMPTION FROM
OTHER CHARGING POOL PERFORMANCE INDICATORS
We can gain interesting insights by analysing the relation-
ship between energy consumption and other charging pool
indicators constituting the energy consumption. The energy
consumption at a charging pool i can be decomposed into the
product of three other indicators, i.e.

yi = nitipi, (3)

where ni is the number of charging transactions taking place
at a charging pool i, ti is the average charging time per transac-
tion at a charging pool i and pi is the average charging power
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at a charging pool i. We organised these quantities for all
charging pools as vectors n, t and p. To assess the role of these
three factors, in the heterogeneity of the consumed energy
across charging pools, we explored six models presented
in Table 2. Models are based on Eq. (3), where one indicator
or product of two indicators, represented by the regression
coefficient k , is considered invariant across charging pools.

TABLE 2. Simple regression models of the energy consumed at charging
pools. In columns are presented the estimates of the regression
coefficient k̂ ; the corresponding R2 value obtained by the OLS regression;
the mean value of the quantity that is represented by the regression
coefficient k calculated over charging pools (mean); the corresponding
standard deviation (stdev) and the coefficient of variation (cv) calculated
from the mean and the standard deviation. The symbol ◦ denotes the
component-wise multiplication (the Hadamard product) of vectors.

We obtained the estimate k̂ of the coefficient k from the
data by using the OLS method. Among the models that
explain the consumed energy from one indicator, the high-
est value of R2 is obtained for the model explaining the
consumed energy from the number of charging transactions.
Similarly, models explaining energy consumption from pairs
of indicators that include the number of transactions have
high values of R2. Hence, the major factor associated with the
heterogeneity in the consumed energy across charging pools
is the number of transactions. The fluctuations in the charging
patterns (i.e. average charging time and average charging
power) play a much smaller role.

In Table 2, we calculated, mean, standard deviation and the
coefficient of variation over all charging pools for quantities
which are represented by the coefficient k . For example, in the
model y = kn, the coefficient k that replaces in Eq. (3) the
expression tipi can be interpreted as the average of consumed
energy per transaction. Hence, the average consumed energy
per transaction is 8.69 kWh, the charging time per transaction
takes on average 2.52 hours and the average power reaches
3.45 kW. These numbers indicate that the majority of charged
EVs are plug-in hybrids. The charging capacity, which is for
the majority of charging points around 11 kW (see Figure 3),
is significantly underused. The coefficient of variation values
is high when the number of transactions is included in the
analysed quantity, confirming that the largest variance is
associated with the number of transactions.

As the number of charging transactions is closely associ-
ated with the consumed energy at charging pools, it is crucial
to understand the way EV drivers decide which charging
opportunity they choose. We hypothesise that some exoge-
nous factors, characterising the environment surrounding the
charging pools affect the consumed energy at charging pools,
and we explore it in the next section.

E. EXPLAINING THE ENERGY CONSUMPTION FROM
GEOSPATIAL DATA
We applied the methodology described in Section II-E to the
feature matrix derived from geospatial datasets, first without
considering the features derived from the EVnetNL dataset
(see Section S2 B), and to the log-transformation of the
response vector y, representing the consumed energy at charg-
ing pools. To facilitate the mutual comparison of regression
coefficients, we standardised each coefficient by multiplying
it with the standard deviation of the bootstrap sample of the
feature. Thus, the standardised coefficient can be considered
as an estimate of the change in the response variable, when
the feature increases by one standard deviation. The larger is
the absolute value of the median of standardised regression
coefficient samples, the stronger is the feature’s potential to
influence the response variable [57, p. 372]. Hence, the abso-
lute value of the median of bootstrap realisations can be
considered as ameasure of the feature strengths. The different
signs of regression coefficients, across bootstrap realisations,
can be attributed to the low significance or to the simulta-
neous selection of correlated features [49, p. 144]. Hence,
the more consistent are the values of standardised regression
coefficient across bootstrap samples, the more significant is
the feature corresponding to a regression coefficient. As a rule
of thumb, we consider as significant those features where the
number of bootstrap samples with zero coefficient value is
less than 5%, and the number of samples with the opposite
coefficient sign to the sign of the majority of the sample is
negligible. To provide a broader view on results, we show
in Figure 8 the empirical distributions of standardised regres-
sion coefficients that reached the value of zero in maximum
10% of the bootstrap realisations. The statistical inference
is sometimes omitted in energy studies, and only a single
run of a variable selection method is evaluated [53], [58].
The inspection of Tukey’s boxplots justifies the use of the
bootstrap or in more general, the use of a statistical inference
method. The majority of presented coefficients obtained a
zero value in few samples or exceptionally the opposite sign,
that could lead to omitting these coefficients or interpreting
them in a wrong way if evaluating only a single run of the
Lasso method.

