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Abstract
Aim: In the marine environment, where there are few physical boundaries to gene 
flow, there is often nevertheless intraspecific diversity with consequences for effec-
tive conservation and management. Here, we compare two closely related dolphin 
species with a shared distribution in the Indian Ocean (IO) to better understand the 
biogeographic drivers of their population structure.
Location: Global oceans and seas with a focus on the Indian Ocean
Taxon: Tursiops sp. and Delphinus sp.
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1  |  INTRODUC TION

In the marine environment, where barriers to dispersal can be dif-
ficult to identify, panmixia across large spatial scales may be ex-
pected and is sometimes observed (Palumbi, 1992). However, 
geography, oceanography, climate and historical vicariance, among 
other factors, have been shown to shape biogeographic provinces 
that correspond to phylogeographic patterns common to a range of 
marine taxa (see Bowen et al., 2016). One example is the division 
between the Indo-Polynesian and western Indian Ocean provinces, 
with further subdivision within each region (Bowen et al., 2016). 
In addition to patterns of species diversity, genetic breaks among 
populations within a species also occur within regions, sometimes 
showing structure shared among different species. For example, in 
the Indian Ocean (IO), population genetic differentiation between 
the Red Sea and the western IO is common (e.g. for the grouper 
fish, Cephalopholis hemistiktos, Priest et al., 2015; and the anglerfish, 
Pomacanthus maculosus, Torquato et al., 2019). Another break point 
exists dividing the western IO region at points near Tanzania where 
there is a major current division north and south (e.g. for the sea-
grass Thalassia hemprichii, Jahnke et al., 2019; and the spiny lobster 
Panulirus Homarus, Singh et al., 2018). Isolation of populations in the 
Arabian Sea off Oman from those to the east and the west has also 
been reported (e.g. for the sea-star Acanthaster planci, Vogler et al., 

2012; and the spiny lobster, Singh et al., 2018). Understanding the 
processes that generate these patterns of population structure is 
important towards a better understanding of the evolution of bio-
diversity, and for the more effective conservation of diversity for 
species impacted by anthropogenic factors such as climate change.

In this study we focus on marine mammal species in the IO 
region. Marine mammals are highly mobile, but often exhibit pop-
ulation genetic differentiation within their range of potential disper-
sion (e.g. Hoelzel, 2009). In particular, we focus on dolphins in the 
genera Tursiops and Delphinus. The Delphinidae radiated recently 
(McGowen et al., 2009; Moura et al., 2020), and some genera are 
still paraphyletic in some analyses (e.g. Amaral, Jackson, et al., 2012; 
Kingston et al., 2009; McGowen et al., 2009). This is especially the 
case for comparisons among Delphinus spp. and Tursiops spp. (e.g. 
Moura, Nielsen, et al., 2013; Moura et al., 2020). We investigate the 
biogeography of these genera in the western IO to better under-
stand the drivers that generate differential patterns of genetic struc-
ture in the context of their biology and life history, and in the context 
of broader regional patterns for marine species.

Two species of bottlenose dolphin are formally recognised: 
the common bottlenose dolphin, T. truncatus, and the Indo-Pacific 
bottlenose dolphin, T. aduncus (SMM, 2019). Within T. aduncus, we 
consider three putative lineages, all occurring within the IO. These 
are as follows: (1) the holotype lineage, which dominates the west 

Methods: Bayesian, ordination, assignment, statistical and phylogenetic analyses to 
assess phylogeography, connectivity and population structure using microsatellite 
and mitochondrial DNA genetic markers.
Results: Both Tursiops sp. and Delphinus sp. showed population structure across the 
western IO and, in each case, populations in the Arabian Sea (off India, Pakistan and 
Oman) were most differentiated. Comparisons with other populations worldwide re-
vealed independent lineages in this geographic region for both genera. For T. aduncus, 
(for which multiple sites within the IO could be compared), Bayesian modelling best 
supported a scenario of expansion southwards following a bottleneck event result-
ing in differentiation between the northern and western IO. For Delphinus, the same 
pattern is even more pronounced. Populations in the Arabian Sea region of the north-
western IO show genetic isolation for each of the two genera, consistent with other 
studies of cetacean species in this region.
Main conclusions: We propose that changes in the intensity of the southwest mon-
soon during the climate cycles of the Pleistocene could have affected regional pat-
terns of productivity and represent an important biogeographic driver promoting the 
observed patterns of differentiation and population dynamics seen in our focal spe-
cies. Patterns of population genetic structure are consistent with phenotypic differ-
ences, suggesting an influence from distinct habitats and resources, and emphasising 
the need for effective conservation measures in this geographic region.

K E Y W O R D S
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and northwest IO, originally described off South Africa (Natoli et al., 
2004) and later matched to the T. aduncus holotype in the Red Sea 
(Perrin et al., 2007); (2) the Australasian lineage (Wang et al., 1999) 
and (3) a new putative Arabian Sea lineage of T. aduncus from the 
northwest IO (Gray et al., 2018). Gray et al., proposed that T. adun-
cus lineages diverged in Australasia during the Pleistocene and that 
repeated exposure of the Sunda and Sahul shelves during this time 
may have facilitated several allopatric divergence events, as has 
been proposed for other marine species in the region (Gaither & 

Rocha, 2013). However, other isolating mechanisms in the IO would 
have been required to prevent homogenisation between adjacent 
lineages during interglacials. Possible isolating mechanisms include a 
geographic barrier (e.g. formation of a land bridge; Dowling & Brown, 
1993), oceanographic boundary (e.g. sea-surface temperatures and 
primary productivity; Fontaine et al., 2007; Mendez et al., 2011), 
an ecological break (e.g. gaps in prey distribution; Bilgmann et al., 
2007) or local adaptation in sympatry to different prey compositions 
(Adams & Rosel, 2006; Hoelzel, 1994; Hoelzel & Dover, 1991; Moura 

