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ABSTRACT
Smoothed particle hydrodynamics (SPH) is a Lagrangian method for solving the fluid equations that is commonplace in
astrophysics, prized for its natural adaptivity and stability. The choice of variable to smooth in SPH has been the topic of
contention, with smoothed pressure (P-SPH) being introduced to reduce errors at contact discontinuities relative to smoothed
density schemes. Smoothed pressure schemes produce excellent results in isolated hydrodynamics tests; in more complex
situations however, especially when coupling to the ‘sub-grid’ physics and multiple time-stepping used in many state-of-the-art
astrophysics simulations, these schemes produce large force errors that can easily evade detection as they do not manifest as
energy non-conservation. Here, two scenarios are evaluated: the injection of energy into the fluid (common for stellar feedback)
and radiative cooling. In the former scenario, force and energy conservation errors manifest (of the same order as the injected
energy), and in the latter large force errors that change rapidly over a few time-steps lead to instability in the fluid (of the same
order as the energy lost to cooling). Potential ways to remedy these issues are explored with solutions generally leading to large
increases in computational cost. Schemes using a density-based formulation do not create these instabilities and as such it is
recommended that they are preferred over pressure-based solutions when combined with an energy diffusion term to reduce
errors at contact discontinuities.
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1 IN T RO D U C T I O N

Over the past three decades, the inclusion of hydrodynamics in
(cosmological) galaxy formation simulations has become common-
place (Hernquist & Katz 1989; Evrard, Summers & Davis 1994;
Springel & Hernquist 2002; Springel 2005; Dolag et al. 2009). One
of the first hydrodynamics methods to be used in such simulations
was smoothed particle hydrodynamics (SPH; Gingold & Monaghan
1977; Monaghan 1992). SPH is prized for its adaptivity, conservation
properties, and stability and is still used in state-of-the-art simulations
by many groups today (Schaye et al. 2015; Teklu et al. 2015;
McCarthy et al. 2017; Tremmel et al. 2017; Cui et al. 2019;
Steinwandel et al. 2020); see Vogelsberger et al. (2020) for a recent
overview of cosmological simulations.

As a consequence of the non-diffusive nature of the SPH equations,
dissipative shock-capturing terms must be added, similar to other
shock capturing schemes required in all numerical methods. In SPH,
this is resolved by the addition of a diffusive ‘artificial viscosity’
term (Monaghan & Gingold 1983). This added diffusivity is only
required in shocks, and so many schemes include particle-carried
switches for the viscosity (Morris & Monaghan 1997; Cullen &
Dehnen 2010) to prevent unnecessary conversion between kinetic and
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thermal energy in e.g. shearing flows and preserve greater than first
order accuracy in smooth parts of the flow. Another consequence of
the non-diffusive equations is the artificial surface tension appearing
in contact discontinuities (e.g. Agertz et al. 2007), which has led
to the development of several mitigation procedures. One possible
solution is artificial conductivity (also known as energy diffusion)
to smooth out the discontinuity (e.g. Price 2008; Read & Hayfield
2012; Rosswog 2019); this method applies an extra diffusion term
in the energy equation to transfer energy between particles. The
alternative solution, generally favoured in the cosmology community,
is to reconstruct a smooth pressure field (Ritchie & Thomas 2001;
Hopkins 2013; Saitoh & Makino 2013). This smooth pressure field
allows for a gradual transition pressure between hot and cold fluids,
suppressing any variation in the thermodynamic variable at scales
smaller than the resolution limit. This can be beneficial in fluids
where there is a high degree of mixing between phases, such as in
gas flowing into galactic haloes (e.g. Tumlinson, Peeples & Werk
2017; Stern et al. 2019).

Cosmological simulations typically include so-called sub-grid
physics that aims to represent underlying physics that is below the
(mass) resolution limit (which is usually around 103−7 M�; Schaye
2010; Vogelsberger et al. 2014; Schaye et al. 2015; Hopkins et al.
2018; Davé et al. 2019; Marinacci et al. 2019). This is commonplace
in many fields, and is essential in galaxy formation to reproduce
many of the observed properties of galaxies. One key piece of sub-
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Sub-grid models and P-SPH 2317

grid physics is star formation, which occurs on mass scales smaller
than a solar mass. Cold, dense, gas is required to enable stars to
form; to reach these temperatures and densities radiative cooling
(which occurs on atomic scales) must be included in a sub-grid
fashion. Finally, when these stars have reached the end of their life
some will produce supernovae explosions, which are modelled using
sub-grid ‘feedback’ schemes (such a sub-grid scheme is chosen for
many reasons, including but not limited to limited resolution and the
‘overcooling problem’; see Navarro & White 1993; Dalla Vecchia &
Schaye 2012, and references for more information). Each of these
processes has an impact on the hydrodynamics solver that must be
carefully examined. Here, we employ a simple galaxy formation
model including implicit cooling and energetic feedback, based
on the EAGLE galaxy formation model (Schaye et al. 2015), to
understand how the inclusion of such a model may affect simulations
employing density- or pressure-based SPH differently. We note,
however, that the results obtained in the following sections are
applicable to all kinds of galaxy formation models, including those
that instead use instantaneous or ‘operator-split’ cooling.

The rest of this paper is organized as follows: In Section 2, the
SPH method is described, along with the density- and pressure-based
schemes; in Section 3, the basics of a galaxy formation model are
discussed in more detail; in Section 4, issues relating to injection
of energy into pressure-based schemes are explored; in Section 5,
the SPH equations of motion are discussed; in Section 6, the time-
integration schemes used in cosmological simulations are presented
and issues with sub-grid cooling are explored; and in Section 7,
it is concluded that while pressure-SPH schemes can introduce
significant errors it is possible in some cases to use measures
(albeit computationally expensive ones) to remedy them. Because
of this added expense it is suggested that a density-based scheme
is preferred, with an energy diffusion term used to mediate contact
discontinuities.

2 SM O OTH E D PA RT I C L E H Y D RO DY NA M I C S

SPH is a Lagrangian method that uses particles to discretize the fluid.
To find the equation of motion for the system, and hence integrate a
fluid in time, the forces acting on each particle are required. In a fluid,
these forces are determined by the local pressure field acting on the
particles. The ultimate goal of the SPH method, then, is to find the
pressure gradient associated with a set of discretized particles; once
this is obtained finding the equations of motion is a relatively simple
task. The reader is referred to the first few pages of the review by
Price (2012) for more information on the fundamentals of the SPH
method.

