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Abstract 

 

The feasibility of detecting magnetic excitations using monochromated electron energy loss 

spectroscopy in the transmission electron microscope is examined. Inelastic scattering cross-

sections are derived using a semi-classical electrodynamic model, and applied to AC magnetic 

susceptibility measurements and magnon characterisation. Consideration is given to electron 

probes with a magnetic moment, such as vortex beams, where additional inelastic scattering 

can take place due to the change in magnetic potential energy of the incident electron in a non-

uniform magnetic field. This so-called ‘Stern-Gerlach’ energy loss can be used to enhance the 

strength of the scattering by increasing the orbital angular momentum of the vortex beam, and 

enables separation of magnetic from non-magnetic (i.e. dielectric) energy losses, thus 

providing a promising experimental route for detecting magnons. AC magnetic susceptibility 

measurements are however not feasible using Stern-Gerlach energy losses for a vortex beam. 

 

Keywords: magnons, AC magnetic susceptibility, vortex beams, electron energy loss 

spectroscopy 

 

1. Introduction 

 

Recent advances [1] in monochromation in the transmission electron microscope has enabled 

an energy resolution better than 10 meV in electron energy loss spectroscopy (EELS). 

Consequently, the scope of high spatial resolution EELS mapping has broadened to include 

phonon spectroscopy (e.g. [2-6]). This raises the intriguing possibility of similar analyses on 

the phonon counterpart in magnetic materials, namely magnons, which also have energies in 

the meV range [7-8]. These measurements are traditionally carried out using neutron 

diffraction, although electrons have also shown to reveal information on magnons, as well as 

Stoner excitations, using the technique of spin-polarised EELS (SPEELS), e.g. [9-14].  In 

SPEELS low energy (i.e. <10 eV) spin-polarised electrons are reflected off the specimen 

surface, so that the bulk properties of the material are not accessible, and furthermore the spatial 

resolution is poor compared to most other electron microscopy techniques. High spatial and 

energy resolution transmission electron microscopy could offer a suitable route to carry out 

these measurements within the ‘bulk’ of the specimen. Transmission EELS can also measure 

the material dielectric function over a frequency range much larger than optical techniques, by 

utilising the (broadband) electric field of the incident, high energy electron probe [15-17]. The 

equivalent technique for magnetic materials is AC magnetic susceptibility measurements, 

which cover a frequency range of up to 104 Hz and can therefore only examine slow processes, 

such as spin-lattice relaxation [18]. If the magnetic field of the incident electron is utilised in a 

similar manner to its electric field, then with 10 meV energy resolution the AC magnetic 

susceptibility can potentially be measured at 1012 Hz frequency using transmission EELS. This 

frequency range is also accessible by muon spin relaxation and neutron scattering techniques, 



but is still too fast to measure spin-spin relaxations, which have characteristic times of ~10-9-

10-10 s [18]. 

 

Thus far transmission EELS of magnetic materials has been limited to magnetic linear [19] and 

circular [20-22] dichroism measurements of core loss edges. In SPEELS magnons are detected 

via an exchange mechanism, where the incident and ‘reflected’ (actually exchanged) electrons 

have opposite spins, with a magnon excited in order to conserve angular momentum [14]. 

However, exchange mechanisms are suppressed at the high accelerating voltages used in 

transmission EELS (see, for example, Figure 3 in [9]). The standard energy loss mechanism in 

transmission EELS is due to the electric field of the incident electron interacting with the 

sample [23-25].  An electrodynamic calculation has shown that the total energy loss for high 

energy incident electrons due to magnetism is small compared to the (non-magnetic) dielectric 

losses [26]. Therefore, in order to detect magnetic excitations in transmission EELS it is 

required to look beyond the standard electric field-induced inelastic scattering mechanisms. 

Here the classical electrodynamic theory of energy loss for high energy charged particles is 

broadened to include the magnetic moment of the electron. The magnetic moment could be due 

to the intrinsic spin (for a spin polarised electron beam) or orbital angular momentum of 

electron vortex beams [27-31], and can interact with any surrounding magnetic field(s). 

Provided the magnetic field is spatially non-uniform along the electron trajectory there will be 

a force on the incident electron which results in an energy loss, or in some cases an energy gain 

depending on the orientation of the magnetic moment. The condition of non-uniform magnetic 

field is satisfied for the self-field of a moving charged particle [32] or gradient in the sample 

magnetisation (i.e. bound currents [7]). This new energy loss/gain mechanism is referred to as 

the ‘Stern-Gerlach’ energy loss/gain, since it is caused by the same force in the seminal Stern-

Gerlach experiment used to detect electron spin [33]. 

 

In this paper the feasibility of detecting magnetic excitations via the Stern-Gerlach force in 

transmission EELS is theoretically evaluated. Emphasis is placed on magnon excitations and 

AC susceptibility measurements. Both these measurements involve a change in the specimen 

spin state and therefore an energy exchange with the incident electron probe. In AC magnetic 

susceptibility the specimen transitions into a magnetically more ordered state, while for 

magnon EELS there is a change in the magnon population. For completeness Section 2 covers 

magnetic energy losses due to the electric field of a standard, unpolarised electron beam. It is 

shown that such an electron probe is sensitive to AC magnetic susceptibility, but is difficult to 

implement in practice, since there is no convenient method for separating magnetic energy 

losses from the much larger dielectric losses. Magnon detection is also not possible, due to the 

incident electrons lacking the angular momentum required for magnon generation. In Section 

3 the Stern-Gerlach inelastic scattering cross-sections due to the magnetic moment of the 

electron probe are derived. The discussion is limited to vortex beams, since at the time of 

writing it is difficult to produce spin polarised electron beams of sufficient brightness in 

transmission electron microscopy. Previous EELS theories of vortex beams have examined 

energy losses in chiral structures [34] and metal split ring resonators [35]. It is shown here that 

the Stern-Gerlach force for vortex beams cannot be used in AC magnetic susceptibility 

measurements, but nevertheless provide several advantages for detecting magnons, such as the 

ability to exploit the orbital angular momentum of the vortex beam to increase the strength of 

the magnetic scattering, as well as separating magnetic from dielectric energy losses. Vortex 



electron probes are proposed as the most suitable option for magnon EELS characterisation in 

magnetic materials. 

