
1.  Introduction
For over a century, geoscientists have recognised the potential of fluvial geomorphology to unravel links 
between landscape evolution and external forcing (e.g., Davis, 1899; Gilbert, 1880). In his review of physical 
geography at the time, de Lapparent (1896) outlined a number of basic observations underpinning modern 
geomorphology: the systematic concave up shape of river long profiles, the hypothesis that erosion is corre-
lated with channel gradient, and that lithologic contrasts and inherited tectonic structures influence river 
profile form. The geometry of river profiles later became one of the key tools for geoscientists in the first half 
of the twentieth century for interpreting landscapes (e.g., Knopf, 1924).

Assuming that channel gradient encodes information about erosion rates, lithology, or other factors, one is 
faced with a fundamental problem: the concave nature of a typical river prohibits comparison of gradients 
between river reaches with different drainage areas. That is, how can one tell if a headwater channel is 
steeper than a section of the river some distance downstream in a way that is meaningful for interpret-
ing landscape evolution? Some normalization is required to compare river sections with different drainage 
areas.

Morisawa (1962) noted a power law relationship between gradient and drainage area, which led to a means 
of normalizing river gradients. Flint (1974) formalized these observations into the slope–area relationship 
with a concavity index ( E   ), which describes how quickly river gradient decreases with increasing drainage 
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differences can change the spatial distribution of snE k  and in extreme cases invert differences in relative 
steepness: relatively steep reaches can appear relatively gentle as quantified by snE k  . These inversions are 
function of the range of drainage area in the considered watersheds. We also demonstrate that the E   
coordinate, and therefore the detection of migrating drainage divides, is sensitive to varying values of E   . 
The median of most likely E   across a wide range of mountainous and upland environments is 0.425. This 
wide range of variability suggests workers should not assume any value for E   , but should instead calculate 
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Plain Language Summary  The elevation profiles of rivers are commonly used to interpret 
their tectonic and erosion history. The slope of river channels tends to decline downstream, and this 
decline can be described by a river's concavity. Estimating the concavity is important when comparing 
river profiles across a region, and using an assumed value for concavity may result in spurious 
interpretations.
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area, and a steepness index (  sE k  ) that describes the relative steepness of a reach regardless of its drainage 
area:

sS k A � (1)

where E S is the gradient of elevation along the channel ( S dz dx /  where E z is the elevation and E x the flow dis-
tance); and E A is the drainage area. This relative steepness index sE k  , in particular, has been widely used in geo-
morphology because of its empirically observed positive correlation with erosion rates (e.g., Cyr et al., 2010; 
DiBiase et al., 2010; Harel et al., 2016; Kirby & Whipple, 2012; Mandal et al., 2015; Ouimet et al., 2009; 
Safran et al., 2005; Scherler et al., 2014), supported by a theoretical underpinning (Whipple & Tucker, 1999). 
Note that it has been commonly suggested that this relationship mostly applies above a critical drainage 
area representing the switch from domains dominated by debris-flows to those dominated by fluvial inci-
sion (Whipple et al., 2013, and references therein).

Equation 1 can be rearranged so that sE k  can be calculated at any point in a drainage network given the local 
values of E S and E A . This value depends on the value of the concavity index. In addition the units of sE k  depend 
on E   (they are 2E m   ). Drainage areas within channel networks can vary over several orders of magnitude so 
changing the exponent of E A in Equation 1 has a large effect on sE k  if it is used to calculate sE k  values. For exam-
ple, for a hypothetical location where E S  = 0.05 and E A  = 1e8 2E m  , sE k   = 12.56 0.6E m  if E    = 0.3 whereas sE k   = 3,155 

1.2E m  if E    = 0.6.

In order to compare sE k  within different channels, the steepness index is typically calculated with a fixed 
value of E   . This is called the reference concavity index, denoted by refE   . When a reference concavity index 
is used, the resulting value of the channel steepness index is called “normalized” and is denoted with the 
symbol snE k  with fixed units (Wobus et al., 2006).

Despite the importance of constraining E   for calculating the channel steepness index, it is often assumed 
that 0.4 0.6E    (e.g., Kirby & Whipple, 2012; Tucker & Whipple, 2002; Whipple, 2004). To illustrate the 
difference in magnitude and pattern of snE k  across different (but common) refE   units, Figure 1 shows popula-
tions of snE k  in the same watershed for 0.3refE    , 0.45refE    and 0.6refE    .

For the rest of this study, we will use three terms to refer to concavity indices. We use E   to generically refer 
to the concavity index, which can vary from a point to another. We use optE   to refer to the best-fit E   value for 
a particular region of interest, for example for a river catchment. Finally, we use refE   to refer to a fixed value 
of E   that is used to calculated snE k  or E   over multiple catchments.

When extracting snE k  values, workers must, by definition, select refE   , so what value should be used? Numer-
ous theories exist to explain both bedrock and alluvial channel geometry. For example, if one assumes bed-
rock channel incision is proportional to shear stress, then the concavity index should be equal to ∼0.43 (e.g., 
Howard et al., 1994; Tucker & Whipple, 2002), whereas if bedrock channel incision is proportional to stream 
power per unit bed area then the concavity index should be equal to 0.5 (e.g., Whipple & Tucker, 1999). 
Since the 90s, many authors have introduced far more complex models of bedrock channel incision that 
account for sediment flux (e.g., Gasparini et al.,  2006; Sklar & Dietrich, 1998), incision thresholds (e.g., 
DiBiase & Whipple, 2011; Lague et al., 2005), model individual processes such as abrasion and plucking 
(e.g., Chatanantavet & Parker, 2009) as well as models for channel profile evolution in alluvial rivers (e.g., 
Wickert & Schildgen, 2019). These models predict a range of concavity index values based on the tectonic, 
climatic, and sedimentary context. For example, Wickert and Schildgen (2019) predict that in gravel bed 
rivers, subsidence and uplift modulate the concavity index, with lower values of E   when sediment flux is 
low or tectonic uplift is high. A recent model proposed by Turowski (2021) suggests that when the bedload 
fraction is independent of drainage area, concavity index values can range widely, with values ranging from 
0.25 to 0.625 for choices of bedload transport equations and channel width scaling that have been observed 
in nature. We would argue that there is no consensus as to the correct model, and even if you believed one 
of the above models were correct, unless direct observations of incision process, sediment flux, uplift and 
other factors were available it would be a challenge to calculate the concavity index based on parameterizing 
a model.

Given the uncertainty in the appropriate value of refE   for calculating snE K  , it is often assumed that 0.4 E   0.6 
(e.g., Kirby & Whipple, 2012; Tucker & Whipple, 2002; Whipple, 2004), in some cases based on topographic 
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observations (which we describe below) and in others invoking one of the the models predicting channel 
geometry. Regardless of the way an author selects the value of refE   , the selection can have a large impact 
on the values of snE k  , as illustrated by Figure 1. This shows populations of snE k  in the same watershed for 

refE    = 0.3, refE    = 0.45 and refE    = 0.6 and demonstrates both changes in magnitude and spatial pattern induced 
by different refE   . As discussed in Gailleton, Sinclair, et al. (2021), the large eastward drop of snE k  by values 
between 470 and 480 is linked to a combination of differential lithology and recent tectonics. However, the 
relative magnitude of this reduction depends on the choice of refE   .

We may be uncertain about the correct incision rule, and will therefore struggle to define a value of refE   
based on the physics of incision or sediment transport. We can, however, directly observe the concavity 
index using topographic data, as defined by Equation 1. This has been attempted by numerous authors. 
For example, Tucker and Whipple (2002) compiled concavity indices using slope–area regression from ten 
previous studies, aggregating 27 different sites, and found concavity indices ranging from 0.11 to 1.13. Whip-
ple (2004) argued that if you limit extraction of the concavity index to bedrock rivers with homogeneous 

Figure 1.  (a) Example of populations of snE k  calculated for three different refE   values as a function of drainage area. The watershed is the Putna river in Romania, 
23000 kmE  , with outlet coordinates at 45.89° latitude and 27.00° longitude in WGS84. The solid line represents the median snE k  calculated with each value of refE   

and binned by drainage area in log space. The shaded area is the corresponding inter-quartile range. Note that the distribution of E ksn compared to the median 
varies depending on refE   . For example, at low drainage areas, snE k  is above the mean for 0.3refE    , but below the mean for 0.6refE    . The solid line represents the 
median snE k  value over the whole area. (b, c, and d): maps of snE k  values corresponding to (a), respectively for refE   equal to 0.3, 0.45, and 0.6. The spatial pattern 
differs depending on refE   . To allow intercomparison between snE k  values with different magnitude and units, we set the minimum and maximum values of the 
color bars to the 10thE  and 90thE  quartile for each population.
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substrates, homogeneous uplift fields and time invariant uplift, concavity indices converge to a range be-
tween 0.4 and 0.7.

Whipple (2004) went on to articulate circumstances in which concavity indices may fall outside this range. 
They argued that low concavity indices (  0.4E    ) can result from drainage basins influenced by debris flows 
(e.g., Stock & Dietrich, 2003) or from downstream increases in incision rate or rock strength (Kirby & Whip-
ple, 2001). Alluvial rivers can also have low concavity values: Gasparini et al. (2004) used a numerical model 
to predict that finer sediment could result in low concavity values (< 0.4E  ) when either grain size was less 
than 100 mm in homogeneous sediment or if there was a high percentage of sand in mixed gravel and sand 
rivers. Whipple (2004) suggested that high concavities (  0.7E    ) could result from downstream transitions 
to full alluvial conditions with bedrock reaches in headwaters, and also noted the findings of Kirby and 
Whipple (2001) that high concavity can result from downstream increases in rock strength or incision rate. 
Extreme concavity values (  1.0E    ) can also result from large knickpoints (e.g., Schoenbohm et al., 2004). 
Furthermore, Zaprowski et al. (2005) found that channel concavities varied systematically across a gradient 
in mean annual precipitation and precipitation intensity, with higher concavities associated with a more 
intense hydrological settings on the high plains of the western USA.

Given the range of possible values of E   both observed from topographic data and suggested by models, 
we wish to answer several questions. If one's motivation is to use snE k  to compare channel profiles for the 
purpose of inferring erosion rates or tectonic uplift, does the choice of refE   matter? If different basins have 
different values of the “correct” concavity index (  optE   ) does it matter to our interpretations if we apply the 
same refE   to these basins? To do this, we attempt to constrain the range of concavity indices present both 
within and between a wide range of different study sites. We compare different methods of estimating the 
most likely values of optE   and refine existing methods of quantifying the uncertainty in choosing a most 
likely value of refE   . We then examine the impact of using a poorly-constrained reference concavity value on 
estimates of snE k  and the related metric E   , which integrates drainage area along channels and has been used 
to detect drainage divide migration (Willett et al., 2014). We highlight the potential risks of misinterpreta-
tion in such cases, and also identify cases where a blanket value of refE   can be applied across a landscape, 
despite spatially varying optE   , without risk to interpretation of snE k  values.

2.  Determining the Concavity Index
2.1.  Concavity Index Derived From Slope–Area Data

A common approach to deriving fluvial profile concavity is to transform Equation 1 into logarithmic space:

[ ] [ ] [ ]slog S log k log A � (2)

where E   is the gradient of log[ E A ]–log[ E S ] plots and sE k  the intercept where log[ E A ] = 0 (i.e., where E A  = 1 2mE  
if areas are reported in square meters). Assuming sE k  is a constant, E   can be determined by linear regres-
sion of log[ E A ]–log[ E S ]. This logarithmic slope–area method has been widely used to determine both the 
concavity index and channel steepness index (e.g., Kirby & Whipple, 2012; Whipple et al., 2013; Wobus 
et al., 2006).