F I G U R E  1  Map showing sampling locations of populations of Tursiops and Delphinus considered. Box (a) A Mollweide (equal area) global 
projection illustrating sample locations from populations of Tursiops and Delphinus. Black circles = Tursiops, White circles = Delphinus, 
OM = Oman, IND = India, PAK = Pakistan, IRAN = Iran, RS = Red Sea (T.aduncus holotype specimen), THAI = Thailand, CHI = China, AUS 
= Southeast Australia, PORT = Portugal, BS = Black Sea, CAN_Is = Canary Islands (Spain), E_AUS = Eastern Australia, S_AUS = Southern 
Australia, GAL = Galicia (Spain), GC_lb = long-beaked D. delphis Gulf of California (previously known as D. capensis), GC_sb = short-beaked 
D. delphis Gulf of California, MED = Mediterranean, NWA = Northwest Atlantic, NZ = New Zealand. Box b) Sample locations from Zanzibar. 
ZAN_N = North Zanzibar, ZAN_S = South Zanzibar. Box c) Sample locations from South Africa. SA_(Bio) = South Africa (Migratory), SA_N = 
South Africa (North KwaZulu-Natal Coast), SA_S = South Africa (South KwaZulu-Natal Coast), SA = South Africa Delphinus
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et al., 2015). Climate fluctuations over the Pleistocene, for instance, 
monsoonal shifts during glacial/inter-glacial periods, and their ef-
fects on primary production in the northern IO (Almogi-Labin et al., 
2000; Fontugne & Duplessy, 1986), may have changed the presence 
or permeability of a barrier.

In Delphinus, there is a phenotypically distinct population in the 
Arabian Sea region of the IO. Long- and short-beaked morphotypes 
have been described around the world, although clines and inter-
mediate forms are also found (Jefferson & Van Waerebeek, 2002; 
Murphy, Herman, Pierce, Rogan, & Kitchener, 2006; Pinela, Aguilar, 
& Borrell, 2008). Genetic analyses consistently showed long- and 
short-beaked dolphins to be polyphyletic (Amaral, Beheregaray, 
et al., 2012; Natoli et al., 2006), which suggests that regional lineage 
sorting is incomplete and multiple coastal populations might have 
converged independently on a long-beaked morphotype (Amaral, 
Beheregaray, et al., 2012; Natoli et al., 2006). Two long-beaked 
populations stand out phylogenetically from the rest. One is found 
in the eastern tropical Pacific (Rosel et al., 1994; Segura-Garcia 
et al., 2016), previously identified as D. capensis (Heyning & Perrin, 
1994), but now provisionally referred to as D. delphis bairdii (after 
Hershkovitz, 1966). The other is the Arabian Sea population within 
the IO, which is currently classified as the subspecies, D. delphis trop-
cialis (SMM, 2019), based on morphological analyses (Jefferson & 
Van Waerebeek, 2002). Global phylogeography showed D. d. trop-
icalis in the IO forms a distinct lineage, diverging basally with pop-
ulations outside the northeast Pacific (Amaral, Beheregaray, et al., 
2012). Furthermore, a genetically differentiated long-beaked D. del-
phis morphotype is found off South Africa (Natoli et al., 2006).

Here, we use comparative data from Tursiops spp. and Delphinus 
spp. to test hypotheses about the biogeographic drivers of genetic 
differentiation, especially within the IO, and the implications for 
effective conservation. We consider the relative roles of environ-
mental change, ecology and life history during the evolution of bio-
geographic structures for these highly mobile taxa.

2  |  MATERIAL S AND METHODS

2.1  |  Samples and DNA extractions

Sample numbers and geographical origins are shown in Table S1 
and Figure 1 and include genotypes or haplotypes generated in 
this study for 285 T. aduncus (from 5 regions), 37 T. truncatus (from 
two regions) and 114 Delphinus sp. samples (from two regions; see 
Table S1). Additional mtDNA sequences were obtained from other 
studies, accessed from Genbank (details in Table S1 on locations, 
source and numbers for each marker type). Samples were obtained 
from biopsy, bycatch, stranded animals and from skeletal material 
(Table S1). The Delphinus samples from Portugal (location denoted as 
‘PORT’ in Figure 1) were included as an outgroup, representative of 
the short-beaked form. Sample sets from the IO were as extensive as 
logistically possible for each species, but it was not possible to match 
regions precisely. Standard phenol–chloroform DNA extraction 

protocols were carried out on tissue samples (Hoelzel, 1998). For 
bone samples, QIAquick PCR purification columns (Qiagen, BmbH, 
Germany) were used to perform DNA extractions, according to man-
ufacturer's protocols.