 

2. Magnetic energy loss for an unpolarised electron beam  

 

In this section magnetic energy losses for a high energy electron moving along the optic z-axis 

with speed 𝑣 is calculated. The electron beam is not spin polarised, so that the energy loss is 

due only to the electric field of the incident electron. This scenario corresponds to conventional 

electron beams found in most transmission electron microscopes. Maxwell’s first and fourth 

equations for an incident electron in a magnetic material are given by: 

 

∇⃗⃗ ∙ 𝐃 = 𝜀0𝜀(𝐫, 𝑡) ⊗ (∇⃗⃗ ∙ 𝐄) = 𝜌𝑓  

… (1a) 

∇⃗⃗ × 𝐁 = 𝜇0(𝐉𝑓 + 𝐉𝑏) + 𝜇0
𝜕𝐃

𝜕𝑡
= 𝜇0(𝐉𝑓 + 𝐉𝑏) +

𝜀(𝐫, 𝑡)

𝑐2
⊗
𝜕𝐄

𝜕𝑡
 

… (1b) 

 

where D, E and B are the electric displacement, electric and magnetic fields respectively, 𝜌𝑓  

and 𝐉𝑓 are the charge density and current density vector for the incident electron, 𝜀0 and 𝜇0 are 

the permittivity and permeability of free space, c is the speed of light and t is time. The electric 

displacement field is given by 𝐃(𝐫, 𝑡) = 𝜀0𝜀(𝐫, 𝑡) ⊗ 𝐄(𝐫, 𝑡), where 𝜀(𝐫, 𝑡) is the real space-

time dielectric function and ⊗ represents a convolution operation [36]. The magnetic 

properties of the material are contained in the bound current term 𝐉𝑏 = ∇⃗⃗ ×𝐌, where 𝐌 is the 

magnetisation. The (retarded) E and B-fields can be expressed in terms of the electric scalar 

(𝜙) and magnetic vector (𝐀) potentials, i.e. 𝐄 = −∇⃗⃗ 𝜙 −
𝜕𝐀

𝜕𝑡
 and 𝐁 = ∇⃗⃗ × 𝐀. Using the vector 

identity ∇⃗⃗ × (∇⃗⃗ × 𝐀) = ∇⃗⃗ (∇⃗⃗ ∙ 𝐀) − ∇2𝐀 in Equation 1b gives: 

 

∇⃗⃗ [∇⃗⃗ ∙ 𝐀 +
𝜀(𝐫, 𝑡)

𝑐2
⊗
𝜕𝜙

𝜕𝑡
] − ∇2𝐀 +

𝜀(𝐫, 𝑡)

𝑐2
⊗
𝜕2𝐀

𝜕𝑡2
= 𝜇0(𝐉𝑓 + 𝐉𝑏) 

… (2) 

 

The gauge for A is chosen so that the term within the square brackets in Equation 2 is zero. 

Therefore, from Equations 1a and 2 we obtain the following expressions for 𝜙 and 𝐀: 

 

𝜀 ⊗ ∇2𝜙 −
𝜀

𝑐2
⊗(𝜀 ⊗

𝜕2𝜙

𝜕𝑡2
) = −

𝜌𝑓
𝜀0

 

… (3a) 

∇2𝐀 −
𝜀

𝑐2
⊗
𝜕2𝐀

𝜕𝑡2
= −𝜇0(𝐉𝑓 + 𝐉𝑏) 

… (3b) 

 

It is convenient to take the Fourier transform of the above equations, i.e.: 

 



[4𝜋2𝑞2 −
𝜔2𝜀(𝜔)

𝑐2
] �̃�(𝐪,ω) =

�̃�𝑓(𝐪, ω)

𝜀0𝜀(𝜔)
 

… (4a) 

[4𝜋2𝑞2 −
𝜔2𝜀(𝜔)

𝑐2
] �̃�(𝐪,ω) = 𝜇0[�̃�𝑓(𝐪,ω) + �̃�𝑏(𝐪, ω)] 

… (4b) 

 

where we adopt the convention that a function 𝑓(𝐫, 𝑡) and its Fourier transform 𝑓(𝐪,ω) are 

related by: 

 

𝑓(𝐪,ω) = ∫𝑓(𝐫, 𝑡)𝑒−2𝜋𝑖𝐪∙𝐫+𝑖𝜔𝑡𝑑𝐫𝑑𝑡 

… (5a) 

𝑓(𝐫, 𝑡) =
1

2𝜋
∫𝑓(𝐪, ω)𝑒2𝜋𝑖𝐪∙𝐫−𝑖𝜔𝑡𝑑𝐪𝑑𝜔 

… (5b) 

 

Fourier transformed variables are identified with a tilde sign. The local approximation is 

assumed for the dielectric function, so that its Fourier transform 𝜀(𝜔) is a function of angular 

frequency 𝜔 only, and independent of the scattering vector q (the tilde sign is omitted from 

𝜀(𝜔) for convenience) [36]. Substituting Equations 4a and 4b in �̃�(𝐪,ω) = −2𝜋𝑖𝐪�̃�(𝐪,ω) +

𝑖𝜔�̃�(𝐪, ω) we get: 

 

�̃�(𝐪,ω) = 𝑖 [−2𝜋𝐪 +
𝜔𝜀(𝜔)

𝑐2
(
�̃�𝑓
�̃�𝑓
)] �̃�

⏟                
dielectric

+
𝑖𝜔�̃�𝑏

𝜀0𝑐2 [4𝜋2𝑞2 −
𝜔2𝜀(𝜔)
𝑐2

]
⏟              

magnetic

 

… (6) 

 

The first and second terms in Equation 6 represent the sample dielectric and magnetic 

contributions to the electric field of the incident electron. The electron stopping power, dW/dz, 

is defined as being positive for energy loss events, so that: 

 

𝑑𝑊

𝑑𝑧
= 𝑒𝐸𝑧(𝐫, 𝑡) =

𝑒

2𝜋
∫ �̃�𝑧 (𝐪,)𝑒

2𝜋𝑖𝐪∙𝐫−𝑖𝜔𝑡𝑑𝐪𝑑𝜔 

… (7) 

 

where 𝑒 is the magnitude of the electron charge and 𝐸𝑧(𝐫, 𝑡) is the z-component of the electric 

field. From Equation 6 the magnetic contribution to the stopping power along the electron 

trajectory point 𝑥, 𝑦 = 0, 𝑧 = 𝑣𝑡 is then: 

 

𝑑𝑊mag

𝑑𝑧
= −

𝑒

𝜀0𝑐2
∫𝜔[

𝑞𝑥�̃�𝑦(𝐪,) − 𝑞𝑦�̃�𝑥(𝐪,)

