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Abstract We describe a QCD based model which incorpo-
rates the main properties of the inclusive particle distributions
expected for diffractive processes, including the diffractive
dissociation at high energies. We study, in turn, the total cross
section, σtot, the differential elastic, dσel/dt , cross section,
the dependence of the single proton dissociation cross sec-
tion, ξdσ SD/dξ , on the momentum fraction, ξ = 1 − xL ,
lost by the leading proton, the multiplicity distributions in
inelastic (non-diffractive) collisions and in the processes of
dissociation. Besides this we calculate the mean transverse
momenta of the ‘wee partons’ (secondaries) produced in the
case of dissociation (that is in the processes with a large rapid-
ity gap) and compare it with that in inelastic interactions.

1 Introduction

In a recent paper [1] the inclusive distribution of identified
particles produced in Single Diffractive Dissociation (SD)
pp → p+X processes were studied with the STAR detector
at RHIC in proton–proton collisions at

√
s = 200 GeV. Here

X denotes the diffractively produced system. The SD events
were selected by observing in the Roman Pot system(s) the
leading proton (or protons) which carry a large fraction, xL ,
of the beam momentum. We denote xL = 1 − ξ . Analo-
gous experiments are underway or being planned by CMS-
TOTEM (PPS) and ATLAS-AFP at the LHC. The leading
proton is observed in the TOTEM or ALFA Roman Pots
while the diffracted system X is studied by the central CMS
or ATLAS detectors (see e.g. [2,3]).

Note that after the leading proton(s) with large xL close to
1 are detected we have rather small remaining energy to pro-
duce the new secondaries. Therefore, these new secondaries
(system X ) are separated from the leading proton(s) by Large

a e-mail: a.d.martin@durham.ac.uk (corresponding author)

Rapidity Gap(s) (LRG) with size1 �y � ln(1/ξ). Since
the interaction across the LRG is provided by the Pomeron
exchange such events can be interpreted as the result of a
Pomeron interaction with a proton (SD). The processes are
illustrated in Fig. 1a.

In the first approximation at large mass, MX , of the sys-
tem X the Pomeron–proton interaction is driven by another
Pomeron exchange and the cross section of whole process is
described by the triple-Pomeron diagram Fig. 1b.

However actually the situation is more complicated and
the simple triple-Pomeron diagram can be used only in the sit-
uation when the probability of interaction is relatively small
and the parton densities are rather low. On another hand
diffractive dissociation is a soft process and here we deal
with strong interactions. Therefore we have to consider the
possibility of a few simultaneous interactions. Indeed, there is
a rather large probability that the LRG will be filled by secon-
daries produced in an additional soft interaction2 and instead
of single proton dissociation (SD) we will observe a com-
pletely inelastic event. That is we have to account for the gap
survival probability, S2 < 1, which in terms of the Reggon
Field Theory [4] is described by the multi-Pomeron diagrams
responsible for the absorptive corrections. For this reason the
distributions of particles produced in non-diffractive inelastic
collisions and in the processes with LRG become different.

At a qualitative level the corresponding difference was
discussed in [5]. In the present paper we consider a
model which allows us to evaluate the expected difference
(semi)quantitatively. We attempt to make our model rela-
tively simple, but to keep the main properties of the develop-

1 For pp → p + X the mass MX of the produced system X is given
by M2

X = s(1 − xL ) with gap sizes �y � − ln(1 − xL ).
2 In Monte Carlo Models this is called the Multiple Parton Interaction
option (MPI). Recall that in the present paper we consider only an
individual pp-collision and do not account for the possibility of other
proton–proton interactions in the same bunch crossing which occur if
the instantaneous luminosity is large.
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Fig. 1 Schematic diagrams of single diffractive (SD) processes in
Pomeron–proton collisions

ment of the ‘wee parton’ cascade;3 namely we account for the
‘diffusion’ in impact parameter, b, space and for the growth
of the characteristic transverse momenta, kt , when the parton
density becomes large. These are the important features of
the perturbative QCD evolution observed within the BFKL
[8–14] and multi-Pomeron approach (see e.g. [15,16] and for
a recent review [17]).

Recall that within perturbative QCD, the BFKL equation
describes the rapidity (y) evolution of parton/gluon density
(i.e. the proton opacity, �(y)) and predicts the exponential
growth �(y) ∝ exp(ωBFKL y). Moreover, at each step of
the evolution the parton transverse momentum, kt , may be
changed few times in one or another direction and the position
of a parton in impact parameter space, b, can be moved by
�b ∼ 1/kt . That is we have diffusion in both the b and ln kt
spaces. The absorptive corrections make this diffusion asym-
metric. Due to a larger parton density, and correspondingly
to stronger absorptive corrections, in the centre of disk the
partons are mainly moving in the direction of the periphery;
while the remaining partons occupy the larger kt elements of
the (b, kt ) configuration space (see sect. 3.2 of [16] for more
details).

Looking for events with a LRG we select interactions
occuring in the periphery of the disk where the probabil-
ity of gap survival is larger. Thus in order to reproduce the
main feature of diffractive dissociation at high energies our
model must include

• the growth of parton densities,
• the possibility of movement in b-plane,
• absorptive corrections during the y-evolution process,

3 We use the term ’wee parton’ in the spirit of Feynman and Gribov [6,7]
as some elementary object which participates in strong interactions and
carries a very small part of the parent hadron momentum. In the case
of QCD it is mainly the gluon. However in our simplified model we do
not fix the quantum numbers of these partons.

• gap survival probabilities with respect to the rescattering
of the partons which belong to the different (beam and
target) incoming protons.