2.2  |  Microsatellite analysis

Most samples were screened for 18 published microsatellite loci 
(Table S2, after Moura et al., 2013). Due to restrictions imposed by 
poor sample quality, a sub-set of seven loci (Dde84, Dde66, Dde69, 
Dde59, Dde70, Dde72 and KWM12a) were amplified and screened 
for the India and Pakistan T. aduncus samples, included only in a sub-
set of analyses (see Results). Samples were obtained from colleagues 
as biopsies, bycatch or strandings. Given that repeat biopsies can be 
mistakenly collected from a large group, and repeat labelling is possi-
ble in public collections from bycatch and strandings, to be cautious 
we check for duplicates. Samples that were identical at all loci were 
considered to be duplicates, although it is possible that they have 
matching genotypes by chance. However, given the low chance of 
separate individuals sharing genotypes at all loci, we removed one in-
dividual from duplicate pairs from further analyses (3 among Tursiops 
samples and 2 for Delphinus). Null alleles, large allele dropout and 
scoring errors were checked using MicroChecker (Van Oosterhout 
et al., 2004). When null alleles were detected, their influence on 
FST values was investigated using FreeNA (Chapuis & Estoup, 2007). 
Deviations from Hardy–Weinberg equilibrium (HWE) were assessed 
in Arlequin v. 3.5 (Excoffier & Lischer, 2010). Pairwise linkage dis-
equilibrium between loci was assessed for each population through 
a likelihood ratio test utilising the Expectation-Maximisation (EM) al-
gorithm (1,000 permutations, Bonferroni correction applied; Slatkin 
& Excoffier, 1996). Loci putatively under selection were identified in 
Lositan (Antao et al., 2008) using the Infinite Alleles mutation model 
for 5 x 104 simulations, applying the ‘neutral mean FST’ and the ‘force 
mean FST’ options. A 95% confidence limit and false discovery rate 
of 0.05 were applied.

F-statistics were estimated in Arlequin and significance deter-
mined through 100 permutations with Bonferroni correction ap-
plied. Microsatellite allelic richness was calculated using Fstat v. 
2.9.3.2 (Goudet, 2001) and Welch's t-test was used to investigate 
differences in richness between putative populations. A Factorial 
Correspondence Analysis (FCA) was performed on the microsatellite 
genotypes in Genetix (Belkhir, Borsa, Chikhi, Raufaste, & Bonhomme, 
2004). The number of populations (K) was assessed using Structure 
v. 2.3 (Pritchard et al., 2000), applying the admixture ancestry and 
correlated allele frequency models. The burn-in length was set to 
105 followed by 106 iterations. The parameter ALPHAPROPSD was 
set to 0.5 to improve mixing. Ten independent runs were assessed 
for each value of K ranging from 1 to 8. The most likely value for 
K was determined using the web server Clumpak (Kopelman et al., 
2015; http://clump​ak.tau.ac.il/index.html).

BayesAss v. 1.3 (Wilson & Rannala, 2003) was used to investi-
gate recent gene-flow patterns. The burn-in length was set to 106 

http://clumpak.tau.ac.il/index.html
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followed by 107 Markov chain Monte Carlo (MCMC) iterations with 
a sampling interval of 1,000 iterations. All mixing parameters, ∆A, 
∆F and ∆M, were set to 1 to improve chain mixing. Trace files were 
viewed in Tracer v. 1.6 (Rambaut et al. 2014) and the log probabil-
ity was examined for convergence and good chain mixing. Analyses 
were run multiple times to check runs had converged on similar pos-
terior mean parameter estimates. A Circos plot of migration dynam-
ics was generated in R v. 3.0 (R Core Team, 2013) from the BayesAss 
output using the package ‘circlize’ (Gu et al. 2014), following Sander 
et al. (2014).

2.3  |  Mitochondrial DNA analysis

A 479 bp fragment of the mtDNA control region hypervariable re-
gion 1 (HVR1) was sequenced for Tursiops and Delphinus samples. For 
analyses, fragment lengths were matched to published sequences 
meaning that 267 and 308 bp were used for Tursiops and Delphinus 
respectively. PCR reactions were performed in 20 µl final reaction 
volumes containing approximately 1.0 µl of template DNA, 1.25 U of 
GoTaq Flexi DNA polymerase, 10x buffer (Promega), 0.2 mM dNTP, 

3 mM MgCl2 and 0.2 µM of each primer: TRO (L15812) 5’ CCT CCC 
TAA GAC TCA AGG AAG 3’ (developed at the Southwest Fisheries 
Science Centre, Zerbini et al., 2007) and D (H16498) 5’ CCT GAA GTA 
AGA ACC AGA TG 3’ (Rosel et al., 1994). The PCR profile included 
initial heating at 95°C for 2 min, followed by 40 cycles of 95°C for 
40 s, annealing temperature of 60°C for 40 s and 72°C for 1 min, and 
a final 72°C extension for 10 min. PCR products were purified with 
QIAgen PCR purification columns (Qiagen, GmbH, Germany) and 
sequenced using an ABI automated sequencer. Further sequences 
were obtained from GenBank. In total, 299 sequences of T. adun-
cus, 53 sequences of T. truncatus and 660 sequences of Delphinus sp. 
were utilised in this study (see Table S1).

Alignment of sequences was performed using the ‘Muscle’ al-
gorithm (Edgar, 2004) as implemented in Geneious v. 7.1.2 (http://
www.genei​ous.com, Kearse et al., 2012). Arlequin was used to cal-
culate pairwise FST and ФST between putative populations. To cal-
culate ФST, a Tamura-Nei genetic distance model was applied with 
a gamma-correction shape parameter value of α = 0.191 identified 
as the best model using BIC in jModeltest v. 2.1.6 (Darriba et al. 
2012). Haplotype (h) and nucleotide (π) diversities were estimated 
and pairwise comparisons were made between populations using 

