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Abstract In this work we demonstrate that non-zero neu-
trino masses can be generated from gravitational interactions.
We solve the Schwinger–Dyson equations to find a non-
trivial vacuum thereby determining the neutrino condensate
scale and the number of new particle degrees of freedom
required for gravitationally induced dynamical chiral sym-
metry breaking. We show for minimal beyond the Standard
Model particle content, the scale of the condensation occurs
close to the Planck scale.

1 Introduction

Neutrinos are unique amongst the Standard Model (SM)
fermions in their mass’s tininess, the weakness of their inter-
actions and their capacity to be their own anti-particles. Such
features suggest neutrinos acquire their mass differently from
the quarks and charged leptons. Many such mass models
assume neutrinos are Majorana particles and the most prolif-
ically studied are the seesaw mechanisms [1–10]. Typically
the masses of the new particles required to complete the
lepton-number violating Weinberg operator are larger than
the electroweak scale. In addition to tree-level completions
of the Weinberg operator, radiative mass models can explain
small neutrino masses with TeV-scale new physics [11–14].
Moreover, explanations of light neutrino masses from extra-
dimensions [15,16] and string theory [17,18] provide alter-
native possibilities (see Ref. [19] for an extensive overview
of models of neutrino masses and mixing).

Neutrino masses emerging from gravitational effects were
first discussed in [20] where Planck suppressed higher-
dimensional operators induced neutrino masses. Further-
more, the possibility of neutrino masses emerging from a
gravitationally triggered condensate has been studied in vari-
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ous contexts: in [21] it was shown that enhanced gravitational
interactions could trigger the formation of a right handed neu-
trino condensate which induces dynamical symmetry break-
ing and thereby generates a Majorana mass for the right
handed neutrino. From this, the light neutrino masses are
generated via the type-I seesaw mechanism. An advantage
of such an approach is that the strongly coupled right handed
neutrino condensate can drive inflation [22]. A more direct
explanation for light neutrino masses was proposed in [23].
In that work it was postulated that gravitational instantons
could induce a low-scale (∼ 100 meV) neutrino condensa-
tion which can give rise to light neutrino masses [23]; the
phenomenology of which has been studied in depth [24].

In this work, we use the Schwinger–Dyson equations to
demonstrate that an enhanced gravitational attraction can
trigger the formation of an active neutrino condensate which
induces dynamical symmetry breaking. We treat gravity as
an effective quantum field theory in the spirit of [25]. With
minimal assumptions, we show that a non-trivial vacuum
can be achieved and find that the phase transition scale is
close to the Planck scale. However, new particle degrees of
freedom are required to provide finite support to the conden-
sate. Neutrinos remain free particles below the scale of con-
densation (similarly to [23]) in analogy to the Nambu-Jona-
Lasinio (NJL) model [26] where the constituent fermions are
free (unconfined). Furthermore, due to gravity’s democratic
nature, it will provide a small mass for all fermions.

The work presented in this paper is structured as follows:
in Sect. 2 we review the Schwinger–Dyson equations (see
Ref. [27] for an in-depth discussion of Schwinger–Dyson
methods in QCD and QED) and discuss the leading order
diagram which contributes to gravitationally induced neu-
trino chiral symmetry breaking. We find that chiral symmetry
is preserved if the bare graviton propagator is used. Conse-
quently, we apply the dressed graviton propagator, which is
discussed in detail in Sect. 3. Further, in this section, we

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-021-09300-8&domain=pdf
mailto:jessica.turner@durham.ac.uk


511 Page 2 of 12 Eur. Phys. J. C (2021) 81 :511

introduce the pertinent parameters upon which the neutrino
masses depend: the condensate scale Λ and two quantities
which parametrise the particle content, A and B. We eluci-
date the challenges of finding the chiral breaking vacuum and
present two solutions to the Schwinger–Dyson equations in
Sects. 5.1 and 5.2 respectively. Finally, we summarise and
make concluding remarks in Sect. 6.

2 The Schwinger–Dyson equation

The Schwinger–Dyson equations (SDE) are an infinite tower
of integral coupled equations which relate the Green func-
tions of a theory to each other. From this set of coupled
equations, all observables of the theory can be calculated.
We use the SDE as a tool to demonstrate that active neutri-
nos, which we assume have zero bare mass, can condense via
their gravitational interactions and thereby undergo dynami-
cal chiral symmetry breaking. This phenomenon is ultimately
non-perturbative, and the SDE provides a method to derive
the neutrino gap equation.