In the next section we describe the structure of the evolu-
tion of the ‘wee-parton’ cascade. Then in Sect. 3 we present
the formulae to calculate the total, elastic and diffractive dis-
sociation cross sections and the multiplicity distributions of
secondaries based on the resulting cascades. Numerical val-
ues of parameters used in the model are presented in Sect. 4,
while in Sect. 5 we show the results obtained for SD pro-
cesses. These results will be discussed in Sect. 6. We con-
clude in Sect. 7.

2 Parton evolution

Describing the evolution of the wee-parton cascade we will
account for the absorptive effects caused by the possibil-
ity of an additional interaction between the parton and the
parent proton.4 That is, our approach includes not only the
multiple interactions between the beam and target hadrons
(protons) but also the multiple interactions between the par-
ticular parton and the proton as well. For this purpose we use
the eikonal model. That is, we assume an eikonal-like form
of the multi-Pomeron vertices. Specificly the coupling of n
to m Pomerons takes the form

gnm = (gNλ)n+m−2, (1)

where gN is the proton–Pomeron coupling and λ accounts
for the suppression of the triple-Pomeron vertex (g3P = g1

2)
in comparison with gN .

2.1 Good–Walker formalism

In the simplest case we have a one-channel eikonal model in
which at hadron level we consider only elastic (intact proton)
intermediate states. To allow for the possibility of low mass
p → N∗ excitations (in the intermediate state), we need a
multi-channel eikonal with gpN∗ and gN∗

a N
∗
b

transition ver-
tices. For this we use the Good–Walker (G–W) formalism
[18] which introduces states φk that diagonalize the T matrix
of the high energy hadrons couplings (e.g. in the proton case
describes different p → N∗, N∗

a → N∗
b transitions). Such

eigenstates only undergo elastic scattering since there are no
off-diagonal transitions. That is

〈φi |T |φk〉 = 0 for i 
= k (2)

and so a state k cannot diffractively dissociate in to a state
i . Thus, working in terms of G–W eigenstates φi , we have

4 We ignore here the parton–parton rescatterings. These give a smaller
effect.
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a simple one-channel eikonal for each state. We denote the
orthogonal matrix which diagonalizes Im T by a, so that

Im T = aF(a)T with 〈φi |F |φk〉 = Fk δik, (3)

where Fk is the probability of the hadronic process proceed-
ing via the diffractive eigenstate φk .

Now consider the diffractive dissociation of an incoming
state state |i〉. We can write

|i〉 =
∑

k

aik |φk〉. (4)

The elastic scattering amplitude satisfies

〈i |Im T |i〉 =
∑

k

|aik |2 Fk = 〈F〉, (5)

where Fk ≡ 〈φk |F |φk〉. Here the brackets of 〈F〉 mean that
we take the average of F over the initial probability distri-
bution of diffractive eigenstates. After diffractive scattering
described by G f i , the final state | f 〉 will, in general, be a
different superposition of eigenstates from that of the initial
state |i〉, which was shown in (4). Neglecting the real parts of
the amplitudes for the moment, the cross sections at a given
impact parameter b, will have the forms

dσtot

d2b
= 2 Im〈i |T |i〉 = 2

∑

k

|aik |2 Fk = 2〈F〉 (6)

dσel

d2b
= |〈i |T |i〉|2 =

(
∑

k

|aik |2 Fk

)2

= 〈F〉2 (7)

dσel + SD

d2b
=

∑

k

|〈φk |T |φi 〉|2 =
∑

k

|aik |2 F2
k = 〈F2〉.

(8)

It follows that the cross section for the single diffractive dis-
sociation of a proton,

dσSD

d2b
= 〈F2〉 − 〈F〉2, (9)

is given by the statistical dispersion in the absorption prob-
abilities of the diffractive eigenstates. Here the average is
taken over the components k of the incoming proton which
dissociates.

One consequence is the important result that if all the com-
ponents φk of the incoming proton |i〉 were absorbed equally
then the diffracted superposition would be proportional to the
incident one and the inelastic diffraction would be zero. Thus
if, at very high energies, the amplitudes Fk at small impact
parameters are equal to the black disk limit, Fk = 1, then
diffractive production will be equal to zero in this impact
parameter domain, and so the dissociation will only occur
in the peripheral b region where the edge of the disk is not
completely black. Hence the impact parameter structure of
diffractive dissociation and elastic scattering are drastically

Fig. 2 Evolution of the wee parton density in rapidity (momentum
fraction) space. The last step of evolution is shown by thick (blue) lines.
The dashed curves indicate the eikonal-like absorptive corrections. n is
the number of screening Pomerons

different in the presence of absorptive s-channel unitarity
effects.

In our simple model to account for the low mass dissocia-
tion5 we will include two eigenstates which at the beginning
of evolution (y = 0) have different sizes, that is different
impact parameter, b distributions of the parton densities, but
almost equal densities at b = 0. To minimize the number of
free parameters these two eigenstates are taken with equal
probabilities, that is ap1 = ap2 = 1/

√
2.

2.2 Rapidity evolution

Here we consider the evolution in rapidity y of the parton cas-
cade generated by an individual G–W eigenstate. To describe
the evolution of the wee parton density in rapidity space we
first neglect the diffusion in impact parameter, b, and omit
the absorptive effects. For a fixed b the optical density (opac-
ity), �(b, y) evolves with decreasing momentum fraction, x ,
carried by the parton as

d�(b, y)

dy
= ��(b, y) y = ln(1/x) , (10)

where we expect that the value of � to be close to that
(ωBFKL) given by the BFKL [8–14] intercept ωBFKL. That
is accounting for (and re-summing) the next-to-leading log-
arithm corrections we expect � ∼ 0.15−0.25 [19–23]. This
evolution is indicated by the continuous lines in Fig. 2, where
the thick (blue) lines indicate the last step of the evolution in
y.

