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ABSTRACT
We study structure formation in a set of cosmological simulations to uncover the scales in the initial density field that gave
rise to the formation of present-day structures. Our simulations share a common primordial power spectrum (here � cold dark
matter, �CDM), but the introduction of hierarchical variations of the phase information allows us to systematically study the
scales that determine the formation of structure at later times. We consider the variance in z = 0 statistics such as the matter
power spectrum and halo mass function. We also define a criterion for the existence of individual haloes across simulations, and
determine what scales in the initial density field contain sufficient information for the non-linear formation of unique haloes.
We study how the characteristics of individual haloes such as the mass and concentration, as well as the position and velocity,
are affected by variations on different scales, and give scaling relations for haloes of different mass. Finally, we use the example
of a cluster-mass halo to show how our hierarchical parametrization of the initial density field can be used to create variants
of particular objects. With properties such as mass, concentration, kinematics, and substructure of haloes set on distinct and
well-determined scales, and its unique ability to introduce variations localized in real space, our method is a powerful tool to
study structure formation in cosmological simulations.
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1 IN T RO D U C T I O N

In the standard cosmological model, galaxies and dark matter
haloes originate from random, adiabatic density fluctuations in the
big bang, magnified by inflation, and amplified under the force
of gravity in competition with cosmic expansion. If, as inflation
predicts (e.g. Linde 2005), and observations indicate (e.g. Bouchet
et al. 1993; Nusser, Dekel & Yahil 1995; Planck Collaboration XVII
2016; Planck Collaboration IX 2020), the primordial density field
is Gaussian, and statistically homogeneous and isotropic, its late-
time power spectrum and the distribution of haloes that form in
a sufficiently large volume are fully determined by the laws of
physics, and the universal cosmological parameters (e.g. Peebles
1980; Bardeen et al. 1986).

Because of the random nature of the initial density field, a
comparison between theoretical predictions and observations is
usually done on a population level, rather than for individual objects.
Constraints on the halo mass function or the matter power spectrum
require large surveys, and in the case of simulations, similarly
large volumes to sufficiently sample the underlying distributions
(e.g. Springel et al. 2005; Klypin, Trujillo-Gomez & Primack 2011;
Angulo et al. 2012). While scales much smaller than the survey or
simulation size are sampled many times, scales represented by the
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largest haloes, or the largest modes of the density field, are sampled
much more sparsely. This problem of ‘cosmic variance’ (see e.g.
Colombi et al. 2000) is not just a question of size, however. Any
particular object, observed with enough detail, is unlikely to have
a closely matching counterpart in a finite simulation volume, and
the search for the initial conditions that give rise to the formation
of particular observed structures remains an ongoing challenge (e.g.
Hoffman & Ribak 1991; Bistolas & Hoffman 1998; Doumler et al.
2013; Jasche & Wandelt 2013; Yepes, Gottlöber & Hoffman 2014;
Hoffman, Courtois & Tully 2015; Jasche, Leclercq & Wandelt 2015;
Carlesi et al. 2016; Lavaux & Jasche 2016).

While the statistics of the halo population are fully determined by
the initial power spectrum, the formation of particular objects and
their characteristics also depend on the particular phase information.
In a simple, monolithic collapse model (e.g. Peebles 1980), the
formation of a structure would be governed only by modes with
wavelengths at or above the scale of the Lagrangian region from
which the structure originated. N-body simulations (e.g. Davis et al.
1985) have shown, however, that structure formation in � cold dark
matter (�CDM) is ‘bottom up’, and large structures form in part
through the merger of smaller ones, causing even smaller scale modes
to affect the formation and the properties of more massive haloes.

The fact that distinct constituents of the halo population originate
from independent scales in the initial density field have been pointed
out, for example, by Aragon-Calvo (2016), who used simulations
with shared large-scale modes in order to create an ensemble of
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simulations. Notably, and analogous to our Sections 3.3 and 3.2,
they show how a set of semi-independent realizations with some
shared phase information can overcome the statistical limitations
created by single sample.

In this paper, we systematically investigate which scales in the
initial density field are responsible for the formation of haloes at
later times. Starting from the density field of the 1003 cMpc3 EAGLE

simulation volume1 (Schaye et al. 2015), we generate a sequence of
simulations that systematically introduce random variations of the
white noise field on increasingly larger scales. At each scale, we
compare the resulting simulations in terms of the evolved density
field, the population of haloes, the existence of individual haloes,
and the variation in halo properties.

In particular, we uncover the scales in the initial density field that
contain the information responsible for the non-linear formation of
individual haloes. We also examine how the properties of haloes of
different masses change when the density field is perturbed on scales
below this existence scale. Finally, we demonstrate how our method
of introducing hierarchical, random perturbations to existing density
fields can be used deliberately to create variations of simulations and
simulated objects, including with variations in mass, concentration,
and kinematics. This makes it a particularly powerful tool for future
zoom and constrained simulations, allowing to efficiently explore
the parameter space of possible initial conditions that give rise to
the formation of haloes with particular observed properties. We
will explore the full potential of this method in a forthcoming
paper.

This paper is organized as follows. In Section 2.1, we describe
our method for parametrizing the phase information in an octree
basis, and the PANPHASIA white noise field. In Section 2.2, we
outline the set-up of the simulations used in this paper, our way
of identifying haloes, and of matching objects across simulations.
Section 3 presents the global results of our simulations, in terms of
the density field and its power spectrum, in Section 3.1, and the halo
population, in Section 3.3. In Section 4, we discuss the formation,
and variation in properties, of individual objects. We present a
definition of the identity of particular haloes across simulations in
Section 4.1, which allows us, in Section 4.2, to study the scales
in the initial density field that determine the existence of particular
haloes. In Section 5, we study the variation of halo properties: mass
(Section 5.1), concentration (Section 5.2), position (Section 5.3), and
velocity (Section 5.4). We present variations of a particular cluster-
mass halo in Section 6, and conclude with a summary and an outlook
to future work in Section 7.

2 ME T H O D S

The results in this paper are based on cosmological ‘dark matter only’
N-body simulations, i.e. both baryons and dark matter are subsumed
into a single type of simulation particle, and evolved only under
the effect of gravity. In this section, we describe the creation of our
initial conditions, the set-up of the simulations, and the identification
of structures. Additional information about the parametrization of
the primordial density field, and the PANPHASIA white noise field
that is used in its construction, can be found in Jenkins (2013) and
Jenkins & Booth (2013).

1Throughout this paper, we use physical units of mass and comoving physical
units of length (denoted as cMPc) and density, unless otherwise specified. At
z = 0, we use Mpc or kpc as a shorthand.

2.1 Initial conditions

A natural way to describe the primordial Gaussian density or
displacement field in a cosmological simulation of a cubic region
with periodic boundary conditions is a Fourier representation, intro-
duced for cosmological simulations by Efstathiou et al. (1985), and
employed by many subsequent initial condition generators (e.g. Katz
et al. 1994; Bertschinger 2001; Springel et al. 2005; Jenkins 2010;
Hahn & Abel 2011; O’Leary & McQuinn 2012).

In the standard �CDM model, it is assumed that the initial density
fluctuations after inflation are Gaussian. The statistical properties
of the overdensity field, δ(x), and its Fourier transform, δ(k), for
a volume, V, are then completely defined by the one-dimensional
linear power spectrum, Plin(k):

Plin(k) = 1

V
〈|δk|2〉. (1)

To create a set of �CDM initial conditions, it is necessary to
specify the cosmological parameters, the dimensions of the periodic
region, the power spectrum, and the phase information, which can be
encapsulated as a realization of a Gaussian white noise field (Salmon
1996). Gaussian white noise fields are particularly convenient to
work with numerically: for example, their two-point autocorrelation
functions are zero for any non-zero lag. Consequently, the values for
an unconstrained white noise field can be set by any high-quality
pseudo-random number generator. As Salmon (1996) also pointed
out, not only does this offer a simple way to produce multiscale
random fields, it is also straightforward to include linear constraints:
the corresponding �CDM linear overdensity field for a given linear
matter power spectrum is given by the convolution, in real space, of
the white noise ‘phase information’ field with a specific spherically
symmetric window function, computed from a one-dimensional
integral over the linear matter power spectrum.

2.1.1 Octree basis

Jenkins (2013) introduced a way of constructing multiscale real-
space white noise fields based on an octree decomposition of a cubic
period volume. In this formalism, the Gaussian white noise field
is built hierarchically from a linear superposition of octree basis
functions.

The individual basis functions are zero outside of the particular
cubic cell they occupy, and orthogonal to each other, even when
completely or partially overlapping. Consequently, an unconstrained
Gaussian white noise field can be created by choosing the octree
function amplitudes from a pseudo-random sequence of uncorrelated
Gaussian variables of zero mean and unit variance.