We show the regression coefficients in descending order of
median value in Figure 8. To clarify the results, we organised
significant features with the positive sign of the median in
four groups:

• Physical environment(+): terrain for social and cul-
tural facilities (LC7); open wet natural terrain and water
(LC24); density of roads; parkland (LC15); terrain for
public facilities (LC6).

• Population(+): employed residents working in the
wholesale, ICT and finance sector [%] (PC32);
employed residents working in non-commercial sec-
tor [%] (PC33); unregistered couples with children
(PC16); Morocco immigrants [%] (N22); employed
residents working in power, waterworks, horeca
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FIGURE 8. The empirical distributions of standardised regression coefficients obtained by the Lasso method and the 10-fold
cross-validation applied to 10 000 samples of bootstrapped data. We show only features where the value of the regression coefficient was
set to zero in less than 10% of the samples. Coefficients are descendingly ordered, from the largest to the smallest median value. The left
panel presents the Tukey’s box plot of coefficients. On the right, the stacked bar plot shows the percentage of samples when the
regression coefficient β̂CV was set to zero and the number of samples where it reached the opposite sign as the sign of the median.
We consider as significant those features where the number of samples with zero coefficient value is less than 5% and the number of
samples with opposite sign is small. The dashed line indicates the 5% threshold value. Features that are not considered significant we
display using faded colours. Full descriptions of coefficients can be found in tables S2 - S8 of the SI file by using the code in brackets.

(hotel/ restaurant/café) sector [%] (PC34); working
population aged 65 - 74 [%] (PC29).

• Services and businesses(+): financial and real estate
businesses (N31); minimum distance to hobby OSM.

• Buildings(+): percentage of vacant houses [%] (N38);
average value of residential real estate property (N36).

Similarly, we organised significant features with the nega-
tive value of the median into a group:
• Population(−): residents receiving social assistance
(N55); residents aged 0 - 14 living in a household with
children (PC11); 24-hour ambient population (LS1);
deaths per 1000 residents (N15); live births per
1000 residents (N13).

The largest number of significant features we found in the
population group, which is partly because this group contains
most of the features. Many significant features point to a
single factor. The largest group of features, PC32, PC29, N36,
(N55), indicate that high (low) income and wealth (poverty)
are positively (negatively) linked with the amount of con-
sumed energy at charging pools. Most likely, this is due
to the high prices of EVs, making them more affordable
for better-situated residents and businesses. Probably for
the same reasons, some significant features (PC11, N13) are

linked with children or youth and to the elderly or retired
population (N15), i.e. social groups that are typically less
wealthy. The high percentage of vacant houses (N38) and the
high average value of residential real estate property (N36)
are associated with high energy consumption at charging
pools. It could correspond to newly built and yet not entirely
inhabited areas, with a higher standard of living expressed in
higher real estate values. Note, if a feature representing amin-
imum distance to an object has a positive coefficient, then the
energy consumption increases with increasing the distance
from a given object and vice versa. Hence, the proximity
of hobby related points of interest is negatively associated
with the energy consumption at charging pools. Furthermore,
the density of roads is also among features that are posi-
tively linked with the energy consumption at charging pools,
indicating that good access to charging pools contributes to
energy consumption.

We included to the feature matrix some features (number
of charging points, maximum power, latitude and longitude
and the rollout strategy) derived from the EVnetNL dataset
(see Section S2 B) and repeated the analysis. The results
are shown in Figure S7 of the SI file. In general, significant
features are similar as in Figure 8; however, the number
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FIGURE 9. The empirical distributions of standardised regression coefficients obtained by the Lasso method combined
with the 10-fold cross-validation applied to 10 000 samples of bootstrapped data. A Strategic rollout of charging pools.
B Demand-driven rollout of charging pools. We show only features where the value of the regression coefficient was set to
zero in less than 10% of the samples. Regression coefficients are descendingly ordered from the largest to the smallest
median value. The left panel presents the Tukey’s box plot of coefficients. On the right, the stacked bar plot shows the
percentage of samples where the regression coefficient β̂CV was set to zero and the number of samples where it reached
the opposite sign as the sign of the median. We consider as significant those features where the number of samples with
zero coefficient value is less than 5% and the number of samples with opposite sign is small. The dashed line indicates the
5% threshold value. Features that are not considered significant we display using faded colours. Full descriptions of
coefficients can be found in tables S2 - S8 of the SI file by using the code in brackets.

of significant features is slightly smaller. The significance
of some features from groups Physical environment(+) and
Population(−) was reduced. All EVnetNL features are signif-
icant, while the maximum charging capacity, the number of
charging points and longitude have high strength, indicating
that parameters of charging pools potentially influence the
energy consumption.We attribute the reduction in the number
of significant features to the replacement of some features
by EVnetNL features. For example, previously significant
feature, open wet natural terrain and water (LC24), seems to
be expressed via the longitude. The negative influence of lon-
gitude can be explained by the geography of the Netherlands,
whereas the western part of the country is more urbanised and
we find here the majority of large Dutch cities. At the same
time, there is a lot of surface water as the western part of the
country is largely situated below the sea level.