F I G U R E  2  Demographic scenarios tested in DIYabc for Tursiops aduncus. OM = Oman, ZAN = Zanzibar, SA = South Africa, IND/PAK = 
India/Pakistan, t = time, N = effective population size (Ne). Times are not shown to scale. Scenario 1: OM and IND/PAK diverge (t4) in the 
northern IO, without a founding event, and other populations are established from one of the lineages in a southward direction without an 
initial founding event. Scenario 2: OM and IND/PAK diverge (t4) and OM experiences a reduced Ne as founders immigrate across a barrier 
into the western Indian Ocean. Populations founded in Oman recover (t3) and a southward expansion follows, establishing populations off 
ZAN and SA. Scenario 3: IND/PAK and SA ancestors diverge and experience a historic reduction in Ne (t4) due to a contraction to northern 
and southern glacial refugia. Populations recover (t3) and populations expand out of South African refugia in a northwards direction, 
establishing populations off ZAN and OM. Scenario 4 (best supported): IND/PAK and OM ancestors diverge and experience a historic 
reduction in Ne (t4) due to a contraction to northern refugia. Populations recover (t3) and populations expand out of Oman in a southwards 
direction, establishing ZAN and SA populations [Colour figure can be viewed at wileyonlinelibrary.com]

(a) (b) (c) (d)

http://www.geneious.com
http://www.geneious.com
www.wileyonlinelibrary.com
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Welch's t-test. Tajima's D and Fu's FS neutrality test statistics were 
estimated (Fu, 1997; Tajima, 1989). These may indicate population 
expansion when significantly negative or contraction when positive. 
For all tests requiring correction for multiple analyses, p-values are 
reported after Bonferonni correction.

A median-joining haplotype network (Bandelt et al., 1999) was 
generated for the Tursiops and Delphinus datasets using PopART 
(ε  =  0; http://popart.otago.ac.nz, Leigh & Bryant, 2015). For the 
Delphinus dataset, a large number of ambiguous loops were exhib-
ited in this network, making interpretation and visualisation difficult 
(see Results). Therefore, a minimum-spanning tree was also com-
puted in Arlequin based on pairwise distances between haplotypes 
and was visualised using HapStar v. 0.7 (Teacher & Griffiths, 2011). 
The caveat to using the simplified minimum-spanning tree is that it is 
arbitrarily selected from several, equally optimal trees.

2.4  |  Inference of T. aduncus demographic history 
in the Western Indian Ocean

To test hypotheses for the demographic history of T. aduncus pop-
ulations in the western IO (and associated barrier mechanisms), 
four scenarios (Figure 2) were tested using Approximate Bayesian 
Computation (ABC) as implemented in DIYabc v. 2.0.4 (Cornuet et al., 
2014). These scenarios were thought to be credible given the geo-
graphic distributions of putative populations, available data on the 
diversity of this species in the IO and historical patterns of environ-
mental change (Gray et al., 2018). In particular, scenario 1 assumes 
linear progression and connectivity from India to Oman to Zanzibar 
to South Africa. The other three scenarios assume one or two 
founder events and the same linear progression (scenarios 2 and 4, 
respectively), or a convergence of expansions from South Africa and 
from India (scenario 3). Note that there are too many possible per-
mutations to test them all with sufficient power, and support for any 
of these scenarios only suggests that it is the best fit among those 
tested. An untested scenario may fit the data better. A dataset rep-
resenting four T. aduncus populations (Oman, Zanzibar, South Africa 
and India–Pakistan) was used, consisting of seven microsatellite loci, 
and 267 bp of mtDNA control-region sequences. Randomly selected 
samples of 20 for South Africa and Zanzibar were used in order to 

avoid oversampling alleles compared to the less well-sampled popu-
lations (Leberg, 2002). For the mtDNA locus, an HKY substitution 
model (Hasegawa et al., 1985) was applied with a gamma-correction 
shape parameter value of α = 0.67 with 55% invariant sites, as identi-
fied using Bayesian Information Criteria (BIC) in jModeltest. No sam-
ples were available for a similar analysis for Delphinus within the IO.

A Generalised Stepwise Mutation model was applied to the 
microsatellite loci (Estoup et al., 2002). Four million datasets were 
simulated across the four scenarios. A Principal Component Analysis 
(PCA) was carried out to see how well the simulated data fit the 
observed data. Posterior probabilities of parameters were esti-
mated based on the closest 1% of simulated data to the observed 
data. Assessment of which scenario was performing the best was 
carried out using the logistic regression method (Beaumont, 2008; 
Fagundes et al., 2007). Conversion to divergence time estimates was 
based on a generation time of 21 years (after Taylor et al., 2007).

3  |  RESULTS

3.1  |  Tursiops spp.

Microsatellite TexVet9 was monomorphic and D08, KWM2a and 
KWM1b had evidence for null alleles, deviation from HWE (Table S3) 
or showed evidence for directional selection. These were removed, 
leaving 14 loci for further analyses. The average missing data across 
these loci was 0.4%. Allelic richness was similar among populations 
(Table S4), and pairwise comparisons between populations were not 
significantly different (p > 0.05).

Of the seven loci used for the India and Pakistan samples, only 
one locus (Dde70) deviated significantly HWE (p  <  0.05). Linkage 
disequilibrium was not detected between any loci. Null alleles were 
detected in Dde66 and Dde70 in the SA_S and IND_PAK popula-
tions, respectively, but removal of these loci or null allele adjustment 
did not alter the pattern of genetic differentiation. Therefore, all 
seven loci were retained for further analyses, without adjustment. 
Pairwise comparisons of allelic richness for seven loci between pop-
ulations were not significantly different (p > 0.05, Welch's t-test).