The white noise field can be refined at any location by adding
information from higher (or deeper) levels of the octree. The white
noise field is then specified in each cell at the highest level as
an appropriate polynomial of the local Cartesian cell coordinates.
The octree functions themselves are not polynomials, but an octree
function occupying any parent cell is represented by eight distinct
piecewise polynomials, with each one filling one of the parent’s eight
child cells.

It proves convenient in this paper to use these octree functions to
represent the phase information in all the simulations we present. The
primary rationale for this choice, however, will be made evident in
subsequent papers. Our ultimate goal is to construct multiscale initial
conditions that also satisfy linear constraints, derived for example
from reconstructions of the large-scale structure around the Milky
Way. Here, the octree decomposition is crucial, as it allows for the
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introduction of localized changes to the density field, independently
from the external constraints.

There are an infinite number of possible sets of orthogonal octree
basis function, using different polynomial functions to represent
the field within the cells of the octree. The degree to which the
density information is attached to a particular level of the octree
depends on the choice of basis. Throughout this paper we will use
the S8 octree basis functions developed by Jenkins (2013). The S8

function set have been used in making initial conditions for many
cosmological simulations of the Virgo Consortium,2 from modelling
galaxy clusters (Bahé et al. 2017) via galaxy groups (Sawala et al.
2016) and individual galaxies (Grand et al. 2017), down to simulating
the smallest cold dark matter (CDM) dark haloes at the present day
(Wang et al. 2020).

We use the S8 octree functions for practical reasons as they are well
established and have been shown to be suitable for zoom simulations
in the sense that that the large-scale properties of resimulated haloes
closely match the originals for a reasonable computational cost. This
is in contrast to the simpler S1 octree basis functions that show poor
stability in the properties of haloes with increasing resolution at the
same computational cost (Jenkins 2013). We have not explored other
choices for this paper. To mitigate against our particular choice of
basis functions when presenting our results, we introduce later in this
subsection, length scales and mass scales that take into account of
our choice of basis function in addition to the physical sizes of the
octree cells.

2.1.2 Contribution to the variance from individual levels

To illustrate the relative importance of individual layers of octree
functions to the �CDM overdensity field, we first consider the
fractional contribution of each level of octree functions to the total
variance of the overdensity field when smoothed with a spherical
top-hat function of radius R and mean density, containing mass M at
the mean density of the universe. This ratio is given by

σ 2
L

σ 2
=

∫
d3k W 2(kR)

(
j 2
lmn(k�L) − j 2

lmn(2k�L)
)
Plin(k)∫

d3k W 2(kR)Plin(k)
,

where W(kR) ≡ (sin (kR) − kR cos (kR))/(kR)3 is the spherical top-
hat window function in k-space, Plin(k) is the �CDM linear power
spectrum, �L is the cell size of the octree at level L, and the functions
jlmn are given by

jlmn(k�L) = ((2l + 1)(2m + 1)(2n + 1))1/2

× jl

(
kx�L

2

)
jm

(
ky�L

2

)
jn

(
kz�L

2

)
. (2)

The three functions jl,m,n, on the right-hand side, are spherical
Bessel functions of the first kind, and kx, ky, kz are the Cartesian
components of the wave vector k.

The phase information for level L is defined as that given by the
octree functions that fully occupy octree cells at level L − 1, and
therefore contribute phase information that can be represented as
sets of disjoint polynomials filling the octree cells at level L.

In Fig. 1, we plot the ratio σ 2
L/σ 2 against the spherical top-hat

filter mass, M, and size of a spherical perturbation, λ, related via
M = ρ × 4/3πr3, where ρ = 	0 × 3H0

2/(8πG), and r = λ/2 =
π/k, for a series of single octree levels, each shown by a solid line.
For each level there is a range of top-hat filter masses and wavelengths

2http://virgo.dur.ac.uk/

Figure 1. Relative contribution to total the variance of the density field, σ 2,
by different octree levels, using the S8 octree basis functions (solid lines),
or a sharp k-space filter (dashed lines), as a function of wavelength, λ, top
axis, and corresponding spherical top-hat mass, bottom axis. The scale at
which the relative contribution from a given octree level L is maximal defines
λmax σ 2 (L) and Mmax σ 2 (L), and is indicated by faint vertical lines.

where a particular level contributes most to the total variance. We
call these scales Mmax σ 2 and λmax σ 2 , respectively.

For comparison, the dashed curves show the fractional contribution
to the variance if, instead of setting octree functions to zero except in
a single octree layer, we do the equivalent transformation assuming
we use Fourier modes to represent the phase information. More
precisely, we set all Fourier modes to zero outside the factor of 2
range of 1/

√
2 < k�L <

√
2.

The peaks of the dashed and solid curves line up quite well, and the
shape of the sets of curves is similar. This indicates that for quantities
such as the variance of the overdensity field smoothed with a top-hat,
we can establish a close correspondence between octree layers and
sharp-k space shells in Fourier space. We expect to get very similar
results to those we present in this paper, had we chosen instead only
to work with Fourier modes.

2.1.3 The cut-off scale

If we set to zero all the octree functions occupying cells at level L
and above (so that the white noise field is approximated by disjoint
polynomial functions occupying the octree cells at level L), the
resulting, truncated power spectrum has a high-k cut-off of the form

〈
P L

lin(k)
〉 = Plin(k)

( ∑
l,m,n=0,1

j 2
lmn(k�L)

)
. (3)

The high-k cut-off is due to the summation term in brackets on the
right-hand side of equation (3) that tends to one in the limit of small
k, and to zero for large k.

In Fig. 2, we illustrate how the full �CDM dimensionless power
spectrum is built up from successive higher ‘layers’ of octree
functions by plotting equation (3) for a �CDM power spectrum for
several values of L. We can see that the �CDM linear power spectrum
is approximated better and better as we add successive layers of octree
function phase information. Truncating the octree representation for
all cells higher than a given level produces a relatively sharp cut-
off in the spherically averaged power spectrum. We can define an
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Figure 2. Top panel: the reproduction of the �CDM dimensionless power
spectrum (blue solid line) as a function of wavenumber, k, bottom axis, and
wavelength, λ, top axis, with increasing accuracy. Bottom panel: the ratio of
the truncated power spectra and the �CDM power spectrum. Individual black
lines show the truncated power spectra given by equation (3), successively
including the phase information for octree levels up to the indicated level
L. Dashed grey lines and the faint vertical lines indicate a reduction of the
truncated power spectra by a factor of 4, allowing us to define a cut-off
wavenumber, kcut, and cut-off scales, λcut(L) and Mcut(L) for each octree
level. The red solid and dashed lines show the power spectrum truncated at
level L = 20 and the Nyquist wavenumber of the cells at L = 20, respectively.

associated cut-off wavenumber, kcut(L), by determining where P L
lin(k)

falls by a factor of 2 in amplitude, or 4 in power, below the �CDM
linear power spectrum.

2.1.4 Length scales and physical quantities

In Table 1, we give a set of conversion factors that relates the level, L,
to physical quantities. The first column gives the octree level. Level
23 is the deepest level and hence the smallest scale at which we
sample the PANPHASIA field for this project. The second column lists
the side length of the octree cells themselves. As the 100 cMpc side
length of the simulation volume is represented by 12 cells at level
12, the length scale at level L is (100/3)214 − L cMpc.

Column 3 gives λmax σ 2 (L), the wavelength of a perturbation for
which the contribution from level L to the fractional variance σ 2

L/σ 2

in the S8 parametrization is maximal, as shown in Fig. 1. Column 4
gives Mmax σ 2 , the equivalent spherical top-hat mass. Column 5 gives
λcut(L), the cut-off scale, i.e. the small-scale limit at which the power
due to the truncation at level L falls to a quarter of the value of the
full, linear �CDM power spectrum, and Mcut, in column 6, is the
mass of an equivalent spherical top-hat.

While the size of octree cell is of interest, this length scale on
its own is not particularly revealing. This is because, as described
above, the physical length scales affected by the octree functions
result from a combination both of the cell size and the functional
forms of the octree functions themselves. In general, basis choices
that use high-order polynomials affect smaller physical length scales
in units of the octree cell size.

Table 1. Correspondence between octree levels and physical scales.