However, the use of raw E S – E A data has limitations: the seminal Wobus et al. (2006) paper includes the word 
“pitfalls” in the title. DEM data is inherently noisy (e.g., Perron & Royden, 2013; Wobus et al., 2006), either 
because of natural noise in river profiles or due to errors in the acquisition methods (e.g., airborne lidar or 
satellite altimetry), and taking the gradient of noisy data amplifies that noise (e.g., Perron & Royden, 2013). 
In addition, tributaries result in large jumps in drainage area, resulting in major gaps along the log[ E A ] axis. 
Between tributaries, drainage area increases slowly, but channel gradient can vary dramatically due to het-
erogeneity in local river bed conditions. This means that some form of averaging or binning must be used 
on the raw slope–area data in order to extract sE k  and E   values.

We illustrate difficulties in extracting the concavity and steepness indices from E S – E A in Figure  2. This figure 
contrasts a theoretical case (panel a) with real data that considers the basin as a whole (panel b), each differ-
ent tributary channel individually (panel c), or solely the main stem channel (panel d). Values of E   extracted 
from E S – E A data can vary substantially in the same drainage basin depending on how this data is grouped and 
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binned, as shown by the histograms of best-fit populations of E   within the inset plots in panels (b–d). This 
does not suggest that E S – E A data is unsuitable for extracting landscape metrics: steepness indices derived from 
this method have been shown to correlate well with other landscape properties such as erosion rates and 
tectonic activity in a range of contexts (e.g., Kirby & Whipple, 2012). However it highlights the potential 
difficulties and uncertainties in using this technique to extract E   or sE k  , particularly across large areas where 

E   might vary spatially.

2.2.  Concavity Index From the Integral Approach

These problems with the slope–area approach have led to the development of alternative methods in recent 
years. One such technique is to integrate drainage area along flow distance, which was first suggested by 
Royden et al. (2000) and further developed in Perron and Royden (2013) as a way to circumvent uncertain-
ties associated with calculating gradient from noisy topographic data. Following Whipple et al. (2017) we 
can integrate Equation 1, resulting in

0

0

( ) ( ) ,
( )

xs
b xb

k A
z x z x dx

A xA





   
        

� (3)

Figure 2.  Example of different populations of E   obtained from the same E S – E A data using different grouping and binning. (a) An idealized channel with slope 
and area following Equation 1. E   is uniform and a clear knickpoint separates two populations of sE k  , or snE k  if refE    . (b) Slope–area data from a real watershed 
(the Buzu river in Romania, 23000 kmE  , with outlet coordinates at 45.20° latitude and 26.75° longitude in WGS84). Each gray point represents gradient calculated 
over a vertical window of 20 m; data derived from the ALOS World 3D 30 data set. Note the noise and irregularity of data spacing along the axes. In orange, data 
is binned by drainage area and concavity is calculated using a segmentation algorithm described in Mudd et al. (2014). Only one of the resulting segments has 
a concavity between 0 and 1: the inset in panels (b, c, and d) show histograms of concavity values between 0 and 1 based on segmentation of S–A data. Panel (c) 
shows slope–area data binned by drainage area for all tributaries of the same watershed. The population of E   is obtained by using the segmentation of slope–
area data in each each tributary. Panel (d) shows data for the main stem channel only.
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where ( )bE z x  is the elevation of the channel at an arbitrary base level, and 0E A  is a reference drainage area, 
introduced to nondimensionalize the area term within the integral in Equation 3. We can then define a 
longitudinal coordinate, E   :

0 .
( )

x
xb

A dx
A x




 

  
 

� (4)

The coordinate E   has dimensions of length, and is defined such that at any point in the channel:

0
( ) ( ) .s

b
kz x z x

A  
 

    
 

� (5)

Equation 5 has two key predictions: firstly, assuming that sE k  and E   are spatially constant (fixed to a refE   ), 
there will be a linear relationship between E   and elevation for a single channel; and secondly, that tributar-
ies will be collinear with the main stem, i.e., both the main stem and its tributaries collapse on a line in E   
space. If the linearity prediction is true, a best-fitted optE   can be calculated for a river by iterating through a 
range of refE   values for a given network and selecting the value with a best-fit linear relationship between 

E   and elevation (Perron & Royden, 2013). In many real landscapes which are undergoing transient adjust-
ment, however, sE k  (or snE k  ) may vary spatially. Alternative approaches have attempted to fit a number of line-
ar segments to E   -elevation data to circumvent this problem (Mudd et al., 2014, 2018). Note that collinearity 
does not imply that the whole basin collapses to a single line in E   space, but rather that locally in E   space, 
i.e., by segments, tributaries and the main stem profile should be well approximated by the same line.

The collinearity prediction provides a second independent metric that can be used to determine the optimal 
reference concavity index (  optE   ) that does not assume that river profiles are linear in E   -elevation space. In-
stead it assumes that a point anywhere on the channel network with the same E   value will have the same 
elevation. This has been used as the basis for a number of techniques which calculate the concavity index 
by minimizing the scatter between points on tributaries with the main stem channel (Goren et al., 2014; 
Hergarten et al., 2016; Mudd et al., 2018). The collinearity test would be rather restrictive, however, if it were 
limited to landscapes where sE k  were uniform. Royden and Perron (2013) used solutions of the stream power 
law to show that collinearity holds even if there are time varying changes to a spatially homogeneous uplift 
or base level fall. That is, the segment-wise collinearity should hold for most of the stream network (and all 
if the slope exponent is unity) even if migrating knickpoints are present. The stream power law has many 
assumptions (e.g., Lague, 2014), but we can alternatively use geometric relationships to show that colline-
arity is indicative of the most likely concavity index without invoking stream power.

Two centuries ago, Playfair (1802) observed that tributary junctions often featured channels joining at a 
common elevation: waterfalls are not systematically present at tributary junctions. This must mean that the 
two contributing streams need to have eroded at the same rate as the river just downstream of the junction. 
Niemann et al. (2001) expanded on this geometric observation and derived an expression for the migration 
rate of a local channel steepening or knickpoint (called its celerity, hE Ce  [L/T]) of:

2 1

1 ,hCe E
S S

 
� (6)

where 1E S  is the channel slope prior to disturbance, 2E S  is the channel slope after disturbance (e.g., due to a 
change in incision rate E E ), and E E  is the difference between the incision rate before and after disturbance  
(  1E E  and 2E E  in units of length per time, 2 1E E E E    ). Following Wobus et al. (2006) we can introduce drain-
age area into Equation 6 by replacing the slope terms using Equation 1.

2 1

2 1
.h

s s

E ECe A
k k




� (7)

Once hE Ce  is known, we can calculate the vertical celerity (  vE Ce  ) which is simply the horizontal celerity multi-
plied by the local slope after disturbance 2E S  (Wobus et al., 2006). The vertical celerity of a disturbance to the 
channel network is independent of drainage area:

2 1
2

2 1
.v s

s s

E ECe k
k k




� (8)

Equation 8 implies that, under conditions of spatially homogeneous uplift and constant erodibility (i.e., 
channels with the same slope and drainage area erode at the same rate), then changes in slope will propagate 
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vertically in elevation at a constant rate. If we begin with a landscape with 
constant sE k  as described in Equation 5 that has a collinear channel net-
work, and propagate changes in slope at a constant vertical celerity, the 
network will remain collinear even if sE k  becomes spatially heterogeneous.

2.3.  Can we Know if a Concavity Index is “Correct”?

The calculations of concavity index presented above are based on models 
of detachment-limited incision. A number of authors have also attempted 
to derive the concavity index from transport-limited models (e.g., Tucker 
& Whipple, 2002; Wickert & Schildgen, 2019; Whipple & Tucker, 2002). 
Although these models are a promising approach for understanding the 
fluvial concavity index, it is currently challenging to test these predictions 
by quantifying the correct concavity index from field observations.

An alternative approach is to create simulated topography using a model 
that bears some resemblance to measured incision processes, impose a 
concavity index upon this model, and then test if the topographic meth-
ods are able to correctly extract the imposed concavity index (e.g., Mudd 
et  al.,  2018). In spatially homogeneous, steady state landscapes, both 
methods could extract the correct concavity index, which is unsurprising 
since this situation just produces a topographic surface exactly obeying 
Equation 1. If the modeled landscapes were perturbed by changing up-
lift rates, or variations in erodibility, then Mudd et al. (2018) found that 

the slope–area method could not reliably be used to identify the imposed concavity index, we direct the 
interested reader to that manuscript for more details. In contrast, Mudd et al. (2018) found the collinearity 
approach could identify the imposed concavity index under spatial and temporal heterogeneity that might 
be found in a natural landscape. In particular, Mudd et al. (2018) found the segment-wise collinearity ap-
proach for determining optE   is resilient to spatial heterogeneity in the channel steepness index introduced by 
time-varying uplift or base level fall, and can extract the correct optE   value in landscapes containing migrat-
ing knickpoints and knickzones. Therefore, for the rest of this paper, we primarily focus on extracting the 
concavity index using the collinearity method.

3.  Impact of Varying Concavity on the Channel Steepness Index
The channel steepness index in Equation 1 (  sE k  ) depends on the concavity index, meaning that E   must be 
set to a reference value (  refE   ) to compare sE k  values across multiple basins (Wobus et al., 2006). This results 
in “normalized” values of the steepness index, snE k  . Values of the normalized steepness index, snE k  , have been 
widely correlated with either uplift rates, inferred from a range of indicators such as dated terraces (e.g., 
Snyder, 2000), or erosion rates, usually inferred from the concentrations of in-situ cosmogenic nuclides such 
as 10Be (e.g., Lal, 1991). In many such studies, there is a clear positive correlation between snE k  and inferred 
erosion and uplift rates (e.g., Cyr et al., 2010; DiBiase et al., 2010; Harel et al., 2016; Kirby & Whipple, 2001; 
Mandal et al., 2015; Ouimet et al., 2009; Safran et al., 2005; Scherler et al., 2014). Broadly speaking, these 
results indicate that steeper channels do reflect faster erosion rates, if one controls for other factors such as 
lithology (e.g., Forte et al., 2016; Peifer et al., 2021) or climate (e.g., Adams et al., 2020).

If we believe that the normalized steepness index can serve as a proxy for erosion rates, and that erosion 
rates are correlated with uplift rates, then it follows that the normalized steepness index may be a power-
ful tool for detecting spatial variations in tectonic activity (e.g., Kirby & Whipple, 2012; Whittaker, 2012). 
However, snE k  is a function of the reference concavity index chosen for a given study area. If we choose the 
incorrect value of this refE   , what is the potential for misinterpreting the spatial distribution of the normal-
ized steepness index, and therefore uplift patterns?