Pairwise FST was significant for most comparisons between 
locations (Table 1). The FCA using the 14 microsatellite loci  

OM SA_(Bio) SA_N SA_S ZAN_N ZAN_S
IND_
PAK

OM – 0.048* 0.043* 0.044* 0.028* 0.014 0.117*

SA_(Bio) 0.049* – 0.008 0.002 0.084* 0.058* 0.160*

SA_N 0.040* 0.001 – 0.012 0.087* 0.050* 0.164*

SA_S 0.054* −0.001 0.006 – 0.096* 0.065* 0.170*

ZAN_N 0.046* 0.081* 0.069* 0.089* – 0.017 0.139*

ZAN_S 0.047* 0.081* 0.065* 0.088* 0.015* – 0.140*

*, significant (p < 0.001). OM = Oman, SA_(Bio) = South Africa (Migratory), SA_N, South Africa 
(North KwaZulu-Natal Coast), SA_S, South Africa (South KwaZulu-Natal Coast), ZAN_N, North 
Zanzibar, ZAN_S, South Zanzibar and IND_PAK, combined data from India and Pakistan.

TA B L E  1  Pairwise FST values for all 
Tursiops aduncus populations considering 
14 microsatellite loci (below diagonal) and 
7 microsatellite loci (above diagonal)

http://popart.otago.ac.nz


1660  |    GRAY et al.

T. aduncus dataset clusters Oman, South Africa and Zanzibar sepa-
rately (Fig. S1). Factors 1, 2 and 3 accounted for 84.44% of the total 
variance, contributing 47.3%, 25.48% and 11.66%, respectively. 
The seven-locus FCA for Tursiops clearly differentiates the India–
Pakistan (IND_PAK) sample set from other putative populations 
(Fig. S2a). Clustering analysis in STRUCTURE (14 loci) gave ∆K = 3 
(representing Oman, South Africa and Zanzibar), and although the 
highest [Ln P(D)] was for K = 4, this provided no further geographic 
resolution (Figure 3). Analyses using seven loci revealed a similar 
pattern with the addition of India–Pakistan as a fourth population 
(strongly differentiated as indicated earlier in Gray et al., 2018; 
Fig. S3). Estimates of contemporary, directional gene flow (using 
BayesAss and 14 loci; Figure 4a, Table S5) showed asymmetrical 
migration northwards from the South Africa migrating population 
(SA_Bio) to the other South Africa populations (SA_S =  26.6%, 
SA_N =28.3% from SA_Bio) and Oman (OM =9.5% from SA_Bio). 

However, migration from South Africa to Zanzibar appears to be 
minimal (1.4–2.3%). Southern Zanzibar (ZAN_S) is also an import-
ant source for dispersal to northern Zanzibar (ZAN_N =26.6% 
from ZAN_S) and Oman (OM=15.5% from ZAN_S). Southbound 
migration appears to be minimal.

Based on the microsatellite DNA data, logistic regression of the 
posterior probabilities of each evolutionary scenario in the ABC 
analysis revealed refugial re-expansion out of the northern IO (sce-
nario 4) to be the best supported (Figure 2, Figure S5). The next 
best supported scenario (scenario 3) was associated with a refugial 
re-expansion out of South Africa. Confidence intervals for scenario 
4 did not overlap with the other scenarios for 1% of the simulated 
datasets while confidence intervals for the other scenarios over-
lapped substantially, suggesting that scenario 4 outperformed the 
others. Posterior estimates of parameters were inferred using the 
closest 1% of the simulated datasets to the observed data (Table 2).

F I G U R E  3  Probability assignment of individuals based on microsatellite loci. Assignments carried out in Structure and generated 
using CLUMPAK. Plots (a) K = 3 and (b) K = 4 were generated for T.aduncus data without locprior information. Plots (c) K = 2 and (d) K = 3 
were generated in the same way for D. delphis data. Vertical coloured bars represent individuals and black lines delineate the respective 
putative populations sampled. OM = Oman (Tursiops n = 19, Delphinus n = 20), SA_(Bio) = South Africa (Migratory) (n = 56), SA_N = South 
Africa (North KwaZulu-Natal Coast) (n = 24), SA_S = South Africa (South KwaZulu-Natal Coast) (n = 27), ZAN_N = North Zanzibar (n = 26), 
ZAN_S = South Zanzibar (n = 25), PORT = Delphinus Portugal (n = 30) and SA = Delphinus South Africa (n = 25) [Colour figure can be viewed 
at wileyonlinelibrary.com]
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(c)
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For Tursiops, there were 82 mtDNA haplotypes and 24 poly-
morphic sites with few haplotypes being shared among putative 
populations (Table S6). Pairwise FST and ФST values were highly 
significant (p < 0.001 after Bonferroni correction) for the majority 
of comparisons (Table S7). Relatively low values of π and h were 
observed in the South African, Zanzibar and Australia populations, 
whereas order of magnitude higher values were seen in the CHI_
THAI, IND_PAK, NWIO_Tt and CHI_Tt populations (see Table S4 
for details and definitions). Pairwise comparisons between popu-
lations for π and h using Welch's t-test (Table S8) generally show 
that the ARABIA, CHI_THAI, IND_PAK, NWIO_Tt and CHI_Tt pop-
ulations have significantly higher π and h than other populations. 
Values for Tajima's D and Fu's FS were not statistically significant 
(p > 0.05 after Bonferroni correction; Table S9). From the Tursiops 
median-joining network, there is clear separation between T. trun-
catus and T. aduncus lineages (Figure 5). The three lineages of T. 
aduncus are also clearly separated.

3.2  |  Delphinus spp.