L �cell λmax σ 2 log10

(
Mmax σ2

M�

)
λcut log10

(
Mcut
M�

)

(cMpc) (cMpc) (cMpc)

23 0.065 0.025 5.5 0.051 6.4
22 0.13 0.053 6.5 0.101 7.3
21 0.26 0.11 7.5 0.202 8.2
20 0.52 0.24 8.5 0.405 9.1
19 1.04 0.52 9.5 0.81 10.0
18 2.08 1.11 10.5 1.62 10.9
17 4.17 2.41 11.5 3.24 11.8
16 8.33 5.27 12.5 6.48 12.7
15 16.67 11.6 13.5 12.97 13.6
14 33.33 25.6 14.5 25.94 14.6
13 66.67 56.5 15.6 51.88 15.5
12 133.33 122.9 16.6 103.78 16.4

Note. L: octree level; �cell: size of the octree cell at level L; λmax σ 2 :
characteristic wavelength, where the fractional contribution to the variance
from level L is maximal; Mmax σ 2 : mass of a mean-density spherical top-hat
of diameter λmax σ 2 ; λcut: wavelength at which power is reduced by four when
power at levels L and above are set to zero; Mcut: mass of a mean-density
spherical top-hat of diameter λcut.

As shown in Fig. 1, for most scales of interest, the contribution
from any one level to the variance is less than 1/3, and any object
contains phase information from multiple levels. Comparing the red
lines in Figs 1 and 2, we see that, while the octree functions at L =
20 contribute most at λmax σ 2 = 0.24 cMpc, the power already falls
to 1/4 at λcut = 0.41 cMpc if the power spectrum is truncated at L =
20. This is due to the fact that the information from L = 20 already
contributes significantly to the full �CDM power spectrum at this
scale, in addition to smaller contributions from L > 20. While λmax σ 2

thus locates the peak contribution from a single level, for the effect
of variations at and above a certain scale on structure formation, λcut

proves the most useful quantity. In Section 4.2, we also define a new
length scale based on the existence of unique haloes across variations
at a given level.

2.1.5 PANPHASIA

In addition to defining the S8 octree basis functions, Jenkins (2013)
also defined a single extremely large ‘public’ realization of a
Gaussian white noise field, called ‘PANPHASIA’. The PANPHASIA

field is an octree with 50 levels, more than enough to encompass
all the phase information of all existing cosmological simulations.
By design the phase information in PANPHASIA can be computed
rapidly at any location of the field and at any depth in the octree. We
will take our phase information for this paper from the PANPHASIA

field.
All the simulations for this paper are of a 1003 cMpc3 volume. We

define a reference set of phase information that is the phase informa-
tion used for the EAGLE project flagship 1003 cMpc3 volume (Schaye
et al. 2015, hereafter called ‘Reference’). The phase information for
this simulation occupies a very small region of the entire PANPHASIA

field. The Reference simulation phase information comes from a
cubic patch of dimension 123 at the 12th level octree (so at this level
the whole PANPHASIA field consists of 212 = 2048 cells on a side).
We will use the symbol, L, usually with a subscript to denote the
level of phase information in the PANPHASIA field. The zero-point for
the octree levels is arbitrary and simply follows as a consequence of
a choice for the Reference phases made by Schaye et al. (2015).
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Figure 3. Illustration of displacements in the PANPHASIA white noise field. In all panels the region of PANPHASIA represented in the simulation volume is
indicated by thick lines. In the left-hand panel, adjacent regions of PANPHASIA displaced by 1 and 2 in one dimension are shown in red and yellow, respectively.
The second and third panels (variants 1 and 2) illustrate shifts at level Lmin + 2 by 1 and 2, respectively. The fourth panel, variant 3, represents a shift by 1 at
level Lmin + 3 and another arbitrary shift at level Lmin + 4. Any combination of shifts is possible, and all integer shifts result in independent white noise fields on
the respective levels.

2.1.6 Variations as shifts in PANPHASIA

As illustrated in Fig. 3, we can conveniently introduce random
variations to the initial density field as coordinate shifts in PAN-
PHASIA. The left-hand panel shows three adjacent subvolumes of
PANPHASIA, in blue, yellow, and red, respectively. Each subvolume
contains completely independent phase information, i.e. completely
independent regions of the white noise field, for the same simulation
volume. The next three panels, to the right, show several possible
variants. Assuming that the blue PANPHASIA region contains the full
phase information of the Reference simulation from levels Lmin to
Lmax, variants 1 and 2 differ from the Reference simulation, and from
each other, at levels Lmin + 2 and above. Variant 3 shares levels Lmin to
Lmin + 2 with the Reference simulation, levels Lmin + 3 with the variant
2, and differs from all other simulations at level Lmin + 4.

Provided that there is significant large-scale power, initial con-
ditions with different low-level phase information result in the
formation of different objects, independent of shared high-level phase
information. The Reference simulation, and the variants 1 and 2,
share the same amount of phase information (Lmin to Lmin + 2), so
it is expected that, statistically, the structures formed in each will
be equally similar to one another. Since the levels of PANPHASIA

are completely independent, the choice of ‘Reference’ among the
three is arbitrary. If two simulations share the same large-scale phase
information, the statistical similarity in the structures formed depends
on the smallest scale down to which the phase information is shared.
While variants 2 and 3 also share phase information at level Lmin + 4,
the fact that they differ at Lmin + 3 means that they have no additional
similarity. Out of all illustrated volumes, the Reference simulation
and variant 3 share phase information down to the smallest scale, so it
is expected that they will have the greatest similarity in the structures
formed.

We label a set of simulations that differs from the phase informa-
tion of the Reference simulation from level L to Lmax as variants VL,
and identify individual volumes that employ a shift by i from level
L to Lmax as VLi. For example, V16 is the set of variants that differ
from the Reference simulation at level L = 16 and above, and V185

is the individual variant that differs from the Reference simulation

at level L = 18 and above by a shift by 5. Variants with multiple
shifts, e.g. by i from level L to level M − 1 and by j from level M
to level Lmax, where L < M ≤ Lmax, are labelled VLi/Mj, etc. Hence,
V182/215 is the individual variant that employs a shift by 2 at levels
18–20, and a shift by 5 at levels 21 and above.

2.2 Simulations and structure finding

All simulations presented here assume a �CDM cosmology, with
parameters h = 0.6777, ns = 0.9611, σ 8 = 0.8288, 	0 = 0.307,
	b = 0.0483, and 	� = 0.693. They are set up in a volume of
1003 cMpc3 with glass initial conditions, using N = 3763(5.3 × 107)
particles, giving a particle mass of 7.4 × 108 M�, a mean interparticle
separation of 266 ckpc, and a comoving softening length of 13 ckpc
throughout.

We use the IC GEN initial conditions code and the methods
described in the papers Jenkins (2010, 2013) to make second-
order Lagrangian perturbation theory initial conditions for a starting
redshift of 127. To minimize interpolation errors, we used a 15363

Fourier mesh with quadratic interpolation to generated all of the
initial conditions. The Nyquist frequency of this Fourier mesh is a
factor of 4 smaller than the theoretical particle Nyquist frequency.
We set all Fourier modes to zero if the magnitude of their wave vector
equals or exceeds the one-dimensional particle Nyquist frequency.

The simulations are run using P-GADGET-3, a TREEPM code based
on the publicly available code GADGET-2 (Springel 2005). In total,
we have performed 469 simulations: one simulation with phase
information identical to the 100 cMpc EAGLE volume of Schaye et al.
(2015, ‘Reference’), and 39 ‘variant’ simulations, for each of the 12
levels from 12 to 23. At every level, there are thus 40 simulations
including the Reference simulation, which are equidistant in their
white noise fields.

Overdensities and self-bound structures are identified using the
friends-of-friends (FoF; Davis et al. 1985) and SUBFIND (Springel
et al. 2001) algorithms, respectively. Throughout this paper, unless
otherwise mentioned, the term ‘halo’ refers to a self-bound structure,
as identified by SUBFIND, and we limit some of our analysis to only
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central haloes, i.e. the most massive self-bound structures within
their FoF groups.

3 G LOBA L R ESU LTS

In this section, we present the overall results of our simulations, and
the effect of the varying the initial conditions on the z = 0 density
field, the matter power spectrum, and the abundance of dark matter
haloes of different mass.

3.1 Density fields

In Fig. 4, we visually compare the structures at z = 0 formed
in the Reference simulation (top row) to those formed in variants
with independent white noise fields (WNFs) at and above levels 22,
20, 18, and 16, respectively. From left to right, the columns show
the projected dark matter density in boxes of side length 100, 33,
and 10 Mpc, respectively. Shades of grey indicate similar projected
density in the Reference and the variant simulations, shades of
blue or purple indicate higher densities in the Reference or variant
simulations, respectively.

In the right-hand column, differences from the Reference simula-
tion can already be perceived at level 22. While nearly all identifiable
haloes can be matched by eye, some low-mass haloes appear slightly
displaced, often by less than the size of the halo. At this level of
variation, scales visible in the middle and left-hand panels appear
almost identical. For variants at level 20, most haloes in the right-
hand column are offset, but can still be matched across simulations
by eye. Differences are also apparent in the middle column, where
some lower mass haloes now show a noticeable displacement. At
L = 18, differences are noticeable in all three panels. In the right-
hand column, all haloes appear visibly displaced, and many low-
mass haloes can no longer be matched by eye, while in the left-
hand column, displacements are still mostly below the size of the
identifiable haloes. At L = 16 all differences are enhanced: while
the right-hand panel shows similar amounts of structure in both
simulations, most individual objects can no longer be identified and
appear at random. The middle panel still shows some correlation
between the position of the more massive groups, as well as filaments,
but only the largest haloes still appear in dark grey, indicating that
they are displaced by less than their size.