The leading order propagator for a massless fermion is
simply SF = i//p. The full propagator will receive self-
energy corrections which modify its form in the following
way

S′
F (p) = i

p/ − Σ(p)
= i

α(p2)p/ − β(p2)
(1)

where α(p2) and β(p2) are determined by the relevant self-
energy correction, Σ(p), and the dynamically induced mass
of the fermion is mF = β(p2)/α(p2). From Eq. (1), we find
the propagator consists of two parts: the Dirac odd compo-
nent, which is the scalar function α(p2), and the Dirac even
part which is parametrised by β(p2). Using the appropriate
Dirac trace we find the correlation of these functions with
the self-energy correction to be

α(p2) = 1 − 1

4p2 tr(p/Σ(p)), β(p2) = 1

4
tr(Σ(p)). (2)

The leading gravitational self-energy correction, as shown
in Fig. 1, to the fermion propagator is given by

−iΣ(p) =
∫

d4k

(2π)4 τ
μν
1 (p,−k)S′

F (k)G ′
μνρσ (p − k)τρσ

1 (k,−p),

(3)

where τ1 is the fermion-fermion-graviton vertex, S′
F is the

modified fermion propagator and G ′ is the dressed graviton
propagator. Using the graviton Feynman rules and substitut-

Fig. 1 The self-energy correction to the neutrino propagator. The
graviton (represented by the double wavy line) is dressed with the
vacuum polarisation (indicated by Π ) and external arrows show the
momentum flow

ing them into Eq. (3), α(p2) and β(p2) may be written as

α(p2) = 1 + 1

4p2

∫
[dk]tr [

p/τμν
1 (p,−k) f (k)

×G ′
μνρσ (p − k)τρσ

1 (k,−p)
]

,

β(p2) = −1

4

∫
[dk]tr [

τ
μν
1 (p,−k) f (k)G ′

μνρσ (p − k)

τ
ρσ
1 (k,−p)

]
.

(4)

where

f (k) = α
(
k2

)
k/ + β

(
k2

)
α2

(
k2

)
k2 − β2

(
k2

) and [dk] = d4k

(2π)4 (5)

and we replace the dressed graviton propagator, G ′
μνρσ (p −

k), by its tree-level counterpart, Gμνρσ (p−k), we obtain the
leading order contribution of α(p2)

α(p2) = 1

− i2πG
∫

[dk] f (k)
[
2(k · p)2 + 4k2 p2 + 3k · p (

k2 + p2
)]

p2(p − k)2 ,

β
(
p2) = 0 .

(6)

Remarkably, the leading gravitationally induced correction
preserves chiral symmetry as β(p2) is exactly zero for all
momentum values. The dynamical breaking of chiral sym-
metry manifests by dressing the graviton propagator with
matter fields and the graviton itself at the one-loop order.
More specifically, we perform the following replacement

G ′
μνρσ (p − k) → Gμνρσ (p − k)

+ Gμναβ(p − k)Παβ,γ δ(p − k)Gρσγ δ(p − k) ,
(7)

where Παβ,γ δ(p − k) are the vacuum polarisation diagrams
as shown in Fig. 2.

3 Graviton self-energy form factor

The vacuum polarisation tensor, Παβ,γ δ(q), which corrects
the tree-level graviton propagator is a fourth rank tensor in
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Fig. 2 The set of vacuum polarisations, Π , which modify the bare graviton propagator is represented by the double wavy lines. The solid line
(dotted) indicates a Dirac fermion (minimal scalar) field and the wavy (double wavy) indicates a gauge boson (graviton). The external arrows
indicate the momentum flow

SO(1, 3). This tensor can be constructed from ηαβ and pα

and may be written as a linear combination of five indepen-
dent tensors of rank four:

Παβ,γ δ(q) = F1

(
q2

)
qαqβqγ qδ + F2

(
q2

)
ηαβηγ δ

+ F3

(
q2

)
(ηαγ ηβδ + ηαδηβγ )

+ F4

(
q2

) (
qαqβηγ δ + qγ qδηαβ

)

+ F5

(
q2

) (
qαqγ ηβδ + qαqδηβγ

+qβqγ ηαδ + qβqδηαγ
)
. (8)

The above vacuum polarisation expression is invariant
under permutations α ↔ β, γ ↔ δ, as well as αβ ↔ γ δ

and Fi (where i ∈ 1, 2 . . . , 5) are a set of form factors. The
form factors are not independent of each other as the vacuum
polarisation of the graviton must satisfy the Ward identity,
pαΠαβ,γ δ(q) = 0, which leads to three constraints on the
five tensors

q2F1 + F4 + F5 = 0,

F2 + q2F4 = 0,

F3 + q2F5 = 0.

(9)

As we include up to the one-loop correction to the graviton
propagator we parametrise two of these form factors as

F4

(
q2

)
= a1 q

2 log

[
μ2

−q2

]
,

F5

(
q2

)
= a2 q

2 log

[
μ2

−q2

]
,

(10)

where log[μ2/(−q2)] comes from the one-loop integration.
Using the three constraints of Eq. (10) we derive the follow-
ing relations

F1

(
q2

)
= (a1 + 2a2) log

[
μ2

−q2

]
,

F2

(
q2

)
= −a1 (q2)2 log

[
μ2

−q2

]
,

F3

(
q2

)
= −a2 (q2)2 log

[
μ2

−q2

]
.