Before continuing, it is important to separate the two types of
quantities present in SPH. The first, particle carried properties
(denoted as symbols with an index corresponding to their particle,
e.g. mi is the mass of particle i) are valid only at the positions
of particles in the system and include variables such as mass. The
second, field properties (denoted as symbols with a hat, and with a
corresponding index if they are evaluated at particle positions, such
as ρ̂i , the density at the position of particle i) are valid at all points in
the computational domain, and generally are volumetric quantities.
These field properties are built out of particle-carried properties by
convolving them with the smoothing kernel.

The smoothing kernel is a weighting function of two parameters,
inter-particle separation (|ri − rj | = rij ) and smoothing length hi,
with a shape similar to a Gaussian with a full width half-maximum
(FWHM) of

√
2 ln 2hi . The smoothing lengths of particles are chosen

such that, for each particle, the following equation is satisfied:

n̂i =
∑

All particles j

W (rij , hi) =
(

η

hi

)nD

, (1)

where n̂i is the local number density, nD the number of spatial
dimensions, and the kernel W(rij, hi) (henceforth written as Wij) has
the same dimensions as number density, typically being composed
of a dimensionless weighting function wij = w(rij/hi) such that
Wij ∝ wijh

−nD

i . η is a dimensionless parameter that determines
how smooth the field reconstruction should be (effectively setting
the spatial resolution), with larger values leading to kernels that
encompass more particles and typically takes values around η ≈ 1.2.1

An important distinction is the difference between the smoothing
length, hi, related to the FWHM of the Gaussian that the kernel
approximates, and the kernel cut-off radius Hi. This cut-off radius is
parametrized as Hi = γ Khi, with γ K a kernel-dependent quantity
taking values around 1.5–2.5, such that Hi gives the maximum
value of rij at which the kernel will be non-zero.2 We note that
Table 1 shows all symbols used regularly throughout this paper and
encourage readers to refer to it when necessary.

An example kernel (the cubic spline kernel, see Dehnen & Aly
2012, for significantly more information on kernels) is shown in
Fig. 1, with three choices for the smoothing length that satisfy
equation (1): one that is too large; one that is ‘just right’ for the
given choice of η, and one that is too small. The choice to satisfy
both equations is not strictly equivalent to ensuring that the kernel
encompasses a fixed number of neighbouring particles; note how the
edges of the kernel in the left-hand panel do not coincide with a
particle, even despite their uniform spacing.

To evaluate the mass density of the system, at the particle positions,
the kernel is again used to re-evaluate the above equation now
including the particle masses such that the density

ρ̂i =
∑

j

mjWij (2)

is the sum over the kernel contributions and neighbouring masses mj

that may differ between particles. Note that this summation includes
the self-contribution from the particle i, miW(0, hi).

Typically in SPH, the particle-carried property of either internal
energy ui, or entropy Ai (per unit mass)3 is chosen to encode the
thermal properties of the particle. These are related to each other,
and the particle-carried pressure, through the ideal gas equation of
state

Pi = (γ − 1)uiρ̂i = Aiρ̂
γ , (3)

with the ratio of specific heats γ = CP/CV = 5/3 for the fluids usually
considered in cosmological hydrodynamics models.

Alternatively, it is possible to construct a smooth pressure field
that is evaluated at the particle positions such that

P̂i =
∑

j

(γ − 1)mjujWij =
⎛
⎝∑

j

mjA
1/γ

j Wij

⎞
⎠

γ

, (4)

1This corresponds to the popular choice of around 48 neighbours for a cubic
spline kernel.
2The choice of which variable to store, h or H, is tricky; h is more easily
motivated (Dehnen & Aly 2012) and independent of the choice of kernel, but
H is much more practical in the code as outside this radius interactions do
not need to be considered.
3Note that this quantity is not really the ‘entropy’, but rather the adiabat that
corresponds to this choice of entropy, hence the choice of symbol A.
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2318 J. Borrow, M. Schaller, and R. G. Bower

Table 1. Table of symbols used in the rest of the paper. Symbols are defined, along with their units (in terms of unit mass [m], unit length [l], and unit time [t])
here.

Parameter name Symbol Symbolic units Description

Number of dimensions nD None Number of spatial dimensions (1–3)
Particle position ri [l] Cartesian vector position of particles
Inter-particle separation rij = |ri − rj | [l] Euclidean distance between two particles i and j
Smoothing length hi [l] Particle-carried smoothing length corresponding to FWHM of Gaussian
Number density n̂i [l]−nD Local particle number density, i.e. the local density of particles
Kernel Wij = W(rij, hi) [l]−nD Value of the kernel at the distance between particles i and j
Eta η None Ratio of local inter-particle separation to smoothing length
Kernel support ratio γ K None Ratio between cut-off radius of the kernel and smoothing length; kernel-dependent
Ratio of specific heats γ None The ratio of specific heats for the ideal gas, here γ = CP / CV = 5/3
Cut-off radius Hi = γ Khi [l] Maximal radius at which the kernel takes a non-zero value
Density ρ̂i [m][l]−nD Local mass density, here defined at the position of particle i
Particle mass mi [m] The mass of a particle, here the mass of particle i
Internal energy ui [l]2[t]−2 Internal energy per unit mass of particle i
Entropy Ai [m]1 − γ [l]3γ − 1[t]−2 Entropy per unit mass of particle i
Pressure Pi or P̂i [m][l]−1[t]−2 Pressure of the field, either at particle positions (left) or smoothed (right)
Sound speed cs,i [l][t]−1 Speed of sound at the position of particle i
Weighted density ρ̄i [m][l]−3 Smoothed pressure-weighted density, i.e. P̂i/[(γ − 1)ui ]
Particle velocity vi [l][t]−1 Cartesian vector velocity of the particle i
h-factor fij None Correction factor for variable smoothing lengths (between particles i and j)