At each step of the evolution we have to account for the
absorptive effects caused by additional parton-target inter-

5 The high mass, MX , dissociation will be described in Sect. 3.
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actions which are shown in Fig. 2 by dashed curves. It is
convenient now to deal with the probability of an inelastic
interaction G rather than with the opacity �

G(b, y) = 1 − e−�(b,y) . (11)

Here we assume an eikonal form of the multi-Pomeron ver-
tices. Each step of the evolution is now suppressed by the
survival factor exp(−�) = 1 − G(b, y) and the evolution
reads

dG(b, y)

dy
= �(1 − G(b, y)) G(b, y) . (12)

The factor (1−G(b, y)) provides the saturation of the parton
density as G → 1.6

Next we have to include the diffusion in the transverse b-
plane.7 This is an important effect which leads to the shrink-
age of the diffractive cone (i.e. to the growth of the elastic
t-slope, Bel, with energy). At each step of the evolution the
parton can move in b space by some interval δb � 1/kt ,
where kt is the parton transverse momentum.

Actually the main effect is observed when the parton
moves outwards from the centre of disk. Only this will be
accounted for in our simplified model. We assume that one
quarter (one of the four (+x, -x, +y, -y) possible transverse
directions) of the partons generated at each step of the evo-
lution goes to a larger value of b with probability8

dP(b)

db
= kt (b) exp(−bkt (b)) , (13)

where we consider only the movement outside of the centre
of the disk and kt (b) is the typical transverse momentum of
the parton placed at impact parameter b. That is finally we
obtain the evolution equation

dG(b, y)

dy
= (1 − G(b, y))

[
3

4
�G(b, y)

+1

4
�

∫ b

0
db′G(b′, y)kt (b′, y)e(b′−b)kt (b′,y)

]
.

(14)

This should be complemented by the equation for kt (b, y).
As far as the parton density approaches its saturation limit
(G → 1) the new partons start to occupy a larger kt region.

6 In general the parton density, D(y, b, kt ), depends on three arguments
– y, b and kt . In the present simplified model we do not include the
kt dependence explicitly. Instead we evaluate the mean value 〈kt 〉 at
each (y, b) point. Thus the function G(y, b) = ∫

D(y, b, kt )d ln(kt )
accounts for the probability of the interaction with a parton at the point
(y, b) independent of the parton transverse momentum (i.e. integrated
over kt ).
7 The diffusion in b space was considered long ago in [24,25].
8 A more detailed description of the diffusion in b space can be found
in section 2.4 of [16], where it is shown that the typical size of the
diffusion step is �b � 1/kt .

Asymptotically we have to keep the probability of an addi-
tional interaction w = σ abs/πR2 = const . Here πR2 is the
“hot spot” area occupied by the parton cascade. In the first
approximation the absorptive cross section σ abs increases
with y = ln(1/x) as σ abs ∝ (1/k2

t ) exp(y�). That is the
transverse momentum kt grows as kt ∝ exp(y�/2). Being
far from the saturation limit we expect more or less constant
kt but when the density G → 1 approaches saturation the
value of kt starts to grow. Therefore we choose

dkt (b, y)

dy
= �

2
kt (b, y)G(b, y) . (15)

These two Eqs. (14) and (15) describe our simplified evolu-
tion of the wee parton cascade. When the parton density is
small (G 
 1) the new partons created at the current step of
evolution have more or less the same kt as the parent parton
and mainly enlarge the value of G(b) at the same b point,
partly moving to the periphery of disk; that is, to larger b. At
a larger density G this process is suppressed by the 1−G(b)
factor. The ‘remaining’ partons (see the last factor G in (15))
start to occupy a larger kt space (see [16] for a more detailed
description of the parton cascade development).

The b dependence of G(b, y) and kt (b, y) at a few values
of y = 3, 6 and 9 generated by this model is shown in Fig. 3
where we have used the parameters tuned to describe the total
and elastic p p̄ and pp cross sections in the Sp p̄S, Tevatron
and the LHC colliders energy range, as described in Sect. 4.

3 Formulae for observables

To calculate the cross section of the high energy proton–
proton interaction we have to consider the collision of the
two parton cascades generated by the incoming beam and
target hadrons. We start with the collision of the i and j G–
W components at rapidity y1. The effective opacity �i j is
given by

�i j (bi j ,Y ; y1) =
∫

d2b1d
2b2Gi (b1, y1)

1

σ0
G j (b2, y2)δ

(2)

×(bi j − b1 + b2) , (16)

where bi j is the transverse separation (impact factor) between
the two colliding protons and y1 + y2 = Y = ln s is the
full rapidity interval between the beam and target hadrons.
The dimensionful factor σ0 accounts for the cross section of
the elementary parton–parton interaction. Recall that at the
beginning of the evolution the probability, G(b), to find a
parton at point b was proportional to σ0. Therefore to cancel
the extra σ0 we are required to have σ0 in denominator of
(16).
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Fig. 3 Impact parameter, b,
dependence of the parton
densities, Gi (b, y) (upper
panels) and the characteristic
transverse momenta, kti (b, y)
(lower panels) for the two G–W
components, |φ1〉 (left) and |φ2〉
(right) at three values of rapidity
y = 9, 6, 3 – the curves from top
to bottom. We use the values of
the parameters which have been
tuned to describe the total and
elastic p p̄ and pp cross sections
in the Sp p̄S, Tevatron and the
LHC colliders energy range

3.1 Total and elastic cross sections

The elastic scattering amplitude reads

Ai j (b) = i
(

1 − e−�i j (b)/2
)

(17)

leading to a total cross section

σtot = 2
∫

d2b
∑

i j

|ai |2|a j |2
(

1 − e−�i j (b)/2
)

(18)

and a differential elastic cross section

dσel

dt
= 1

4π

∣∣∣∣
∫

d2b eiqt ·b

×
∑

i, j

|ai |2|a j |2 (1 − e−�i j (b)/2)

∣∣∣∣∣∣

2

, (19)

where t = −|qt |2. The t slope of the elastic cross section Bel

at t = 0 can be calculated as the mean 〈b2〉. That is

Bel(t = 0) =
∣∣∣
∫
d2b b2 ∑

i, j |ai |2|a j |2 (1 − e−�i j (b)/2)

∣∣∣
2

∣∣∣
∫
d2b

∑
i, j |ai |2|a j |2 (1 − e−�i j (b)/2)

∣∣∣
2 .