Null alleles were detected in six loci, Dde65 (SA), Dde69 (OM), 
EV37Mn (PORT and SA), KWM2a (PORT), TexVet5 (PORT) and 
KWM1b (OM). Significant HWE deviation was detected in five loci, 
but in each case in just one putative population (Table S10). No 

linkage disequilibrium was detected between any loci for any popu-
lation (p < 0.05). Positive selection was detected in Dde66, AAT44 
and D08. In light of these tests, the four loci with strongest evidence 
for deviation from expectations, D08, Dde66, AAT44 and EV37, 
were removed. Adjustment for null alleles revealed similar FST val-
ues between adjusted and unadjusted loci and removal of loci with 
null alleles did not alter the differentiation pattern. Therefore, 14 
loci were retained. The average missing data across all remaining loci 
was 0.02%. Pairwise comparisons of allelic richness between popu-
lations were not significantly different (p > 0.05, Welch's t-test).

Pairwise F-statistics between putative populations were all 
highly significant (OM vs SA, FST = 0.096; OM vs. PORT, FST =0.073; 
SA vs. PORT, FST = 0.065; all p < 0.001 after Bonferroni correction). 
From the FCA, Factors 1 and 2 accounted for 100% of the total 
variance, contributing 55.8% and 44.2% respectively (Fig. S1). All 
three populations were clearly differentiated from each other. In the 
clustering analysis, the highest hierarchical level for K (Evanno et al., 
2005), and the highest posterior probability [Ln P(D)], were K  =  3 
(Oman, South Africa and Portugal; Figure 3d). Estimates of gene flow 
for Delphinus (Figure 4b and Table S11) suggest that contemporary 
migration among Portugal, South Africa and Oman is limited, with 
<2.5% of each population consisting of migrants (per generation).

For Delphinus, 294 mtDNA haplotypes and 96 polymorphic 
sites were identified (Table S12). Of the 45 shared haplotypes, 
the majority were shared exclusively between populations in the 

F I G U R E  4  Patterns of migration between (a) T.aduncus and (b) D. delphis populations. Circos plot generated from BayesAss output for 
14 microsatellites in R, using the package ‘circlize’. The outflow of a population (emigration) is illustrated by a double bar in the respective 
segment. A single bar is indicative of movement into the population (immigration). Non-migrants are included in both the inflow and 
outflow of a population. Migration curve widths are proportional to the number of migrants. OM = Oman, SA_(Bio) = South Africa 
(Migratory), SA_N = South Africa (North KwaZulu-Natal Coast), SA_S = South Africa (South KwaZulu-Natal Coast), ZAN_N = North Zanzibar, 
ZAN_S = South Zanzibar, PORT = Portugal and SA = South Africa [Colour figure can be viewed at wileyonlinelibrary.com]

Tursiops aduncus Delphinus delphis

SAPORTOMSA_S ZAN_NSA_NSA_(Bio)OM ZAN_S
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Atlantic, Mediterranean and Black Sea (n = 21). The long-beaked 
population in the Gulf of California (Segura-Garcia et al. 2016) 
shared one haplotype with the population off Pakistan and an-
other with New Zealand. No haplotypes were shared with the 
populations off Oman or China. Pairwise FST and ФST values were 
mostly highly significant (p < 0.001; Table S13). Measures of π and 
h are given in Table S14. Pairwise Welch's t-tests (Table S8) suggest 
the Oman and Gulf of California populations have significantly 
reduced π (p < 0.05). Values for Tajima's D were not statistically 
significant, however, Fu's FS were large and negative (p  <  0.02; 
indicative of expansions; Table S9). The Delphinus median-joining 
network (Figure 6) and minimum-spanning tree (Figure S4) showed 
haplotypes forming three clusters corresponding to a highly di-
verse D. delphis group (distributed worldwide), long-beaked D. 
delphis (Gulf of California) and D. d. tropicalis in the northwest IO 
(Oman and Pakistan).

4  |  DISCUSSION

4.1  |  Population structure

At least four break points have been identified within the IO for a 
range of species: between the IO and the Indo-Pacific (e.g. Bowen 
et al., 2016), between the IO and the Red Sea (e.g. Torquato et al. 
2019), between the Arabian Sea and the western IO (e.g. Singh 
et al., 2018), and along the western coast of the IO north and 

south of points near Madagascar and Tanzania (e.g. Jahnke et al., 
2019; see review in the Introduction). T. aduncus and Delphinus 
spp. showed genetic structure within the IO between South Africa 
and Oman reflecting a division along the western IO coast, al-
though this comparison is on a large geographic scale. For T. adun-
cus, finer-scale analysis was possible, revealing differentiation 
between Oman, Zanzibar and South Africa and between northern 
and southern Zanzibar (the latter as reported previously; Särnblad 
et al. 2011). Jahnke et al., (2019) found differentiation among sea-
grass populations sampled at locations around Zanzibar, as well 
as over a broader geographic range along the coast, which they 
propose was associated with the major current systems in that re-
gion (the East African Coastal Current, the North East Madagascar 
Current and the South Equatorial Current). Mendez et al. (2011) 
found population structure in humpback dolphins, Sousa plumbea, 
in the western IO and correlated this with various environmental 
factors including currents and sea surface temperature. We have 
no data to indicate what the barrier to gene flow may be for T. 
aduncus in this region, although it seems plausible that the current 
systems affect the distribution of prey which in turn affect site 
fidelity in the dolphin populations.