Figure 1. The three leftmost panels show the consequences of choosing a correct (large, left), too large (top right), and too small (bottom right) smoothing
length (for η = 1.1) in 1D on a set of particles with an expected density n̂ = 1. This is quantified through both the density, n̂, for the central particle i, and
the ratio between the chosen smoothing length hi and the expected smoothing length given by η/n̂i , parametrized as χ i. χ i is a well-behaved function of the
smoothing length, and finding the root of χ i − 1 is a reliable way to choose the value of hi that corresponds to a given choice of η. Note how the density is only
erroneous in the case with a smoothing length that is too small (bottom panel); the larger smoothing length (top panel) produces the correct density but would
be less computationally efficient and inconsistent with the chosen value of η. The rightmost panel shows a 2D case with a random particle distribution, with the
background colour map showing the low (blue) to high (white and then red) density regions and the associated variation in smoothing length. Here, for selected
particles, the smoothing length h and kernel cut-off radius H are shown with dotted and dashed lines respectively. In particular, note how the higher density
regions show smaller smoothing lengths such that equation (1) is respected.

directly includes the particle-carried thermal quantities of the neigh-
bours into the definition of the pressure.

The differences between SPH models that use the particle pres-
sures evaluated through the equation of state and smoothed density
(i.e. those that use equations 2 and 3), known as density SPH, and
those that use the smooth pressures (i.e. those that use equation 4),
known as pressure SPH, is the central topic of this paper. The SPH
scheme may be referred to by its choice of thermodynamic variable,
internal energy, or entropy, as density-energy (density-entropy) or
pressure-energy (pressure-entropy).

SPH schemes are usually implemented as a fixed number of
‘loops over neighbours’ (often just called loops). For a basic
scheme like the ones presented above, two loops are usually used.
The first loop, frequently called the ‘density’ loop, goes over
all neighbours j of all particles i to calculate their SPH density
(equation 2) or smooth pressure (equation 4). The second loop,
often called the ‘force’ loop, evaluates the equation of motion
for each particle i through the use of the pre-calculated smoothed
quantities of all neighbours j. Each loop is computationally ex-
pensive, and so schemes that require extra loops are generally
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Sub-grid models and P-SPH 2319

unfavourable unless they provide a significant benefit. State-of-the-
art schemes typically use three loops, inserting a ‘gradient’ loop
between the ‘density’ and ‘force’ loops to calculate either improved
gradient estimators (Rosswog 2019) or coefficients for artificial
viscosity and diffusion schemes (Price 2008; Cullen & Dehnen
2010).

3 A SIMPLE GALAXY FORMATION MODEL

The discussion that follows requires an understanding of two pieces
of a galaxy formation model: energy injection into the fluid and
energy removal from the fluid. These are used to model the processes
of supernovae and active galactic nucleus (AGN) feedback, and
radiative cooling, respectively. The results presented here are not
necessarily tied to the model used, and are applicable to a wide range
of current galaxy formation models that use pressure-based SPH
schemes. Here, we use a simplified version of the EAGLE galaxy
formation model as an instructive example, as this used pressure–
entropy SPH for its hydrodynamics model in Schaye et al. (2015) and
associated works (of particular note is Schaller et al. 2015, that dis-
cusses the effects of the choice of numerical SPH scheme on galaxy
properties).

3.1 Cooling

The following equation is solved implicitly for each particle sepa-
rately:

u(t + �t) = u(t) + du

dt
(t,�t)�t, (5)

with du/dt being the ‘cooling rate’ calculated from the underlying
atomic processes and the resulting final internal energy being
transformed into an average rate of change of internal energy as
a function of time over the step,

d̄u

dt
= u(t + �t) − u(ti)

�t
. (6)

After this occurs, this rate is limited in some circumstances (see
Schaye et al. 2015, for more detail) that are not relevant to the
discussion here. This average ‘cooling rate’ is then applied as either
an addition to the du/dt or dA/dt from the hydrodynamics scheme for
each particle depending on the variable that the scheme tracks.

The resulting cooling rate may be large enough that it leads to
orders of magnitude change in the internal energies of particles,
with the cooling curve not explicitly resolved when using only the
Courant–Friedrichs–Lewy (CFL) condition (see Section 5.3). This
is the desired behaviour, as running a simulation where the cooling
curves of all particles are resolved would not be computationally
feasible.

3.2 Energy injection feedback

A common, simple, feedback model is implemented as instanta-
neously heating particles by a constant temperature jump. It is
possible to implement different types of feedback with this method,
all being represented with a separate change in temperature �T. For
supernovae feedback, �TSNII = 107.5 K, and for AGN �TAGN =
108.5 K (in EAGLE). The change in temperature does not actually
ensure that the particle has this temperature once the feedback has
taken place, however; the amount of energy corresponding to heating
a particle from 0 K to this temperature is added to the particle. This

ensures that even in cases where the particle is hotter than the heating
temperature energy is still injected.

To apply feedback to a given particle, this change in temperature
must be converted to a change in internal energy. This is performed by
using a linear relationship between temperature and internal energy
to find the internal energy that corresponds to a temperature of �T,
and adding this additional energy on to the internal energy of the
particle.

4 EN E R G Y IN J E C T I O N IN
PRESSURE–ENTRO PY

In cosmology codes, it is typical to use the particle-carried entropy
as the thermodynamic variable rather than the internal energy. This
custom originated because in many codes (of particular note here is
GADGET; Springel 2005) the choice of co-ordinates in a space co-
moving with expansion due to dark energy is such that the entropy
variable is cosmology-less, i.e. it is the same in physical and co-
moving space. Entropy is also conserved under adiabatic expansion,
meaning that fewer equations of motion are required. This makes it
convenient from an implementation point of view to track entropy
rather than internal energy. However, at the level of the equation of
motion, it makes no difference, as this is essentially just a choice of
co-ordinate system.

This naturally leads the pressure–entropy variant (i.e. as opposed
to pressure–energy) of the pressure-based schemes to be frequently
chosen; here the main smoothed quantity is pressure, with entropy
being the thermodynamic variable.

The pressure-entropy and pressure-energy scheme perform
equally well on hydrodynamics tests [see Hopkins (2013) for a
collection], but when coupling to sub-grid physics there are some
key differences.