(20)

Formally the result should not depend on the rapidity y1 at
which the collision of the two parton cascades was calculated.
Our simplified model does not fulfill this condition exactly.9

However the results do not depend too much on the particular
y1 value. If, for example, instead of the usual y1 = y2 = Y/2
we take y1 = Y/8 and y2 = 7Y/8 then the values of σtot

change by less than 6% and the elastic slope Bel by less than
1%.

Up to now we have calculated just the imaginary part of
the amplitude. Since we are dealing with the even-signature
amplitude10 the real part can be restored via dispersion rela-

9 In terms of Reggeon Field Theory the remaining y1 dependence is
caused by the fact that in the present model we neglect part of the
enhanced and some specific semi-enhanced (Pomeron loop) diagrams.
10 The odd-signature contributions are not included in the evolution.
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Fig. 4 The t dependence of the elastic proton–proton (proton-
antiproton) cross sections in the Sp p̄S, Tevatron and the LHC colliders
energy range. The parameters of model were tuned as described in Sect.
4. The data are taken from [33–46]. The poor description of the data at
the larger values of −t can be improved by using a more detailed G–W
parameterization, but this is not relevant to our study

tions. In our high energy limit we use it for fixed b (i.e.
for a fixed partial wave with orbital angular momentum
l = b

√
s/2) in the simplified form

ReA(b, s) = π

2

∂ImA(b, s)

∂ ln s
. (21)

This real part has been included in the results presented in
Fig. 4.

3.2 High-mass diffractive dissociation

To obtain the cross section of diffractive dissociation we have
to consider the case where in the rapidity interval from y1 to
Y we have elastic scattering (upper part of the diagram in
Fig. 1) while below y1 there is an inelastic process (in Fig. 1
it is shown by the lower central Pomeron). Besides this we
have to include the gap survival factor, exp(−�i j/2) for the
amplitude, to be sure that there are no additional inelastic
interactions which may fill the gap.

The corresponding cross section takes the form

ξdσ SD

dξ
= dσ SD

dy1

=
∫

d2b1

∑

j

|a j |2 λG j (b1, y1)

σ0
d2b2

Fig. 5 Semi-enhanced diagrams (shown by the dashed blue lines)
which describe the probability of LRG survival with respect to the inter-
actions with the intermediate partons

·
(

∑

i

|ai |2(1 − √
1 − Gi (b2, y2))e

−�i j (b1+b2,Y )/2Senh
i (b2, y1)

)

·
(

∑

i ′
|ai ′ |2(1 − √

1 − Gi ′ (b2, y2))e
−�i ′ j (b1+b2,Y )/2Senh

i ′ (b2, y1)

)∗
,

(22)

where y2 = Y − y1 and the ‘elastic’ amplitude (1 − e−�/2)

generated by the parton cascade (in the upper part of Fig.
1), Gi (b2, y2) = 1 − exp(−�i (b2, y2)) is written as (1 −√

1 − G).
Recall that λ = g3P/gN is the ratio of the triple-Pomeron

to Pomeron-nucleon couplings. Its value determines the
probability of interactions within a unit interval of rapidi-
ties. Thus λ is proportional to the parton density in rapidity
evolution which in its turn is of the order of �.

Finally the factor Senh
i j (b2, y1) accounts for the probability

of LRG survival with respect to soft interactions with the
intermediate partons from the cut Pomeron11 (in the lower
part of Fig. 1). It is given by the sum of the enhanced diagrams
(see the dashed blue lines in Fig. 5)

Senh
i (b, y1) = exp

(
−

∫ y1

1.6
dy′ λ

2
Gi (b,Y − y′)

)
. (23)

Here we start the integration over y′ from y′
min = 1.6 since

the interval of lower y′ is already accounted for in terms of
the G–W eigenstates.

Strictly speaking there should be the integration over the
position of the new interaction point b in the impact param-
eter plane. However, since due to the large value of k0 ∼ 2
GeV (i.e. the small slope of the Pomeron trajectory α′

P ) the
diffusion in the b plane is rather weak, we put in (22) a fixed
value of b = b2.12

11 ‘Cut’ denotes the Pomeron which produces the secondary hadrons
(like that in the lower part of Fig. 1a) and not the Pomerons which
describe the absorptive effects (like that shown by dashed curves in Fig.
2).
12 This, second order, effect of the diffusion in the b plane should be
accounted for in a future more precise version of the model.
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Fig. 6 The diagram for the inclusive one particle cross section for SD
events. Screening effects are indicated by the (blue) short-dashed (Seik)

and (blue) long-dashed (Senh) curves which describe the probability of
LRG survival with respect to additional proton–proton interactions or
the interactions with the intermediate partons

Next, the slope of diffractive dissociation Bdis(t = 0) =
〈b2

2〉 reads

Bdis(t=0)=
∫
d2b1

∑
j |a j |2G j (b1, y1)d2b2b2

2

(∑
i |ai |2...

) (∑
i ′ |ai ′ |2...

)∗
∫
d2b1

∑
j |a j |2G j (b1, y1)d2b2

(∑
i |ai |2...

) (∑
i ′ |ai ′ |2...

)∗ ,

(24)

where ‘dots’ denote the corresponding expressions in the
second and third lines of (22).