Figure 3 depicts scenarios where changing the value of refE   will result in substantially different interpreta-
tions of the spatial variation in snE k  . Figure 3a illustrates a catchment with spatial heterogeneity in E   . If one 

Figure 3.  Schematic diagram exploring ways in which changing the 
values of the concavity index lead to differing interpretations of tectonics 
or erosion based on channel steepness index. Blue, orange and red colors 
represent low, medium and high concavities, respectively. The left column 
depicts E S – E A data for two idealized catchments and the right column shows 
the corresponding E   -elevation plots. The value of snE k  for each point in 
these basins will be determined by the point at which the lines intersect 
with the vertical axis at log[ E A ] = 0. Catchment 1 (top row) represents a 
catchment with spatial variation in concavity from a low-concavity outlet 
to high-concavity headwaters. Selecting one index for the entire catchment 
will alter the distribution of snE k  values as shown in the inset plots. 
Catchment 2 (bottom row) represents a catchment with one concavity but 
spatial variation in sE k  . This spatial variation in sE k  will only be detected if the 
correct concavity value is chosen.
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refE   is used for the entire catchment this can lead to dramatic differences in the calculated snE k  values. This 
behavior is also expected in E   space, as shown in Figure 3b, where the steep slope patches, which are inter-
preted as representing faster erosion, appear in different locations depending on the value of refE   . Panels (c 
and d) also highlight how, depending on the choice of refE   , one might find two clearly separated values of snE k  
within the channel network or a range of values (see inset in panel c).

Conceptual diagrams such as Figure 3 highlight the uncertainties in snE k  that are generated by uncertainties in 
the best fit value of refE   . However, it is not straightforward to predict where these distortions will be greatest. 
One issue is that the relationship between snE k  and refE   is nonlinear: the order of magnitude of values of sE k  (or 

snE k  ) for different values of E   (or refE   ) are not directly comparable. In addition, the noise of E S data and sparsity 
of E A data, caused by jumps in E A at junctions, require the use of data-loss methods such as binning (e.g., Wobus 
et al., 2006). This disconnects single points in a channel from E S – E A data and therefore hinders our ability to check 
binned values against field knowledge. Although the E  transformation offers a means to circumvent some of 
these issues (Perron & Royden, 2013), it is calculated with a fixed refE   value, meaning that landscape–scale E   
transformations may be distorted by the choice of refE   (Figures 3b and 3d). Our study is focused on assessing 
the extent of this distortion and proposing metrics to estimate which refE   value will least distort values of snE k  .

4.  Methods
4.1.  Quantifying Concavity Using Disorder

We begin by looking at the uncertainty of best-fit refE   (  optE   ) values for a single basin. We use the disorder 
metric, first suggested by Goren et al. (2014), that is a measure of how far tributaries depart from the main 
stem river and amongst themselves in E   –elevation space (e.g., Goren et al., 2014; Hergarten et al., 2016; 
Mudd et al., 2018; Shelef et al., 2018). Our implementation follows the method of Hergarten et al. (2016). It 
ranks every point in the channel network by increasing elevation, and then checks to see if the associated E   
coordinates are similarly ranked (or not):

, 1 ,
1

,
N

s i s i
i

R  


 � (9)

where the the subscript ,E s i represents the thE i   coordinate that has been sorted by its elevation (  ,s iE   ). This 
sum, E R , is minimal if elevation and E   are related monotonically. However it scales with the absolute values 
of E   , which are sensitive to the concavity index (see Equation 4), so following Hergarten et al. (2016) we 
scale the disorder metric, E D , by the maximum value of E   in the tributary network (  maxE   ):
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 
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The most likely concavity index is that which results in the lowest value of ( )E D   for the river network: a 
perfectly collinear population of points would have ( ) 0E D    (Hergarten et al., 2016). Although the method 
is based on E   and therefore potentially sensitive to how the river network is determined (e.g., by setting a 
critical drainage area), sensitivity analysis in Mudd et al. (2018) demonstrated minimal sensitivity of the 
most likely concavity index to critical area as long as the extraction included multiple tributaries to the 
main stem (as the method relies on comparison between main stem an tributary channels). To constrain 
uncertainty, Mudd et al. (2018) created subset networks formed from the trunk stream and every possible 
combination of three tributaries (Figure 4). The minimum ( )E D   value was calculated for all of these combi-
nations by iterating over potential refE   values, creating a population of best fit concavity index values from 
all the combinations. The median and interquartile range were then reported.

Several authors have shown this method is effective in identifying the most likely concavity index for a 
watershed (Hergarten et al., 2016; Mudd et al., 2018). For a comparison of different methods utilized to 
constrain most-likely refE   , we refer the interested reader to Mudd et al. (2018). However, as explained in Sec-
tion 3, one may be compelled to use a different value of refE   for a particular watershed, for example if one is 
comparing values of normalized channel steepness index and needs to apply a constant refE   value across the 
landscape to generate snE k  data. We would like to know how well this fixed value of refE   performs for multiple 
basins. We have therefore adapted the disorder approach to quantify sensitivity to changing refE   . For every 
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combination of tributaries, we calculate a value of ( )E D   for a range of refE   values. We then normalize each 
value of ( )E D   by the maximum disorder value (  ( )maxE D   ) from that range:

* ( )( )
( )max

DD
D




� (11)

This results in a population of *( )E D   values for every value of refE   tested, and these values vary between 0 
and 1 (Figure 4). If the data set is perfectly collinear, then E D will equal 0 (Hergarten et al., 2016), so normal-
izing by ( )maxE D   means *( )E D   spans from the maximum disorder to perfectly collinear channel networks. 
We can then quantify the median and lower quartile of *( )E D   as a function of refE   , and from these derive 
estimates of the most likely optE   value as well as some indication of how well constrained this value is. If the 
best fit concavity index is well constrained, the *( )E D   values will have a sharply defined minimum, whereas 

Figure 4.  Method to determine best fit optE   from all stream elevation data in a catchment by measuring the normalised 
disorder in E   values ranked by corresponding increasing elevation within the catchment (a). Uncertainty is constrained 
through a bootstrapping approach to measure the disorder for all possible combinations of three tributaries plus the 
main stem (b) to build an uncertainty range for *E D  across the range of plausible refE   values (c).
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a poorly defined value will have a very broad range of *( )E D   values as illustrated in Figure 4c. We calculate 
*( )E D   to provide metrics reflecting how well constrained a specific refE   is for a given watershed. Note that 

when studying multiple watersheds, we repeat this method within each basin and compare the statistics of 
these results to highlight specific aspects of the spatial variations of optE   (e.g., median of best-fits, cumulative 
density of uncertainties).

Finding the value that minimizes the disorder might suggest the most likely value for a watershed. However 
it is also important to quantify the goodness of this value, i.e., if a range of values would result in similar 
disorder metrics, or alternatively if small changes to the value of refE   would lead to much greater disorder. 
We therefore developed a further metric for quantifying the uncertainty of E   within a watershed. The most 
likely value of optE   is defined by the minimum value of median *( )E D   from all combinations of tributaries 
extracted for each value of refE   (Figure 4c). Alongside the median we also calculate the first quartile: these 
values are lower than the median for each value of refE   , so we draw a horizontal line from the minimum 
of the median *E D  values and mark where this intersects with the first quartile *E D  values at both lesser and 
greater values of refE   tested (Figure 4, panel c). We then define the uncertainty range, E R  , as the distance 
between these two points (  1QE max  and 1QE min  ):

1 1Q QR max min  � (12)

Lower values E R  mean that there is less uncertainty on the best-fit optE   (Figure 5). We can further assess the 
goodness of fit for optE   for entire landscapes by calculating the cumulative distribution (CDF) of E R  values 
across multiple basins. The shape of the cumulative distribution is a direct proxy of the cleanness of the 
best-fits: a steep CDF with low values would mean that the majority of basins had relatively low uncertain-
ties on optE   best fit, whereas a more gradually increasing CDF would indicate that the landscape exhibits a 
wider range of uncertainty on optE   .

The technique outlined above allows us to calculate the best-fit optE   value for one particular basin. However, 
*( )E D   is less useful if we wish to constrain the most likely value of optE   across multiple watersheds. Differ-

ent basins will have a different minimum value and the normalization of *E D  only takes the maximum as 
reference. *( )E D   calculated separately for each basin can be ambiguous. Adjacent basins might have a very 
well constrained optE   with a *( )E D   close to 0, whereas a nearby basin my have a poorly constrained fit with a 
higher minimum *( )E D   . To compensate for this variability, we also calculate a disorder metric normalized 
by the range of disorders within a basin, which we call *( )rE D   :

* ( ) ( )( )
( ) ( )

min
r

max min

D DD
D D

 
 



� (13)

We can calculate *( )rE D   for the reference value of E   (  refE   ) across every basin in the landscape. If the best-fit 
E   for a particular basin is equal to refE   , then *

rE D  for that basin will be 0. We can therefore interrogate the 
distribution of *( )rE D   values for the landscape to determine how well-constrained refE   is, and therefore how 
reliable our estimates of the snE k  will be.

4.2.  Quantifying Spatial Variations of   Using S–A

The disorder metric outlined in Section 4.1 relies on comparing the main stem channel with a number of 
tributaries. In some cases, either where basins have very few tributaries, or if concavity along a specific 
channel is of interest this method is not appropriate. In these cases we use slope–area plots to quantify spa-
tial variations in E   , as illustrated for the Danube case study (Section 5.4). We calculate the slope of the main 
channel using a fixed elevation drop of 5 m. We wish to look at broad patterns in concavity so we segment 
the river into reaches based on their geological and/or geographical settings, e.g., by sedimentary basin or 
upland area. In each subjectively defined reach, based on their geological and geographical context, we 
apply an iterative Monte Carlo sampling scheme to randomly select 80%E  of the points within the reach and 
perform linear regressions to determine a population of E   values for each reach. This iterative method is 
used to constrain uncertainty in the E   values derived from this method.
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Figure 5.  optE   best-fit for single watershed in the Loess Plateau (a–c) and for the Buzau river (d–f) in the South-Eastern Carpathians. The watershed areas are 
respectively 1000 2E km  and 3800 2E km  (a and d) Density plots of the *E D  for each combination of watersheds function of refE   . It suggests 0.425optE    and 0.075E R   
with a sharp and clear minimum for the Loess Plateau and 0.275 0.15optE R    for Buzau. Note that the histogram is constructed combining disorder analysis 
of many combinations of tributaries with the main steam, see (Mudd et al., 2018) for full details about the sampling method. This can lead to minor local 
minima if a localized group of tributaries shows a different optE   than the rest of the basin. (b and e) E   -Elevation profile for the river at calculated with optimal 

refE   . Note the collinearity of the profiles. (c and f) Nondimensionalised   *  / max  calculated with nonoptimal refE   s. Note the high scatter compare to their 
optimized counterparts.
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5.  Concavity Across Scales
We use the collinearity method outlined in Section 4.1 to investigate concavity across a wide range of dif-
ferent scales, ranging from individual drainage basins to entire mountain ranges. We aim to explore how 
variable concavity is spatially across different regions and test our ability to constrain a representative E   that 
can be used as optE   in channel steepness index or E   calculations.

5.1.  Individual Drainage Basins

As a first step, we illustrate the collinearity method with two small watersheds in different geological con-
texts (Figure 5). The aim of using *( )E D   is to not only determine the most likely value of E   for a given water-
shed, but also to determine how “wrong” other values are. This is necessary because normalized steepness 
index values (  snE k  ) are frequently calculated based on an assumed reference concavity refE   , which inevitably 
results in values of the channel steepness index being calculated using values of refE   which are inappropriate 
for an individual basin.