4𝜋2𝑞2 −
𝜔2𝜀(𝜔)
𝑐2

] 𝑒𝑖(2𝜋𝑞𝑧𝑣−𝜔)𝑡𝑑𝐪𝑑𝜔 

… (8) 



 

where we have used the result �̃�𝑏(𝐪,ω) = 2𝜋𝑖𝐪 × �̃�(𝐪, ω) and expressed the scattering vector 

in component form q = (qx, qy, qz). In Equation 8 it is assumed that the energy loss is small, so 

that any changes to the speed 𝑣 and electron trajectory are negligible. Consider the energy loss 

𝛿𝑊mag over the time interval [-T,T]. We have from Equation 8: 

 

𝛿𝑊mag = ∫(
𝑑𝑊mag

𝑑𝑧
)𝑑𝑧 = 𝑣∫

𝑑𝑊mag

𝑑𝑧
𝑑𝑡

𝑇

−𝑇

= −
2𝑒𝑣

𝜀0𝑐2
∫𝜔 [

𝑞𝑥�̃�𝑦(𝐪,) − 𝑞𝑦�̃�𝑥(𝐪,)

4𝜋2𝑞2 −
𝜔2𝜀(𝜔)
𝑐2

] {
sin(2𝜋𝑞𝑧𝑣 − 𝜔)𝑇

(2𝜋𝑞𝑧𝑣 − 𝜔)
}𝑑𝐪𝑑𝜔 

… (9) 

 

For large T the term {
sin(2𝜋𝑞𝑧𝑣−𝜔)𝑇

(2𝜋𝑞𝑧𝑣−𝜔)
} approximates to a delta function centred at 𝑞𝑧 = 𝜔/2𝜋𝑣. 

Therefore, only the scattering vector component 𝑞𝑧 = 𝜔/2𝜋𝑣 contributes to the energy loss 

ℏ𝜔, where ℏ is Planck’s reduced constant. In practice, it is not strictly correct to integrate 

Equation 8 over large distances of the electron trajectory, since it violates the assumption of a 

constant electron speed 𝑣. Nevertheless, for the small energy losses that are of interest here, 

the electron trajectory can be made sufficiently long so that the condition 𝑞𝑧 = 𝜔/2𝜋𝑣 is 

approximately satisfied. In what follows however the condition 𝑞𝑧 = 𝜔/2𝜋𝑣 is treated as being 

exact, i.e. it is assumed that the transmission EELS specimen is sufficiently thick for ‘bulk’-

like behaviour to be observed. For thinner specimens the condition 𝑞𝑧 = 𝜔/2𝜋𝑣 is relaxed; in 

fact, Bloch wave analysis of core electron ionisation has also shown that wavevector 

conservation along the film thickness direction is relaxed for a thin specimen [37]. 

 

For 𝑞𝑧 = 𝜔/2𝜋𝑣, we have {
sin(2𝜋𝑞𝑧𝑣−𝜔)𝑇

(2𝜋𝑞𝑧𝑣−𝜔)
} = 𝑇 and the energy loss increases linearly with 

distance travelled by the electron. The stopping power is therefore simply 𝛿𝑊mag/(2𝑣𝑇), so 

that Equation 9 simplifies to: 

 

𝑑𝑊mag

𝑑𝑧
= −

𝑒

𝜀0𝑐2
∫𝜔 [

𝑞𝑥�̃�𝑦 (𝐪⊥,

2𝜋𝑣 ,) − 𝑞𝑦�̃�𝑥 (𝐪⊥,


2𝜋𝑣 ,)

4𝜋2 (𝑞⊥
2 + (


2𝜋𝑣)

2

) −
𝜔2𝜀(𝜔)
𝑐2

] 𝛿 (𝑞𝑧 −


2𝜋𝑣
)𝑑𝐪𝑑𝜔 

… (10) 

 

where we have expressed the scattering vector q as (𝐪⊥, 𝑞𝑧 =


2𝜋𝑣
), with 𝐪⊥ being the 

component of q in the xy-plane of the specimen.  

 

In Equation 10 the 𝜔-integral has integration limits between - to , although in a typical 

EELS experiment only the positive frequencies are measured. Since the dielectric function and 

magnetisation are real, 𝜀(−𝜔) = 𝜀(𝜔)∗ and �̃�(−𝐪, −) = �̃�(𝐪,)∗, where the asterisk 

denotes the complex conjugate. This means that for any scattering vector, frequency pair (𝐪,) 

and its negative (−𝐪,−) the following relationships are valid: 



 

(−)(−𝑞𝑥)�̃�𝑦 (−𝐪⊥, −


2𝜋𝑣
, −) = 𝑞𝑥�̃�𝑦 (𝐪⊥,



2𝜋𝑣
,)

∗

 

… (11a) 

(−)(−𝑞𝑦)�̃�𝑥 (−𝐪⊥, −


2𝜋𝑣
, −) = 𝑞𝑦�̃�𝑥 (𝐪⊥,



2𝜋𝑣
,)

∗

 

… (11b) 

 

Therefore, for a circular EELS aperture centred about the optic axis Equation 10 gives: 

 

𝑑𝑊mag

𝑑𝑧
= −

𝑒

𝜀0𝑐2
∫Re [

𝑞𝑥�̃�𝑦 (𝐪⊥,

2𝜋𝑣 ,) − 𝑞𝑦�̃�𝑥 (𝐪⊥,


2𝜋𝑣 ,)

4𝜋2 (𝑞⊥
2 + (


2𝜋𝑣)

2

) −
𝜔2𝜀(𝜔)
𝑐2

] 𝛿 (𝑞𝑧 −


2𝜋𝑣
) 𝑑𝐪𝑑𝜔 

… (12) 

 

where ‘Re’ denotes the real part of a complex number and the limits of the 𝜔-integral are now 

between 0 and . Since 𝑞𝑧 = 𝜔/2𝜋𝑣 we can express dq as (𝑑𝐪⊥𝑑𝜔)/2𝜋𝑣 in Equation 12: 

 

𝑑𝑊mag

𝑑𝑧
= −

𝑒

2𝜋𝜀0𝑣𝑐2
∫Re [

𝑞𝑥�̃�𝑦 (𝐪⊥,

2𝜋𝑣 ,) − 𝑞𝑦�̃�𝑥 (𝐪⊥,


2𝜋𝑣 ,)

4𝜋2 (𝑞⊥
2 + (


2𝜋𝑣)