We will examine the changes to individual, matched objects more
rigorously in Section 4. As an example, we will also discuss changes
to a single, cluster-mass halo in more detail in Section 6.

3.2 Power spectrum

In the top panel of Fig. 5, we show the matter power spectrum, P(k),
of our simulations measured at z = 0. We define

P (k) = 1

V
〈|δk|〉2

as the volume-averaged power spectrum, where δk is given by the
three-dimensional Fourier transform of the density perturbation field,
δ(x) = ρ(x)/〈ρ〉 − 1, over the simulation volume.

While all simulations are set up with an identical input power
spectrum, each one only contains a finite volume, and hence each
mode is sampled only a finite number of times. The black solid line
in Fig. 5 shows the result of the Reference simulation, and coloured
lines show the results of the 39 variants at each level from 13 to
23, offset for visual clarity. The Reference result is also repeated as

a dashed line with every set. In addition, thick grey lines show the
average power spectra off all variants at a given level.

In the bottom panel, for k > 1 h Mpc−1, we show the cross-power
spectrum of the density field of the Reference simulation and each
of the variant simulations, in addition to the (auto)power spectrum
of the Reference simulation.

It can be seen that, for small variations (e.g. for variations at level
23), all variants have a nearly identical power spectra, and follow
all the peculiar features of the Reference simulation. Likewise, at
levels 22 and 23, the cross-correlation between the variant and the
Reference simulation is nearly identical to the autocorrelation of the
Reference simulation.

As the scale of variations increases, differences between individual
variants can be seen, but not at all scales: very small scales (large
k) are sampled so well within each volume that differences between
the variants are averaged out in the autocorrelation, while very large
scales (small k) are not yet affected at moderate scales of variation.
The large-scale limit of scatter in the matter power spectra grows
with decreasing L.

Differences in the cross-correlation are apparent from level
21 down, and first noticeable on small scales. As expected
from Fig. 2, the cross-correlation drops below the autocorrela-
tion significantly above the cut-off scale (or below the cut-off
wavenumber).

For larger variations, it can also be seen that the average of the
power spectra is much smoother than any individual power spectrum,
effectively sampling a larger volume. The difference between levels
12 and 13, however, is minimal. It can be seen that individual lines
for individual volumes nearly match one another. This is due to
the fact that there is very little power at level 12, subject to the
mean-density constraint of the simulation volume. By coincidence,
the Reference simulation is quite close to this average on all
scales.

All power spectra were computed on a 3763 mesh created with
triangular-shaped-cloud interpolation of the particle data with com-
pensation for the window function, using the NBODYKIT package
(Hand et al. 2018). For the cross-correlation, the k-space binning
was adapted for each level.

3.3 Halo abundance

In Fig. 6, we compare the halo mass functions in terms of M200,crit of
our simulations to the analytic mass function of Jenkins et al. (2001),
calculated for the same cosmology. Because of the small sample
size, the Reference simulation (thick black solid line), measured in
a single, 1003 Mpc3 volume, differs slightly from the mass function
of Jenkins et al. (2001) (thick black dashed line) at high masses.
Similarly to Fig. 5, coloured lines show the results of the 39 variants
at each level from L = 13 to 23. For visual clarity, each set of lines
is offset, and the mass functions of Jenkins et al. (2001) and the
Reference simulations are repeated as thin dashed and solid black
lines with each set.

It can be seen that, for small variations, the halo mass functions
very closely follow that of the Reference simulation. The scatter
continuously increases as the scale of the variations increases. Only
by level 15 (λcut = 13 cMpc) does the scatter among the mass
functions for individual volumes become large enough to erase the
particular features inherited from the Reference simulation. Similar
to the variation of the power spectrum, beyond level 13, there is very
little additional variation.

It can also be seen that the scatter among the mass functions for
each set is greater at higher mass. This may appear counterintuitive,
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Structures from Gaussian random fields 4765

Figure 4. Dark matter density at z = 0. From left to right, columns show boxes of width and depth 100, 33, and 10 Mpc, respectively. The top row shows the
simulation with the Reference phase information, while the following rows show the effect of randomizing phase information at and above levels 22, 20, and
18, respectively. On each panel, shades of grey indicate high projected density in both the Reference and variant simulations, blue indicates higher density in
the Reference simulation, and purple indicates higher density in the variant simulations.
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4766 T. Sawala et al.

Figure 5. Top: matter power spectra at z = 0, for the Reference simulation
(black dashed) and 39 variants at each level from 12 to 23. For visual clarity,
the power spectra of the variant simulations are offset, and the result of
the Reference simulation is repeated with each set. Solid grey lines show
the power spectrum averaged over all variants at each level. Bottom: power
spectra of the density cross-correlation between the Reference simulation and
the 39 variant simulations at each level from 16 to 23. The dotted black line
shows the (auto)power spectrum of the Reference simulation. On both panels,
vertical lines show the scale of kcut, values for L > 19 lie outside the range.

Figure 6. Halo mass function (M200,crit) at z= 0, for the Reference simulation
(thick black solid), and 39 variants at each level from 12 to 23. Vertical
coloured lines show the value of Mcut, the mass of a spherical top-hat of mean
density and diameter λcut. Also shown (thick black dashed) is the halo mass
function of Jenkins et al. (2001), calculated for the same cosmology. For visual
clarity, the sets of halo mass functions of the variant simulations are offset,
and the mass functions of the Reference simulation, and of Jenkins et al.
(2001) are repeated with each set, as thin solid and dashed lines, respectively.

Table 2. Median and standard deviation in the number haloes of a given
mass across the simulations of a given level.

Level N(1011) N(1012) N(1013) N(1014)

Ref 21 689 2602 343 21

23 21 723 ± 48 2613 ± 9 343 ± 1 21 ± 0
22 21 683 ± 51 2597 ± 6 345 ± 2 21 ± 0
21 21 676 ± 78 2613 ± 16 341 ± 3 21 ± 0
20 21 704 ± 81 2629 ± 18 344 ± 6 21 ± 1
19 21 790 ± 63 2698 ± 28 347 ± 8 21 ± 1
18 21 833 ± 118 2662 ± 46 356 ± 12 23 ± 2
17 21 825 ± 257 2703 ± 28 328 ± 8 28 ± 2
16 21 711 ± 214 2674 ± 66 327 ± 22 27 ± 3
15 21 403 ± 266 2655 ± 80 318 ± 13 32 ± 5
14 21 705 ± 292 2732 ± 100 322 ± 16 29 ± 5
13 21 554 ± 184 2677 ± 87 318 ± 25 29 ± 5
12 21 523 ± 193 2682 ± 89 318 ± 25 30 ± 6

given that (as we discuss in Section 5.1), individual, higher mass
objects are less strongly affected by changes to the primordial density
field at a given scale. However, the scatter in the mass function has
different origins at different masses: at the high-mass end, where the
number of haloes is low, the scatter is due to a change in the mass of
individual objects, while at the low-mass end, it is due to the change
in the number of independent objects, but on scale with very small
sampling noise.

Table 2 gives an overview of the median number of haloes of
different masses, and the associated standard deviation, across the
39 simulations for each level from 12 to 23. It is worth noting that,
for sufficiently large haloes, or sufficiently small-scale variations, the
standard deviation in halo number, σ N, is below even the value of√

N expected for a random process without any variation in the bias.
For example, the average number of haloes of 1012 M� is ∼2700–
522, but the scatter at L = 20 is only 18. This indicates that the
scatter is due primarily to a change in the mass of the same haloes
found across different simulations. For larger variations, the scatter
typically rises above

√
N , which can be attributed to different bias

in each volume (White & Rees 1978; Cole & Kaiser 1989).
Fig. 7 presents the same information visually. It can be seen that,

while variations in the initial density field at L = 19 lead to the
formation of independent 1011 M� haloes, their population is so
well sampled in the 100 Mpc volume that their number has less
than a 1 per cent scatter at any level. At the other end of the mass
range most individual 1014 M� haloes exist across all simulations at
L = 17, albeit with a small change in mass. The simulation volume,
however, is not large enough to sample them accurately in every
volume. Averaging over all variants at level 12 or 13, we can see that
the Reference simulation contains slightly fewer than the expected
30 ± 5 haloes of mass 1014 M�.