3.3 Density of secondaries in LRG events

The inclusive cross section of secondaries produced at rapid-
ity ys in the high-mass dissociation is (see Fig. 6)

ξdσ SD

dξdys
=

∫
d2b1d

2bs
∑

i j i ′
|a2

i ||a2
i ′ ||a j |2

×gsG j (b1, ys)Gsii ′(bs, y3)

σ0
Seik
i j Seik

i ′ j S
enh
i i ′ (bs,Y − ygap),

(25)

where the constant gs is the probability of secondary particle
emission from a one cut Pomeron. 13 We put gs = 2.2 in order
to have the density of charged particles in non-diffractive
events dNch/dy = 6 at

√
s = 13 TeV to be in agreement with

the data. Note that here we introduce an additional Green’s
function, Gs(bs, y3), which describes the development of the
parton cascade within the rapidity interval y3 between the
triple Pomeron vertex (at ygap = − ln ξ = Y − y1) and the
new produced particle (placed at ys and bs in the rapidity and
impact parameter plane); so y3 = ygap − ys . This function

13 Here we have used the AGK cutting rules [26] for non-enhanced
multi-Pomeron diagrams which, as was shown e.g. in [27], are valid for
the perturbative QCD.

satisfies the same evolution equations (14) and (15) as G j

but with the initial conditions

Gsii ′(bs, 0) = λ
(

1 −
√

1 − Gi (bs, ygap)
)

×
(

1 −
√

1 − Gi ′(bs, ygap)
)

(26)

and

kt;sii ′(bs, 0) =
√
kt,i (bs, ygap)kt,i ′(bs, ygap), (27)

where kt,i and kt,i ′ are the values of kt of the G–W compo-
nents i and i ′ respectively.

The gap survival factors Seik account for the incoming
proton interactions

Seik
i j = e−�i j (b1+bs ,Y )/2 (28)

while the value of Senh
i i ′ is given in terms of (23) as

Senh
i i ′ = Senh

i (bs,Y − ygap)S
enh
i ′ (bs,Y − ygap). (29)

The corresponding opacity �si can be calculated via

exp(−�si (bs,Y − y′)) = 1 − Gi (bs,Y − y′).

3.4 Parton transverse momenta

In order to evaluate the characteristic transverse momenta of
the secondaries produced at some rapidity y′ we can mul-
tiply by kt (b, y′) (15) the value of G(b, y) for each G–W
component j at y = y′ and then continue the evolution of
this product G(kt ), j (b, y) = kt (b, y′) j G j (b, y) according to
the master equation (14). The mean value 〈kt (y′)〉 is given
by the ratio of ‘cross sections’ (say, (22)) calculated with
G(kt ), j (b, y) to that calculated with the normal G j (b, y). Of
course this 〈kt (y′)〉 is not equal to the mean momentum of the
secondary hadrons, 〈pt 〉, which can be measured experimen-
tally. The value of 〈pt 〉 will be modified by hadronization.
However by looking at the energy, rapidity and b depen-
dences of 〈kt 〉 we get some semi-quantitative understanding
of the expected 〈pt 〉 behaviour.

3.5 Secondary Reggeon contributions

Besides the triple-Pomeron (PPP) term considered in Sect.
3.2 there are the contributions caused by secondary Reggeon
(R) exchange. For relatively large ξ (that is not too large y2)
one has to account for the RRP term where the two upper
Pomerons in Fig. 1b are replaced by R-exchange.

Assuming that the R-reggeons are emitted from valence
quarks for all G–W eigenstates we put the same vertex cou-
plings and form factors and write the corresponding exchange
amplitude as

AR(b) = 1 − e�R(b,y2)/2 (30)
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with

�R(b, y2) = σR e(αR(0)−1)y2

4πBR
e−b2/4BR . (31)

We take the intercept of the R-trajectory to be αR(0) = 1/2
and the slope BR = α′

R y2 + 2/0.71 GeV2 with α′
R = 0.9

GeV−2; the term 2/0.71 corresponds to the dipole form factor
FR(t) = 1/(1 − t/0.71)2.

Thus for the RRP contribution we obtain

ξdσ RRP

dξ
=

∫
d2b1

∑

j

|a j |2

×G j (b1, y1)

σ0
d2b2

∣∣∣∣∣
∑

i

|ai |2(1 − e−�R(b2,y2)/2)

×Seik
i j Senh

i (b2, Y − y2)

∣∣∣∣∣

2

, (32)

For very small ξ corresponding to low mass, MX , dis-
sociation the central Pomeron (in the lower part of Fig.
1) can be replaced by a R-reggeon. This forms the PPR
term whose contribution decreases as 1/MX ∝ exp(−y1/2).
However this, relatively low MX , contribution in our case was
accounted for within the G–W formalism. To obtain a more
or less realistic behaviour at the lowest ξ end we assume res-
onance – ‘reggeon exchange’ duality and redistribute the low
mass dissociation cross section given by (8) (minus the elas-
tic cross section (7)) over y1 with a 0.5 exp(−y1/2) weight.

In each case the corresponding t-slope was calculated as
the mean value 〈b2

2〉.

3.6 Multiplicity distribution

The multiplicity distribution of charged hadrons observed in
some rapidity interval is given by the convolution of sev-
eral functions. First, this is the distribution of secondaries
produced by one individual ‘cut’ Pomeron. It includes the
distribution over the number of s-channel gluons and the
effects of hadronization. Next we have the distribution over
the number of Pomerons. Finally, the result may be affected
by the “colour reconnection” between the gluons from dif-
ferent Pomerons.

In the present model we neglect the colour reconnection
effects and assume that the charged particles are emitted
by one Pomeron according to Poisson’s law. To account for
the charge conservation we take the Poisson over the num-
ber, N1 = N+

1 , of positively charged particles. The element
which will be studied below is the effect on the multiplicity
distribution coming from the number, n, of the Pomerons.