The first example site (Figures 5a–5c) is in the Loess Plateau (China). It features a relatively homogene-
ous substrate and relatively homogeneous concavity indices estimated from previous studies (e.g., Mudd 
et al., 2018; Zhang et al., 2020). The density map in Figure 5a shows *E D  values for each value of refE   tested, 
and for each combination of tributaries tested in the watershed. Higher densities (e.g., bright colors) mean 
that many of the tributary combinations returned that value of *E D  . Median values minimizing *E D  suggest 
an optimal E   (  optE   which is the most likely value of refE   ) value of 0.425 and a E R  value of 0.075. A E   –elevation 
plot made using this concavity (Figure 5b) shows linear channel and tributary profiles, suggesting a channel 
with homogeneous substrate and a constant erosion rate (Perron & Royden, 2013).

Figure 5c shows an example of two catchments which have a different optE   from the disorder metric, high-
lighting the contrast in the E   –elevation plots that can result from choosing a refE   that is different from E opt  . 
Panels (b and e) show the E   –elevation profile for the correct value of refE   (  optE   ), whereas panels (c and f) 
show the impact of varying refE   from 0.15 to 0.85. If the refE   values in panel (c) were used to determine snE k  , 
one would predict a wide range of channel steepness indices. Low values of refE   result in tributaries that 
have higher values of snE k  than the main stem (i.e., they are steeper in E   –elevation space), whereas tributar-
ies have lower values of snE k  than the main stem if refE   is large. We also observe that the black data set using 

0.15refE    is closer to collinearity than the red data set using 0.85refE    as predicted by its lower disorder 
value.

The second test site is a watershed located in the South-Eastern Carpathians (the outlet is 5 km NW of 
Buzau, Romania). The landscape is marked by spatial variations in uplift and subsidence, heterogeneous 
lithology (Maenco,  2017, and references therein), and shows strong evidence of stream piracy (e.g., ter 
Borgh, 2013). Figure 5d presents a density plot of *E D  values that feature more scatter than those of the Loess 
Plateau. However, the most optimal optE   , which here is 0.275 with a E R  of 0.15, can still be determined from 
the minimum value of *( )E D   . Figure 5e demonstrates that the method still isolates the value of refE   which 
maximizes collinearity despite prominent breaks-in-slope, a small number of outlier tributaries, and many 
competing forcings. If we compare the E   –elevation profiles in Figure 5f, we see that the profiles with a high 
value of refE   are much more scattered than those with a low value of refE   , which reflects the relative spread 
of *( )refE D   at these E   values depicted in the density plot in Figure 5d.

5.2.  Distribution of   Across Mountain Ranges

A mountain range or discrete upland area is a convenient unit of study in geomorphology (e.g., Gil-
bert, 1880). To illustrate variations in the concavity index across mountain ranges, we apply our method 
to a range of sites showing different tectonic and lithological characteristics, as well as a range of scales: 
The San Gabriel Mountains (CA, USA), the Cordillera Central of Ilocos Norte (Luzon Island, Philippines), 
the Eastern Carpathians (Ukraine, Romania and Republic of Moldova), and the Himalayas. For each test 
site, we extract all watersheds within the landscape with drainage areas from 50 2kmE  to 1000 2kmE  . We re-
move nested watersheds to avoid including the same channels multiple times. This range in drainage area 
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provides a good balance between basins that have a number of tributaries with which to measure collin-
earity, and basins having a limited amount of internal heterogeneity such as faults, lithologic contacts or 
climate gradients.

5.2.1.  San Gabriel Mountains

The San Gabriel Mountains sit within the tectonically active Transverse Ranges in Southern California 
(USA) (e.g., Lindvall & Rubin, 2008). DiBiase et al.  (2010) quantified the erosion rates in the area using 
basin-wide cosmogenic radionuclides and observed positive correlations between erosion rates and snE k  in 
the region. Using linear regressions on binned E S – E A plots, they suggested refE    = 0.45 as the best-fit value. We 
apply our methodology to the same field area. Figure 6a shows the spatial distribution of most likely values 
of optE   , i.e., the E   value minimizing *E D  for each basin, across the landscape. A frequency plot of most likely 
values (Figure 6b) suggests relatively low values of the concavity index with most falling between 0.25 and 
0.4 (median is 0.325, and the first and fourth quartile respectively 0.275 and 0.445), which is close to the 
values utilized in previous studies. Figure 6c shows that more that 60% of the basins have an E R  below 0.2, 
meaning their best-fit is narrow and relatively well-defined, with some basins even showing E R  close to 0.

A strategy to select a representative refE   value depends on the watersheds of interest. In our case, if we are 
interested in all the basins on Figure 6, we suggest selecting refE   0.3 to minimize distortion. This value is 
the optE   for many basins, meaning that it will minimize the distortion for a high number of basins, while 
being very close to the median. Figure 7 can be used to assess which basins will be most disordered, that is, 

Figure 6.  Analysis of the spatial variations in concavity index of the San Gabriel Mountains and surroundings by 
displaying the distribution of best-fit and their errors. The chosen base level is the topographic front, representing the 
switch from a mainly depositional area to a mainly incising portion of the landscape. (a) Map of best fit optE   for each 
catchment analyzed in the area. (b) Frequency distribution of the best-fit catchment values. The high concentration of 

0.05optE    is linked to the fact that this is the minimum value considered and encompasses all best-fits lower than this. 
(c) Cumulative distribution plot of E R  . This plot shows that 80% of the watersheds have E R  values less than 0.3.
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have the highest *E D  value for a particular refE   value. One might have less confidence in snE k  values extracted 
from basins that are highly disordered in Figure 7 when using the regional refE   value.

5.2.2.  Cordillera Central of Ilocos Norte, Philippines

The second test site is the Cordillera Central of Ilocos Norte, in the north-
ern part of Luzon Island, Philippines. The island is bordered by doubly 
vergent subduction zones, one to both the east and west of the island. 
This tectonic forcing has led to the partition of the island by a network of 
active faults: the Philippine fault system features shearing, compressive, 
and extensional faults (e.g., Aurelio et al., 2009; Ringenbach et al., 1992). 
The analysis of the spatial distribution of concavity indices (Figure 8a) 
contrasts with the result from the San Gabriel Mountains: it is much 
more heterogeneous. The most occurring value of optE   for the range is 0.45 
(Figure 8b), but the mountains feature basins with most likely optE   values 
that vary between 0.05 and 0.95, and there is no dominant value or range 
of values amongst the most likely optE   values (Figure 8b).

This heterogeneity is observable from other perspectives: Figure 8c shows 
the CDF of E R  values of the range. The curve rises much more gradually 
than that of Figure 6c. Only 40% of the basins have an 0.2E R   and 40% 
of them have an 0.4E R   , suggesting large uncertainties in the most like-
ly value of refE   .

5.2.3.  The Eastern Carpathians

The Eastern Carpathians system is part of the eastern continuation of 
the Alpine orogeny, and is more lithologically heterogeneous than the 
previous two sites. In their review of the regional tectonics and its topo-
graphic expression, Maenco (2017) (and references therein) highlighted 
several domains which evolved differently, ultimately controlling emer-
gent features of the topography. The different domains are shown in Fig-
ure 9a): (1) the Southern Carpathians, composed of resistant magmatic 

Figure 7.  *
rE D  values for each watershed for refE    = 0.3. Low values, close to 0, reflect basins that have very low disorder 

with this value of refE   , whereas basins with higher *( )rE D   values are much more disordered. Comparison with Figure 6 
allows one to identify basins that are highly disordered because they do not share the regional best-fit refE   (e.g., the basin 
in the SE corner of the study area), but it can also identify basins that have a similar best fit refE   to the regional value, 
but are still somewhat disordered (e.g., the basin with an outlet on the southern side of the study area with an Easting 
of just over 340 km).

Figure 8.  Summary of optE   analysis for Luzon field site (Philippines). 
The base level for these basins is either the sea level for the western 
and northern boundaries, or the switch to depositional areas for 
the Eastern and southern boundaries. Plots are in UTM zone 51. (a) 
Spatial distribution of the best-fits for each watershed showing striking 
heterogeneity across the region. (b) Distribution of optE   values compiled 
for all watersheds: there is no clear peak in the best-fit optE   . (c) Cumulative 
density plot of the uncertainty E R  . The low steepness of the curve shows 
the spatial heterogeneity in optE   .
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and metamorphic rocks with the most recent significant exhumation during the Mesozoic; (2) the Eastern 
Carpathians, composed of sedimentary rocks of variable strength and fewer magmato-metamorphic mas-
sifs, with exhumation history from late Miocene to present in localized sections; (3) The Transylvanian 
Basin, an uplifted back-arc basin with potential drainage reorganisation (ter Borgh, 2013); (4) The Getic and 
Focsani depressions, made of alluvial fans from the Southern Carpathians and subsidence of the active part 
of the Eastern Carpathians; and (5) the European Foreland, the foreland basin of the Eastern Carpathians 
and part of the European Shield (Maenco, 2017, and references therein).

Figure 9 presents a summary of the concavity index distribution within the Eastern Carpathians. Figure 9b 
shows the most likely values of optE   are widely distributed, but the distribution is centered around 0.625, ex-
cluding a large number of values with a best fit of 0.05optE    . Figure 9c suggests that the different domains 
behave differently. The Getic and Focsani depressions primarily feature low concavities, between 0.2 and 
0.4. Basins in the Southern Carpathians feature low to medium concavity with a wide range of low values 
between 0.1 and 0.5. The Transylvanian basin and the Eastern Carpathians present similar trends with best-
fits centered on 0.5, although the relatively flat distributions suggest a less well constrained best-fit. The 
European Foreland, in contrast, has high optE   values, 0.6E   .

5.2.4.  The Himalayan System

We also illustrate the spatial distribution of concavity in the central Himalayan system. We include in this 
analysis the main basins draining the range, outlined in black in Figure 10a, and their surrounding smaller 
basins on the Tibetan plateau and the Gangetic plain.

Himalayan River networks have been widely studied (e.g., Clark et al., 2004; Gupta, 1997; Lavé & Avou-
ac, 2001; Seeber & Gornitz, 1983), due to the heterogeneous nature of the range's lithology and tectonics 
(e.g., Yin, 2006), as well as strong gradients in precipitation and discharge (Bookhagen & Burbank, 2010) 
and the influence of glacial processes on catchment morphology. We find strong variations in E   values (Fig-
ure 10). Within the mountain belt, the most likely optE   values are centered around 0.45, but large numbers 

Figure 9.  Concavity results from the Eastern Carpathians. We define a range of basin sizes for catchments (so that we can extract multiple catchments with 
similar drainage area) and the outlets are selected algorithmically as all catchments that fall within this range. The basins are subsequently classified based 
on their location. (a) Watershed between 75E e  and 91E e  extracted colored by domain corresponding to the legend on c. The base map and subsequent units are in 
WGS84 UTM35N. (b) Best-fit concavity across the field site. Note the peak of low values representing values lesser or equal to 0.05. (c) Median profiles of the 
median *E D  for each of the watershed by zones. Global trend can be isolated with significantly different minimums for the different area. The colors correspond 
to the basin outlined in (a) and described in the legend.



Journal of Geophysical Research: Earth Surface

GAILLETON ET AL.

10.1029/2020JF006060

16 of 33

of basins have most likely values between 0.05 to 0.7. Subtle patterns may be recognised; for example the 
patch of high concavity at Easting 750 km - Northing 3250 km, or the strip of low concavity just north of the 
basins outlined in black; but apart from systematically low concavity in the plains, no clear signal emerges. 
This lack of pattern suggests caution should be used in applying a single value of refE   across the range when 
exploring the channel steepness index.