4 IN D I V I D UA L H A L O E S

In the previous section, we have compared populations of haloes
among different simulations. We now turn our attention to individual
haloes. As we already discussed, if the variations in the initial
conditions between two simulations are small enough, the same
haloes form in both. Here, we investigate which scales in the initial
density field determine the existence of unique haloes, and how the
properties of individual haloes change subject to variations on smaller
scales.

In order to address these questions, we need to match haloes across
simulations. Following Springel et al. (2008), we use the fact that all
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Figure 7. Median and standard deviation in the number of haloes for different
masses, as a function of the level at which variations are introduced in the
initial conditions at z = 0, L, and the corresponding wavelength, λcut. The
Reference simulation has the expected number of haloes up to ∼1013.5 M�,
but lies outside 1σ for both ∼1014 and ∼1014.5 M� haloes.

of our simulations start from identical glass files, with particles whose
IDs encode their initial, unperturbed Lagrangian coordinates along a
Peano–Hilbert curve. Fig. 8 illustrates the matching procedure for a
halo identified in a snapshot of the Reference simulation, represented
by the leftmost slice. In a first step, we identify the halo’s 50 most
bound particles (or all particles, if fewer than 50), and use their IDs to
determine their Lagrangian origin. This is represented by the second
slice from the left, where particles identified in the previous step
occupy a finite volume, indicated by the grey circle.

In the next step, we examine all haloes in the corresponding
snapshot in one of the variant simulations, each represented by the
five coloured slices to the right. We select haloes whose masses
are within a factor of 3 of that in the Reference simulation. If a
halo contains a large fraction of the 50 particles identified in the
previous step, by definition, its Lagrangian region of origin overlaps
with that of the halo in the Reference simulation. In the example
shown here, the first (red), third (blue), and fourth (green) slice
each contain a halo that fulfils the mass criterion and contains at
least 1/5 of the particles of the halo in the Reference simulation.
These haloes, which have grown to a similar mass from similar
regions of origin, are considered matches. Conversely, the second
(yellow) and fifth (purple) slice do not contain matching haloes in this
example.

We note that this procedure is not completely symmetrical under
exchange of the Reference and the variant simulations. However,
we have tested that our results do not vary qualitatively when,
at a given level, one of the variants is chosen as the Reference
instead.

As expected, the matching rate is highest for high masses and high
level (small-scale) changes in the initial density field, and decreases
when the scale of changes increases relative to the size of the haloes.
However, we find that even for low-mass haloes in simulations
that share almost no phase information, the matching rate only
falls to ∼15 per cent. Two haloes matched under these conditions
have, by coincidence, grown to similar mass from overlapping
Lagrangian volumes, without their simulations sharing any relevant
information. Although matched, these are not physically the same
halo.

4.1 Halo identity across simulations

The possibility that two similar haloes can exist in two volumes that
share no phase information leaves the tantalizing question: when
are two haloes genuinely identical? It appears that simply asking
that they consist of the same particles is not sufficient; instead,
we are looking for haloes that are formed for the same physical
reasons.

While we could modify our matching criteria, we cannot discrim-
inate ab initio between a genuine match (one where the halo pair has
formed because of the common phase information) and a merely
coincidental one. However, if spurious matches occur purely by
chance, and the rate of those matches is less than 1/2, the probability
for at least N/2 spurious matches to the same halo in N variant
simulations decreases with N. Conversely, if genuine matches are
found with a probability above 1/2, the probability for N/2 genuine
matches to N variants simulations increases with N. Consequently,
for sufficiently large N, genuine matches have a high probability to
be identified in more than half of the variants, and haloes that are
matched to more than half of the variants have a high likelihood of
being genuine matches.

In Fig. 9, in each panel, we show the multiple-matching rate,
fN, as a function of mass, for 1–39 possible matches between the
Reference simulation and all N = 39 variants at each level. Shades
of red denote the fraction of haloes with 1–19 matches; shades of
blue correspond to 20–39 matches. The thick black line shows the
fraction of haloes with 20 matches. It can be seen that the fraction
of haloes above 1010.5 M� matched at least once is over 95 per cent,
almost independently of mass and level. However, as expected for
purely chance events, at lower masses and larger scale variations,
the number of multiple matches rapidly decreases, and as expected,
the fraction of haloes matched at least half of the time tends to zero
for low-mass haloes and low-level variations, and to unity for high
masses and high-level variations.

4.2 Existence of unique haloes

The matching by ‘majority vote’ introduced in the previous paragraph
allows us to define a new criterion for the existence of unique
haloes: we say that a halo exists at and above level LE if it can
be matched to more than half of the simulations that randomly vary
the initial density fields at levels above LE. In other words, a halo
exists at a scale LE because, at this scale, the initial density field
contains the necessary information for the formation of this particular
halo.

In Fig. 10, we show the fraction of unique haloes that can be
matched to more than half of the variants, fmatch,1/2, as a function
of level, L, and of the corresponding cut-off wavelength, λcut(L).
Circles show the results measured in our simulations, dashed lines of
corresponding colours show two-parameter logistic fits of the form

fmatch,1/2(λcut, M) = 1

1 + e−aM (λcut−λE,M )
, (4)

where aM and λE,M are free parameters fit separately at each mass,
over the domain indicated by the extent of the dashed lines. Crosses
indicate the radius, rhalo(M), of a mean-density sphere of mass M.

For each halo mass, we find a similar behaviour, with values
of aM in the range 8–10. Moreover, we find linear scaling of
λE,M ∝ M∼1/3 ∝ rhalo(M). This reflects the fact that the length scale on
which the initial density field needs to be defined for unique haloes
to exist, is, on average, closely related to the size of the Lagrangian
volume that will collapse into the halo.
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4768 T. Sawala et al.

Figure 8. Matching of haloes using particles with identical coordinates at z = ∞. The origin of the most bound particles in a given halo of the Reference
simulation at redshift z (‘Reference particles’) define a Lagrangian volume (denoted by the grey circle) to which all particles in haloes in the variant simulations
are compared. In this example, variants 1 (red), 3 (blue), and 4 (green) each contain a halo that includes the majority of Reference particles, and whose mass at
redshift z is within a factor of 3 of the halo in the Reference simulation. By contrast, variants 2 and 5 contain no matching haloes.

L = 16 L = 17 L = 18

L = 19 L = 20 L = 21

Figure 9. Fraction of haloes with multiple matches, fmatch,N, between the Reference simulation and the 39 variant simulations at each level from 16 to 21, as
a function of halo mass in the Reference simulation. Shades of red and blue indicate 1–19 and 21–39 matches, respectively, while the black line indicates 20
matches. As expected, the matching rate is highest for high masses and high level (small-scale) variations, and decreases towards lower masses and higher level
variations. It is worth noting that even at scales that are completely uncorrelated, many haloes can be matched by chance. However, the number of multiple
matches decreases sharply.

Accounting for this self-similar behaviour, the solid lines in Fig. 10
show a global fit to equation (4), with aM = a = 9, and

log10(λE,M/cMpc) = 1/3 log10(M/M�) − 3.79, (5)

or equivalently,

λE,M = 0.88 × rhalo(M). (6)

Dashed lines give a slightly closer match to the individual halo
mass ranges for which they are fitted independently with two free
parameters each. However, the solid lines give a close fit to the
entire data set with only two free parameters, a and the coefficient in
equation (6) that determines λE,M.

The phase information of the initial density field has to be defined
at least down to λcut = λE,M in order to not only create a similar
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Figure 10. fmatch,1/2, the fraction of haloes at z = 0 that are matched more
than half of the time across variations at a given cut-off wavelength (λcut,
top axis), and level (L, bottom axis), for different masses. The scale at which
fmatch,1/2 equals 1/2 defines LE,M and λE,M, i.e. the level and wavelength at
which there is sufficient information in the primordial white noise field for
the formation of unique z = 0 haloes of a given mass, M. Circles show results
measured in the simulations, dashed lines are individual fits to equation (4)
at each mass, and solid lines are fits of the same equation to the entire data
set. For comparison, crosses show rhalo(M), i.e. the radius of a mean-density
sphere of mass M. It can be seen that λE,M scales with mass proportional to
rhalo, indicating a self-similar behaviour.

number of haloes of a given mass at z = 0, but also to determine
the formation of unique haloes of mass M. We find that this scale
is ∼88 per cent of rhalo(M), the radius of the Lagrangian volume
enclosing a mean-density sphere of mass M, and ∼44 per cent of
the wavelength, λcut, of a perturbation expected to collapse into a
halo of mass Mcut. As examples, we find that, at z = 0, unique
haloes of 1012 and 1014 M� exist when the initial density field
is defined down to cut-off wavelengths of 1.6 and 7.5 cMpc,
respectively.