2

) −
𝜔2𝜀(𝜔)
𝑐2

] 𝑑𝐪⊥𝑑
2𝜔 

… (13) 

 

Define Pmag as the ‘probability’ of magnetic energy loss per unit path length, so that: 

 

𝑑𝑊mag

𝑑𝑧
= ∫ℏ𝜔 (

𝜕4𝑃mag

𝜕𝐪⊥𝜕2𝜔
)𝑑𝐪⊥𝑑

2𝜔 

… (14) 

 

Comparing Equations 13 and 14 gives the differential cross-section for magnetic energy loss: 

 

𝜕4𝑃mag

𝜕𝐪⊥𝜕2𝜔
= −

𝑒

2𝜋𝜀0ℏ𝑣𝑐2
 Re [

𝑞𝑥�̃�𝑦 (𝐪⊥,

2𝜋𝑣 ,) − 𝑞𝑦�̃�𝑥 (𝐪⊥,


2𝜋𝑣 ,)

4𝜋2 (𝑞⊥
2 + (


2𝜋𝑣

)
2

) −
𝜔2𝜀(𝜔)
𝑐2

] 

… (15) 

 

Equation 15 indicates that only the curl of the magnetisation around the optic z-axis can 

contribute to the energy loss. Consider now AC magnetic susceptibility measurements, where 

the self-magnetic field of the incident electron induces a magnetisation within the sample. 

Assuming a linear, local response, we have �̃�(𝐪, ω) = χ(ω)�̃�(𝐪,ω) [7], where χ(ω) is the 

AC magnetic susceptibility and �̃� is the Fourier transform of the auxiliary magnetic H-field of 

the incident electron. In real space 𝐁 = ∇⃗⃗ × 𝐀𝑓 = 𝜇0𝐇, so that �̃�(𝐪,ω) =
2𝜋𝑖

𝜇0
𝐪 × �̃�𝑓(𝐪, ω); 

the subscript ‘f’ denotes the fact that 𝐀𝑓  is the vector potential for the self-field. For an electron 



moving along the z-axis with velocity 𝐯 the charge density is 𝜌𝑓(𝐫, 𝑡) = −𝑒𝛿(𝑥)𝛿(𝑦)𝛿(𝑧 −

𝑣𝑡), and therefore the current density is 𝐉𝑓(𝐫, 𝑡) = 𝐯𝜌𝑓(𝐫, 𝑡). Substituting  �̃�𝑓(𝐪,ω) =

−2𝜋𝑒𝐯 𝛿(2𝜋𝑞𝑧𝑣 − 𝜔) and �̃�𝑏(𝐪,ω) = 0 in Equation 4b we obtain �̃�𝑓(𝐪,ω) for the self-field 

of the incident electron: 

 

�̃�𝑓(𝐪,ω) = −
2𝜋𝑒𝜇0𝐯 𝛿(2𝜋𝑞𝑧𝑣 − 𝜔)

[4𝜋2𝑞2 −
𝜔2𝜀(𝜔)
𝑐2

]
 

… (16) 

 

�̃�𝑓(𝐪,ω) is non-zero for 𝑞𝑧 = 𝜔/2𝜋𝑣, which is precisely the condition for magnetic energy 

loss in Equation 15. Furthermore, since the electron velocity v is along the z-axis, the x,y 

components of �̃�𝑓(𝐪, ω) are zero. Therefore, Equation 15 for AC magnetic susceptibility 

becomes: 

 

𝜕4𝑃mag

𝜕𝐪⊥𝜕2𝜔
=
2𝜋𝑒2𝑞⊥

2

𝜀0ℏ𝑐2
 Im

{
 

 
χ(ω)

[4𝜋2 (𝑞⊥
2 + (


2𝜋𝑣)

2

) −
𝜔2𝜀(𝜔)
𝑐2

]
2

}
 

 

 

… (17) 

 

where ‘Im’ denotes the imaginary part of a complex number. Integrating over a circular EELS 

aperture with radius 𝑞EELS gives: 

 

𝜕2𝑃mag

𝜕𝜔2
=

𝑒2

8𝜋2𝜀0ℏ𝑐2
 Im {χ(ω) [ln (1 +

4𝜋2𝑞EELS
2

𝜃
) +

𝜃

4𝜋2𝑞EELS
2 + 𝜃

− 1]} 

… (18a) 

𝜃 = 𝜔2 (
1

𝑣2
−
𝜀(𝜔)

𝑐2
) 

… (18b) 

 

Equation 18a must be integrated with respect to ω to obtain the magnetic energy loss spectrum 
𝜕𝑃mag

𝜕𝜔
. For AC magnetic susceptibility measurements it is important to separate magnetic from 

dielectric energy losses in the EELS spectrum. Equation 18a indicates that the cross-section for 

the former is only weakly dependent on the electron speed 𝑣, while the latter varies 

approximately as 𝑣−2 (see Equation 23 below). This provides a means for identifying magnetic 

energy losses, although changing the accelerating voltage in a transmission electron 

microscope is inconvenient. Furthermore, magnetic energy losses are predicted to be small 

compared to dielectric losses [26], presumably because from Equation 6 they only appear as 

solutions to the retarded form of the electric field.  Magnetic energy losses would therefore 

require far better signal-to-noise ratio for their detection.  

 

Equation 15 can also be used to calculate magnon energy losses in a ferromagnetic material 

where the spontaneous magnetisation is along the z-axis. A magnon spin wave with wave 

vector 𝐪𝑚 and angular frequency 𝜔𝑚 will induce in-plane magnetisation gradients that can lead 



to an energy loss of the incident electron. Following Ref [7] the in-plane magnetisation 

components due to the magnon is expressed as: 

 

𝑀𝑥(𝐫, 𝑡) = 𝐴𝑚𝑒
2𝜋𝑖𝐪𝑚⋅𝐫−𝑖𝜔𝑚𝑡  ⟺  �̃�𝑥(𝐪,ω) = 2𝜋𝐴𝑚𝛿(𝐪 − 𝐪𝑚)𝛿(𝜔 − 𝜔𝑚) 

… (19a) 

𝑀𝑦(𝐫, 𝑡) = 𝑖𝐴𝑚𝑒
2𝜋𝑖𝐪𝑚⋅𝐫−𝑖𝜔𝑚𝑡  ⟺ �̃�𝑦(𝐪, ω) = 2𝜋𝑖𝐴𝑚𝛿(𝐪 − 𝐪𝑚)𝛿(𝜔 − 𝜔𝑚) 