(11)

Using these constraints, the vacuum polarisations may be
parametrised as

Παβ,γ δ(q)

= a1
(
qαqβ − ηαβq2) (

qγ qδ − ηγ δq2) log

[
μ2

−q2

]

+ a2
[(
qαqγ − ηαγ q2) (

qβqδ − ηβδq2)] log

[
μ2

−q2

]

+ a2
[(
qαqδ − ηαδq2) (

qβqγ − ηβγ q2)] log

[
μ2

−q2

]
. (12)

Contracting Παβ,γ δ(q2) with ηαβηγ δ and ηαγ ηβδ respec-
tively, we obtain

Π1 ≡ ηαβηγ δΠ
αβ,γ δ = (9a1 + 6a2)

(
q2

)2
log

[
μ2

−q2

]
,

Π2 ≡ ηαγ ηβδΠ
αβ,γ δ = (3a1 + 12a2)

(
q2

)2
log

[
μ2

−q2

]
.

(13)
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For any loops contributing to the vacuum polarisation once
we calculate the Lorentz-invariants quantities Π1 and Π2

from the loop integration, we obtain a1 and a2, from which
we derive the self-energy Παβ,γ δ .1

The vacuum polarisations used in this work match those
calculated in [21] where the vacuum polarisations to the
graviton from the minimal scalar, fermion and gauge bosons
were calculated. The vacuum polarisations from the graviton
contribution, along with the ghost contribution, were initially
calculated in [28] and discussed in [25,29].

Given the graviton Feynman rules for interactions with a
minimal scalar (ms), Dirac fermion (df), conformal scalar
(cs), gauge boson (gb) and graviton (gr) as provided in
Appendix A, we obtain the values of a1 and a2 as shown
in Table 1. By contracting Παβ,γ δ with the tree-level propa-
gators Gμναβ(p − k) and Gρσ,γ δ(p − k), we determine the
dressed graviton propagator G ′

μναβ(p− k) which we substi-
tute into Eq. (4) to find

β
(
p2

)
= i8G2

∫
[dk] f (k)

[
A(k + p)2 − B

(
p2 − k2

)2

8(p − k)2

]

× log

[
μ2

−(p − k)2

]
,

(14)

where μ is the renormalisation mass which in principle is
arbitrary. The degrees of freedom running in the loop dia-
grams of Fig. 2 are constants given by

A = 5

16

∑
p

(
5a p

1 + 6a p
2

)
Np ,

B = 1

2

∑
p

(
2a p

1 + 3a p
2

)
Np ,

(15)

where p is the index for the particle type (ms, df, gb, cs, gr)
and N p is the number of each type of particle. By taking
the values of a p

1 and a p
2 in Table 1 and fixing the degree of

freedom for graviton to be one, we recover the result in Ref.
[21]2:

1 The above method exploits the transversality of the graviton self-
energy in order to calculate the vacuum polarisations. The “brute force”
method can be found in Appendix B.
2 The overall structure of A and B is the same in this work and that of
Ref. [21] up to a global factor of eight. This discrepancy stems from an
error in Ref. [21]. We note that the SM does not contain any conformal
scalars and throughout this work we set Ncs = 0. For completeness
we provide the expressions for A and B and associated coefficients in
Table 1.

Table 1 Different particles contribution to the graviton self-energy at
the one-loop level, a1 and a2 are coefficients in the graviton form factor
Πμνρσ as shown in Eq. (12)

Particle in the loop a1/
G
π

a2/
G
π

Minimal scalar 1
40

1
240

Dirac fermion − 1
60

1
40

Gauge boson − 1
30

1
20

Conformal scalar − 1
360

1
240

Graviton 23
60

7
40

A = 27/2Nms + 6Ndf + 12Ngb + Ncs + 267Ngr

288
,

B = 9Nms + 6Ndf + 12Ngb + Ncs + 186Ngr

288
.

(16)

The Standard Model has a large number of degrees of free-
dom: 12 gauge bosons; 48 chiral fermions and four Higgs
scalars. As such the SM values of these parameters are
A = 2.61 and B = 2.27. However, it is possible there
are many more new degrees of freedom at higher energy
scales and there are a plethora of theories which consider non-
minimal particle content. For example, in the Minimal Super-
symmetric Standard Model, these parameters are enlarged
such that A = 5.19 and B = 4.10. There are other theo-
ries with an even richer particle spectrum, for instance the
Scalar Democracy as outlined in [30] predicts the existence
of 1176 Higgs doublets as a dynamical explanation for the
observed fermion mass hierarchy and mixing. In such a the-
ory, A = 223.15 and B = 149.31. Moreover, theories which
ensure the asymptotic safety of the Standard Model [31] pre-
dict similar values of A and B to the work mentioned above.
Likewise, a large number of copies (∼ 1032) of the SM was
used to explain the origin and nature of dark matter [32] and
correspond to very large A ∼ B ≈ 2 × 1032.