For an entropy-based scheme, energy injection naturally leads to
a conversion between the requested energy input and an increase
in entropy for the relevant particle. Considering a density-entropy
scheme to begin with (e.g. Springel & Hernquist 2002), with only a
smooth density ρ̂,

Pi = (γ − 1)uiρ̂i , (7)

with P the pressure from the equation of state, γ the ratio of specific
heats, and ui the particle energy per unit mass. In addition, the
expression for the pressure as a function of the entropy Ai,

Pi = Aiρ̂
γ . (8)

Given that these should give the same thermodynamic pressure, the
derived pressure variable can be eliminated to give

ui = Aiρ̂
γ−1

γ − 1
(9)

and as these variables are independent for a change in energy �u the
change in entropy can be written

�Ai = (γ − 1)
�ui

ρ̂γ−1
. (10)

For any energy based scheme (either density-energy or pressure-
energy), it is possible to directly modify the internal energy per unit
mass u of a particle, and this directly corresponds to the same change
in total energy of the field. This is clearly also true here too for the
density-entropy scheme. Then, the sum of all energies (converted
from entropies in the density-entropy case) in the box will be the
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original value plus the injected energy, without the requirement for
an extra loop over neighbours.4

Now considering pressure-entropy, the smoothed pressure shown
in equation (4) at a particle depends on a smoothed entropy over all
of its neighbours. To connect the internal energy and entropy of a
particle again the equation of state can be used by introducing a new
derived variable, the weighted density ρ̄,5

P̂i = (γ − 1)uiρ̄i = Aiρ̄
γ

i . (11)

These two equations can be rearranged to eliminate the derived
weighted density ρ̄ such that

Ai(ui) = P̂
1−γ

i (γ − 1)uγ

i , (12)

ui(Ai) = A
1/γ

i P̂
1−1/γ

i

γ − 1
. (13)

To inject energy into the field by explicitly heating a single particle
i in any entropy-based scheme the key is to find �Ai for a given
�ui. In a pressure-based scheme this is problematic, as (converting
equation 12 to a set of differences),

�A = P̂i(Ai, Aj )1−γ (γ − 1)(ui + �u)γ − Ai, (14)

to find this difference requires conversion via the smoothed pressure
which directly (and non-linearly) depends on the value of Ai. This
also occurs for the particles that neighbour i, meaning that there
will be a non-zero change in the energy uj that they report. Hence,
this means that simply solving a linear equation for �A(�u) is not
enough; whilst this may at first appear trivial for a single particle,
the true change in energy of the whole field will not be �u (as it
was in density-entropy) because of the changing pressures of the
neighbours, and hence the local energy density of the field that they
report.

The problem of injecting the required quantity of energy instan-
taneously can be reduced to producing a valid unique solution for
�A as a function of the requested �u for the entire field, which in
principle can be performed by solving a system of Nneigh (the number
of neighbours of particle i) non-linear equations (see Section 4.1).
Any errors in this injection procedure effectively enter as errors in
the initial conditions of the problem, and hence are carried through
to any solution point in the future. For clarity, we begin with a more
practical iterative solution, before moving on to the computationally
and conceptually complex full solution.

Given the conservative nature of the SPH equations of motion, any
error in the injection of energy will be carried through to the end of the
simulation and impact the physical interpretation of the results. For
instance, injecting additional energy in numerical experiments like
the tests presented in Balsara et al. (2004) for supernovae, Booth &
Schaye (2009) for AGNs, or even a Springel (2005) blast wave
problem would correspond to errors from the initial time-step of the
simulation to the last. All problems where energy must be accurately
injected will be negatively affected by the use of a scheme where
this is not practically possible. The thought experiment that follows
corresponds to the initial injection phase of such a blast wave event,

4This is only true given that the values entering the smooth quantities, here
the density, are not changed at the same time. In practice, the mass of particles
in cosmological simulations either does not change or changes very slowly
with time (due to sub-grid stellar enrichment models for instance).
5Another conceptual issue with pressure-based schemes is the decision over
which density to use within sub-grid routines (e.g. for cooling rates that
depend on density). See Oppenheimer et al. (2018; appendix D) for more
information.

Figure 2. Energy injection as a function of iterations of the neighbour loop-
based algorithm in pressure–entropy. Different coloured lines show ratios of
injected energy to the original energy of the chosen particle, increasing in
steps of 10. This algorithm allows for the correct energy to be injected into
each particle after around 10 iterations, however more complex convergence
criteria could be incorporated. A better estimate of the change in the smoothed
pressure P̂ could also significantly improve convergence.

where an error in the injected energy will lead to a change in the speed
and pressure of the shock front following the solution presented by
Taylor (1950) and Springel (2005).

A simple algorithm for injecting energy �u in this case would be
as follows:

(i) Calculate the total energy of all particles that neighbour the
one that will have energy injected, ufield,i = ∑

j u(Aj , P̂j ).6

(ii) Find a target energy for the field, ufield,t = ufield,i + �u.
(iii) While the energy of the field ufield = ∑

j u(Aj , P̂j ) is outside
of the bounds of the target energy:

(a) Calculate Ainject = A(ufield,t − ufield, P̂ ) for the particle
that will have energy injected (i.e. apply equation 14 assuming
that P̂i does not change).

(b) Add on Ainject to the entropy of the chosen particle.
(c) Recalculate the smoothed pressures for all neighbouring

particles.
(d) Recalculate the energy of the field ufield (i.e. go to item iii

above).

The results of this process, for various injection energies, are
shown in Fig. 2. After around 10 iterations, the requested injection
of energy is reached. This process is valid only for working on a
single particle at a time, however, and as such would be non-trivial to
parallelize without the use of locks on particles that were currently
being modified. Suddenly changing the energy of a neighbouring
particle while this process was being performed would destroy the
convergent behaviour that is demonstrated in Fig. 2.

Even without locks, this algorithm is computationally expensive,
with many thousands of operations required to change a single

6More specifically we actually require all particles j that see particle i as a
neighbour (rather than all particles j that i sees as a neighbour), which may
be different in regions where the smoothing length varies significantly over a
kernel, but this detail is omitted from the main discussion for clarity.
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Figure 3. The same as Fig. 2, however this time using an approximate
algorithm that only updates the self-contribution of the heated particle. This
version of the algorithm shows non-convergent behaviour at low-energy
injection values, but is significantly computationally cheaper than solutions
that require neighbour loops during the iteration procedure.

variable. Recalculating the smoothed pressure (step c) for every
particle multiple times per step is generally infeasible as it would
require many thousands of operations per particle per step. An ideal
algorithm would not require neighbour loops; only updating the self-
contribution for the heated particle7:

(i) Calculate the total energy of the particle that will have the
energy injected, ui,initial = u(Ai, P̂i).