… (19b) 

 

where 𝐴𝑚 is the amplitude of the magnon wave. Substituting Equations 19a and 19b in 

Equation 15 and integrating over 𝐪⊥ and 𝜔 leads to the following expression for the magnon 

energy loss: 

 

𝜕𝑃mag

𝜕𝜔
=

𝑒𝐴𝑚
𝜀0ℏ𝑣𝑐2

Re{
𝑞𝑚𝑦 − 𝑖𝑞𝑚𝑥

4𝜋2 (𝑞𝑚⊥
2 + (

𝜔𝑚
2𝜋𝑣)

2

) −
𝜔𝑚2 𝜀(𝜔𝑚)

𝑐2

} 

… (20) 

  

where 𝑞𝑚𝑦 and 𝑞𝑚⊥ are the y- and xy-components of 𝐪𝑚 respectively. In deriving Equation 20 

it is assumed that 𝑞𝑚𝑧 = 𝜔𝑚/2𝜋𝑣, which ensures conservation of linear momentum during 

scattering. Consider a magnon energy ℏ𝜔𝑚 equal to 10 meV, which is within the energy 

resolution of modern monochromated electron microscopes [1]. Taking ferromagnetic iron as 

an example the magnon dispersion relationship, as measured by neutron scattering, is given by 

ℏ𝜔𝑚 = 𝐷𝑞𝑚
2 , where the constant 𝐷 is equal to 9.08 eVÅ2 [8] (the value of D is adjusted for 

the fact that in Ref [8] the definition of the magnon wavevector includes the factor 2; cf. 

Equations 19a and 19b). Therefore, for a 10 meV magnon in iron and 60 kV electron beam 𝑞𝑚 

>> 𝑞𝑚𝑧 = 𝜔𝑚/2𝜋𝑣. Assume that the in-plane component of the magnon wavevector is along 

the y-direction, so that 𝑞𝑚𝑦 ≈ 𝑞𝑚 in Equation 20. The magnon amplitude 𝐴𝑚 is assumed to be 

10-3Ms, where the room temperature spontaneous magnetisation Ms for iron is 1.7×106 Am-1 

[38]. For simplicity the dielectric function 𝜀(𝜔) is modelled on a free electron metal [39]: 

 

𝜀(𝜔) = 1 −
𝜔𝑝
2

𝜔(𝜔 + 𝑖𝜏)
 

… (21) 

 

where 𝜔𝑝 is the plasmon frequency and 𝜏 is the damping constant. The EELS spectrum from a 

ferritic stainless steel specimen was used to estimate the plasmon peak energy ℏ𝜔𝑝 = 22 eV, 

and from the plasmon full-width-at-half-maximum the damping energy was estimated to be  

ℏ𝜏 = 16 eV [15]. The relatively large damping energy may partly be due to the fact that a 

strong interband transition is observed close to the plasmon peak maximum. Nevertheless, with 

these numerical estimates Equation 20 gives 
𝜕𝑃mag

𝜕𝜔
= 1.9×10-6 m-1s (the result does not strongly 

depend on the precise value of 𝜏). This can be compared with dielectric energy losses, which 

can be derived starting from the first term in Equation 6 using a procedure similar to that 

outlined for magnetic energy losses. The result is: 

 



𝜕3𝑃diel
𝜕𝐪⊥𝜕𝜔

=
𝑒2

4𝜋3𝜀0ℏ𝑣2
Im{−

(1 − 𝜀(𝜔)𝛽2)

𝜀(𝜔) [𝑞⊥
2 + (


2𝜋𝑣

)
2

(1 − 𝜀(𝜔)𝛽2)]
} 

… (22) 

 

Integrating over a circular EELS aperture with radius 𝑞EELS gives: 

 

𝜕𝑃diel
𝜕𝜔

=
𝑒2

4𝜋2𝜀0ℏ𝑣2
Im{−

(1 − 𝜀(𝜔)𝛽2)

𝜀(𝜔)
ln [1 +

𝑞EELS
2

(

2𝜋𝑣)

2

(1 − 𝜀(𝜔)𝛽2)
]} 

… (23) 

  

For a 20 mrad EELS aperture and 60 kV electron beam the largest value of 
𝜕𝑃diel

𝜕𝜔
 is 5.2×10-10 

m-1s at the plasmon peak, which is considerably less than 
𝜕𝑃mag

𝜕𝜔
. Hence our simple estimate 

suggests that magnons should be easily detected using standard electron beams. However, there 

is an important subtlety that has been overlooked. From the Einstein-de Haas effect [7] 

magnetisation is linked to angular momentum, so that generation of magnons by the electron 

beam requires a transfer of 1ħ unit of angular momentum from the incident electron to the 

specimen. Standard, unpolarised electron beams do not however possess angular momentum, 

so that magnon excitation is prohibited. For this reason, it is useful to explore energy losses in 

vortex electron beams, which contain orbital angular momentum. 

 

3. Magnetic energy loss for a vortex electron beam with orbital angular momentum  

 

The three-dimensional electron wavefunction (𝜓) for a vortex beam is a radial function in the 

xy-plane of the specimen and has an azimuthal phase dependence exp(ilϕ), where l is the 

winding number and ϕ the azimuthal angle. The orbital angular momentum (OAM) of the 

vortex beam in free space is therefore lħ [31]. The areal electron density is 𝑛𝑣(𝐑, 𝑧) =

𝛼|𝜓|2𝛿(𝑧 − 𝑣𝑡) and the current density is 𝐉𝑓(𝐑, 𝑧) = −𝑒
ℏ

𝑚
Im(𝜓∗∇⃗⃗ 𝜓)𝛿(𝑧 − 𝑣𝑡), where m is 

the electron mass, R is the position vector in the xy-plane and 𝛼 is a normalisation constant for 

the electron density in the specimen plane at depth 𝑧 = 𝑣𝑡  [33]; the term 𝛿(𝑧 − 𝑣𝑡) signifies 

the fact that in our semi-classical electrodynamic model the electron is treated as a particle 

moving with speed 𝑣 along the z-axis. The current density has an azimuthal component as well 

as a component along the z-direction [40]. Vortex beams in free space include Bessel and 

Laguerre-Gaussian (LG) beams [40]. For a uniform magnetic field along the z-axis the 

wavefunction has solutions of Landau states, which are modified LG beams, where the OAM 

is enhanced provided the magnetic vector potential A and azimuthal current flow in the same 

sense [40-41]. 