4 The kernel structure

In order to numerically obtain solutions for α(p2) and β(p2)

we rotate the expressions of Eqs. (6) and (14) respectively
to Euclidean space. We begin by performing the following
replacements, k2 = −k2

E , p2 = −p2
E , d4k = id4kE which

modify α(p2) and β(p2) to take the following form

α
(
p2
E

) = 1 − 2πG
∫

[dkE ] f (kE )

×
[
2(kE · pE )2 + 4k2

E p
2
E + 3kE · pE

(
k2
E + p2

E

)]
p2
E (pE − kE )2

,
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β
(
p2
E

) = −8G2
∫

[dkE ] f (kE )

×
[
A(kE + pE )2−B

(
p2
E − k2

E

)2

8(pE − kE )2

]

× log

[
μ2

(pE − kE )2

]
, (17)

where k2
E and p2

E are positive and the Euclidean rotation has
changed the relative sign between α2 and β2 in the denomina-
tor of the above expression. We note that we have not calcu-
lated α(p2

E ) using the dressed graviton propagator because its
contribution will receive further suppression, by a loop fac-
tor, than the leading non-zero undressed contribution. The
most straightforward regularisation procedure, which is the
one we adopt, is to impose an ultraviolet (UV) cutoff Λ on
the magnitude of the momentum running in the loop. This
UV cutoff is also the condensate scale, above which the chi-
ral symmetry of the neutrino is restored and the condensate
dissolves. We expect the UV cutoff to be the same order as μ

given the non-renormalisability of quantum gravity. In QED,
a cutoff regularisation scheme is often employed due to its
numerical convenience. However, such an approach has its
disadvantages as it lacks Lorentz covariance and may lead
to ambiguous results. As it has been demonstrated the cutoff
regularisation scheme yields qualitatively similar solutions
as those derived using off-shell renormalisation [33,34], we
proceed with this approach.

We rescale the momentum and β such that p2
E = xΛ2,

k2
E = yΛ2 and β → βΛ. In addition, we replace the

integral measure, d4kE , by the hyper-spherical coordinates,
d4kE = 2πΛ4ydy sin2 θdθ , as well as defining pE · kE =√
xyΛ2 cos θ for θ ∈ [0, 2π ] to obtain

α(x) = 1 − GΛ2

(2π)2

∫ 1

0
dy

yα(y)

yα2(x) + β2(y)
K (x, y) ,

β(x) = +8G2Λ4

(2π)3

∫ 1

0
dy

yβ(y)

yα2(y) + β2(y)
L(x, y) .

(18)

The variable transformed kernels of Eq. (17) may be writ-
ten as

K (x, y) = 1

x

∫ π

0
s2
θ dθ

2xy cos2 θ + 4xy + 3
√
xy(x + y)cθ

x + y − 2
√
xycθ

,

L(x, y) =
∫ π

0
s2
θ dθ A (x + y + 2

√
xycθ )

× log
[
x + y − 2

√
xycθ

]

− B
(x − y)2

8(x + y − 2
√
xycθ )

log
[
x + y − 2

√
xycθ

]
, (19)

where sθ , cθ are sin θ and cos θ . The integrated forms of the
above equations shown in Fig. 3 for SM values of A and B.
In the top left plot of Fig. 3 is the kernel of α, K (x, y). This
kernel is large, K ≈ O(10), for x ∼ y. Because α is non-zero
at leading order it is not sensitive to the matter content and is
therefore independent of parameters A and B. Naturally, this

Fig. 3 For the SM particle
content we display the kernels
K (x, y) and L(x, y) =
ALA(x, y) + BLB(x, y) for
x ∈ [0, 1] and y ∈ [0, 1]
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is not the case for the kernel of β, L(x, y), which is calculated
using the dressed graviton propagator. For the same reason-
ing, the coefficient of the integrals of α and β (given by GΛ2

and (GΛ2)2 respectively) enter with different powers of the
UV cutoff. The kernel L(x, y) is split into two components,
L A(x, y) and LB(x, y), which are premultiplied by A and B
respectively:

L(x, y) = ALA(x, y) + BLB(x, y). (20)

LA(x, y) and LB(x, y) are shown in the bottom left and right
plots of Fig. 3. We observe that L A(x, y) is larger by a fac-
tor of a few than LB(x, y) for the majority of the x − y
region and hence the combined kernel L(x, y) is dominated
by LA(x, y). For x � y, the kernels have the simplified form:

K (x, y) = π

x

y

x
(3x + y) ,

LA(x, y) = π

12

[
5y2 − 3xy

x
− 6(x + y) log x

]
,

LB(x, y) = π

8

(x − y)2

xy

[
y − x log x + (x − y) log(x − y)

]
.