(ii) Find a target energy for the particle, ui,target = ui,initial + �u.
(iii) While the energy of the particle ui = u(Ai, P̂i) is outside of

the bounds of the target energy (tolerance here is 10−6, and is rarely
reached) and the number of iterations is below the maximum (10):

(a) Calculate Ainject = A(ui,t − ui, P̂ ) for the particle that
will have the energy injected.

(b) Add on Ainject to the entropy of that particle.
(c) Update the self-contribution to the smoothed pressure for

the injection particle by P̂i,new =
[
P̂

1/γ

i,old + (A1/γ
new − A

1/γ

old )W0

]γ

with W0 = W(0, hi) the kernel self-contribution term.
(d) Recalculate the energy of the particle ui = u(Ai, P̂i)

using the new entropy and energy of that particle (i.e. go to
iii above).

The implementation of the faster procedure is shown in Fig. 3.
This simple algorithm leads to significantly higher than expected
energy injection for low (relative) energy injection events. For the
case of the requested energy injection being the same as the initial
particle energy, over 50 per cent too much energy is injected into
the field. For events that inject more entropy into particle i, the
value A

1/γ

i Wij for all neighbouring kernels becomes the leading
component of the smoothed pressure field. This allows the pressure
field to be dominated by this one particle, meaning that changes

7This algorithm was implemented in the original EAGLE code using the
weighted density, ρ̄ as the smoothed quantity, however this algorithm has
been rewritten to act on the smoothed pressure for simplicity. See appendix
A1.1 of Schaye et al. (2015) for more details.

Figure 4. Comparison between the simple energy injection procedure (Fig. 3,
solid lines) against the method including a neighbour loop each iteration
(Fig. 2, dashed lines) for various energy injection values. The vertical axis
here shows the energy offset from the true requested energy (in absolute
arbitrary code units). The neighbour loop approach allows for the injected
energy error to decrease with each iteration, where the simple procedure has a
fixed (injection dependent) energy error that is reached rapidly at low values
of energy injection where the entropies of neighbouring particles remain
dominant.

in A
1/γ

i represent linear changes in the pressures of neighbouring
particles, and hence allowing the simple methodology to correctly
predict the changes in the global internal energy field.

The error in the computationally cheaper injection method is
directly compared against the neighbour loop procedure from Fig. 2
in Fig. 4. The extra energy injected per event is clear here; the method
using a full neighbour loop each iteration manages to reduce the error
each iteration, with the non neighbour loop method showing a fixed
offset after a few iterations. This also shows that the energy injection
error grows as the amount injected grows, despite this becoming a
lower relative fraction of the requested energy.

It is unclear exactly how much these errors impact the results of
a full cosmological run. For the case of supernovae following Dalla
Vecchia & Schaye (2012), which has a factor of unew/uold ≈ 104 this
should not represent a significant overinjection (the energy converges
within 10 iterations to around a per cent or so). For feedback pathways
that inject a relatively smaller amount of energy (for instance SNIa,
AGN events on particles that have been recently heated, events
on particles in haloes with a high virial temperature, or schemes
that inject using smaller steps of energy or into multiple particles
simultaneously) there will be a significantly larger amount of energy
injected than initially expected.

This uncontrolled energy injection is clearly undesirable, how-
ever as energy injection models are usually calibrated against an
observational dataset, such errors may well be built into the eventual
parameters of the model.

4.1 A different injection procedure

Pressure–entropy-based schemes have been shown to be unable to
inject the correct amount of energy using a simple algorithm based
on updating only a single particle (i.e. without neighbour loops),
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Figure 5. The blue line shows the dependence of change in field energy u as
a function of the change in the entropy Ai of a single particle, for a requested
change in energy �u. This change in energy �u corresponds to a heating
event from 103.5 to 107.5 K (a factor of 104 in u), which corresponds to a
typical energetic supernovae feedback event. The orange dashed line shows
the predicted change in Ai for this change �u from the iterative solution
(using the Newton–Raphson method) of equation (18).

however it is possible to perform this task exactly within a single
step by using an iterative solver to find the change in entropy �A.

To inject a set amount of energy �u the total energy of the field
utot must be modified by changing the properties of particle i (with
neighbouring particles j), with

utot = 1

γ − 1

⎛
⎝∑

j

mjA
1/γ

j Wij

⎞
⎠

γ−1

. (15)

This can be re-arranged to extract components specifically dependent
on the injection particle i,

utot = 1

1 − γ

∑
j �=i

A
1/γ

j

(
pj,i + miA

1/γ

i Wij

)γ−1

+A
1/γ

i

(
pi,i + miA

1/γ

i Wii

)γ−1
, (16)

with

pa,b = P̂b − mbA
1/γ

b Wab. (17)

Finally, now considering a change in energy �u as a function of the
change in entropy for particle i, �A,

�u = 1

1 − γ

∑
j �=i

A
1/γ

j

(
pj,i + mi(Ai + �A)1/γ Wij

)γ−1

+ (Ai + �A)1/γ
(
pi,i + mi(Ai + �A)1/γ Wii

)γ−1

− utot, (18)

which can be solved iteratively using, for example, the Newton–
Raphson method. This method converges very well in just a few steps
to calculate the change in entropy �A as demonstrated in Fig. 5. In
practice, this method would require two loops over the neighbours
of particle i per injection event. In the first loop, the values of pj,i

and Wij would be calculated and stored, with the iterative solver then
used to find the appropriate value of �A. These changes would then

need to be back-propagated to the neighbouring particles, as their
smoothed pressures P̂j will have changed significantly, reversing the
procedure in equation (17).

Such a scheme could potentially make a pressure-entropy-based
SPH method viable for a model that uses energy injection. This
procedure requires tens of thousands of operations per thermal
injection event, however, and as such would require significant effort
to implement efficiently.