We also analyzed the large scale expression of E   within the major basins, outlined in black, that average the 
effect of more factors than smaller basins (Figure 10c). Most of the large basins have a optE   in between 0.2 
and 0.4 with large uncertainties. One basin features a very high concavity, at odds with Figure 10a, suggest-
ing that large-scale expression of concavity might hide local heterogeneities.

5.3.  Variability in the Concavity Index Across Multiple Basins

To give a broader picture of variation in the value of optE   , we analyzed E   across many different landscapes, 
selected to represent a broad range of climate, lithology and tectonic activity. In each landscape we wish to 
find optE   in numerous basins of similar size, so basins with between 65E e  for the smallest and 85E e  contributing 
pixels are selected algorithmically. In order to match with the limitations detailed in Section 2.2, we exclud-
ed major depositional areas and actively glaciated areas. We could not completely exclude basins affected by 
glaciation, so we have identified sites with potential glacial influence and have calculated optE   statistics using 
basins with and without glaciation (see Supporting Information S1 for the full details).

Our compilation comprises 5033 basins analyzed for optE   across a diverse range of landscapes. The median 
value across all these basins is 0.425, which is consistent with previous studies based on slope–area data 
(e.g., Tucker & Whipple, 2002). This central tendency, however, masks a very large degree of heterogeneity. 
The interquartile range of optE   values is 0.225–0.575. Although we excluded major depositional areas, we 
note that our table makes no effort to isolate bedrock channels, and we may expect greater heterogeneity if 
the study area includes both alluvial and bedrock rivers (e.g., Whipple, 2004). We excluded sites that have 
extensive glaciation in their headwaters, but we did not eliminate all sites with glacial influence. Instead we 
conducted sensitivity analysis demonstrating that a data set composed of site without any glaciation has a 
similar distribution of concavity index values as the entire data set (see Supporting Information S1 for the 
details).

Figure 10.  Distribution of optE   across the Central Himalaya. (a) Spatial distribution of optE   for all watersheds in a range of drainage area from 50 to 100 km 2. 
The black outlines are representing the main basins draining to the mountain front. The stars are their outlets and refer to figure c. (b) frequency distribution of 
all the best fits in the study area. Note that the very low values (0.05) have been omitted here for the sake of clarity. (c) Best-fit optE   for the main drainage basins 
draining the Himalayas. The outlets are colored on (a).
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The table includes metrics of the range of uncertainties across multiple landscapes. We hope this serves as a 
benchmark for authors to determine how “messy” their landscape is in a global context. The first and third 
quartiles for E R  across all 5033 basins is 0.175 and 0.375, respectively. Therefore, basins with an E R  value of 
0.175 or less have a sharply defined optE   compared to most basins, whereas basins with an E R  above 0.375 are 
particularly disordered: in these basins it is virtually impossible to constrain a “correct” or representative 
value of E   based solely on topography.

5.4.  Variability Along Continental-Scale Rivers: The Danube

Our previous test sites aimed to show the variation of concavity across different scales of field site. However 
there is still a particular case that has not been investigated: continental-scale rivers. Here we do not aim 
to extract concavity values over sets of basins, but rather over a large river crossing a continent. Exploring 

E   over a large river is particularly important for E   , because the E   coordinate integrates discharge data from 
base-level to top. Thus, E   values at basin headwaters are sensitive to poorly fit values of E   downstream (Forte 
& Whipple, 2018).

The Danube is the second longest river in Europe which flows for ∼2,860 km, connecting the Alps to the 
Black Sea. It acts as a major source-to-sink component of the Alpine-Pannonian-Getic-Black-sea system 
and sets boundary condition for the erosion of the North-Eastern Alps (Matenco & Andriessen, 2013). It 
also crosses several sedimentary basins which are separated by gateways, each having a history of opening 
and closing through geological time (e.g., Leever et al., 2010, 2011).

We extracted the Danube river long profile using a pre-conditioned DEM from the HydroShed (Lehner 
et al., 2008), and segmented the profile by very general domains: (1) the Danube delta and crossing of the 
Northern Dobruja range (Eastern Romania, in dark blue in Figure 11); (2) the Dacic depression, foreland 
of the South Carpathians (light blue in Figure 11); (3) the Iron Gates, the gateway between the Dacic de-
pression and the Pannonian Basin (green in Figure 11); (4) the Pannonian Basin (orange in Figure 11) and 
the Alpine Danube (red on Figure 11). Processing of concavity along the river suggest systematically low 
concavity on most of the sedimentary basins (between −0.15 and 0.15). The Iron gate area and the Alpine 
Danube show higher concavity around 0.3.

6.  Distortion of ksn and   Values Linked to Variations in 

We have demonstrated the variability of E   (and optE   ) values at a wide range of scales. When studying a field 
site, no matter the scale of the area, one needs to assume a reference refE   for the study in order to use snE k  
or E   . This forces the worker to calculate snE k  with refE   values that may not be representative of some of the 

Figure 11.  (a) Map of the Danube River's course, colored by domains discussed in the text. Raster preconditioned by 
Hydroshed (Lehner et al., 2008) and projected in Lambert Conformal Conic. (b) Long profile of the Danube river, with 

E   for each river domain. Note the overall low concavity on E   for most of the lowlands.
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watersheds. Therefore, we now move on to explore how changing values of refE   will distort snE k  and E   values, 
and consequently our interpretation of landscape metrics. We first investigate analytical expressions of the 
distortion, and then illustrate the distortion using real landscapes.

6.1.  Distortion of ksn

Interpreting snE k  in a meaningful manner involves focusing on the contrasts between slope patches, sensu 
Royden and Perron (2013) across a field site. Indeed, local contrasts in snE k  , i.e., a knickpoint, are commonly 
interpreted as driven by phenomenon such as climatically driven base-level drop (e.g., Castillo et al., 2013; 
Crosby & Whipple, 2006; Prince & Spotila, 2013) or tectonically-driven changes in uplift or fault throw rates 
(e.g., DeLong et al., 2017; Kirby & Whipple, 2012; Mitchell & Yanites, 2019; Struth et al., 2019; Whittaker & 
Boulton, 2012). If contrasts between two slope patches are exaggerated, attenuated, inverted, annihilated or 
artificially created, spurious patterns carry a real risk for misinterpretation.

6.1.1.  Analytical Formulation of ksn
 Distortion

We consider two points in a channel network, labeled with subscripts E M and E N , that are characterized by 
their slope and drainage area ( , )M ME S A  and ( , )N NE S A  . Their snE k  values (expressed as ME k  and NE k  can be ex-
pressed rearranging Equation 1 as follows:

M M Mk S A � (14)

and

N N Nk S A � (15)

We can calculate the ratio of snE k  for these data points, which we call kE r  , that is valid for a given refE    :

,
M M

k
N N

S Ar
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

 
� (16)

Which we recast with a slope ratio, SE r  , and an area ratio, AE r  :

,k S Ar r r 
 � (17)
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N
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A

  . To assess the distortion linked to changing the value of E   (or refE   ), we aim to 

express the ratio kE r  as a function of E   , with E   defined as:

2 1    � (18)

with 1E   and 2E   are the different concavities used. A logarithmic transformation can simplify comparison of 
snE k  values for different values of refE   at sites E M and E N :

, , 2 12 1ln[ ] ln[ ] ln[ ] ln[ ] ln[ ] ln[ ]k k S A S Ar r r r r r       � (19)

The slope ratios cancel because these are not affected by E   :

, ,2 1ln[ ] ln[ ] ln[ ]k k Ar r r    � (20)

We can define a factor that quantifies the distortion ratio between the two snE k  values as we vary refE   , which 
we call the distortion factor, rE   :
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 


    � (21)

The distortion factor ( )rE    represents a ratio of the differences in snE k  at two fixed points in the channel 
network for two different values of concavity E   , thus reflecting how sensitive gradients in snE k  are to the use of 
different values of concavity refE   . Higher values of rE   reflect greater distortion of snE k  , meaning that changing 

refE   values will have a greater impact on the interpretations of spatial variations in snE k  .

6.1.2.  Examples of ksn
 Distortion in Real Landscapes

We first illustrate distortion of snE k  with the test sites used in Figure 5. Figure 12 shows the extent of snE k  
distortion for different hypothetical cases where local optE   is set at a value that differs from a fixed regional 
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value refE   . We normalize all the snE k  values by their range of values, noted *
snE k  , to circumvent the differences 

in magnitude between the different values of E   . We display their median basin-wide distribution, binned by 
distance from their respective outlets.

Figure 12 gives an insight of the possible distortion at the scale of a single watershed. At optimal 0.425optE    
for the first field site (see Section 5.1), Figure 12a depicts a snE k  profile showing an initial increase of snE k  in 
the first 4–5 kilometres followed by a slight decrease in median value the rest of the profile. Using ref optE    
gradually inverts this contrast by over-estimating snE k  in the first section of the profile. The normally de-
creasing part of the profile is gradually over-estimated. On the other hand, using ref optE    exaggerates the 
contrast between the lowest values near the outlet and the rest of the profile. The slightly decreasing pattern 
becomes flat or even increasing for very low refE   .

The second and more heterogeneous field site (Buzau, Romania, see Section 5.1, 0.275optE    ), shows a grad-
ual increase of ksn followed by a sharp decrease near the headwaters of the network (Figure 12b). Changing 
the value of refE   at this site does not change the overall pattern of the channel steepness index, however 
overestimates of refE   result in a flattening of the contrasts.

We also extracted illustrative snE k  distortion across multiple basins within the Luzon field site (Figure 13, see 
Section 6 for context). A number of potentially spurious patterns emerge with the use of different refE   values 
to calculate snE k  . Here higher values of refE   result in the largest proportion of high values of snE k  in the range. 
The zone of high snE k  values in Figure 13c is more extensive than the one in Figure 13a. Another systematic 
observation at higher refE   , is that channels with more drainage areas feature higher values. We determined 
an area of interest outlined in light green in Figures 13a–13c in order to illustrate more thoroughly some as-
pects of the distortion. This area includes a number of sub-basins draining to a low-relief area. At 0.2refE    , 
the larger channels have low steepness index values, and the northern section of the range has generally 
higher snE k  than the eastern section of the range. The plain has systematically low steepness indices and no 
sharp contrasts in snE k  are visible. When 0.45refE    , snE k  values increase. Contrasts between the different sec-
tions are less pronounced but a few steeper areas do appear. At 0.7refE    , some of the larger rivers become 
steeper than the surrounding terrain. A number of sharp snE k  patches appear.

6.1.3.  Subsequent Implications and Predictions

Equation 21 highlights a number potential biases in snE k  values when calculated with nonoptimal refE   . Fig-
ure 14 presents the analytical solution to the distortion rE   , which has the amusing property of looking like 
a bow tie.

Interpreting this bow tie may be slightly confusing, since rE   is a ratio of ratios. Let us let first give a more con-
crete example: consider a landscape where, at a given value of refE   all the values of snE k  are the same. This means 
that , 1kE r   must always equal unity and that rE   will be equal to the ratio in channel steepness indices between 
two points with a drainage area threshold AE r  . If the refE   value is reduced, then channel reaches with a larger 

Figure 12.  (a) Distribution of *
snE k  – i.e., normalised to range–for a range of optE   along the watershed investigated in 

Section 5.1a) (Loess Plateau, People's Republic of China). The different colors correspond to E   from a fixed value 
of refE    = 0.425. (b) Distribution of *

snE k  for a range of E   along the watershed investigated in Section 5.1d) (Buzau river, 
Romania). The different colors correspond to E   from a fixed value of refE    = 0.275.
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drainage area will have a smaller snE k  value than those with smaller drainage area. If the refE   value is increased, 
then it is the reaches with larger drainage area that will increase their snE k  values relative to smaller channels.