(21)

From Eq. (19), we observe the xK (x, y) and L A,B(x, y)
are symmetric functions of x and y. Therefore, we perform
the convenient replacement x → (x+y)+|x−y|

2 and y →
(x+y)−|x−y|

2 into expressions of xK (x, y) and L A,B(x, y)
to obtain

K (x, y) = π

x

(x + y)3 − [
(x + y)2 + 2xy

] |x − y|
2xy

L A(x, y) = π

12

{
5(x2 + y2) − 5(x + y)|x − y| − 6xy

(x + y) + |x − y|
−6(x + y) log

[
(x + y) + |x − y|

2

]}

LB(x, y) = π

8

(x − y)2

xy

{
(x + y) − |x − y|

2

− (x + y) + |x − y|
2

log

[
(x + y) + |x − y|

2

]

+|x − y| log(|x − y|)} , (22)

which are expression for the kernels of α and β respectively
if x > y or x < y. The analytic manipulation from Eqs. (21)
to (22) is applied to make the kernels more amenable for
numerical integration.

The non-trivial momentum structure of the L(x, y) kernel
may be most easily understood in the language of BCS the-
ory [35] which describes the pairing of fermions. A Cooper
pair can form between two fermions of opposite momenta
and spin. In such a configuration, the system’s energy is
minimised, and the fermions combine to give a spin-singlet
(or possibly triplet), which leads to an attractive interaction
between the fermionic pair. In addition to the spin compo-
nent, there is also an orbital angular momentum component,

l, which takes integer values; in the case of an s-wave inter-
action, l = 0. However, the orbital components can also have
other non-trivial integer values, l = 1 (p), l = 2 (d) which
characterise the pairing. As observed from the kernel struc-
ture shown in Fig. 3, L(x, y) = 0 for x = y = 0 which
corresponds to a d-wave interaction. This feature arises due
to the spin-2 nature of the graviton.

5 Numerical solutions to the Schwinger–Dyson equation

It was postulated in [23] that active neutrinos could condense
via gravitational instantons and consequently acquire a mass
below energies of ∼ 100 meV. In this work, we apply the
calculational techniques used to condense right-handed neu-
trinos from their gravitational interactions [21] to light, active
neutrinos.

The practical challenge of this task comes from the great
separation in the relevant energy scales. The gravitational
coupling is parametrised by κ = √

32πG ≈ 10−18 GeV−1.
From the SDE we find the coefficients of both α and β are
proportionate to GΛ2 and (GΛ2)2, respectively. To recover a
non-trivial vacuum, the cutoff scale Λ cannot be far from the
Planck scale (Mpl ≈ 1019 GeV) unless the particle content is
enormous. This point will become more apparent in Sect. 5.1.
On the other end of the energy scale are the tiny neutrino
masses, mν ∼ 10−10 GeV.3 We can contrast this with the
relevant scales in QCD, where ΛQCD ≈ 1 GeV and the light
quark masses, mu/d ≈ O(1) MeV. We find the separation
in scales to be mu/d/ΛQCD ≈ 10−3. However, in our case
of interest, we require a non-zero but very small ratio of
scales, mν/ΛG ≈ 10−29. This presents a unique numerical
challenge in finding the non-trivial vacuum compared with
other gauge theories where the SDE techniques are applied.
We present two possible solutions below which demonstrate
gravitationally induced chiral symmetry breaking.

5.1 Extrapolation

We implement an iterative, numerical method of solving the
SDE with a cutoff regularisation a similar method as outlined
in [37]. The limitations such an approach are discussed in
[38]. We define α(i+1) and β(i+1) (for i = 0, 1, 2, 3, . . .) to
be

α(i+1)(x) = 1 − GΛ2

(2π)2

∫ 1

0
dy

yα(i)(y)

yα(i)2
(x) + β(i)2

(y)
K (x, y) ,

β(i+1)(x) = 8(GΛ2)2

(2π)3

∫ 1

0
dy

yβ(i)(y)

yα(i)2
(y) + β(i)2

(y)
L(x, y) . (23)

3 It was very recently confirmed by the terrestrial experiment KATRIN
that the effective neutrino mass measured using beta decay is less than
1.1 eV (90% CL) [36].
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We choose two trial functions as initial values for the iterative
calculation

α(0)(x) = c1 , β(0)(x) = c2 , (24)

where c1 and c2 are constants. As expected, the solutions
of α and β do not exhibit sensitivity to the value of the trial
functions. Also, we require a definition of convergence which
we parametrise by the tolerance

tolerance ≡ β(i+1)(x)

β(i)(x)
− 1 . (25)

The procedure for solving Eq. (23) is as follows:

1. Choose a value of GΛ2, A, B, tolerance and trial function
values.

2. Subdivide the x-interval [xIR, 1] into n bins, where xIR is
infrared boundary of the theory.

3. Iteratively solve Eq. (23) for each bin.
4. For each bin we calculate the tolerance and summate this

measure over all bins.
5. Require the solution to be stable as the tolerance is

reduced.

To ensure the solution is independent of the number of bins,
we normalise the tolerance by the total number of bins. Addi-
tionally, we test the solution does not vary for differing values
of the tolerance. As the region of interest is in far-infrared,
as represented by xIR, to probe the sub-electroweak energy
scales requires x ≈ 10−34. Moreover, as the mass of the
neutrino is defined as

mν = β(0)

α(0)
Λ, (26)

requires β(0) ≈ 10−29 for Λ ≈ Mpl. Achieving this level
of precision in the numerical integration and the endpoint is
challenging, and consequently, we solve the iterative SDE in
regions where we have numerical control and then extrapo-
late in the combination GΛ2A.