This also highlights a possible issue with pressure-energy-based
SPH schemes, as even in this case, where it is much simpler to make
changes to the global energy field, changes to the internal energy of
a particle must be back-propagated to neighbours to ensure that the
pressure and internal energy fields remain consistent. These errors
also compound, should more than one particle in a kernel be heated
without the back propagation of changes.

5 EQUAT I O N S O F M OT I O N

So far only static fields have been under consideration; before moving
on to discussing the effects of sub-grid cooling on pressure-based
schemes, the dynamics part of SPH must be considered. Below only
two equations of motion are described, the one corresponding to
density-energy, and the equation of motion for pressure-energy SPH.
For a more expanded derivation of the following from a Lagrangian
and the first law of thermodynamics, see Hopkins (2013) or the SWIFT

simulation code theory documentation.8

5.1 Density-energy

For density-energy, the smoothed quantity of interest is the smoothed
mass density (equation 2). This leads to a corresponding equation of
motion for velocity of

dvi

dt
= −

∑
j

mj

[
fi

Pi

ρ̂2
i

∇W (rij , hi) + fj
Pj

ρ̂2
j

∇W (rji , hj )

]
, (19)

with the fi here representing correction factors for interactions
between particles with different smoothing lengths

fi =
(

1 + hi

nd ρ̂i

∂ρ̂i

∂hi

)−1

. (20)

This factor also enters into the equation of motion for the internal
energy

dui

dt
=

∑
j

mjfi

Pi

ρ̂2
i

vij · ∇W (rij , hi). (21)

5.2 Pressure-energy

For pressure-energy SPH, the thermodynamic quantity u remains
the same as for density-energy, but the smoothed pressure field P̂

is introduced (see equation 4). This is then used in the equation of
motion for the particle velocities

dvi

dt
= −

∑
j

(γ − 1)2mjujui

×
[

fij

P̂i

∇W (rij , hi) + fji

P̂j

∇W (rji , hj )

]
. (22)

8http://www.swiftsim.com
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with the fij now depending on both particle i and j

fij = 1 −
[

hi

nd (γ − 1)n̂imjuj

∂P̂i

∂hi

](
1 + hi

nd n̂i

∂n̂i

∂hi

)−1

, (23)

with n̂ the local particle number density (equation 1). Again, this
factor enters into the equation of motion for the internal energy

dui

dt
= (γ − 1)2

∑
j

mjuiuj

fij

P̂i

vij · ∇Wij . (24)

5.3 Choosing an appropriate time-step

To integrate these forward in time, an appropriate time-step between
the evaluation of these smoothed equations of motion must be chosen.
SPH schemes typically use a modified version of the CFL (Courant,
Friedrichs & Lewy 1928) condition to determine this step length.
The CFL condition takes the form of

�t = CCFL
Hi

cs
, (25)

with cs the local sound speed, and CCFL a constant that should be
strictly less than 1.0, typically taking a value of 0.1–0.3.9 Computing
this sound speed is a simple affair in density-based SPH, with it being
a particle-carried property that is a function solely of other particle
carried properties,

cs =
√

γ
P

ρ̂
=

√
γ (γ − 1)u. (26)

For pressure-based schemes, this requires a little more thought. The
same sound speed can be used, but this is not representative of the
variables that actually enter the equation of motion. To clarify this,
first consider the equation of motion for density-energy (equation 19)
and rewrite it in terms of the sound speed,

dvi

dt
∼ c2

s,i

ρ̂i

∇iWij ,

and for pressure energy (equation 22)

dvi

dt
∼ (γ − 1)2 uiuj

P̂i

∇iWij .

From this, it is reasonable to assume that the sound speed, i.e. the
speed at which information propagates in the system through pressure
waves, is given by the expression

cs = (γ − 1)ui

√
γ

ρ̂i

P̂i

. (27)

This expression is dimensionally consistent with a sound speed, and
includes the gas density information (through ρ̂), traditionally used
for sound speeds, as well as including the extra information from
the smoothed pressure P̂ . However, such a sound speed leads to a
considerably higher time-step in front of a shock wave (where the
smoothed pressure is higher, but the smooth density is relatively
constant), leading to time-integration problems. Using

cs =
√

γ
P̂i

ρ̂i

(28)

9In practice this cs is usually replaced with a signal velocity vsig that depends
on the artificial viscosity parameters. As the implementation of an artificial
viscosity is not discussed here, this detail is omitted for simplicity.

instead of equation (27) leads to a sound speed that does not
represent the equation of motion as directly but does not lead to
time-integration problems, and effectively represents a smoothed
internal energy field. It is also possible to use the same sound speed
using the particle-carried internal energy directly above.

6 T I M E IN T E G R AT I O N

A typical astrophysics SPH code will use Leapfrog integration or a
velocity-verlet scheme to integrate particles through time (see e.g.
Hernquist & Katz 1989; Springel 2005; Borrow et al. 2018). This
approach takes the accelerations, ai = dvi/dt , and the velocities,
vi = dri/dt and solves the system for the positions ri(t) as a function
of time. It is convenient to write the equations as follows (for each
particle):

v
(

t + �t

2

)
= v(t) + �t

2
a(t), (29)

r (t + �t) = r(t) + v
(

t + �t

2

)
�t, (30)

v (t + �t) = v
(

t + �t

2

)
+ �t

2
a(t + �t), (31)

commonly referred to (in order) as a Kick–Drift–Kick scheme.
Importantly, these equations must be solved for all variables of
interest.

This leapfrog time integration is prized for its second-order
accuracy (in �t) despite only including first order operators, due
to cancelling second-order terms as well as its manifest conservation
of energy (Hernquist & Katz 1989).

6.1 Multiple time-stepping

As noted above, it is possible to find a reasonable time-step to
evolve a given hydrodynamical system with using the CFL condition
(equation 25). This condition applies on a particle-by-particle basis,
meaning that to evolve the whole system a method for combining
these individual time-steps into a global mechanism must be devised.
In less adaptive problems than those considered here (e.g. those
with little dynamic range in smoothing length), it is reasonable to
find the minimal time-step over all particles, and evolve the whole
system with this time-step. This scenario is frequently referred to as
‘single-dt’.