In the one-channel eikonal approximation, that is for
each G–W component, the distribution over the number of

Pomerons also takes a Poisson form

PP (n) = �n(b)

n! e−�(b) , (33)

where the mean number of the cut Pomerons, 〈n〉 = �(b),
depends on particular b value. That is actually we deal with
the sum (integral) of a continuous number of Poissons with
different 〈n(b)〉. This leads to the final distribution

Ph(N ) =
∫

w(b)
∑

n

�n(b)

n! e−�(b)

× (n · N1)
N

N ! e−n·N1 d2b , (34)

where the weight w(b) is given by the integrand of the corre-
sponding cross section. For non-diffractive inclusive events

wi j (b) = 1 − exp(−�i j (b))∫
d2b (1 − exp(−�i j (b))

while for high-mass diffractive dissociation (22)

w j = G j (b1, y1)
∫
d2b2 |...|2∫

d2b1G j (b1, y1)
∫
d2b2 |...|2 , (35)

where for simplicity we consider just a collision of a partic-
ular (i and j) G–W eigenstates; |...|2 denotes the last two
factors on the r.h.s. of (22). The �(b) which should be used
in (34) is equal to � j (b1, y1) = − ln(1 − G j (b1, y1)).

4 Parameters of the model

Let us, first, discuss the expected reasonable values of the
parameters of our model.

The free parameters which are used to tune the model are:

• The Regge intercept of the original (unscreened) Pomeron,
1 + �; from NLL BFKL we expect � ∼ 0.2.

• The initial value of the parton transverse momentum,
k0 = kt (b, y = 0).
1/k2

0 plays the role of the slope, α′
P , of the Pomeron

trajectory. This slope is known to be rather small, say,
α′
P = 0.25 GeV−2 in the parametrization of [28]. Even

a smaller α′
P = 0.14 GeV−2 was obtained in [29]. Thus

k0 ∼ 2 GeV looks to be reasonable value.
• Next, we have the elementary wee parton cross section,

σ0, which should be of the order 2π/k2
0 ∼ 1 mb.

• Finally, we have the initial impact parameter distribution
of the partons in each G–W eigenstate, which in our sim-
plified model are described by a total of 6 parameters, as
explained below.

Since we are looking mainly for the qualitative and semi-
quantitative effects we try to be as simple as possible and
take only two G–W components with equal weight a1 =
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Table 1 The values of the
parameters in the two-channel
eikonal fit to elastic pp (p p̄)
scattering data

� 0.17

σ0 (GeV−2) 1.18

k0 (GeV) 2.2

λ = g3P/gN 0.2 (fixed)

f1 11

d1 (GeV−2) 2.75

c1 (GeV2) 0.2

f2 4.15

d2 (GeV−2) 1.3

c2 (GeV2) 0.3

a2 = 1/
√

2. For each of these two G–W eigenstates the b
dependence is parameterised by factors of the form

Fi (t) = exp(−√
di (ci − t) + √

di ci ), (36)

where ci is added to avoid a singularity at t = 0. Note that
Fi (0) = 1. The starting distributions for the evolution in
rapidity are

Gi (b, y = 0) = fi
4π

∫
dt J0(b

√|t |)Fi (t). (37)

Thus we have 3 free parameters ( fi which determines the
value of the parton density, di and ci ) for each G–W eigen-
state.

The values of parameters found to describe the data are
listed in Table 1.

The first two parameters in Table 1 control the absolute
value and the energy behaviour of the total cross section.
k0 is responsible for the shrinkage of diffractive cone, that
is for velocity of diffusion in b space; while λ determines
the probability of high mass diffractive dissociation. We fix
λ = 0.2 to be equal to the value given by both – the analysis
based on the perturbative QCD approach and the HERA data
[31] and the triple-Regge analysis accounting for absorptive
corrections [32]. The final 6 parameters define the parton
densities and their b distribution in the two G–W eigenstates.

The parameters were tuned to reasonably describe the
elastic pp (p p̄) cross sections in the collider energy range
as shown in Fig. 4. As a rule, when tuning the parameters,
we use only two digits,14 since our goal is not to obtain the
most precise description, but instead to achieve a qualita-
tive understanding of the multi-Pomeron contributions and
a semi-quantitative evaluation of the expected effects. In
other words, we are seeking a general understanding of how
high energy diffractive phenomena are driven by perturbative
QCD. The fact that the values found for the parameters turn
out to be in agreement with preliminary qualitative expecta-
tions gives support for the model.

14 Thus it may be possible to improve the description.

The resulting cross sections and elastic slope are presented
in Table 2. Note that the model gives a reasonable probability
of low-mass diffractive dissociation, σ SD

lowM = 3.75 mb at√
s = 7 TeV in agreement with the TOTEM, σ SD

lowM = 2.6 ±
2.2 mb, [30] measurement.

5 Results for diffractive dissociation

5.1 Cross section of single proton dissociation

The expected ξ behaviour of the cross section of single proton
dissociation (SD) is shown in Fig. 7. The pure Pomeron com-
ponent is shown by the dashed curve while the solid curve
includes the secondary reggeon contribution (as described in
Sect. 3.5). The black curves correspond to

√
s = 13 TeV. The

result for
√
s = 8 TeV is shown by the thick blue curve. Here

we use λ = 0.2 [31,32] and σR = 22 mb which is consistent
with the analysis of [32] and the secondary Reggeon con-
tribution in the COMPETE fit [47,48] of the pp total cross
sections.

Recall that there is some tension between the points
extracted by Goulianos and Montanha [49] from the CDF
data and the cross sections of diffractive dissociation mea-
sured at the LHC. With λ = 0.2 we underestimate the CDF
cross section at ξ < 0.01 (see Fig. 8) but overshoot a little
the recent ATLAS [50] results (see [54] for a discussion).