In summary, fix GΛ2 = 1 and vary A and B (which
parametrise the matter content) and find the non-trivial min-
ima which gives rise to a non-zero stable value of β(xIR =
10−10). We then extrapolate this function to xIR = 0 for β to
β(x = 0). We repeat this procedure for several values A and
B (for a fixed GΛ2) and calculate the solutions numerically.
We fit a polynomial to these points as represented by the red
line and blue dots in Fig. 4 respectively. The functional form
of this polynomial is

β2(0) = −0.0792286 + 5.28 × 10−4(GΛ2A)
3
2

− 1.14 × 10−5(GΛ2A)2
(27)

This is the lowest order polynomial that provides a good fit to
the numerically calculated points. To recover neutrino masses
of the correct order of magnitude requires β(0) ≈ 10−29 with

Fig. 4 β2(0) as a function of (GΛ2)A where A and B. We take A = B
with GΛ2 = 1 and vary the values of A . The blue dots are the solutions
to the SDE and the red dotted line is the fitted polynomial

GΛ2 ≈ 1 implies A � 30. Therefore new particle content is
required to support the condensate and the lower the conden-
sation scale the larger the particle content required for chiral
symmetry breaking to occur. As instantons are a modification
to the gauge boson propagator, the inclusion of such effects
are unlikely to lower the scale substantially. We note that
there is a large amount of fine-tuning required to reproduce
light neutrinos masses: we must tune the quantityGΛ2A such
that the solution is very close to but not equal to the chiral
preserving solution, β(0) = 0. This tuning is not surprising:
in the scenario of minimal new particle content, the neutrino
mass is proportionate to Λ, the only dimensionful parameter
of Eq. (26). A non-trivial vacuum requires GΛ2 ≈ 1 other-
wise the iterative solution of Eq. (23) evolves to the trivial
vacuum. Because G ≈ 1/M2

pl this implies Λ ≈ Mpl. There-
fore to recover sub-eV masses of neutrinos requires β(0)

to be very small. It is important to note that this discussion
applies only to a minimal number of new degrees of freedom
and the conventional scale of quantum gravity. However, as
we will further elucidate in Sect. 6, further new physics may
ameliorate this fine-tuning.

5.2 Consistency of β(x) with the Kernel structure

In this method, we exploit the structure of the kernel of β to
demonstrate the existence of a non-trivial vacuum. Once the
true vacuum is found, any value of the infrared mass can be
recovered from parameter tuning.

We remind the reader x is the neutrino’s ingoing momen-
tum normalised by the UV cutoff and y is the cutoff nor-
malised loop momentum. From Fig. 5, we show the kernel of
β, L(x, y), for all values of y and x ∈ [10−15, 10−10] which
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Fig. 5 For the SM particle content we display the kernels L(x, y) =
ALA(x, y) + BLB(x, y) for x ∈ [10−15, 10−10] and y ∈ [0, 1]

demonstrates the far-infrared behaviour of the kernel.4 From
the kernel structure, we postulate that β(x) is insensitive to x
until close to the ultraviolet cutoff. As the only x dependence
can come from the kernel because y is integrated over, taking
the form of β to constant in x is beyond a sufficiently good
approximation. The same is true for the kernel of α. From
these considerations, the crudest approximation of β(x) is a
step function of constant magnitude, a, which can be written
as

β(x) = 8
(
GΛ2

)2

(2π)3

∫ 1

0

aydy

a2 + y
L A(x, y), (28)

where the quenched limit has been applied, α ≈ 1, and the
definition of a contains information about the particle content
and the overall scale of β. Since A > B and LA(x, y) >

LB(x, y) we have ignored the sub-leading contribution of
BLB(x, y). We solve Eq. (28) for a fixed value ofGΛ2 and a.
Fora = 10−5 andGΛ2 = 1 we find the solution to be β(0) ≈
4 × 10−6 as shown in Fig. 6. With the appropriate tuning of
GΛ2 and a any non-zero value of β(0), and therefore the
infrared mass of the neutrino, can be recovered. From Fig. 6,
we observe there is some non-trivial x dependence in β(x).
However, this only occurs for x ≈ 0.4 which is in the far
ultraviolet region of the theory. As we are only interested in
the infrared mass and do not make any statements regarding
the deep UV physics, this feature does not impact the final
result. This approach checks for the self-consistency of the

4 We note that for smaller values of x (x 
 10−15) this flat behaviour
in x does not change.

Fig. 6 β(x) as a function of x from solving Eq. (28) with a = 10−5

and GΛ2 = 1

postulated form of β(x) with the kernel structure and agrees
with the first method discussed in Sect. 5.1.