Having highlighted the most basic feature of Figure 14, we can expand upon the nature of distortion, which 
is a function of (1) how different the local optE   is from the fixed refE   and (2) the differences in drainage area 
amongst the compared channel reaches.

To illustrate this behavior, consider two slope patches, (sensu Royden & Perron, 2013), with a contrast in 
snE k  of kE r  and a contrast in drainage area AE r  . Several scenarios can be considered which relate to potential 

distortion of snE k  patterns in real landscapes. First, assume that these two slope patches are contiguous, with-

Figure 13.  River network in the Luzon island (Philippines) colored by snE k  values for different refE   . In order to produce 
comparable results, the minimum and maximum colors are set to respectively the 10thE  and the 90thE  percentile of each snE k  
populations. refE   values have been picked in order to represent the general distribution of best-fits (see Figure 8): 0.20 
for (a), 0.45 for (b) and 0.70 for (c). River points are sized by [ ]E log A  . Points with larger values of E A are displayed where 
points overlap.

Figure 14.  The distortion ratio (  rE   ) as a function of the change in refE   , colored by the ratio of drainage area between 
two points. Two example points of comparison are displayed for a conceptual basin, where A is a point with a large 
drainage area and B is a point with a low drainage. The red line reads rE   when comparing A to B, and the green line 
the inverse. For example if one overestimates refE   by 0.3 from the local optE   , the ratio AksnBksn will be exaggerated by a 
factor of nearly 100.
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in the same river and without any significant tributary joining between them (i.e., they will have similar 
drainage areas). Their AE r  will typically be very close to 1, e.g., between 0.9 and 1.1, depending on the source 
data set and local context. As illustrated in Figure 14, distortion for a low ratio of drainage areas is insignif-
icant, with a distortion of the ratio in the order of 1.05 in the worst cases. It suggests using nonoptimal refE   
will not impact the importance of local knickpoints, relative to their immediate surroundings.

This might give one confidence that we do not need to worry about distortion when identifying knickpoints 
based on snE k  data. However, many studies base interpretation of factors driving the presence of knickpoints 
by their spatial distribution (e.g., Crosby & Whipple, 2006; Mitchell & Yanites, 2019; Whittaker & Boul-
ton, 2012). Because river channels feature many fluctuations in gradient, simply looking for changes in snE k  
may result in large numbers of potential knickpoints (e.g., Gailleton et al., 2019), so we must compare the 
relative magnitude of knickpoints in different channels, which will inevitably have different drainage areas. 
In this case distortion due to nonoptimal refE   becomes problematic. Consider the case where we have two 
knickpoints with a similar change in channel steepness across the knickpoint if refE   is set equal to optE   . One 
of these is in a small tributary (e.g., 5 21E e m  ) whereas the other is in a larger main stem channel (e.g., 9 21E e m  , AE r  
in the order of 1 4E e  ). If we change refE   away from optE   , the distortion rE   can rapidly rise up to 20 times higher 
or lower depending on the E   (one knickpoint will appear 20 times steeper than the other). This confirms 
earlier observations from topographic analysis suggesting the location of contrasts in snE k  does not move with 
different values of refE   but their relative importance would be modified (Gailleton et al., 2019).

Next, consider two slope patches of differing drainage area located within the same watershed. This can rep-
resent a wide range of possible scenarios in real landscapes, for example contiguous slope patches up and 
downstream of a tributary junction, slope patches on different rivers, or slope patches on the same river that 
lie some distance from each other. The resulting distortion from varying the refE   value can either generate 
new contrasts, erase existing ones or even invert the steepness signals (Figure 14), as observed in the Loess 
Plateau in Section 6.1.2. For example, a point with lower snE k  in the main river relative to a tributary will see 
the contrast between the two shrink with potential inversion of the two values if the refE   value is increased 
(i.e., 0E    ). On the other hand, the ratio of snE k  will grow exponentially larger with 0E    . The exact na-
ture of the distortion is case specific when it comes to changes in drainage area and needs to be considered 
carefully. Figure 14 can be used, along with constraints on refE   , to assess the risk of distortion for particular 
cases. Figure 14 also shows that the key parameter in determining the degree of distortion is the range of 
possible drainage area ratios.

An important limitation to consider is that snE k  and E   -related distortion between given points can only be 
calculated at equal refE   . If we consider two adjacent basins, displaying different optE   , the original bias linked 
to this optE   is not possible to quantify. Strategies to tackle such cases are discussed further in Section 7.

6.1.4.  Basin-Averaged k
sn

The above sections address cases where the aim is to explore the spatial distribution of snE k  within a basin 
or basins. Many authors, however, explore basin-averaged snE k  values in order to, for example, compare this 
metric with basin-averaged erosion rates (e.g., Cyr et al., 2010; Harel et al., 2016; Kirby & Whipple, 2012). 
Does the choice of refE   affect the results of such studies? We address this question in two ways: first at an 
example site and second using a simple numerical model. Our goal is to see if changing the value of refE   will 
change the ranking of basin-averaged snE k  values amongst studied basins.

First we extracted a number of basin-averaged snE k  values in the Corinth rift area (Greece). The field site has 
been chosen for its relative tectonic and lithologic complexity (e.g., Watkins et al., 2020). We extracted ba-
sins with a drainage area greater than 7 210E m  , with a drainage area threshold for river extraction of 1 2E km  . De-
spite the complexity of the landscape and the reasonably low area threshold (i.e., higher drainage density), 
the results of Figure 15 suggest that most watersheds maintain their ranking of snE k  values across reference 
concavity values. That is, the basins inferred to be the steepest will remain so regardless of the choice of refE   .

Results from the Corinth Rift suggest that for studies of basin-averaged snE k  , a simple sensitivity analysis 
should be sufficient to identify the small number of basins that do not maintain their ranking as refE   varies. 
Of these basins in the Corinth Rift, the basins that change their ranking are not immediately obvious from 
their morphology, and the cause of “roving” basins seems highly dependent on their internal geometry and 
distribution of tributaries (see the previous sections about snE k  distortions).
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The second step we take is to explore how snE k  values reflect erosion rates across refE   values using numerical 
simulations. We use the landscape evolution modeling framework fastscape (Bovy, 2021) to simulate topog-
raphy through time. We use a relatively simple model configuration: we solve the stream power incision 
model (Howard & Kerby, 1983) using a D8 steepest descent flow routing and the implicit finite difference 
scheme as described in Braun and Willett (2013). The governing equation is:

( ) ( ) ( )
n

mdz dzU x K x A x
dt dx

 � (22)

where ( )E U x  is the uplift rate in [L/t], ( )E K x  the erodibility coefficient, E A the upstream drainage area and E m 
and E n the area and slope exponents, respectively. Within this framework, one can control the “real” concav-
ity index opt m n /  . For this exercise, we utilize spatial variations in E K to simulate landscape complexity 
as it has been demonstrated to represent many different factors - climatic and lithologic being the most 
prominent e.g., Whipple et al. (2013). Taking advantage of the modular design of fastscape's backend (Bovy 
et al., 2021), we developed (Gailleton, 2021), a module to (1) simulate landscapes with 3D tilted lithologies 
(similar to Forte et al., 2016 or Barnhart et al., 2018), and (2) extract geomorphometrics from the simulated 
topography. Full details about the implementation can be found in the Supporting Information S1.

To explore the impact of refE   on the relationship between basin-averaged sE k n and erosion rate, we ran four 
different model scenarios where we varied both the erodibility ( E K ) and the values of E m and E n which control 
the optE   for the simulation. The results of these simulations are shown in Figure 16. We plot the results of 
the simulations separately to test the consistency of the relationship between E E and snE k  within different 
scenarios. We note that the base relationship between E E and snE k  in our model will be strongly affected by 
variations in the E m and E n exponents, which are held constant for each simulation. In real landscapes, these 
exponents may vary. For example, Gasparini and Brandon  (2011) found different erosion thresholds or 
probability distributions of discharges in bedrock erosion rates could be replicated by changing the value 
of E n , and empirical studies have found a wide range of E n values in varied landscapes (Harel et al., 2016), so 
it is not difficult to imagine a mountain range with a diversity of E n values, which would strongly bias global 
relationship between E E and snE k  before any potential refE   -related effect.

The first scenario was a control run with homogeneous lithology, 0.45E m   and 1E n   (circle symbol). We then 
ran three scenarios with tilted rock units with varying erodibility: one with 0.9E m   and 2E n   (  optE    = 0.45, 

Figure 15.  Median snE k  values for a number of basins in the Corinth rift area (Greece) across a range of refE   values. *
snE k  is 

the value of basin-averaged snE k  normalised by its median value for a particular refE   value, used to visualize the data on a 
common axis.
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square symbol); one with 0.3E m   and 1E n   (  optE    = 0.3, up triangle symbol); and one with 0.6E m   and 1E n   
(  optE    = 0.6, up triangle symbol). For each model run we calculated basin-averaged erosion rates as well as 
basin-averaged snE k  with three different values of refE   : 0.3, 0.45, and 0.6. This allows us to compare the rela-
tionship between basin-averaged snE k  and erosion rates with different values of refE   .

The different model runs have different imposed optE   values yet the power law relationship between E E and 
snE k  is relatively robust: the effect of variations in E K for different values of E m and E n overprints potential dis-

tortion induced by using ref optE    . The implication is that a poorly fitting refE theta  value or a single refE theta  
value for a highly heterogeneous landscape used to calculate snE k  values would be able to reasonably repre-
sent the distribution of E E amongst basins, especially when erosion rates are high. This statement only holds, 
however, if all the sources of heterogeneity are constrained ( E K , E m and E n ): a “blind” analysis with arbitrary 
parameters will produce biased based results.

6.2.  Influence of Concavity Values on the Distortion of the   Coordinate

6.2.1.  Analytical Formulation of   Distortion

Expressing the analytical distortion of E   linked to varying concavity is less straightforward than for snE k  , 
which is solely defined by constant E S and E A values. The E   coordinate at a given point E x of the river profile, 
is dependent on the downstream river network and tributaries as it integrates ( ( ))A A x

0
/

 from the outlet to 
E x . This has two direct consequences.

Figure 16.  Basin averaged snE k  (calculated for three values of refE   ) and erosion rates E E within those basins. The data 
has been obtained by running four different LEM simulations with different parameters, and plotted all together in 
order to simulate the complexity of a natural mountain range (juxtaposed watershed with different optE   and lithology 
for example). The different scenarios are: (1) homogeneous lithology, 0.45E m   and 1E n   (circle symbol); (2) 3D tilted 
landscape with 0.9E m   and 2E n   (square symbol); (3) 3D tilted landscape with 0.3E m   and 1E n   (up triangle symbol); 
and (4) 3D tilted landscape with 0.6E m   and 1E n   (up triangle symbol). The snE k  values calculated with different refE   
values are plotted in different colors, and we plot plot power law curves through all snE k  vs E E data for each value of refE   . 
One can see that circles and both triangle data sets for each color fall near the power law regression of each color, 
particularly for rapidly eroding landscapes.
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First, the E   value depends on the location of base level, 0E x  . There are several approaches to selecting a base 
level that may be adopted, depending on the context of the study: sea level, a fixed elevation from multiple 
channels, a change in geomorphic process (e.g., upland catchment transitions to a fan), or a single common 
point in a main stem channel. Several authors have discussed the impact of selecting the base level from 
amongst these choices (e.g., Forte & Whipple, 2018; Seagren & Schoenbohm, 2019), and we direct the in-
terested reader to Figure 2 in Forte and Whipple (2018) for an illustration of the impact of base level choice 
on E   contrasts.