5 TH E O R I G I N O F H A L O P RO P E RT I E S

Having defined the scales that determine the existence of partic-
ular haloes, we now turn to the changes seen in the properties
of individual haloes that are matched across simulations due to
variations on smaller scales. In particular, we will examine the
mass and concentration of individual haloes, and their position and
velocities.

At this stage, it is important to remind ourselves that, while the
Reference simulation plays a special role in identifying matches, it
is only one of many possible realizations. At every level, it shares
the same amount of phase information with any of the variants, as
they share with one another. Furthermore, any halo identified in the
Reference simulation is only one possible realization of that halo.
If we consider that the possible random variations on scales below
LE define the space of possible halo properties, we can consider
the halo of the Reference simulation as one random sample of this
space, not guaranteed to be at its centre. In measuring the variation
in properties of individual haloes, we therefore do no compare the
different realizations of a halo to the Reference simulation. Instead,
we compute a median value from all realizations at a given level, and
analyse the scatter among individual samples.

5.1 Mass

Fig. 11 shows the change in mass of individual, matched haloes,
relative to the median mass across variants, and as a function of
median mass, for variations at levels 18–23. On every panel, each
individual halo can appear from 20 to 40 times; haloes with fewer than
20 matches are excluded by the ‘majority vote’ criterion described
in Section 4. The range on all panels covers mass ratios between
1:3 and 3:1. It is worth remembering that matches with mass ratios
outside this range relative to the Reference simulation are excluded.
While haloes can, in principle, have mass ratios of nearly 1:9 relative
to the median mass, the paucity of points approaching the limits
of the range indicates that such large deviations in mass are very
rare.

We find that, at a given halo mass and level of variation, the
halo masses of variants are approximately log-normally distributed.
Consequently, we quantify the scatter3 in mass across the variants
for each halo as

σ ∗
M = σ (log10 M). (7)

The red bands on each panel of Fig. 11 indicate σ ∗
M , in bins equally

spaced in log(〈M〉). It can be seen that, at each level, the scatter
increases with decreasing halo mass. Comparing different panels, it
can also be seen that the relative variance in mass increases as the
scale of the variation in the initial density field is increased from L =
23 to 18. For haloes of a given mass, the mass varies more for lower
level variations.

This behaviour is summarized across masses and levels in Fig. 12,
which shows σ ∗

M as a function of level and λcut. Different coloured
points show the scatter measured from our simulations for haloes of
different mass, from 1011 M� (blue) to 1014 M� (grey). To each set
of data points, we have fitted linear relationships of the form

σ ∗
M = aMλcut + bM, (8)

which are shown in Fig. 12 by dashed lines of corresponding colours,
with coefficients aM and bM depending on mass.

Because haloes of a given mass drop out of existence below
the level LE(M), given by equation (5), data points below LE(M)
are excluded from the fit. We also exclude haloes at L = 23,
where we find a slight upturn in σ ∗

M (L) relative to the fit at all
masses. We attribute this to the finite spatial resolution of our
simulations.

We also find a universal relation for the mass scatter, with a value
of a = aM = 1.15 for all mass bins, and a mass dependence for bM =
4.6 − 0.445 log10(M/M�), i.e.

σ ∗
M = 4.6 + 1.15λcut − 0.445 log10(M/M�). (9)

Fits to this universal relation are shown by solid lines in Fig. 12.
From the observed regularity, we expect that the relations can

be extrapolated both to higher mass haloes and to smaller scales.
However, it should not be extrapolated to levels below the existence
scale for a given halo mass.

Comparing σ ∗
M (L) to the existence scale, LE, we find that the scatter

in halo mass typically reaches σ ∗
M ∼ 0.23, or a factor of ∼1.7 in mass

before haloes drop out of existence. Scatters in mass of ∼10 per cent
(σ ∗

M = 0.041) or ∼1 per cent (σ ∗
M = 0.0043) are found for variations

at 2 and 5 levels above the existence level LE, respectively.

3We refer to the ‘scatter’ of a quantity, x, as either the standard deviation,
σ x = σ (x), or the standard deviation of its logarithm, σ ∗

x = σ (log10(x)).
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Figure 11. Mass ratio between the mass of individual, matched central haloes in all 39 variant simulations at a given level, and their average mass across all 40
simulations, as a function of average mass. The red band shows the 1σ scatter. Vertical dashed lines on panels at L = 18 and 19 indicate the minimum mass of
haloes that exist at these level.

Figure 12. Median scatter in log halo mass, σ ∗
M for matched haloes of

different mass (indicated by different colours), as a function of level of
randomization in the initial density field (L, upper x-axis), and corresponding
wavelength λcut. Only bold data points are included in the fits. Dashed
lines show independent power-law fits for each mass bin, solid lines show a
universal power-law fit for all masses.

5.2 Concentration

In addition to the mass, a second parameter is required to characterize
a �CDM halo whose density is described by a Navarro–Frenk–White
(NFW) profile (Navarro, Eke & Frenk 1996),

ρ = ρs

(r/rs)(1 + r/rs)2
, (10)

where rs and ρs are the scale radius and characteristic density, respec-
tively. The mass is commonly complemented by the concentration,

c, as a second parameter, defined through the equation

δc = 200

3

c3

ln(1 + c) − c/(1 + c)
, (11)

where δc is the characteristic overdensity.
Following Springel et al. (2008), we calculate c from the measured

values of the maximum circular velocity, vmax, and its corresponding
radius, rmax, from which the overdensity inside rmax can be obtained
via

δv = ρ(rmax)

ρcrit
= 2

(
vmax

H0 rmax

)2

.

For an NFW halo, the characteristic overdensity, δc, of equation
(11) is related to the overdensity inside rmax, δv , via the relation

δc = ρs

ρcrit
= 7.213 δv.

We can thus calculate the concentration parameter, c, of each halo
from the measured values of rmax and vmax by computing δv and δc,
and solving equation (11) for c.

Because stripping of satellites affects rmax disproportionately
relative to vmax, equation (11) is not expected to hold for satellites,
and we limit our analysis to centrals only. Furthermore, measuring
the concentration of a halo requires sufficient numerical resolution to
resolve the density inside rmax. As Power et al. (2003) showed, even
in an accurate simulation, this is sensitive to a halo’s particle number,
and we limit our analysis of concentration to haloes containing at
least 1000 particles, or 7.4 × 1011 M�.

Neto et al. (2007) showed that concentration parameters for relaxed
haloes of a given mass are approximately lognormal distributed,
with σ ∗

c ∼ 0.11 at 1012 M�. Fig. 13 shows the relative scatter in
concentration of matched central haloes, as a function of median
mass, and for variations at levels 18–23. The red band shows σ ∗

c .
In contrast to the scatter in halo mass, there is a noticeable scatter in

concentration already at the smallest scale of variation. For example,
the scatter in concentration of individual 1013 M� haloes at L = 22
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Figure 13. Ratio between concentration of matched central haloes in the variant simulations and the median concentration for each halo, as a function of
median halo mass, for different levels (indicated on each panel). The red regions show the standard deviation among variants. Grey regions denote haloes with
fewer than 1000 particles, the convergence limit determined by Neto et al. (2007); vertical dashed lines on panels at L = 18 and 19 indicate the minimum mass
of haloes that exist at these levels.

is 8 per cent, while the scatter in mass is <1 per cent for the same
variation. This reflects the fact that the scale that determines the
concentration of a halo, rmax, is much smaller than its total size,
and we find a much greater scatter in rs than in r200 for the same
haloes.

While the measurable scatter in total mass is bounded only by the
matching criteria, the scatter in concentration is naturally bounded
from above by the narrow range of concentrations for �CDM haloes.
As expected, we find that for large variations, the scatter of matched
haloes is similar to the scatter of independent haloes reported by
Neto et al. (2007).

Fig. 14 shows σ ∗
c for different masses, and different scales of

variation. As expected, we find that the scatter increases with
decreasing halo mass, and with the scale of variations. As shown
by dashed lines. Over the range we can resolve, and up to the
maximum value of ∼0.1, σ ∗

c appears to scale linearly with λcut,
and also show a regular scaling with mass. However, our simulations
lack the dynamic range necessary to extrapolate universal scaling
relations.

5.3 Position

Fig. 15 shows the relative displacement, �r, of individual, matched
haloes at z = 0 from their median position, as a function of their
median mass, and for variations at levels 18–23. Unlike in Fig. 11,
the range on each panel is adjusted to include 99 per cent of points
in every case.

We calculate the scatter in position as

σr =
√

σ 2
x + σ 2

y + σ 2
z , (12)

where r(x, y, z) are the Cartesian coordinates across the variants of
the halo, and σ x, σ y, and σ z are the 1D dispersions in position.