6 Discussion

In Sects. 5.1 and 5.2 we demonstrated a common neutrino
mass scale can be generated through iteratively solving the
SDE and also making an informed Ansatz for the form of
β(x). From the first method, we found there are two factors
which support a gravitationally induced neutrino condensate:
the scale of the condensate, Λ, and the particle content as
parametrised by A and B. These two factors compensate for
each other: if the condensation scale is lowered, the parti-
cle content must be increased and vice versa. The minimal
particle content required for Λ ≈ Mpl is still larger than
the SM; however, this conclusion follows from assuming a
conventional Planck scale, Mpl ≈ 1019 GeV.

An alternative possibility comes from extra compact
dimensions [39,40]. Given n extra dimensions, with length
scale R, the number of degrees of freedom for each bulk
field Np is proportional to the number of Kaluza-Klein
(KK) excitations, and the latter is determined to the cut-
off scale, i.e., Np ∼ (ΛR)n [39]. In this framework, the
cutoff scale, Λ, should be lower than the true Planck scale
M∗ in 4 + n dimensions, which is correlated with the effec-
tive Planck scale Mpl in the four dimensions. For example,
in the ADD model [39], M2

pl = Mn+2∗ Rn , Np can maxi-

mally reach the order (M∗/Mpl)
2. The true Planck M∗ is

much lower than the effective scale Mpl. By assuming the
cutoff scale to be just below M∗, e.g., Λ = 0.9M∗, we
obtain GΛ2A ∼ Λ2Np/M2

pl ∼ O(1), which guarantees
the model staying in the non-perturbative regime. In this
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regime, the ratio between neutrino mass and the scale is mod-
ified into mν/Λ ∼ mν/M∗. Furthermore, by taking n = 3
and R ∼ 10−9 m, which is sufficient to evade experimen-
tal constraints [41], M∗ is lowered to the TeV scale and
mν/Λ ∼ 10−14.

In contrast with the vast majority of neutrino mass gener-
ation mechanisms, the effect of gravitational condensation is
insensitive to the Dirac or Majorana nature of the neutrino.
As gravity is universal and does not discriminates between
particle species, if a small mass is induced for neutrinos, a
small mass will be induced for the other SM fermions at
the scale Λ. Although this scale may be significantly below
the Planck scale, a great deal of new matter is required. We
note that electroweak symmetry will not be induced as the
effect of tadpoling the Higgs is of order of the mass con-
tribution to the neutrinos, which is small. The connection
between the gravity induced mass gap for the neutrinos and
black holes, which are non-perturbative solutions in general
relativity, may be recovered as poles in the resummed gravi-
ton propagator could be interpreted as black hole precursors
[42,43].

In summary, we have shown that neutrinos can condense
via gravitational interactions and undergo chiral symmetry
breaking. To do so, we treat gravity as an effective quantum
field theory and solve the Schwinger–Dyson equations to find
a non-trivial vacuum. The true vacuum is recovered in two
ways: the first through iteratively solving the SDE and the
second from making an Ansatz for the kernel of β. In the min-
imal setup, the scale of the condensation is found to be close
to the Planck scale and new degrees of freedom beyond the
Standard Model particle content are required. Interestingly,
new physics is required to explain neutrino mass scale in
this framework: the Standard Model in addition to gravity is
insufficient to explain neutrino masses. An important point
to note is that this calculation demonstrates a common neu-
trino mass scale may be gravitationally induced; however, to
reproduce oscillation data, a further mechanism is required
to break the mass degeneracy. We agree with the conclusions
of [23], where a common mass scale is recovered. In that
work, the neutrinos’ mass splittings are induced from the
effective potential of the Goldstone bosons, which is a non-
gravitational effect. The Goldstone bosons associated with
the former mechanism can be relatively light (∼ MeV) and
there is interesting associated phenomenology [24]. How-
ever, in this work, if the condensate scale is high (and not
lowered due to extra-dimensions or new particle content), the
mass of the Goldstone bosons would be large and no such
low-scale phenomenology would not be observed. On the
other hand, if the scale was lowered due to extra-dimensions
or new particle content, similar phenomenology to that dis-
cussed in [24] would be observed. Furthermore, lowering the
condensate scale would have interesting cosmological con-
sequences: as the neutrino mass changes on cosmological

timescales, its mass can be reconstructed as a function of
redshift [44].

We find that with minimal new particle content, the con-
densation scale is high and close to the Planck scale. The
contribution of the condensate to neutrino masses is small
and equal for the three neutrino masses. The condensate scale
can be lowered if there is a significant increase in the number
of degrees of freedom and in such a case, the contribution
of the condensate to the three neutrino masses would still
be small and equal. This compensatory effect in supporting
the condensate does not fully overcome the large fine-tuning
required to recover tiny neutrino masses. However, if the true
Planck scale is lowered than expected, due to extra compact
dimensions, such tuning could be somewhat reduced.
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Appendix A: Graviton Feynman rules

We follow the convention of [29,45] and present some of the
basics of gravitational field theory in this Appendix. The full
gravitational action is given by