Secondly, solving for distortion requires constraining the downstream shape of the river network. However, 
river flow distance E x as a function of drainage area varies from river to another. For an analytical solution, 
we use an approximation by expressing the distance from the outlet, E x , as a function of drainage area, E A :

0( ) ( )A x X x  � (23)

where 0E X  is the maximum distance of the river to the outlet (i.e., the distance from the source to the cho-
sen base level), and E  a positive exponent approximating the rate at which drainage area decreases toward 
the headwaters. This is a variation of Hack's law (Hack, 1957) similar to the approach of Willett (2010), as 
Hack's law described E A as a function of flow distance downstream. Although very simplified, Equation 23 
can simulate realistic drainage area distribution along river profiles. We can then use the standard defini-
tion of the E   coordinate (e.g., Perron & Royden, 2013):

0

0
( )

( )
x
xb

Ax dx
X x




 

  
  

� (24)

Integrated, this becomes
(1 ) (1 )

0 0 0 0( ) ( )( )
1 1

bA X x A X xx
   


 

  
 

 
� (25)

Note that these solutions only apply when E    does not equal 1, but the above solution applies in virtually 
all natural examples. By definition, the outlet, bE x  , has a coordinate of 0 ( E x is defined as the distance from the 
outlet), so inserting this we arrive at:

(1 ) (1 )0
0 0( )

1
A X x X


 


     
� (26)

Willett et al. (2014) suggested that differences in the E   coordinate across drainage divides indicated disequi-
librium in tectonic forcing and that drainage divides would migrate away from the side of the divide with a 
lower E   value. Conversely, if the E   value is the same on either side of the divide for two points with the same 
elevation, then the divide should be stable. The E   coordinate used to evaluate differences across divides is 
typically extracted at a critical drainage area (  cE A  ) (e.g., Forte & Whipple, 2018; Willett et al., 2014). We note 
that this method of looking across the divide does not account for local relief or slope asymmetry across the 
divide, for which one would use the so-called Gilbert metrics (Forte & Whipple, 2018).

If we follow standard practise and measure E   at a critical drainage area on either side of the divide, we can 
explore the impact of changing refE   on distortion of the E   coordinate. We set cE A A  and then we further 
simplify Equation 26 by setting 0E A   = 1 2mE  (this is the value chosen in most studies). We can calculate the 
distance from the outlet of this critical drainage area from Equation 23:

1/
0c cx X A  � (27)

Inserting Equation 27 into Equation 26 and setting 0E A   = 1 2mE  , we arrive at:

 1/ (1 )
0

1
1d cA X  


  


� (28)

Now consider two points on either side of a divide with the same elevation and the same E   coordinate. The 
basins on either side of the divide could have different topology, so they could have different values of E  
and different values of 0E X  . If we call these values in the second catchment 1E   and 1E X  , we can fix the two E   
coordinates to the same value:

   (1 )1/1/ (1 ) 11
0 1

1

1 1
1 1c cA X A X     

  
   

 � (29)
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Equation 29 is used to calculate, numerically, the value of 1E   for set values of 0E X  , E  , and 1E X  .

Using these values of E  , 0E X  , 1E   , and 1E X  from basins that have the same value of E   at a critical drainage area 
of cE A  , and which we have defined as being at equilibrium so therefore having the same elevation at these 
points, we can then alter the value of E   by some offset, E   . When E   is modified, the E   coordinate will change 
in each basin as it needs to be set to a refE   for the whole area. But the two new E   values will not be the same, 
generating an difference in E   at the divide that is an artifact of choosing an incorrect value of E   .

We find that the offset in E   at the divide caused by selecting an “incorrect” value of E   is most sensitive to 
the correct value of optE   , the value of E   , and the ratio between the lengths of the basins that share a divide, 
X X

1 0
/  . We plot results as the percent offset in E   at the divide, which under some parameter values can ex-

ceed 40% (Figure 17).

Spurious offsets in E   at the divide are greater when the correct value of refE   is smaller. Unsurprisingly, off-
sets are greater for greater values of E   . The value of E   is greater in the longer catchment if refE   has been 
overestimated (e.g., 0E    ). In the nomenclature of Willett et al.  (2014), if refE   has been overestimated, 
the shorter basin will spuriously appear to be the aggressor. We have shown in Section 5.3 that most likely 
values of optE   can vary substantially from the central value of 0.45. If the most likely value is high, such as in 
the Allegheny Plateau or in the Ukraine (Table 1), the distortion for choosing a concavity index of 0.45 will 
result in relatively small distortions of around 10%, but the errors will be much larger in locations with low 
concavity values if a refE   value of 0.45 is used. We should remind the reader that our analytical examples use 
the rudimentary approximation of the relationship between length and area described by Equation 23, so 
we now move on to examples in real catchments.

6.2.2.  Illustration of   Distortion in Real Landscapes

We select 3 sites in different geographical and geological contexts to explore the ratio of E   values across 
selected divides for a range of refE   values. Figure 18 presents the results for the three test sites. The first site 
(Figures 18a and 18d) is the island of Puerto Rico (United States of America), which is subject to differential 
climatic, tectonic and lithologic forcings (e.g., Pike et al., 2010). The island does feature a common base 
level of the Atlantic Ocean as well as asymmetric river lengths on both side of the divide. The second site 

Figure 17.  Percent difference in the E   coordinate for two basins whose E   values are the same for one value of refE   , but 
are different lengths (  0E X  and 1E X  ), resulting in distortion of the E   coordinate when refE   is changed by E   . In the left panel, 
we show the sensitivity to E   whereas we show the sensitivity to the difference in length between the two catchments.
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(Figures 18b and 18e) is located in the Loess Plateau (People's Republic of China); the site described in 
Section 5.1 lies within this area. We fix the base level at the Wei River, close to the relief front and at similar 
elevation. Finally we explore the Carpathian Mountain Range (Figures 18c and 18f) and the main divide 
across the Eastern and South Eastern Carpathians, with calculation of E   using the Black Sea as base level. 
For the sake of readability, we chose to display the maps with the widely used 0.45refE    and the refE   tested 
are 0.05, 0.25, 0.45, 0.65, 0.85.

Site name
N 

Basins Median E  Q1 E  Q3 E  Median E R Q1 E R Q3 E R

Chilean Andes 65 0.475 0.225 0.625 0.275 0.125 0.4

North Arkansas 11 0.65 0.525 0.663 0.3 0.2 0.412

Bureya Massif 75 0.45 0.325 0.55 0.225 0.175 0.325

Eastern Carpathians 876 0.5 0.325 0.65 0.275 0.175 0.375

Caucasus 366 0.362 0.175 0.5 0.25 0.15 0.35

Sierra Madre, Mexico 94 0.45 0.306 0.525 0.25 0.131 0.375

Corsica 30 0.388 0.256 0.425 0.288 0.225 0.444

Ethiopian Highlands 111 0.3 0.2 0.4 0.175 0.125 0.275

Jebal Barez, Iran 54 0.2 0.106 0.275 0.175 0.125 0.25

Lesotho 78 0.475 0.35 0.569 0.175 0.1 0.275

Luzon 88 0.425 0.225 0.575 0.338 0.225 0.475

Edge of Mongolian Plateau 107 0.45 0.35 0.525 0.225 0.125 0.338

Basins along Nujang River 71 0.45 0.325 0.625 0.275 0.175 0.425

Oregon Coast Ranges 26 0.538 0.338 0.75 0.25 0.175 0.3

San Gabriel Mountains 34 0.325 0.275 0.444 0.212 0.125 0.3

Southern Altai Mountains 551 0.35 0.175 0.525 0.25 0.15 0.4

Southern Brazil 102 0.475 0.4 0.55 0.225 0.15 0.275

Western South Africa 634 0.25 0.125 0.425 0.225 0.15 0.35

Southern Wisconsin 60 0.562 0.45 0.625 0.2 0.144 0.325

Yemen 52 0.4 0.275 0.506 0.175 0.125 0.256

Atlas Mountains 26 0.4 0.275 0.5 0.225 0.175 0.325

Dolomites 28 0.538 0.35 0.756 0.338 0.225 0.5

Hida Mountains 51 0.5 0.3 0.575 0.3 0.225 0.438

Himalayas 645 0.4 0.25 0.525 0.275 0.175 0.4

Allegheny Plateau 118 0.7 0.556 0.819 0.25 0.175 0.394

Northern Appalachians, 
USA

177 0.525 0.4 0.675 0.35 0.225 0.45

Southern Appalachians, 
USA

277 0.5 0.3 0.625 0.35 0.225 0.45

Olympic Mountains 33 0.575 0.4 0.675 0.325 0.2 0.425

Pyrenees 61 0.475 0.3 0.575 0.325 0.225 0.4

Taiwan 97 0.45 0.15 0.575 0.275 0.2 0.375

Tien Shan 40 0.612 0.5 0.756 0.325 0.25 0.481

Zagros Mountains 49 0.475 0.3 0.625 0.25 0.125 0.4

Note. At each site we analyse a number of basins and report the median, and first and third quartiles of the optE   values amongst the basins. We also report the 
median and first and third quartiles for the range of uncertainty ( E R  ) for individual basins. Maps showing exact locations of study areas and spatial distributions 
of optE   and E R  can be found in the Supporting Information S1.

Table 1 
Concavity Indices Across Selected Landscapes
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Puerto Rico's cross-divide E   –ratios show wide variations across refE   values (Figure 18). Values of E   tend to 
be higher on the northern side of the divide (note rotation of figure).

The analytical solutions (Figure 17) suggest that reducing the value of refE   will result in longer catchments 
having greater values of E   at the divide. This is illustrated in Figure 18d, where very large differences in E   
at the divide are seen for low values of refE   at a divide distance of E  150 km, which is where the difference 
in length of the northern and southern catchments is the greatest. Changing E   values caused by changing 
values of refE   can even lead to inversion of the side of the divide with greater E   , for example at a distance of 
approximately 12 km along the divide, where, when refE   is low the northern catchments have greater E   but 
when refE   is high it is the southern catchments with greater E   values.

The Loess Plateau's cross-divide E   –ratio at 0.45refE    suggests a relatively stable contrast across the area, 
consistent with previous findings (Willett et al., 2014). The two basins on either side of the divide have a 
most likely refE   value of 0.4, very close to 0.45refE    . The absence of large changes in the offset of E   across 
the divide for different values of refE   in comparison to the other two study sites is also consistent with the 
analytical solutions: the basins on either side of the divide feature similar distances between base level and 
the divide. In this landscape it seems that selecting a value of refE   inconsistent with the most likely value of 

refE   would not have a large impact on the E   offset at the divide. However if E   is used to derive snE k  , the same 
distortion as the previous section are expected to occur.