For a cosmological simulation, however, the huge dynamic range
in smoothing length (and hence time-step) amongst particles means
that evolving the whole system with a single time-step would
render most simulations infeasible (Borrow et al. 2018). Instead,
each particle is evolved according to its own time-step (referred
to as a multi-dt simulation) using a so-called time-step hierarchy
as originally described in Hernquist & Katz (1989). This choice is
commonplace in astrophysics codes (Teyssier 2002; Springel 2005).

In some steps in a multi-dt simulation, only the particles on the
very shortest time-steps are updated in a loop over their neighbours
to recalculate, for example, ρ̂ (referred to as these particles being
‘active’). The rest of the particles are referred to as being ‘inactive’.
As the inactive particles may interact with the active ones, their
properties must be interpolated, or drifted, to the current time.

For particle-carried quantities, such as the internal energy u, a
simple first-order equation is used,

u (t + �t) = u + du

dt
�t. (32)
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6.2 Drifting smoothed quantities

As a particle may experience many more drift steps than loops
over neighbours (that are only performed for active particles), it
is important to have drift operators (dx̂/dt) for smoothed quantities
x̂ to interpolate their values between full time-steps. This is achieved
through taking the time differential of smoothed quantities. Starting
with the simplest, the smoothed number density,

dn̂i

dt
=

∑
j

dW (rij , hi)

dt
,

=
∑

j

vij · ∇jW (rij , hi). (33)

Following this process through for the smoothed quantities of interest
yields

dρ̂i

dt
=

∑
j

mj vij · ∇jW (rij , hi), (34)

dP̂i

dt
= (γ − 1)

∑
j

mj

(
Wij

duj

dt
+ uj vij · ∇jWij

)
, (35)

for the smoothed density and pressure, respectively, with Wij = W(rij,
hi). In the smoothed density case, the pressure is recalculated at each
drift step from the now drifted internal energy and density using the
equation of state.10

The latter drift equation, due to its inclusion of duj/dt (i.e. the rate
of change of internal energy of all neighbours of particle i), presents
several issues. This sum is difficult to compute in practice; it requires
that all of the duj/dt are set before a neighbour loop takes place. This
would require an extra loop over neighbours after the ‘force’ loop,
which has generally been considered computationally infeasible for
a scheme that purports to be so cheap. In practice, the following is
used to drift the smoothed pressure:

dP̂i

dt
= dρ̂i

dt

dui

dt
, (36)

which clearly does not fully capture the expected behaviour of
equation (35) as it only includes the rate of change of the internal
energy for particle i, discarding the contribution from neighbours.

Such behaviour becomes particularly problematic in cases where
sub-grid cooling is used, where particles within a kernel may
have both very large duj/dt [where (duj/dt)�t is comparable to
uj], and duj/dt that vary rapidly with time. Consider the case
where an active particle cools rapidly from some temperature
to the equilibrium temperature in one step (which occurs fre-
quently in a typical cosmological simulation where no criterion
on the time-step for du/dt is included to ensure the number of
steps required to complete the calculation remains reasonable
whilst employing implicit cooling). If this particle has a neigh-
bour at the equilibrium temperature that is inactive, the pressure
for the neighbouring particle will remain significantly (potentially
orders of magnitude) higher than what is mandated by the lo-
cal internal energy field, leading to force errors of a similar
level.

To apply these drift operators to smoothed quantities, instead of
using a linear drift as in equation (32), the analytic solution to these
first-order differential equations is used. For a smooth quantity x̂, it

10Note that the first equation for the smoothed density corresponds to the SPH
discretization of the continuity equation (Monaghan 1992), but the second
equation makes little physical sense.

Figure 6. Smooth pressure as a function of time for different strategies in
a uniform fluid of ‘cold’ particles, with one initially ‘hot’ particle with a
temperature 100 times higher than the cold particles that cools to the ‘cold’
temperature in one time-step. The solid blue line shows the pressure of the
central particle as a function of time (relative to its initial pressure). The
dashed blue line shows the pressure of the closest ‘hot’ neighbour in a single-
dt scenario, i.e. the whole system is evolved with time-step dthot. This shows
the true answer for the pressure of the neighbour particle. The dotted red line
shows the result of drifting the cold particle with equation (36). As this particle
has no cooling rate, and the fluid is stationary, the pressure does not change.
The solid orange line shows the result of drifting using equation (35). This
rapidly leads to the particle having a pressure of zero, a highly undesirable
result. Note that the orange line does not follow the dashed blue line in the first
few steps due to different drifting schemes for smoothed and particle-carried
quantities (equations 32 and 37).

is drifted forwards in time using

x̂(t + �t) = x̂(t) · exp

(
1

x̂

dx̂

dt

)
. (37)

This also has the added benefit of preventing the smoothed quantities
from becoming negative. For this to be accurate, it requires an
accurate dx̂/dt term.

6.3 Impact of drift operators in multi-dt

Whilst the true drift operator for P̂ appears to be impractical from
a computational perspective due to the requirement of another loop
over neighbours, at first glance it appears that the use of this correct
drift operator would remedy the issues with cooling. Unfortunately,
in a multi-dt simulation where active and in-active particles are
mixed, this ‘correct’ operator can still lead to negative pressures
when applied.

In Fig. 6, the different ways of drifting smooth pressure in a
multi-dt simulation are explored. In this highly idealized test, a cubic
volume of uniform ‘cold’ fluid is considered. A single particle at the
centre is set to have a ‘hot’ temperature of 100 times higher than
the background fluid, and is set to have a cooling rate that ensures
that it cools to the ‘cold’ temperature within its first time-step. This
scenario is similar to a hot 106 K particle in the circumgalactic
medium cooling to join particles in the interstellar medium at the 104

K equilibrium temperature. The difference between the time-step of
the hot and cold particles, implied by equation (25), is a factor of
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Figure 7. The same lines as Fig. 6, except now showing the ‘error’ as a
function of time relative to the single-dt case (blue dashed line) of the pressure
P̂ of the nearest neighbour to the ‘hot’ particle. Here the fractional error is
defined as P̂ (t) − P̂single-dt/P̂single-dt. The orange line showing the drifting
using equation (35) shows that the pressure rapidly drops to zero after around
four steps. The red dotted line (equation 36) shows the offset in pressure that
is maintained even after the central ‘hot’ particle cools.