The clearest break point in our dataset is the isolation of popu-
lations for each species in the Arabian Sea. The degree of differenti-
ation was strong for Delphinus, and from the analyses incorporating 
populations from around the world, the population in the northwest 
IO (D. d. tropicalis) stands out as especially differentiated from other 
regions of the species distribution (Amaral, Beheregaray, et al., 

TA B L E  2  Parameter estimates for highest performing scenario (4) in DIYabc analysis for Tursiops aduncus

Parameter Mean Median Mode 95% HPD
Years BP 
(Median) 95% HPD

N1 11,100 10,800 10,200 4,210–19,100

N2 3,680 3,170 2,130 658–9,040

N3 11,200 11,100 11,900 4,200–18,900

N4 20,800 21,200 22,800 9,680–29,400

t1 288 210 104 36–1,060 4,410 760–22,260

t2 895 718 430 193–2,880 15,078 4,053–60,480

t3 3,880 3,440 2,300 232–9,320 72,240 4,872–195,720

N1b 4,580 4,320 2,780 442–9,570

N4b 6,640 5,620 2,220 536–17,600

t4 6,830 6,290 4,730 1,880–14,000

μmic_1 1.6E-04 1.5E-04 1.0E-04 1.0E-04–3.2E-04

pmic_1 5.1E-01 4.9E-01 4.0E-01 1.8E-01–9.4E-01

snimic_1 1.5E-07 3.6E-08 1.0E-08 1.0E-08–1.0E-06

useq_2 1.5E-06 1.4E-06 1.4E-06 8.2E-07–2.3E-06

k1seq_2 477,000 468,000 314,000 22,900–966,000

N1 = Oman effective population size (Ne); N2 = South Africa Ne; N3 = Zanzibar Ne; N4 = India/Pakistan Ne; t1= divergence time (generations) 
of Zanzibar and South Africa; t2 = time (generations) Oman diverged from ancestral South Africa/Zanzibar; t3 = recovery time after founding/
bottleneck event; N1b = ancestral Oman population Ne (unsampled); N4b = ancestral India/Pakistan population Ne (unsampled); t4 = time India/
Pakistan diverged from other lineages; µmic = mean mutation rate for microsatellite loci; pmic = mean P coefficient for microsatellite loci; snimic = 
mean SNI rate for microsatellite loci; µseq = mutation rate for mitochondrial sequences; kseq = mean coefficient kC/T; YrsBP are the converted years 
BP for times using the median value of the posterior distribution and a generation time of 21 years.
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2012, Figure 6, Figure S4). This is consistent with earlier studies in-
vestigating D. d. tropicalis morphology (Jefferson & Van Waerebeek, 
2002). Our T. aduncus samples from Oman were also significantly 
differentiated from all other putative populations in our study (see 
Table 1). Other taxa show population differentiation around the 
Arabian Peninsula, including various species of sharks (see Naylor 
et al., 2012). For the hammerhead shark, Sphyrna lewini, isolation was 
suggested to be associated with contiguous shelf habitat around the 
peninsula distinct from the surrounding deep ocean habitat (Spaet 
et al., 2015). Highly significant differentiation for all comparisons 
with the India–Pakistan T. aduncus population has been revealed, 
consistent with the phylogenetic placement of this population as a 
separate lineage (Gray et al., 2018).

4.2  |  Contemporary gene flow

Estimates of contemporary migration patterns between T. adun-
cus populations in the western IO indicate asymmetric gene flow 

northwards. This suggests that individuals moving out of South 
Africa and Zanzibar are migrating to populations further north. This 
bias has also been reported in S. plumbea, where no southbound mi-
gration was detected between populations off Oman, Tanzania or 
Mozambique (based on mtDNA data in Mendez et al., 2011). For 
Delphinus, inference of contemporary migration rates between the 
eastern Atlantic, South Africa and Oman revealed limited genetic 
exchange between these locations. The population off Oman exhib-
ited the most immigration but contributed the fewest immigrants to 
other populations.

Dolphin distributions are often associated with the distribution 
of foraging habitat and prey (Hastie et al., 2004; Torres et al., 2008). 
For example, along the coast on Kwa Zulu Natal (South Africa) T. 
aduncus follows the seasonal migration of sardines (Peddemors, 
1999). T. aduncus and D. d. tropicalis in the northwest IO may ex-
press a higher degree of site fidelity due to habitat-specific foraging 
specialisations, as seen for both genera elsewhere (e.g. Ball et al., 
2017; Natoli et al., 2005; Moura, Sillero, Rodrigues, & 2012). The ex-
ceptionally long rostrum, characteristic of D. d. tropicalis (Jefferson 

F I G U R E  5  Median-joining haplotype network for Tursiops. Generated in PopART from mtDNA control region sequences. ARABIA = 
sequences from Oman, Iran and the Red Sea, SA_N = South Africa (North KwaZulu-Natal Coast), SA_S = South Africa (South KwaZulu-Natal 
Coast), SA_(Bio) = South Africa (Migratory), ZAN_N = North Zanzibar, ZAN_S = South Zanzibar, AUS = Southeast Australia, CHI_THAI = 
includes sequences from China and Thailand, IND_PAK = includes samples from India and Pakistan, CHI_Tt = T.truncatus from China and 
NWIO_Tt = T. truncatus from the northwest Indian Ocean [Colour figure can be viewed at wileyonlinelibrary.com]
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& Van Waerebeek, 2002) might suggest adaptation to local prey, 
environmental conditions or habitat-specific foraging strategies. 
However, the available documentation of D. d. tropicalis stomach 
contents from India and Pakistan (James et al., 1986; Krishnan et al., 
2008; Pilleri & Gihr, 1972) suggests their prey species are not partic-
ularly distinct from prey composition data for D. delphis elsewhere 
(e.g. Meynier et al., 2008; Pusineri et al., 2007).