In Fig. 15, σ r is shown by a red line. At each level, the
average displacement increases with decreasing halo mass: for fixed

Figure 14. Median standard deviation of halo concentrations for haloes of
different mass (indicated by different colours), and as a function of level of
randomization in the initial density field (L, upper x-axis), and corresponding
cut-off wavelength λcut. Only bold data points are included in the fits. Dashed
lines show independent power-law fits for each mass bin.

variations of the initial density field, lower mass haloes are displaced
more than high-mass haloes. Comparing different panels, it can also
be seen that the displacement of haloes of the same mass increases as
the scale of the variation in the initial density field is increased: haloes
of a given mass are more displaced for larger scale variations. At L =
19 and 18, the mass dependence appears to flatten at low masses.
However, in both cases, this coincides with the limit in halo mass
for unique haloes to exist, as indicated by the vertical dashed lines;
haloes below this limit have a low probability to form across variants.

The dependence of average displacement on halo mass and level
is illustrated in Fig. 16. Different coloured symbols show the scatter
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Figure 15. Displacement of matched central haloes in the variant simulation relative to the median position for each halo, as a function of median halo mass,
for different levels (indicated in each panel). The red lines show one standard deviation in position among variants. Vertical dashed lines in panels at L = 18 and
19 indicate the minimum mass of haloes that exist at these level. On each panel, the range extends to the 99th percentile of all haloes shown.

Figure 16. Scatter of halo positions, σ r for central haloes of different mass
(indicated by different colours), and as a function of level of randomization
in the initial density field (L, upper x-axis), and corresponding cut-off
wavelength (λcut, lower x-axis). Only bold data points are included in the
fits. Dashed lines show independent power-law fits for each mass bin, solid
lines show a universal power-law fit for all masses. Dotted lines show a
universal fit with the scaling proportional to rhalo.

measured from our simulations for haloes of different mass, from
(1011 M�) (blue) to 1014 M� (grey). We find the average displacement
of haloes in each mass bin to be a power-law function of λcut of the
form

log10(σr/cMpc) = aM log10(λcut/cMpc) + bM. (13)

Dashed lines Fig. 16 show separate fits at each mass, when the same
limits to the domain as in Section 5.1 are applied. As in equations (4)
and (8), we find a self-similar behaviour, with a universal slope of a =

aM = 1.5, and a mass dependence of bM = 3.55 − 0.31 log10(M/M�).
Solid lines show fits with these parameters of a and bM at every level.
When we further restrict bM to scale proportional to the size of the
Lagrangian region, rhalo(M), we find bM = 3.83 − 1/3 log10(M/M�).
This relation is shown by the dotted lines in Fig. 16.

The increase in the average displacement of haloes with the scale of
the perturbations follows from the fact that the position of an object
depends on the gravitational potential of the surrounding density
field, and greater variation in surrounding structure leads to greater
variation in the potential, and thus the position of the halo. The mass
dependence at a given scale of variation follows from the fact that
less massive objects are sensitive to smaller external perturbations
of the potential than more massive ones. Comparing the mass- and
scale dependencies of σ r to those of σ ∗

M , we find a stronger scale
dependence for σ r, and a stronger mass dependence for σ ∗

M .

5.4 Velocity

By analogy to Fig. 15, Fig. 17 shows the scatter in velocity of
individual, matched haloes at z = 0, as a function of their median
mass, for variations at levels 18–23. The range in each panel is
adjusted to include 99 per cent of points in every case.

The velocity dispersion, σ v , of individual haloes is defined as the
dispersion in peculiar velocities of its matched variants,

σv =
√

σ (vx)2 + σ (vy)2 + σ (vz)2, (14)

where σ (vx), σ (vy), and σ (vz) are the corresponding 1D velocity
dispersions.

The median velocity scatter among matches, as a function of halo
mass and level, is illustrated in Fig. 18. Different coloured symbols
show the scatter measured from our simulations for haloes of different
mass, from 1010.5 M� (blue) to 1010.5 M� (grey). We find the familiar
power-law behaviour of equations (8) and (13), and parametrize the
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Figure 17. Velocity offset of matched central haloes in the variant simulation relative to the average position, as a function of average mass (shown on the
x-axis), and for different levels (indicated in each panel). The red lines show one standard deviation in position among variants. Vertical dashed lines on panels
at L = 18 and 19 indicate the minimum mass of haloes that exist at these level. In each panel, the y-axis extends to the 99th percentile for all matched haloes.

Figure 18. Magnitude of the average velocity difference, relative to the
average velocity across variants, for central haloes of different mass (as
indicated by colours), and as a function of level of randomization in the
initial density field (L, upper x-axis), and corresponding cut-off wavelength
(λcut, lower x-axis).

velocity offset as

log10(σv/(km s−1)) = aM log10(λcut/cMpc) + bM. (15)

Dashed lines show separate fits at each mass, solid lines show fits
assuming a fixed slope at every level. The same cuts to the domain
as in Sections 5.1 and 5.3 are applied. Solid lines assume a fit to
equation (15) with a universal slope and regular mass dependence,
and we find values of aM = 1.1 and a mass dependence of bM =
3.35 − 0.15 log10(M/M�).

The velocity dispersion of halo variants increases as the scale
of the variation in the initial density field is increased, and also

scales inversely with halo mass. Comparing the mass- and scale
dependencies of σ v to those of σ r, we find an even stronger scale
dependence and even weaker mass dependence for σ v . This can be
explained because the velocity of a halo is set not by its internal
mass (or even the density of its environment), but by larger scale
tidal fields. Haloes respond to a change in environment, but the mass
dependence of the velocity on halo mass appears much weaker than
for both the mass scatter and displacement.

6 VA R I AT I O N S O F A SI N G L E H A L O

In this section, we show how the introduction of random variations on
different scales can create targeted variations of a particular object,
either very similar to, or very different from the original object. In
addition, we show how introducing an additional set of higher level
variations can create small additional perturbations to an existing
variant.

As an example, we choose the most massive halo of the Reference
simulation at z = 0, with a mass of 2.2 × 1014 M�, whose density
map is shown in the top left-hand panel of Fig. 19, and which is
comparable in mass to the Virgo Cluster (Urban et al. 2011).

Galaxy clusters are a frequent target for zoom-in simulations, e.g.
by Eke, Navarro & Frenk (1998), and more recently by Borgani
et al. (2002), Kay et al. (2004), Nagai, Vikhlinin & Kravtsov (2007),
Martizzi et al. (2016), Bahé et al. (2017). Schaller et al. (2015) and
Barnes et al. (2017) both analysed clusters from the same EAGLE

volume that defines our reference simulation. An inherent challenge
in these studies is that the largest clusters are, by definition, rare
objects in any cosmological volume, limiting the predictive power
of a simulation. For example, Schaller et al. (2015) conclude that
the presence of cores in observed clusters is an outstanding problem
that requires a larger samples of simulation counterparts, which our
method of generating variants of existing objects may be able to
provide.
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Figure 19. Top left: dark matter density in the most massive cluster in the
Reference simulation at z = 0. Analogous to Fig. 4, the remaining panels
show differences in the projected density in the same Eulerian volume. The
top centre, top right-, and bottom left-hand panels show the difference relative
to the Reference simulation, for variants V181 and V181/212 (top middle and
right), and V211 (bottom left). As expected, the differences in density relative
to the reference simulation are similar in V181 and V181/212, which use the
same shift on levels L = 18–20. By comparison, the difference between V211

and the Reference simulation is much smaller. The bottom centre and bottom
right-hand panels show the density relative to V181 for variants V181/212

and V181/213, respectively. While their differences relative to the Reference
simulation are similar in magnitude to that of V181, their differences relative
to V181 are much smaller, and similar in magnitude to that between V211

and the Reference simulation.

Figure 20. Density profile of the most massive cluster at z = 0. The thick
black line shows the mass profile in the Reference simulation, while lines of
different colour show up to 39 matched haloes at each level from 16 to 23.
For clarity, the lines for each level are offset, and the thin black line repeats
the Reference simulation with the corresponding offsets.

6.1 Simple variations

In Fig. 20, we show the density profile of the same cluster in the
Reference simulation (black line) and, offset for clarity, for up to 39
matches at each level from 16 to 23. At small scales (V23 and V22),
there is very little change in the density profile, both for the main
halo, as well as for the identifiable substructures. At levels 21 and
20, the density in the centre of the main halo remains similar, but the
positions of the larger substructures change, resulting in some scatter
in the outer density profile. Below level 20, the central density and
mass of the main halo change throughout.

Figure 21. Density profile of the most massive cluster at z = 0, similar
to Fig. 20. The thick black line shows the mass profile in the Reference
simulation. Brown lines show 19 variations at level 18, offset for clarity.
The Reference simulation and variant V181 are repeated as thin solid and
dashed lines black, respectively. Blue lines show 19 additional variations of
V181 at L = 21: V181/202 to V181/2120. It can be seen that these result in
small perturbations, not of the cluster in the Reference simulation, but of the
variation of cluster in V181.