For ξ < 0.01 (where the RRP contribution becomes
small) the value of dσ SD/d ln ξ increases with decreasing
ξ mainly due to the Pomeron intercept 1 + � > 1. However
this growth is tamed by absorptive effects. At very small ξ ,
corresponding to low MX , we see the contribution of the PPR
term coming from G–W low-mass dissociation.

5.2 Rapidity distributions

We show in Fig. 9 the rapidity dependence of the charged par-
ticle densities dNch/dy expected in SD events in the central
detector interval. Contrary to the standard plateau observed
in this region in the non diffactive events the particle density
dNch/dy in SD decreases when the rapidity of the secondary
meson approaches the edge of the LRG (i.e. to the position of
the triple-Pomeron vertex). This behaviour can be explained
by looking at the productG j (b1, ys)Gsii ′(bs, y3 = ygap−ys)
in (25). Indeed, near the gap edge we deal with the begin-
ning of the Gsii ′ evolution where the particle density is rather
small and the value Gsii ′ increases rapidly. On the other hand
the function G j (b1, ys) is already close to saturation and
weakly depends on ys (here ys is large). Therefore the prod-
uct G j (b1, ys)Gsii ′(bs, y3 = ygap − ys) increases with y3,
i.e. decreases when ys approaches the gap edge ygap.
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Table 2 The predictions of the
elastic and diffractive
observables resulting from the
description of the presently
available data

√
s (TeV) σtot (mb) σel (mb) Bel(t = 0) (GeV−2) σ SD

lowM (mb)

0.0625 42.5 7.3 11.6 1.46

0.546 63.9 13.5 14.7 2.40

1.8 78.1 18.0 16.8 3.03

7 96.4 24.2 19.6 3.82

8 98.3 24.8 19.9 3.90

13 105.5 27.3 21.0 4.21

Fig. 7 The ξ dependence of the single dissociation (SD) cross section
at

√
s = 13 TeV (black). The dashed curve is the Pomeron component

while the continuous curve includes the secondary Reggeon contribu-
tion. ATLAS (8 TeV) [50] and CMS (7 TeV) [51] data are shown by
circles and triangles respectively. The CMS points have been reduced by
a factor of 1.27 to approximately account for the fact that these data con-
tain some admixture of double dissociation, in addition to pure SD [52].
Thick blue/upper curve corresponds to

√
s = 8 TeV. At ξ > 3 · 10−5 it

is very close to the black curve

5.3 t dependence of SD cross section

The t-dependence of the SD amplitude can be calculated via
the Fourier transform over the impact parameter b2 (in (22)).
Except for very small |t | the distribution is rather close to a
simple exponent (see Fig. 10 as an example).

The value of the slope expected in proton diffractive disso-
ciation is shown in Fig. 11. Note that the secondary Reggeon
terms enter with a very large slope Bdis(t = 0) (up to 40
GeV−2 at ξ = 10−3). Therefore for ξ � 0.003 (where the
role of the secondary RRP contribution becomes important)
the value of Bdis increases with ξ . The large value of Bdis

in RRP term is explained by strong absorption which pushes

Fig. 8 The comparison of the model with the results of the analyses
by Goulianos and Montanha of the CDF data [49] at

√
s = 1.8 TeV and

t = −0.05 GeV2

the PPR and RRP contributions to the far periphery of the
disk. So, only the large b2 tail survives.

On the other hand the slope corresponding to the pure
Pomeron-induced dissociation is smaller (Bdis � 7 GeV−2 at
ξ = 10−3). In this case the large bt needed to go to the periph-
ery of the disk is mainly provided by a large b1 corresponding
to the central (in Fig. 1) “inelastic” (cut) Pomeron while the
value of b2 (responsible for the interaction across the LRG)
stays rather small. If we neglect the enhanced diagrams in
Fig. 5 then we get Bdis � 5 GeV−2 (at ξ = 10−4 − 10−3).
Only the Senh survival factor allows a larger Bdis up to 7–8
GeV−2 by absorbing part of the low-b2 contribution.

The growth of Bdis at very small ξ is due to the slope of
the effective Pomeron trajectory, α′

P,eff , (i.e. expansion of the
disk in b space) and the PPR term which describes low-mass
dissociation. We emphasize that in Fig. 11 we have plotted
the slope at t = 0, which is larger than the mean slope Bdis
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Fig. 9 The rapidity dependence of the charged multiplicity observed in
the central detector for SD events with ξ = 0.01 (blue) and 0.001 (black)
at

√
s = 13 TeV. The dashed curves correspond to the pure Pomeron-

induced cross section without the secondary Reggeon contribution

Fig. 10 The t dependence of the SD cross section dσ/dtdy at
√
s =

8 TeV and ξ = 10−2.88 (this value of ξ is chosen to compare with
the ATLAS-ALFA [50] results at 〈ξ〉 = 10−2.88). The dashed curve
corresponds to the pure Pomeron-induced cross section without the
secondary Reggeon contribution

Fig. 11 The ξ dependence of the t-slope Bdis(t = 0) in the single
proton dissociation process at

√
s = 13 TeV. The dashed curve is the

Pomeron component while the continuous curve includes secondary
Reggeon contributions. Note that here we show the slope at t = 0. As
it is seen from Fig. 10 the mean slope (within a larger |t | interval) is a
bit smaller

Fig. 12 The ξ behaviour of the characteristic transverse momentum kt
measured at η = 0 (in the laboratory frame, i.e. the pp centre of mass,
system) in single proton dissociation at

√
s = 13 TeV
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fitted in some finite t-interval. In particular at
√
s= 8 TeV and

ξ = 10−2.88 the mean slope ‘measured’ between |t | = 0.02
and 0.32 GeV2 is Bmean(0.02 − 0.32) = 7.6 GeV−2 while
the value of Bdis(t = 0) = 10.3 GeV−2.