 

The energy loss for a vortex beam will now be calculated. First consider the magnetic energy 

loss due to the electric field (Equation 6). The stopping power in Equation 7 is modified to: 

 

𝑑𝑊

𝑑𝑧
= ∫𝑒𝐸𝑧(𝐫, 𝑡)𝑛𝑣(𝐑, 𝑧)𝑑𝐑 =

𝑒

2𝜋
∫ �̃�𝑧 (𝐪,)𝑛𝑣(𝐑, 𝑧)𝑒

2𝜋𝑖𝐪∙𝐫−𝑖𝜔𝑡𝑑𝐪𝑑𝜔𝑑𝐑 



… (24) 

 

Equation 24 can be simplified as: 

 

𝑑𝑊

𝑑𝑧
=
𝑒

2𝜋
∫ �̃�𝑧 (𝐪,) [∫𝑛𝑣(𝐑, z)𝑒

2𝜋𝑖𝐪⊥⋅𝐑 𝑑𝐑] 𝑒2𝜋𝑖𝑞𝑧𝑧−𝑖𝜔𝑡𝑑𝐪𝑑𝜔

=
𝑒

2𝜋
∫ �̃�𝑧 (𝐪,)�̃�𝑣(𝐪⊥, 𝑧)𝑒

2𝜋𝑖𝑞𝑧𝑧−𝑖𝜔𝑡𝑑𝐪𝑑𝜔 

… (25) 

 

where we have used the relationship �̃�𝑣(−𝐪⊥, 𝑧) = �̃�𝑣(𝐪⊥, 𝑧), since for a vortex beam the 

electron density is a real quantity with even parity in the xy-plane, i.e. 𝑛𝑣(−𝐑, z) = 𝑛𝑣(𝐑, 𝑧); 

even parity of the electron density also implies that �̃�𝑣(𝐪⊥, 𝑧) is a real quantity. For a vortex 

beam in a crystalline specimen however this simple relationship breaks down due to dynamic 

diffraction [42-44]. 

 

The differential cross-section for magnetic energy loss can be calculated from Equation 25 

using a procedure similar to that outlined in Section 2. First consider the integration over the 

electron trajectory 𝑧 = 𝑣𝑡 to calculate the energy change 𝛿𝑊 (see Equation 9). For simplicity, 

it is assumed that the vortex beam is non-diffracting, so that �̃�𝑣(𝐪⊥, 𝑧) is independent of z. This 

is exactly true for modified LG (i.e. Landau) beams in a uniform magnetic field in the z-

direction, as well as Bessel beams, but not LG beams, which are approximate solutions to the 

paraxial Schrödinger equation [40]. These results however assume a uniform electrostatic 

potential, and do not always hold in a crystal [42-44], so that our analysis is only applicable for 

weakly diffracting specimens. Integration along the electron trajectory with the assumption of 

a depth independent electron density leads to the quantisation condition 𝑞𝑧 = 𝜔/2𝜋𝑣. Making 

use of the relationships in Equations 11a and 11b, we obtain: 

 

𝜕4𝑃mag1

𝜕𝐪⊥𝜕2𝜔
= −

𝑒

2𝜋𝜀0ℏ𝑣𝑐2
 �̃�𝑣(𝐪⊥)Re [

𝑞𝑥�̃�𝑦 (𝐪⊥,

2𝜋𝑣 ,) − 𝑞𝑦�̃�𝑥 (𝐪⊥,


2𝜋𝑣 ,)

4𝜋2 (𝑞⊥
2 + (


2𝜋𝑣)

2

) −
𝜔2𝜀(𝜔)
𝑐2

] 

… (26) 

 

where 𝑃mag1 is the ‘probability’ for magnetic energy loss per unit path length due to the vortex 

beam electric field. Apart from the �̃�𝑣(𝐪⊥) term, Equation 26 is otherwise similar to Equation 

15, and hence there is no obvious benefit of vortex beams over standard, unpolarised electron 

beams. Instead, we look for energy loss mechanisms that depend on the magnetic moment 

(magnitude 𝜇𝑣) of the vortex beam, since vortex beams with arbitrarily large OAM can in 

principle be generated using the holographic aperture method [28], thus amplifying any 

magnetic energy losses in the sample. The energy loss mechanism of interest here is the ‘Stern-

Gerlach’ force (Section 1), which is due to the change in magnetic potential energy in a non-

uniform magnetic field: 

 

𝑑𝑊mag2

𝑑𝑧
= 𝜇𝑣 ∫

𝜕𝐵𝑧
𝜕𝑧

𝑛𝑣(𝐑, 𝑧)𝑑𝐑 = 𝑖𝜇𝑣 ∫𝑞𝑧�̃�𝑧 (𝐪,)�̃�𝑣(𝐪⊥)𝑒
2𝜋𝑖𝑞𝑧𝑧−𝑖𝜔𝑡𝑑𝐪𝑑𝜔 

… (27) 



 

where we have assumed that the vortex beam is non-diffracting and used the methods outlined 

previously to simplify the above expression. The stopping power is defined as being positive 

for energy loss events. Furthermore, Equation 27 includes only the z-component of the 

magnetic field 𝐵𝑧, since 𝜇𝑣 is parallel to the optic z-axis. Using the fact that 𝐁 = ∇⃗⃗ × 𝐀 

Equation 27 reduces to: 

 

𝑑𝑊mag2

𝑑𝑧
= −2𝜋𝜇𝑣 ∫𝑞𝑧[𝑞𝑥�̃�𝑦(𝐪,) − 𝑞𝑦�̃�𝑥(𝐪,)] �̃�𝑣(𝐪⊥)𝑒

2𝜋𝑖𝑞𝑧𝑧−𝑖𝜔𝑡𝑑𝐪𝑑𝜔 

… (28) 

 

Integrating over the electron trajectory 𝑧 = 𝑣𝑡 to calculate the energy change 𝛿𝑊 (see Equation 

9) leads to the quantisation condition 𝑞𝑧 = 𝜔/2𝜋𝑣, and therefore: 

 

𝑑𝑊mag2

𝑑𝑧
= −

𝜇𝑣
𝑣
∫𝜔 [𝑞𝑥�̃�𝑦 (𝐪⊥,



2𝜋𝑣
,) − 𝑞𝑦�̃�𝑥 (𝐪⊥,



2𝜋𝑣
,)] �̃�𝑣(𝐪⊥)𝑑𝐪𝑑𝜔 

… (29) 