At levels L = 20, 18, and 16, the scatter in mass is 1 per cent,
10 per cent, and 60 per cent, respectively, while the scatter in concen-
tration is 9 per cent, 20 per cent, and 35 per cent. Variations below
level 20 yield clusters with very similar mass and concentrations, but
different individual subhaloes; variations at level 18 yield clusters
with very similar mass, but different concentration (and different
subhaloes, apart from the largest ones), and variations at level 16
result in clusters with different total masses and concentrations, and
completely different members.

6.2 Higher level perturbations

As discussed in Section 2.1.1 and illustrated in the rightmost panel of
Fig. 3, we can also combine multiple shifts at different levels in the
same simulations. As an example, we have made a set of additional
simulations, in which we shift the phase information by 1 at levels
18–20, and by 1–19 at levels 21 and above. We label this new set
of simulations ‘V181/21[1–19]’ and note that V181/211 is identical to
V181.

In Fig. 19, we show the changes resulting from these higher level
perturbations, by comparing the projected density in higher level
perturbations at L = 21 to both the reference simulation, and to the
variant V181 of the same cluster. As expected, from the top centre and
top right-hand panels, it can be seen that compared to the Reference
simulation, V181 and V181/212 show the same amount of difference,
while V181, shown on the bottom left, is much more similar to the
Reference simulation.

The bottom middle and right-hand panels show the density relative
to V181 for variants V181/212 and V181/213, respectively. While
their differences relative to the reference simulation are similar in
magnitude to that of V181, their differences relative to V181 are
much smaller, and similar in magnitude to that between V211 and
the reference simulation.

Similar to Fig. 20, in Fig. 21, we show the density profiles of
the cluster in the 19 variants V181–19 (red lines), and the 19 variants
V181/211–19 (blue lines), with offsets for clarity. It can be seen that the
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scatter among the density profiles for V181/211–19 is much reduced
compared to the scatter among V181–19, and furthermore, that the
individual variants of V181/211–19 scatter around the variation V181

(dashed black line), rather than around the Reference simulation
(solid black line).

Variations of a single object by random variations of the initial
density field at scales below the existence scale can be used
deliberately, to facilitate the study of rare objects. Variations just
below the existence scale could be used to create a diverse set of
massive clusters using only zoom-in simulations, without requiring
to first simulate a much larger simulation volume. By introducing
secondary variations at level 21 to an existing variant at level 18,
we can create multiple, smaller scale perturbations around existing
objects. This offers many possible applications: for example, from
a cluster with moderate concentration, we can first create a variant
with high concentration, and then create multiple high-concentration
clusters with separate satellite populations.

It is also worth noting that we have applied the shift across the
entire volume. This is not necessary, the real-space localization of
our basis allows us to independently vary spatial subvolumes of the
random density field. In a forthcoming paper, we will show how this
technique can be used to create a faithful reproduction of the Local
Group embedded within the observed constraints. In particular, it
allows the generation of accurate Local Group candidates through a
series of localized, small-scale perturbations, without affecting the
nearby large-scale structure constraints.

7 SUM M A RY A ND DISCUSSION

Using cosmological N-body simulations, we have identified the
scales of the initial density field that statistically determine the
formation of haloes of different mass and their abundance. We have
also determined the scales responsible for the existence of particular
haloes, and explored how the properties of individual haloes change,
as a result of variations on smaller scales.

The precise correspondence between a modification at a certain
level, and an effect on a particular scale, depends on our parametriza-
tion of the initial density field and our choice of basis functions. As
discussed in Section 2.1.1, a modification on one level percolates over
a range of wavenumbers and a range of physical scales, both in the
initial and the evolved density field. Expressing the modifications in
terms of physical scales such as λcut and λmax σ 2 alleviates some of the
parameter dependence, but we expect that a different implementation
will yield slightly different results.

We have defined a criterion for the existence of unique haloes
across simulation volumes: a halo is said to exist at a certain scale,
LE, if the information in the primordial density field is sufficient for
more than half of the variations at smaller scales still to result in
the formation of the same halo. In equations (5) and (6), we have
parametrized the existence scale as a function of halo mass and the
size of its Lagrangian volume.

Beyond the mere existence of haloes, we have also quantified
changes in their properties such as mass, concentration, position,
and velocity, and find power-law relationships between the scale
of the initial variation and the scatter in each of these properties.
Furthermore, over the range 1011–1014 M� in halo mass, we find that
for each property, a single relationship can be used, when scaled by
halo mass, reflecting the self-similarity of hierarchical growth from
�CDM initial conditions.

The change in mass shows the strongest mass dependence. By
contrast, there is only a very weak mass dependence to the change in
velocity. We attribute this to the fact that, while the mass accretion

is set on the same scale that determines the total halo mass, the
velocities of haloes are set by the tidal field on larger scales. The
small remaining mass dependence can be attributed to the degree to
which the halo itself influences its own tidal environment.

Taking a cluster-mass halo as an example, we also show that,
by varying different scales in the initial conditions, variants of the
same object can be produced. Small-scale variations will result in the
same cluster, but substructures of different mass, different orbits, or
in different phases of their orbit. Larger scale variations will change
the overall mass and concentration of the cluster itself. In zoom
simulations of particular objects, this can be used to estimate the
expected, random change in properties, arising from the fact that the
initial density field is more finely sampled. Moreover, changes to
the white noise field can also be introduced deliberately to explore
regions of the parameter space, which can be useful in the study of
rare objects.

Our method bares similarity to the ‘genetically modified haloes’
approach of Roth, Pontzen & Peiris (2016), which extends the
recursive Hoffman–Ribak algorithm (Hoffman & Ribak 1991) to
compute the changes to the initial density field required for the
formation of a structure with desired properties, along with the
necessary corrections to preserve the nature of the random field.
Extending the biological metaphor, our method relies on evolution
through fully random mutations, rather than genetic modification.
However, because it allows independent control of the scale of
variations and of their spatial extent, it can be used to explore the vast
space of possibilities very efficiently, while preserving the Gaussian
nature of the initial random field at all times.

Our method can be naturally extended in several ways: multiple
levels of the white noise field can be varied independently; different
spatial regions of the white noise field can be varied independently,
and variations smaller in amplitude than a full substitution can
be used, all while preserving the Gaussian nature of the initial
conditions. In a forthcoming paper, we will use this method to
produce a faithful representation of the Local Group embedded in
the observed large-scale constraints of the local Universe.
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simulation data generated as part of this work will be shared on
reasonable request to the corresponding author.
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APPENDI X A : PA N P H A S I A DESCRI PTORS U S ED

The Reference simulation in this paper uses the same phase informa-
tion as the 100 cMpc EAGLE simulation (Schaye et al. 2015), whose
PANPHASIA phase descriptor is

[Panph1,L16,(31250,23438,39063),S12,
CH1050187043,EAGLE L0100 VOL1].

The reference phase information is defined using a 12 × 12 ×
12 root cell at level L = 16. At level 16 for example the reference
phases in the x-direction are taken from the range of 12 cells 31250–
31261, and similarly 23438–23449 and 39063–39074 in y and z,
respectively.

To create variants of the phase information we extract the phase
information from neighbouring regions of the PANPHASIA field.
Because a white noise field is uncorrelated it is sufficient to use
regions that are shifted by multiples of 12 cells at level 16, in the x,
y, or z directions.

From this, the phase information for volumes VLj is constructed
by applying an integer spatial shift of (�x, �y, �z), in units of the
box size, equivalent to 12 cells in the positive x-direction at level 16
of the octree, or 100 cMpc, and similarly for y and z:

�x = (j mod 10),

�y = ((j − �x) mod 100)/10,

�z = ((j − 10�y − �x) mod 1000)/100.

For example, V2124 is constructed using shifts of �x = 4 and
�y = 2.

For every variant, we shift up to 10 levels at Lmin and above by
multiples of the box size. The cell size at each level is the ratio
between the box size and the root cell, lcell = 100/12/2L − 16 cMpc.
In order to shift the phase information by the box size, at each level,
a shift by �Ni = �i × 12 × 2L − 16 is required. For example, V2124

corresponds to the following cell shifts in PANPHASIA:

�Nx = 4 × 12 × 221−16 = 1536,

�Ny = 2 × 12 × 221−16 = 768,

�Nz = 0.

⎫⎬
⎭L = 21

�Nx = 4 × 12 × 222−16 = 3072,

�Ny = 2 × 12 × 222−16 = 1536,

�Nz = 0.

⎫⎬
⎭L = 22

�Nx = 4 × 12 × 223−16 = 6144.

�Ny = 2 × 12 × 223−16 = 1536,

�Nz = 0.

⎫⎬
⎭L = 23

This paper has been typeset from a TEX/LATEX file prepared by the author.
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