There is clinal variation in Delphinus rostral length as one moves 
along the IO coastline, reaching an extreme off India (Jefferson & 
Van Waerebeek, 2002), consequent with waters that are charac-
terised by high turbidity, due to river influx (Longhurst, 2010) and 
coastal mudbanks (Vivekanandan et al., 2003). It is possible that 
the longer rostra exhibited in D. d. tropicalis and T. aduncus are ei-
ther adapted to targeting prey in low-visibility environments or are 
advantageous in foraging over habitats that are specific to coastal 
waters (as also proposed for crocodiles; McCurry et al., 2017). A 
longer rostrum is a characteristic shared with spinner dolphins, 
Stenella longirostris (Van Waerebeek et al., 1999) and humpback 

dolphins, S. plumbea (Jefferson & Van Waerebeek, 2004) in the 
coastal waters of this region, suggesting convergence on a long-
beaked phenotype (or phenotypic plasticity) in response to shared 
environmental gradients (e.g. turbidity, common in the Arabian 
Sea due to the northeast and southwest monsoon systems). A sim-
ilar example of convergent skull shape and beak length evolution 
among river dolphin species has been proposed, possibly asso-
ciated with foraging behaviour (Page & Cooper, 2017). Adaptive 
and/or plastic responses to environmental gradients have been 
documented in other taxa, such as adaptation to altitude in com-
mon frogs, Rana temporaria (Bonin et al., 2006) and clinal variation 
in coat pigmentation of oldfield mice, Peromyscus polionotus, in 
response to soil type (Mullen & Hoekstra, 2008). These adaptive 
transitions in phenotype can lead to assortative mating and popu-
lation differentiation, and are therefore important to identify and 
understand in the context of effective biodiversity conservation. 
In our study they could help to explain patterns of differentiation 
in the absence of physical barriers to gene flow.

F I G U R E  6  Median-joining haplotype network for Delphinus. Generated in PopART from mtDNA control region sequences. BS = Black Sea, 
MED = Mediterranean, GAL = Galicia (Spain), NWA = Northwest Atlantic, CAN_Is = Canary Islands (Spain), GC_lb = long-beaked D. delphis 
Gulf of California (previously known as D. capensis), GC_sb = short-beaked D. delphis Gulf of California, OM = Oman, PAK = Pakistan, SA = 
South Africa, CHI = China, E_AUS = Eastern Australia, S_AUS = Southern Australia and NZ = New Zealand. [Colour figure can be viewed at 
wileyonlinelibrary.com]
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4.3  |  Consideration for an isolating mechanism 
in the Northwest Indian Ocean

The T. aduncus holotype lineage likely expanded into the western 
IO from the north. The ABC analyses corroborate this and suggest 
a reduced population size in the ancestral lineages of the holo-
type and Arabian Sea lineages, indicative of a genetic bottleneck 
in the northern IO (although note that the ABC analysis cannot 
assess models not included, and makes simplifying assumptions). 
The distributions of samples that match the Arabian Sea T. aduncus 
lineage appear to overlap with those of the holotype lineage, sug-
gestive of secondary contact between them. Even though there 
is an overlap in range, the transition between the lineages occurs 
over a relatively short distance, suggesting the presence of an iso-
lating mechanism east of the Strait of Hormuz (Gray et al., 2018).

During glacial periods, the intensity of the southwest mon-
soon would have reduced, causing a decrease in upwelling and 
productivity in the northern IO (Fontugne & Duplessy, 1986). At 
the same time, productivity would have increased in the Bay of 
Bengal and Andaman Sea due to intensification of the northeast 
monsoon (Almogi-Labin et al., 2000; Fontugne & Duplessy, 1986). 
Such a disruption may have facilitated the early bottleneck and 
divergence between the holotype and Arabian Sea lineages, sup-
ported in the ABC analyses. Our mean estimate for the timing of 
this event would be consistent with this hypothesis, although the 
confidence limits are broad (see Table 2). Later divisions occur 
during the late Pleistocene or Holocene, according to our esti-
mates (Table 2), possibly during the period of rapid warming fol-
lowing the last glacial period.

An ecological isolating mechanism may also be present, whereby 
dolphins in the western and northern IO have adapted to a particular 
locality. The relatively pronounced differentiation of D. d. tropicalis 
in this region together with differentiation of the local population of 
T. aduncus from neighbouring regions would be consistent with this 
hypothesis. Other cetaceans in the region show similar patterns in 
their population structure and biogeography. For example, Arabian 
Sea humpback whales, Megaptera novaeangliae, are a genetically iso-
lated, non-migratory population restricted to the region since ~70 Ka 
(Minton et al., 2011; Pomilla et al., 2014). It is worth noting that the dif-
ferentiation pattern seen in both genera in the IO is distinct from the 
North Atlantic, where bottlenose dolphins (T. truncatus) show strong 
differentiation across a geographic range where common dolphins (D. 
delphis) do not (Moura, Natoli, et al., 2013; Natoli et al., 2005).

5  |  CONCLUSIONS

Our data highlight the unique biogeography of the northern IO for 
both focal genera, consistent with studies of other regional marine 
taxa. We suggest that morphological and genetic differentiation 
in this region are both consistent with a pattern of environmental 
change over the Quaternary that altered local patterns of productiv-
ity and habitat characteristics affecting prey resource and foraging 

strategy. Strong differentiation in the region identifies local popula-
tions of various species, including T. aduncus and Delphinus spp. as 
priority conservation units. Our study further identifies substructure 
at a fine geographic scale across the western IO range for T. aduncus, 
suggesting the need for multiple management units (including sev-
eral off South Africa; c.f. Natoli et al., 2008, and two off Zanzibar; 
c.f. Särnblad et al., 2011). Over the longer term it seems that geo-
logical and oceanographic processes established an environment in 
the northern IO conducive to differentiation and speciation in these 
marine genera.
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