 

Since the magnetic vector potential is a real quantity �̃�(−𝐪, −) = �̃�(𝐪,)∗, so that for any 

scattering vector, frequency pair (𝐪,) and its negative (−𝐪, −) we have: 

 

(−)(−𝑞𝑥)�̃�𝑦 (−𝐪⊥, −


2𝜋𝑣
,−) �̃�𝑣(−𝐪⊥) = 𝑞𝑥�̃�𝑦 (𝐪⊥,



2𝜋𝑣
,)

∗

�̃�𝑣(𝐪⊥) 

… (30a) 

(−)(−𝑞𝑦)�̃�𝑥 (−𝐪⊥, −


2𝜋𝑣
,−) �̃�𝑣(−𝐪⊥) = 𝑞𝑦�̃�𝑥 (𝐪⊥,



2𝜋𝑣
,)

∗

�̃�𝑣(𝐪⊥) 

… (30b) 

 

Therefore, for a circular EELS aperture centred about the optic axis Equation 29 gives: 

 

𝑑𝑊mag2

𝑑𝑧
= −

𝜇𝑣
𝑣
∫𝜔�̃�𝑣(𝐪⊥)Re [𝑞𝑥�̃�𝑦 (𝐪⊥,



2𝜋𝑣
,) − 𝑞𝑦�̃�𝑥 (𝐪⊥,



2𝜋𝑣
,)] 𝑑𝐪𝑑𝜔 

… (31) 

 

From this a differential scattering cross-section can be derived (see Equation 14): 

 

𝜕4𝑃mag2

𝜕𝐪⊥𝜕2𝜔
= −

𝜇𝑣
2𝜋ℏ𝑣2

�̃�𝑣(𝐪⊥)Re [𝑞𝑥�̃�𝑦 (𝐪⊥,


2𝜋𝑣
,) − 𝑞𝑦�̃�𝑥 (𝐪⊥,



2𝜋𝑣
,)] 

… (32) 

 

where 𝑃mag2 is the ‘probability’ for magnetic energy loss per unit path length due to the Stern-

Gerlach force. From Equation 4b, �̃�(𝐪,) contains contributions from both the free current 

density of the incident electron and bound current density due to sample magnetisation. 
Consider first the free current density, which for a vortex beam has azimuthal symmetry in the 

xy-plane. This means that when integrating Equation 32 over a circular EELS aperture to obtain 

the total energy loss, the contribution at wavevector (𝑞𝑥 , 𝑞𝑦) will exactly cancel that at (𝑞𝑦 , 𝑞𝑥). 



The symmetry of the vortex beam therefore prohibits any Stern-Gerlach energy loss due to the 

self-field of the electron. This result has a simple physical explanation. For the non-diffracting 

vortex beams in Reference [40] the relationship 𝐉𝑓𝑧(𝐑) = −𝑒𝐯𝑛𝑣(𝐑) was obtained, i.e. apart 

from the azimuthal current flow in the xy-plane, the electrons also move with constant velocity 

𝐯 along the optic z-axis. The electron trajectory is therefore helical, and its magnetic field can 

be shown to be uniform along the optic axis [45]. From Equation 27 the Stern-Gerlach force 

must therefore be zero. It naturally follows that vortex beams are not suitable for AC 

susceptibility measurements, since the magnetisation 𝐌(𝐑, 𝑧, ω) = χ(ω)𝐇(𝐑, 𝑧, ω) will also 

be uniform along the z-axis, thereby resulting in zero Stern-Gerlach energy loss. A derivation 

of this result is given in the Appendix. 

 

Since only bound currents can contribute to the Stern-Gerlach energy loss, using �̃�𝑏(𝐪, ω) =

2𝜋𝑖𝐪 × �̃�(𝐪, ω) and Equation 4b, Equation 32 becomes: 

 

𝜕4𝑃mag2

𝜕𝐪⊥𝜕2𝜔

=
𝜇𝑣𝜇0
ℏ𝑣2

�̃�𝑣(𝐪⊥)Im{
(

2𝜋𝑣)

[𝑞𝑥�̃�𝑥 (𝐪⊥,

2𝜋𝑣 ,) + 𝑞𝑦�̃�𝑦 (𝐪⊥,


2𝜋𝑣 ,)

] − 𝑞⊥
2�̃�𝑧 (𝐪⊥,


2𝜋𝑣 ,)

4𝜋2 (𝑞⊥
2 + (


2𝜋𝑣)

2

) −
𝜔2𝜀(𝜔)
𝑐2

} 

… (33) 

 

For a given magnetisation reversing the sign of 𝜇𝑣 will convert energy losses to energy gains 

and vice-versa. Equation 33 can be used to calculate the Stern-Gerlach energy loss due to 

magnons. The in-plane magnetisation due to magnons are given by Equations 19a and 19b. 

The out-of-plane magnetisation 𝑀𝑧 is spatially uniform and time-independent, so that 

�̃�𝑧(𝐪,ω) = 2𝜋𝑀𝑠𝛿(𝐪)𝛿(ω), where 𝑀𝑠 is the spontaneous magnetisation. Substituting in 

Equation 33 and integrating over 𝐪⊥ and 𝜔 we obtain: 

 

𝜕𝑃mag2

𝜕𝜔
= �̃�𝑣(𝑞𝑚⊥)𝜇𝑣 (

𝜇0𝜔𝑚𝐴𝑚
ℏ𝑣3

) Im{
𝑞𝑚𝑥 + 𝑖𝑞𝑚𝑦

4𝜋2 (𝑞𝑚⊥
2 + (

𝜔𝑚
2𝜋𝑣)

2

) −
𝜔𝑚2 𝜀(𝜔𝑚)

𝑐2

} 

… (34) 

 

where it is assumed that 𝑞𝑚𝑧 = 𝜔𝑚/2𝜋𝑣 (conservation of linear momentum). Equation 34 is 

evaluated for a 10 meV magnon in iron using the numerical values given in Section 2. For a 

vortex beam 𝜇𝑣 = 𝑙𝜇𝐵, where 𝜇𝐵 is the Bohr magneton. Since ∫𝑛𝑣(𝐑)𝑑𝐑 = 1, it follows that 

�̃�𝑣(𝐪⊥) ≤ 1, and here we assume �̃�𝑣(𝐪⊥) = 1 for convenience. 