F. INFLUENCE OF THE ROLLOUT STRATEGY ON THE
ENERGY CONSUMPTION
The majority of charging pools has been located using one
out of two (strategic or demand-driven) rollout strategies [32].
The strategically located charging pools are placed near pub-
lic facilities, where the EV charging is intuitively expected.
The demand-driven charging pools are built upon the request
from EV users, typically near to their homes. In this section,
we investigate whether the rollout strategy makes a differ-
ence in factors associated with energy consumption. Infor-
mation about the rollout strategy is available in the EVnetNL
dataset, and we used it to split charging pools into two
groups. We applied the Lasso method separately to each
group considering the feature matrix without the features
derived from the EVnetNL dataset. The selected features
in Figure 9 coincide to a large extent with factors selected

VOLUME 9, 2021 53897



M. Straka et al.: Analysis of Energy Consumption at Slow Charging Infrastructure for EVs

for the complete dataset (see Figure 8), however, now we can
observe differentiation of factors according to the location
strategy.

The energy consumed at strategically located charging
pools, (Figure 9A), is positively linked to the working sector
of residents and the physical environment, i.e. to certain types
of venues adjacent to the charging pool. Working sectors of
residents represented by PC32, PC33 and PC34 indicate the
prevalent businesses in municipalities, positively associated
with energy consumption. Moreover, selected features for
strategical rollout refer to some businesses and some loca-
tions (sports fields, socio-cultural facilities) that could be
associated with occasional charging.

For the charging pools with the demand-driven rollout,
(Figure 9B), the negative coefficients of deaths per 1000 res-
idents and live births per 1000 residents indicate that areas
with higher natality and mortality are negatively linked with
the energy consumption, pointing out to areas inhabited by
socially weaker groups of specific age categories.

We have tested several other stratifications, e.g. based on
the number of charging points, the proportion of the residen-
tial area within the charging pool’s buffer, the administrative
division of the Netherlands into provinces and the number
of residents of municipalities. Except for the last criterion,
we obtained only a very small number of selected features.
Dividing charging pools into two groups based on themunici-
pality population, considering a threshold of 50 000 residents,
we obtained approximately the same size of groups. Interest-
ingly, we observe that charging pools located in municipal-
ities with more than 50 000 residents consume more energy
on average by 48% than charging pools in the other group
of municipalities. We find the higher number of significant
features, linked to municipality population characteristics,
financial and real estate businesses and the physical environ-
ment, for the charging pools located in municipalities with a
smaller population (see Figure S8 in the SI file).

IV. CONCLUSIONS AND DISCUSSION
We analysed the explainability of consumed energy at charg-
ing pools from several points of view. Main conclusions
derived from the data analysis are the following:
• The energy consumption can be satisfactorily modelled
by a transformed beta distribution.

• The number of charging transactions is the driving
factor among the characteristics constituting energy
consumption.

• The economic prosperity appears to be behind a large
group of regression variables selected for the mathe-
matical description of the relationship between energy
consumption and locational factors derived from avail-
able geospatial datasets. For example, residents and
businesses with high (low) income, situated in the
charging pool vicinity, are linked to a positive (nega-
tive) impact on energy consumption. Similarly, charging
pools located close to expensive newly built housing

show higher energy consumption. The western part of
the Netherlands with four major large cities is positively
linked to energy consumption as well. Considering the
standardised values of regression coefficients, certain
working sectors of municipalities’ residents and the
number of financial and real estate businesses have
a large positive impact on energy consumption. The
largest adverse impact have residents receiving social
assistance.

• The stratification of charging pools by the rollout strat-
egy leads to the split of selected regression coeffi-
cients. Business types, working sector of residents and
public venues in the proximity are linked to higher
consumption of energy at charging pools deployed
strategically. Population characteristics, e.g. live births
and deaths per 1000 residents are linked to the energy
consumption at charging pools placed based on the
demand.

Our results extend the knowledge base about the energy
consumption at charging pools and provide the advice which
location features to focus on when building a predictive
model. Data collection and data processing are among the
most time-consuming activities. Hence, these results can be
highly beneficial. Furthermore, this paper is opening several
possibilities for future applications.