10 (when using the original definition of sound speed, see equation
26). Here the cold particle is drifted ten times to interact with its
hot neighbour over a single time-step of its own. In practice, this
scenario would evolve slightly differently, with the previously hot
particle having its time-step re-set to dtcool after it has cooled to the
equilibrium temperature, but the nuances of the time-step hierarchy
are ignored here for simplicity.

The three drifting scenarios proceed very differently. In Fig. 7, the
fractional errors relative to the single-dt case are shown.

In the case of the drift using equation (35), the pressure rapidly
drops to zero. This is prevented from becoming negative thanks to the
integration strategy that is employed (equation 37); the rate of dP̂ /dt

is high enough to lead to negative pressures within a few drift steps
should a simple linear integration strategy like that employed for the
internal energy (equation 32) be used. Because there is only a linear
time-integration (with a poorly chosen time-step for the equation
to be evolved) method for a now non-linear problem (as there is
a significant d2u/dt2 from changes in cooling rate) errors naturally
manifest.

The drift operator using a combination of the local cooling rate
and density time differential (equation 36) is the safest, leading to
pressures that are higher than expected; this does however come at
the cost of larger relative errors in the pressure (500 per cent increase
versus 100 per cent decrease; both of these are highly undesirable).

6.3.1 Limiting time-steps

One way to address the issues presented in Fig. 6 is to limit
the time-steps between neighbouring particles. Such a ‘time-step
limiter’ is commonplace in galaxy formation simulations, as they
are key to capturing the energy injected during feedback events
(see e.g. Durier & Dalla Vecchia 2012). In addition, the use of
the ‘smoothed’ sound speed (from equation 28) ensures that the
neighbouring particle has a time-step that is much closer to the time-

step of the ‘hot’ particle than the sound speed based solely on the
internal energy of each particle alone. However, as Fig. 7 shows,
even only after one intervening time-step (i.e. after dthot), there is a
50–500 per cent error in the pressure of the neighbouring particle.

This error in the pressure of the neighbouring particle represents a
poorly tracked non-conservation of energy. An incorrect relationship
between the local internal energy and pressure field of the particles
leads directly to force errors of the same magnitude. Because of
the conservative and symmetric structure of the applied equations
of motion, however, this does not lead to the total energy of the
fluid changing over time (i.e. the sum of the kinetic and internal
energy of the fluid remains constant), instead manifesting as unstable
dynamics.

7 C O N C L U S I O N S

The pressure–energy and pressure–entropy schemes have been prized
for their ability to capture contact discontinuities significantly better
than their density-based cousins due to their use of a directly
smoothed pressure field (Hopkins 2013). However, there are several
disadvantages to using these schemes that have been presented:

(i) Injecting energy in a pressure–entropy-based scheme requires
the use of an iterative solver and many transformations between
variables. This makes this scheme computationally expensive, and
as such for this to be used in practice an efficient implementation
is required. Approximate solutions do exist, but result in incorrect
amounts of energy being injected into the field when particles are
heated only by a (relatively, for astrophysics) small amount (typically
by less than 100 times their own internal energy). This occurs even
in the case where the fluid is evolved with a single, global, time-step,
and is complicated even further by the inclusion of the multiple time-
stepping scheme that is commonplace in cosmological simulations.

(ii) In a pressure–energy-based scheme, the injection of energy
in a multi-dt simulation requires either ‘waking up’ all of the
neighbours of the affected particle (and forcing them to be active
in the next time-step), or a loop over these neighbours to back-port
changes to their pressure due to the changes in internal energy of
the heated particle. This is a computationally expensive procedure,
and is generally avoided in the practical use of these schemes. As
such, while no explicit energy conservation errors manifest, there
is an offset between the energy field represented by the particle
distribution and the associated smooth pressure field in practical
implementations.

(iii) These issues also manifest themselves in cases where energy
is removed from active particles, such as an ‘operator-splitting’
radiative cooling scheme where energy is directly removed from
particles.

(iv) Correctly ‘drifting’ the smoothed pressure of particles (as
is required in a multi-dt simulation) requires knowing the time
differential of the smoothed pressure. To compute this, either an
extra loop over neighbours is required for active particles, or an
approximate solution based on the time differential of the density
field and internal energy field is used. This approximate solution
does not account for the changes taking place in the local internal
energy field and as such does not correctly capture the evolution of
the smoothed pressure.

(v) Even when using the ‘correct’ drift operator for the smoothed
pressure significant pressure, and hence force, errors can occur when
particles cool rapidly. This can be mitigated somewhat with time-
step limiting techniques [either through the use of a time-step limiter
like the one described in Durier & Dalla Vecchia (2012) or through
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a careful construction of a more representative sound speed] but it is
not possible to prevent errors on the same order as the relative energy
difference between the cooling particle and its neighbours.

All of the above listed issues are symptomatic of one main
flaw in these schemes; the SPH method assumes that the variables
being smoothed over vary slowly during a single time-step. This is
often true for the internal energy or particle entropy in idealized
hydrodynamics tests, but in practical simulations with sub-grid
radiative cooling (and energy injection) this leads to significant
errors. These errors could be mitigated by using a different cooling
model, where over a single time-step only small changes in the
energies of particles could be made (i.e. by limiting the time-steps of
particles to significantly less than their cooling time), however this
would render most cosmological simulations impractical to complete
due to the huge increase in the number of time-steps to finish the
simulation that this would imply.

Thankfully, due to the explicit connection between internal energy
and pressure in the density-based SPH schemes, they do not suffer
the same ills. They also smooth over the mass field, which either does
not vary or generally varies very slowly (on much larger time-scales
than the local dynamical time). As such, the only recommendation
that it is possible to make is to move away from pressure-based
schemes in favour of their density-based cousins, solving the surface
tension issues at contact discontinuities with artificial conduction
instead of relying on the smoothed pressure field from pressure-
based schemes. It is worth noting that most modern implementations
of the pressure-based schemes already use an artificial conduction
(also known as energy diffusion) term to resolve residual errors in
fluid mixing problems Hu et al. (2014) and Hopkins (2015). Of
particular note is the lack of phase mixing (due to the non-diffusive
nature of SPH) between hot and cold fluids, even in pressure-
SPH.
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