The third test site in the Carpathians is the largest of the three and the most heterogeneous: the E   calcula-
tion encompasses the entire whole mountain range and major sedimentary basins with very low relief as 
described in Section 5.4. The rivers on the southern and eastern side of the divide are linked more close-
ly, in terms of flow distance, to the Black Sea whereas the rivers on the Western side of the divide travel 
around the Southern Carpathians through the Pannonian basin, flowing along the Danube and Olt rivers. 
As shown in the section investigating the spatial variations in optE   in the region, the most likely values of 

Figure 18.  Illustration of E   distortion effect on real landscapes. (a–c) show the E   map at 0.45refE    for respectively Puerto Rico (WGS84-UTM19N), Loess 
Plateau (People's Republic of China) and the Carpathians-Pannonian-Black Sea are (Czech Republic, Slovakia, Hungary, Romania, Bulgaria, Ukraine, Moldova, 
Poland, Serbia). E   color scheme is based on the 5thE  to the 95thE  percentile for each of the respective maps. The investigated divides are displayed in bold black 
lines. (d–f) shows the cross divide for the three respective field sites. The ratio is calculated for a window of 5 km across divide for Puerto Rico and 40 km for the 
others.



Journal of Geophysical Research: Earth Surface

GAILLETON ET AL.

10.1029/2020JF006060

28 of 33

refE   are very heterogeneous. The patterns at the start and at the end of the divide profile are inverted when 
switching from low to high refE   .

Again, we can use the analytical solutions to inform these results. At the southern section of the divide, the 
western basin flows along the Olt river, which we can see in Figure 18c dissecting the southern Carpathians, 
leading to a relatively modest difference in flow length across the divide. In the center of the divide, the 
basins on the western side of the divide flow a much greater distance, and so for decreasing values of refE   
the difference of E   across the divide grows much greater, to values on the west more than 3.5 times those 
on the east.

6.3.    Distortion and Varying Erodibility

In Section 6.2.2, we demonstrated the potential magnitude of the distortion of E   gradients across divides. 
We focused on the geometrical expression of the concavity index and did not assume any process-specific 
law in order to keep our observations general. However, we might ask how distortions in E   caused by se-
lecting a nonoptimal value of refE   compare to distortions induced by spatially varied erodibility (e.g., Forte & 
Whipple, 2018). We use the same model including lithological complexity as used in Section 6.1.4. In these 
experiments, we simulate three scenarios and monitor the E   contrast across the central divide: (1) homoge-
neous E K , (2) a static difference in E K where the Northern half of the area is harder than the southern half and 
(2) a case where we uplift a 3D block of tilted rock layers with differential E K . The full details of the model pa-
rameters are reported in the Supporting Information S1. Results of the modeling are presented in Figure 19.

Our results suggest that the distortion of E   ratios across drainage divides related to nonoptimal refE   cannot 
be disentangled from other factors but will amplify and/or reduce the signals. Results from homogeneous 
lithology confirm earlier observations: if both sides of the divide show homogeneous conditions of litholo-
gy, uplift, climate and planform geometry, the ratio of E   values across the divide is very close to 1 regardless 
of the choice of refE   .

When spatial variation in erodibility is introduced, however, the choice of refE   can compound the distortion 
caused by heterogeneous E K values (Figure 19). In the case of a different E K value to the north and south of 
the divide, respectively 51 10E x   and 52 10E x   (the “Static E K ” scenario), the difference in E K values leads to a E   
ratio of ∼1.4 once the divide has stabilized when the correct (that is model-imposed, equivalent to optE   ) refE   
value is used. For refE   values of 0.3 or 0.6, the apparent E   ratios become ∼1.7 and 1.2, respectively. When 
we erode the landscape through tilted layers with variable E K , the E   ratio evolves through time but can drop 
below 0.9. However, choosing an nonoptimal refE   value can either accentuate this signal and lower the E   
ratio when refE   values are low or switch its polarity (values greater than 1) when refE   values are high. These 
simulations are by no means exhaustive, but they illustrate that distortions caused by nonoptimal values of 

refE   can amplify distortions caused by other factors.

7.  Potential Implications for Geomorphological Studies
In this section, we discuss the potential impact of our results on studies using E   and snE k  as well as potential 
strategies to bypass refE   -related distortion. Because every landscape with have different ranges of optE   among 
basins, it is challenging formulate general guidelines about the potential distortion. Nevertheless, as all the 
distortions are function of E   from an optimal optE   , constraining the range of observed best fits and their 
uncertainty can at least give an overview of the potential risk. Observing the sensitivity of the data set with-
in the range of observed optE   values is the most straightforward test a study can make: if the contrast in E   or 
different zones of snE k  values holds for all the values of refE   , then refE   -related distortion will not have a strong 
impact.

The optE   data set we calculated and analyzed in this contribution has been obtained with a consistent meth-
odology designed to explore the variations of optE   at different scales. It is worth noting that it does not mean 
these optE   are the best to use for these field sites: any detailed study aimed at a particular site would need 
careful selection of basins to avoid glaciation, alluvial fans, and other features that could influence optE   , 
whereas our compilation has used basins extracted algorithmically. The high degree of variation in the 
inter-quartile ranges and in E R  demonstrates that local sub-basins can have different optE   values compared 
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to the global population. The best practice in any situation is to constrain optE   for any field site, adapting the 
methodology (e.g., channel network density, selection of sub-basins depending on local constraints) func-
tion of the study aims and available data. This also applies to snE k  : as noted by various authors, different snE k  
populations can be calculated from the same original data (Gailleton & Mudd, 2021; Gailleton et al., 2019; 
Mudd et al., 2014). Their validity only depends on the aim of the study: one may be interested in extracting 
local, subtle knickpoints with fine-grained segmentation of E elevation   plots, while others would extract 
large-scale base-level fall signals with basin-averaged data.

Regardless of whether the signal is systematic with varying refE   or not, comparing values of snE k  or E   cal-
culated using different refE   between basins is not possible. So, how can we compare different basins with 
different optE   values while still making sure our comparison is meaningful? One potential approach is to 
perform some kind of normalization: for example, in Figure 15, we normalised snE k  by the median value of 

Figure 19.  Evolution of E   contrast across the main drainage divide through time. The thick black lines represent the results for the correct concavity 0.45refE    
(where ref optE    ). The top-left panel displays results for homogeneous lithology. Note that contrasts are, as suspected, very close to 1 (that is, no contrast). The 
top-right panel shows the E   contrast for a scenario with different values of E K in the north (  51 10E x   ) and south (  52 10E x   ) halves of the model that do not change 
through time. As predicted by (Forte & Whipple, 2018), this scenario induces a natural E   contrast even at equilibrium (see the black curve). The E   constrast is 
reduced when refE   is underestimated, and exaggerated if refE   is overestimated. The bottom-left panel show the results for the tilted layered landscapes. In this 
scenario the signals can be amplified and the polarity of the E   contrast can be reversed (from less than 1 to greater than one) if a nonoptimal refE   is used.
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snE k  in the distribution. More sophisticated approaches could be used, for example based on the modified 
z-score (nonparametric version of the z-score). However, these approach are limited by the fact that the 
normalised value can only be relative to a population. If the data density allows it, a simpler solution would 
be to subdivide a data set into areas of same optE   . This has the advantages of fully bypassing the problem, 
but it highly depends on the spatial variations of optE   , which may not have the wanted spatial coverage. This 
is especially true for E   contrasts at drainage divides, which needs similar optE   on both sides of the divide to 
be distortion-free.

8.  Conclusions
In this contribution, we expanded methods to determine most likely value of the reference concavity in-
dex, optE   , using disorder metrics (e.g., Goren et al., 2014; Hergarten et al., 2016; Mudd et al., 2018; Shelef 
et al., 2018) that quantify both the uncertainties in E   and the degree to which changing E   from optE   affect 
the overall disorder of the channel network. Because determination of normalized channel steepness index 

snE k  requires the assignment of a reference value of E   (  refE   ), these metrics can give the user insight into the 
degree to which each basin is likely distorted by a refE   value that differs from its most likely value (  optE   ) in a 
particular basin.

We go on to explore variation in most likely optE   values across numerous catchments using the disorder met-
ric, which can then be used as refE   . This mirrors earlier studies which aimed to constrain E   and refE   using E S – E A 
methods (Tucker & Whipple, 2002). Our results indicate that optE   values have a central tendency of 0.425 
similar to that suggested previously from E S – E A analysis (e.g., Whipple et al., 2013, and references therein). 
The first and third quartiles across 5033 basins are 0.225 and 0.575. Given this range, we suggest authors 
should never assume a reference value of refE   without testing for the most likely values.

As fixing a reference E   will result in calculating snE k  using a refE   value that is not the optimal value for each 
basin, we assessed, both analytically and numerically, the extent to which selection of refE   distorts snE k  . When 
comparing values from different points in the channel network, the contrast in drainage area and | |E   
controls the magnitude of the distortion, which can reach several order of magnitudes. We demonstrate 
that changing refE   can change the spatial distribution of snE k  , leading to the risk of misinterpretation of uplift 
or erosion signals. We also find that existing contrasts between areas of high and low snE k  can be inverted 
or erased. On the other hand, local adjacent contrasts with similar drainage area are not affected, meaning 
that detection of knickpoints or knickzones is unlikely to be affected by changing refE   as long as no tributary 
junction is present.

We have not explored strategies to circumvent spatially varying optE   in snE k  studies, but can speculate on 
possible approaches based on our analyses of the spatial variance of optE   across a wide range of landscapes. 
One approach would be to simply constrain the range of optE   values within the area of study and check if the 
spatial distribution of snE k  is consistent across different refE   values. Another strategy would be to nondimen-
ionalize ksn using, for example, a statistical representation of its distribution. Or, if one is studying a large 
enough landscape, a possibility is to compare populations of basins that share the same most likely value 
of optE   minimizing distortion. Finally, one could simply reject analysis of basins with outlying most likely 

optE   values.

We also investigated how E   values evaluated across divides are affected by changes in refE   . Differences in the 
E   coordinate have been used as a proxy for drainage divide migration (e.g., Willett et al., 2014), so if the dif-

ference in E   across the divide is affected by changes to refE   there is a risk of misinterpreting the presence or 
absence of divide migration. We first explored simple analytical solution of E   distortion across a divide and 
found that basins with lower values of refE   were more sensitive to E   distortion. One key control is the length 
to base level of basins on either side of the divide. We find that for lower values of refE   , longer basins will 
have increasing E   values, so reductions in refE   will can result in longer basins being spuriously interpreted 
as “victims” catchments using the nomenclature of (Willett et al., 2014). Applications on real landscapes 
suggested that where optE   is spatially constant, the basins interpreted as aggressors were rarely inverted 
across drainage divides, but the magnitude of the E   offset varied by, in some cases, a factor of 3 when the 
chosen refE   is different than optE   . This implies that it can be extremely challenging to robustly compare the E   
coordinate across divides in locations with spatially varying optimal refE   .
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Data Availability Statement
The digital elevation models used for this study are SRTM data (Farr et al., 2007) and have been provided 
by opentopography (www.opentopography.org). The topographic analysis have been processed with lsdto-
pytools (Gailleton & Mudd, 2021), the landscape evolution modelling with fastscape (Bovy, 2021) and the 
fastscape-litho extension (Gailleton, 2021) and the data collected to form the concavity table is available 
online (Gailleton, Mudd, et al., 2021). This research utilised Queen Mary's Apocrita HPC facility, supported 
by QMUL Research-IT. http://doi.org/10.5281/zenodo.438045.
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