The methodology and our findings can be used to fine-tune
rollout strategies for deployment of charging pools. A rollout
strategy optimised for a specific group of charging pools, e.g.
charging pools used for work-charging, can be designed by
applying the presented methodology to this specific group of
charging pools and identified characteristics can be used to
select locations of new charging pools in a way which corre-
sponds better to energy constraints. Information on selected
regression variables can be used to build prediction models
in a more targeted way. The presented results are applica-
ble to the Netherlands, however, the proposed methodology
can also be used elsewhere. It is likely that utilising the
knowledge on location features that are relevant for charging
behaviour observed in the Netherlands elsewhere, would be
more efficient than selecting features randomly or based on
the intuition.

The selected regression coefficients can be associated with
three different spatial scales. Some describe close vicinity of
charging pools, e.g. the number of financial and real estate
businesses (N31), others are attributed to the municipality,
e.g. features derived from the Population cores datasets such
as the percentage of employed residents in the municipal-
ity working in a non-commercial sector (PC33). The last
group of regression coefficients has the potential to charac-
terise the location of a charging pool at the country level,
e.g. latitude and longitude (see Figure S7 in the SI file).
Hence, while properly considering the spatial level of selected
regression coefficients, a hierarchical or a customised rollout
strategy could be designed considering specific geographic
scales.
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Apart from enhancing the strategies for charging pools
deployment, our study can help to improve energy demand
models for power grid capacity planning by better consid-
ering the energy demand at charging pools and the pro-
posed methodology could be also applied to other service
systems, e.g. to stations for shared electric cars, scooters or
bicycles.

A. LIMITATIONS AND FURTHER RESEARCH
Several important limitations are inherited from the used
statistical methods. Apart from notorious limitation ‘‘cor-
relation does not imply causation’’, which requires careful
consideration of all results, we wish to point out limitation
to our results’ interpretability due to the presence of mul-
ticollinearity in the input data. To obtain statistically sta-
ble results, we reduced the level of multicollinearity to the
level recommended in the literature. However, the removal
of some features hampers the interpretation of our results.
Similarly, it is likely that some relevant data representing
important determinants of energy consumption are miss-
ing in the analyses, e.g. mobility behaviour of the popula-
tion or visitation patterns of venues located in the vicinity
of charging pools, as we were not able to collect them.
Further research could focus on a more complex charac-
terisation of the usage of charging pools, specific groups
of charging pools, e.g. determined based on similarities in
usage patterns, or exploration of possibilities to extend the
proposed methodology and findings to other geographic
areas.

APPENDIX. FITTING THE ENERGY CONSUMPTION
WITH THE TRANSFORMED BETA PROBABILITY
DENSITY FUNCTION
Considering the Kolmogorov-Smirnov goodness-of-fit test
together with the inspection of the P-P and the Q-Q plots [56],
we concluded that the most satisfactory fit of the consumed
energy at charging pools is obtained by transforming the data
with the function g(y) = 3

√
y (the function is applied to

the vector element-wise) and using the beta distribution (see
section S3 of the SI file). The beta distribution is defined on
the interval 〈0, 1〉. After the rescaling, the beta distribution is
suitable to represent a random variable between a minimum
value ymin and a maximum value ymax . Hence, with the beta
distribution, we model the random variable

Z =
3
√
Y − ymin

ymax − ymin
, (4)

where the random variable Y is modelling the energy con-
sumption. Using Eq. (4), we establish the relation between
the distribution function of Y and Z as

FY (y) = P(Y < y)

= P((Z (ymax − ymin)+ ymin)3 < y)

= P
(
Z <

3
√
y− ymin

ymax − ymin

)
= FZ

( 3
√
y− ymin

ymax − ymin

)
. (5)

Consequently, the density function characterizing the random
variable Y is

fY (y) =
[
FY (y)

]′
=

[
FZ
( 3
√
y− ymin

ymax − ymin

)]′
= F ′Z

( 3
√
y− ymin

ymax − ymin

)[ 3
√
y− ymin

ymax − ymin

]′
= fZ

( 3
√
y− ymin

ymax − ymin

) 1

3(ymax − ymin)y
2
3

. (6)

Since fZ (z) is the probability density function of the beta
distribution, we get the following density function for the
energy consumption

fY (y, α, β) =

(
3√y−ymin
ymax−ymin

)α−1(
1−

3√y−ymin
ymax−ymin

)β−1
B(α, β)3(ymax − ymin)y

2
3

, (7)

where B(α, β) is the beta function with parameters α and β.
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