Sg =
∫

d4x
√−g

(
1

4πG
R + Lm

)
, (29)

where R is the scalar curvature and Lm is the Lagrange den-
sity for matter. For massless minimal scalar (spin-0), Dirac
fermion (spin-1/2), and gauge boson (spin-1) particles, as
denoted by φ, ψ and Aμ respectively, the Lm term are rep-
resented by

Lm = Dμφ∗gμνDνφ + i

2

[
ψ̄γ aeμ

a Dμψ + (Dμψ̄)γ aeμ
a ψ

]

− 1

4
gμνgρσ FμρFνσ ,

(30)

where Fμν = DμAν − Dν Aμ and Dμ denotes the covariant
derivative with respect to the gravitational field and gauge
fields, and eμ

a is the vierbein to shift frame to the local
Minkowski flat frame. In the flat space background, Feynman
rules for gravitational interactions are obtain by perturbing
the metric

gμν → ημν + κhμν , (31)

where κ = √
32πG. As we work in the flat space back-

ground, the classical gravitational field is fixed at zero and
hμν represents the gravitational quantum perturbation. The
tree-level Feynman rules for gravitation propagator is given
by

Graviton propagator : Gμνρσ (p) = iPμνρσ

p2 (32)

with

Pμνρσ = 1

2

(
ημρηνσ + ημσ ηνρ − ημνηρσ

)
. (33)

The tree-level Feynman rules for massless minimal scalar,
Dirac fermion and gauge boson propagators are respectively
given by

Minimal scalar propagator : Δ(p) = i

p2 ,

Dirac fermion propagator : SF (p) = i

p/
,

Gauge boson propagator : Dμν(p) = iημν

p2 .

(34)

Feynman rules for interactions between graviton and
fermions, minimal scalars and gauge bosons are given by
τ1, τ2 and τ3 respectively.

(35)

(36)

where κ = √
32πG and all momenta are assumed to be

out-flowing from the vertex.

Appendix B: Vacuum polarisation calculation

In this section we show the brute force method of calculating
the vacuum polarisations. Lorentz algebra was manipulated
using FeynCalc [46] and the loop integration was completed
using Package X [47]. The contribution from gauge bosons
to the vacuum polarisation tensor is

iΠαβ,γ δ =
∫

[dl]ταβρσ
3 (l, q − l)

−igρσ (l + q)2

(l + q)4

×τ
γ δξω
3 (−l, l − q)

−igξωl2

(l)4

= κ2
∫

[dl]ταβρσ
3 (l, q − l)

gρσ (l + q)2

(l + q)4

×τ
γ δξω
3 (−l, l − q)

gξωl2

(l)4
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= 2iG

π

[
1

30

(
qαqβ − q2gαβ

) (
qγ qδ − q2gγ δ

)

− 1

20

(
qαqγ − q2gαγ

) (
qβqδ − q2gβδ

)

− 1

20

(
qαqδ − q2gαδ

) (
qβqγ − q2gβγ

) ]

× log

[
−μ2

q2

]
. (37)

where we have divided by a symmetry factor of two. The
contribution from Dirac fermions to the vacuum polarisation
tensor is

iΠαβ,γ δ = κ)2
∫

[dl]ταβ
1 (l, q − l)

(/l + /q)

(l + q)2 τ
γ δ
1 (−l, l − q)

(/l )

(l)2

= i
2G

π

[
− 2

15

(
qαqβ − q2gαβ

) (
qγ qδ − q2gγ δ

)

+ 1

5

(
qαqγ − q2gαγ

) (
qβqδ − q2gβδ

)

+1

5

(
qαqδ − q2gαδ

) (
qβqγ − q2gβγ

)]
log

[
−μ2

q2

]
.

(38)

and the contribution from minimal scalars to the vacuum
polarisation tensor is

iΠαβ,γ δ =
∫

[dl]ταβ
2 (l, q − l)

i

(l + q)2 τ
γ δ
2 (l + q, l)

i

(l)2

= κ2 i

16π2

∫
[dl]τ

αβ
2 (l, q − l)τ γ δ

2 (−l, l − q)

(l + q)2l2

= i
2G

π

[
1

40

(
qαqβ − q2gαβ

) (
qγ qδ − q2gγ δ

)

+ 1

240

(
qαqγ − q2gαγ

) (
qβqδ − q2gβδ

)

+ 1

240

(
qαqδ − q2gαδ

) (
qβqγ − q2gβγ

)]

× log

[
−μ2

q2

]
.

(39)

Although the graviton is not a matter field, it does have self
couplings and therefore the graviton will contribute to its
own vacuum polarisation. We apply the contribution from the
graviton self vacuum polarisation as calculated by ’t Hooft
and Veltman [28],

iΠαβ,γ δ = i
2G

π

[
23

60

(
qαqβ − q2gαβ

) (
qγ qδ − q2gγ δ

)

− 7

40

(
qαqγ − q2gαγ

) (
qβqδ − q2gβδ

)

− 7

40

(
qαqδ − q2gαδ

) (
qβqγ − q2gβγ

)]

× log

(
−μ2

q2

)
. (40)
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