 

For a 1ħ OAM vortex beam Equation 34 gives a cross-section 9.2×10-14 m-1s. This is three 

orders of magnitude smaller than the plasmon scattering cross-section in iron for unpolarised 

electron beams (Section 2). Magnon detection is therefore challenging, although vortex beams 

have several benefits over unpolarised beams that, in theory, should make the task easier. First 

the OAM of a vortex beam can provide the angular momentum required for magnon generation. 

Here the sign of the OAM is important. For example, magnons can only be generated if the 



vortex beam magnetic moment 𝜇𝑣 is anti-parallel to the sample magnetisation. For the opposite 

case only thermally generated magnons can be annihilated; this is less probable, since by the 

principle of detailed balance energy gain and loss processes are linked through a Boltzmann 

factor [5, 46]. Second the scattering cross-section can be enhanced by using vortex beams with 

larger OAM and therefore larger magnetic moment (Equation 34). Vortex beams with OAM 

up to 1000ħ have been produced in the electron microscope [29]. Variable OAM also provides 

a method for separating magnetic energy losses from dielectric losses. By subtracting EELS 

spectra acquired for vortex beams with different 𝜇𝑣, the electric field induced magnetic and 

dielectric energy losses cancel provided �̃�𝑣(𝐪⊥) for the two vortex beams are identical, leaving 

only the difference in Stern-Gerlach magnetic energy losses (Equations 26 and 33). �̃�𝑣(𝐪⊥) is 

identical for free space vortex beams of opposite sign. Note that the cross-sections, e.g. 

Equations 26 and 32, represent single inelastic scattering of the vortex beam. Following 

scattering there can be a change in the OAM as a result of angular momentum transfer during 

the magnetic excitation (e.g. magnons). Therefore, if multiple scattering is involved the cross-

section must be modified to reflect the changes in magnetic moment 𝜇𝑣 and electron density 

�̃�𝑣(𝐪⊥) of the new vortex state. The �̃�𝑣(𝑞𝑚⊥) term in Equation 34 has further implications for 

magnon characterisation. For example, a 10 meV magnon in iron has wavevector 𝑞𝑚 = 3.3×10-

2 Å-1, so that for �̃�𝑣(𝑞𝑚⊥) and the Stern-Gerlach cross-section (Equation 34) to have large 

values the vortex beam must have an intensity maximum at ~𝑞𝑚
−1 or 30 Å. This limits the 

spatial resolution that can be achieved in practice. Furthermore, dynamic scattering within the 

specimen means that the incident electrons do not have well defined OAM [42-44], and the 

magnon lifetime will also be limited by decay via single particle Stoner excitation [8] (note 

that Equations 19a and 19b do not take into account magnon damping). These two factors will 

also negatively impact the measurement. 

 

4. Conclusions 

 

Transmission EELS scattering cross-sections for magnetic excitations are derived for standard, 

unpolarised and vortex electron beams. The latter contains a magnetic moment due to its orbital 

angular momentum, which results in a ‘Stern-Gerlach’ energy loss mechanism in addition to 

the energy losses caused by the electric field of the incident electron. The Stern-Gerlach energy 

loss is due to the change in magnetic potential energy of the incident electron in a non-uniform 

magnetic field. The prospect of AC magnetic susceptibility measurements and magnon 

characterisation in a transmission electron microscope are explored. It is shown that the former 

can be carried out using unpolarised electron beams, but the weak scattering cross-section and 

difficulty in separating magnetic energy losses from dielectric losses makes this technique 

difficult to implement. There are no advantages in using vortex beams for measuring AC 

magnetic susceptibility, since the Stern-Gerlach force is zero due to the self-magnetic field 

being spatially uniform along the optic axis. Vortex beams are however highly suited for 

detecting magnons. They can provide the angular momentum required for magnon excitation 

and the strength of the Stern-Gerlach interaction can be enhanced by using vortex beams of 

larger orbital angular momentum. Furthermore, magnetic energy losses can be separated from 

dielectric losses by subtracting EELS spectra acquired with vortex beams of opposite sign. 

Vortex beams are therefore a potential route for experimental observation of magnons at much 

higher spatial resolution compared to traditional neutron scattering measurements.  

 



Finally, although the emphasis has been on magnons and AC magnetic susceptibility, the semi-

classical results derived in this paper are general and can be applied to other large scale 

magnetic features where a continuum description is appropriate, such as, for example, 

demagnetising fields, domain walls and skyrmions. The 𝐪-dependence in �̃�(𝐪,ω) is 

determined by the magnetic feature of interest. The ω (or equivalently time) dependence is due 

to the precessional motion of the spontaneous magnetisation vector under the influence of the 

incident electron self-magnetic field, which can be modelled using the Landau-Lifshitz-Gilbert 

equation. For localised magnetic signals, such as Stoner excitations or short wavelength 

magnons, a continuum description is no longer appropriate, and a full quantum mechanical 

treatment is required to calculate the energy loss. 
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6. Appendix 

 

Here it will be shown that the Stern-Gerlach energy loss due to magnetisation of a medium by 

a vortex beam is zero, which prohibits AC magnetic susceptibility measurements. Substituting 

�̃�(𝐪, ω) = χ(ω)�̃�(𝐪,ω) and �̃�(𝐪, ω) =
2𝜋𝑖

𝜇0
𝐪 × �̃�𝑓(𝐪, ω) in Equation 33 we obtain, 

 

𝜕4𝑃mag2

𝜕𝐪⊥𝜕2𝜔

= −
2𝜋𝜇𝑣
ℏ𝑣2

�̃�𝑣(𝐪⊥)Re{χ(ω)
(𝑞⊥

2 + (

2𝜋𝑣)

2

) [𝑞𝑥�̃�𝑓𝑦 (𝐪⊥,

2𝜋𝑣 ,) − 𝑞𝑦�̃�𝑓𝑥 (𝐪⊥,


2𝜋𝑣 ,)

]

4𝜋2 (𝑞⊥
2 + (


2𝜋𝑣)

2

) −
𝜔2𝜀(𝜔)
𝑐2

} 

… (A1) 

 

The dependence on �̃�𝑓(𝐪, ω) is similar to the expression in Equation 32. Due to azimuthal 

symmetry of the vortex beam and �̃�𝑓(𝐪,ω) the cross-section at wavevector (𝑞𝑥 , 𝑞𝑦) is equal 

and opposite to that at (𝑞𝑦, 𝑞𝑥). Integrating over a circular EELS aperture the net energy loss 

is therefore zero. 
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