Formally we have the possibility to introduce some addi-
tional slope B3P of the triple-Pomeron vertex. However its
natural value should be B3P ∼ 1/k2

0 ∼ 0.25 GeV−2 which
is rather small. On the other hand the value of k0 controls
the shrinkage of the diffractive cone and it is needed to
keep k0 ∼ 2 GeV in order to reproduce the available elastic
dσel/dt data.

Finally, we show in Fig. 12 the typical wee-parton trans-
verse momentum at ηLab = 0 (that is near the centre of mass
of the two colliding protons). Note that kt (ξ)|η=0 weakly
increases with decreasing ξ , but still remains close to its ini-
tial value k0 = 2.2 GeV. This means that in the diffracted
system X we expect the transverse momentum distribution
of secondaries and the mean value of 〈pt 〉 to be close to
that observed at comparatively low (say,

√
s ∼ 20–40 GeV)

energies. The explanation is evident. The dissociation comes
mainly from the periphery of the disk where the parton
density is small. Thus, far from the saturation limit there
is no reason to noticeably enlarge kt . Recall that in non-
diffractive inclusive events we get at

√
s = 13 TeV a larger

kt (η = 0) = 2.73 GeV.
Note that here we consider the secondaries produced

somewhere in the centre of the MX system and not too
close to the edge of LRG. Near the edge of LRG the situ-
ation is more interesting and complicated. Recall that the
Pomeron has a small transverse size (see e.g. [5,53]). In
comparison with the proton radius ∼ 1 fm the Pomeron
size is ∼ 1/k0 ∼ 0.1 fm. This is indicated by the small
value of the slope of the Pomeron trajectory α′

P ≤ 0.25
GeV−2 (see e.g. [28,55,56])15 and the very small (consis-
tent with zero) t-slope of the triple-Pomeron vertex (see
e.g. [32,57,58]).16 Therefore, in comparison with the proton
fragmentation region in ‘Pomeron fragmentaion’ (i.e. near
the edge of the LRG) we expect a larger mean transverse
momenta, pt , and a broader pt distribution of the secon-
daries. Some indication in favour of this can be seen in Fig.
2 of [1] where in comparison with the PYTHIA 8 Monte
Carlo simulations the particle density increases with pt . The

15 It was shown long ago in terms of the multiperipheral models [24]
and in terms of the parton cascade [7] that the value of α′ ∝ 1/k2

t
where kt is the typical transverse momentum of the partons (t-channel
propagators in the case of multiperipheral models). Simultaneously this
value of kt determines the size of the bound system which forms the
Regge pole (Pomeron).
16 In these papers the triple Pomeron vertex was extracted fittinng rather
old CERN-ISR data (Tevatron data was included in [32]). However this
energy was sufficient to determine the triple-Pomeron contribution and
since the vertex occupies a limited rapidity interval we can use the
obtained results at larger energies, in particular for the LHC region.

Fig. 13 The distribution over the charged hadron multiplicity in non-
diffractive (ND) events (continuous curve) and in the case of single
proton (SD) dissociation at

√
s = 13 TeV for ξ = 10−3 (red long-

dashed curve) and ξ = 10−2 (blue short-dashed curve). (We assume
that mean number of charged hadrons emitted by one cut Pomeron is
equal to 8 in the rapidity interval that the value of Nch was measured)

‘data/MC’ ratio exceeds 1 and reaches about 2 for pt > 1
GeV.

Recall also that the Pomeron consists mainly of gluons
and so the Pomeron is essentially a singlet with respect to
the flavour SU(3) group. Therefore, it would be interesting
to observe in the Pomeron fragmentation region (close to the
edge of the LRG) the presence of η and η′ mesons. Since η′ is
almost a singlet of flavour SU(3) and contains a large gluon
component we may expect that the Pomeron fragmentation
region will be enriched by η′ mesons. Besides this, there
should be a good chance to observe 0++ and 2++ glueballs
in the Pomeron fragmentation region.

5.4 Multiplicity distribution

As explained in Sect. 5.4 the expected multiplicity distribu-
tion is represented by the sum (integral) of ’Poissons’ with
different mean 〈Nch〉 which depends on the particular impact
parameter and the number of cut Pomerons. Since diffrac-
tive dissociation events survive only in the region where the
probability of multiple parton interactions is small (and corre-
spondingly the multi-Pomeron contributions are suppressed)
we expect in these events a smaller multiplicity and a rather
narrow distribution.

Indeed, as seen in Fig. 13, in non-diffractive events we
observe a long high Nch tail caused by the integration over a
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large interval of impact parameters b; at each value of b we
deal with a different number of cut Pomerons 〈n〉 = �(b).
On the other hand the dissociation events come from the edge
of disk where � ≤ 1. Therefore here the distribution is much
narrower and the mean multiplicity is about twice smaller
(〈N dis

ch 〉 = 13.3 for ξ = 10−3 and
√
s = 13 TeV instead of

〈N dis
ch 〉 = 27.5 for the non-diffractive case).

6 Discussion

In the previous sections we have studied single diffractive
(SD) processes and shown qualitative (semi-quantitative)
effects caused by the fact that at small b stronger absorptive
corrections push the amplitude of dissociation to the periph-
ery of the disk. In comparison with [59], where the diffusion
in b space was neglected and α′

P = 0 was assumed, here we
pay the most attention just to the possibility that partons move
in b plane. On the other hand, in [59] the diffusion in ln kt
was accounted for more precisely. In the present model we
consider just the evolution (with rapidity) at a typical value
of kt . However, since on the periphery of disk, from which
the major SD contribution comes, the parton density is rela-
tively small and the value of kt practically does not change
we believe that the present model is more appropriate for
analysis of the SD processes.
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