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1 Introduction

Holography provides a powerful framework to study large classes of strongly coupled sys-
tems at finite temperature. One of its most useful applications concerns the study of phase
transitions and broken phases of thermodynamic systems. Moreover, the duality allows
us to study large-N systems at all energy scales. This includes the hydrodynamic limit of
finite temperature systems which is expected to be universal.

In this paper we will be interested in the long wavelength excitations of the Goldstone
mode that emerges in superfluid phases of matter which spontaneously break a global U(1)
symmetry. One of our aims is to include the first non-trivial dissipative effects which will
result to a finite decay rate for the expected “second sound”. The second aim of this paper
is to introduce perturbative sources which explicitly break the global symmetry and write
down the effective theory of the resulting pseudo-Goldstone mode.

One important aspect of the phases we will consider is that they will be at zero chemical
potential and electric charge. This will allow us to isolate the long wavelength dynamics
of the condensate avoiding its mixing with the other hydrodynamic degrees of freedom of
the system.

Holography has been extensively used to construct and study superfluid phases after
their original discovery [1–3]. From the bulk point of view, the boundary theory global
U(1) is mapped to a gauged U(1) symmetry acting on a complex scalar field. The vector
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field that gauges the U(1) in the bulk is the gravitational dual of the conserved field theory
Noether current operator. Below a critical temperature Tc the charged scalar develops a
perturbative instability yielding a new branch of broken phase black holes.

The effective theory of the Goldstone mode in the limit of long wavelengths is a topic
which has been explored before. The starting point is the non-dissipative fluids which were
first described in the framework of the Landau-Tisza theory [4, 5]. Dissipative effects at
finite temperature were subsequently studied in the literature starting from [6, 7] and more
recently in [8], in the context of a systematic classification.1

Due to the absence of chemical potential and the presence of rotational and time rever-
sal symmetry, the only information we will need to extract from our holographic theories is
two transport coefficients. We will be able to express these in terms of horizon data related
to finite temperature static configurations. This, is in addition to the charge and current
susceptibilities which are fixed at the level of thermodynamics and don’t capture dissipative
dynamics. A particularly useful tool in extracting these coefficients will be the symplectic
current for gravity [10]. At a practical level, this can be seen as the generalisation of the
Wronskian for ordinary differential equations. However, it is powerful enough to be appli-
cable in situations where the spacetime is inhomogeneous. Given the explicit expressions
for our transport coefficients, we will be able to study our system near the phase transition.
As we will see, the speed of second sound will go to zero as we approach the transition
and the mode will become diffusive. However, its diffusion constant is not continuously
connected to that of the incoherent current pole which exists in the normal phase.

Apart from the purely spontaneous case, we will also consider a scenario in which the
global U(1) is an almost exact symmetry.2 To implement the explicit breaking of the U(1) in
a controlled manner, we will introduce a perturbative static source for our complex operator
that condenses at low temperatures. As a result, the corresponding current becomes only
partially conserved and the propagating pseudo-Goldstone mode acquires a mass as well as
a finite gap. Our analysis is based on a modified Ward identity for the now almost conserved
electric current and is therefore applicable beyond the details of our specific model.

In section 2 we discuss the class of holographic models we will employ in order to
realise our scenario along with some relevant aspects of their thermodynamics. In section 3
we construct the theory of hydrodynamics which captures the dynamics of our Goldstone
mode along with the technical aspects of our computation. We conclude the section with
the computation of the Green’s functions and the Kubo formulae for the two transport
coefficients that enter our description. In section 4 we introduce perturbative static sources
which break the global symmetry in a controlled manner as well as spacetime dependent
ones for the complex scalar operator. We use the sourced Ward identity for the currents
to extract the retarded Green’s functions of the system. From the poles we extract the
dispersion relations of second sound pseudo-Goldstone mode. Section 5 is devoted to
numerical checks of some of the analytic results we obtain in the previous sections.

1See also [9] for more recent developments in the framework of superfluids.
2So far, the interplay of weak explicit and spontaneous breaking of symmetries has been mainly consid-

ered in the context of translations in e.g. [11–13]. For the case of global symmetries in the bulk see [12, 14].
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2 Setup

In this section we will introduce our holographic superfluids. Our main results on the
hydrodynamics of the superfluidity Goldstone mode are independent of the specific scenario
in which we will realise the neutral superfluid phase transition. For concreteness, we will
consider a holographic CFT which is deformed by introducing a source φ(s) for the neutral
relevant operator Oφ with bulk dual φ. Below a critical temperature Tc, which is set by
the scale φ(s), a boundary operator Oψ which is charged under a global U(1) symmetry
condenses. From the bulk point of view, this condensation leads to black holes with non-
zero profile for the dual bulk scalar ψ.

To realise this setup in holography, we consider a gravitational theory in the bulk
consisting of a metric, a neutral scalar φ and a complex scalar ψ which is charged under a
local U(1) symmetry and a Maxwell field Aµ gauging the symmetry. The local symmetry
in the bulk corresponds to a global U(1) symmetry on the boundary theory and the gauge
field Aµ is dual to the corresponding Noether current operator Ĵ µ.

The system is described by the bulk action

Sbulk =
∫
d4x
√
−g

(
R−V (φ, |ψ|2)− 1

2∂µφ∂
µφ−(Dµψ)(Dµψ)∗− 1

4τ(φ, |ψ|2)FµνFµν
)
, (2.1)

with the covariant derivative Dµψ = ∇µψ + iqAµ ψ and the field strength F = dA. We
will be mostly interested in configurations which are dual to superfluids and therefore
spontaneously break the U(1) symmetry. These backgrounds will have complex scalar
with non-trivial modulus and for such configurations it will be beneficial to perform the
field redefinition ψ = ρ eiθ. This brings the action to the equivalent form

S=
∫
d4x
√
−g

(
R−V (φ,ρ2)− 1

2(∂φ)2−(∂ρ)2−ρ2 (∂θ+qA)2− 1
4τ(φ,ρ2)FµνFµν

)
. (2.2)

The corresponding equations of motion are

Rµν −
1
2gµνV −

τ

2

(
FµρFν

ρ − 1
4gµν F

2
)

−1
2∂µφ∂νφ− ∂µρ ∂νρ− ρ

2(∂µθ + qAµ) (∂νθ + qAν) = 0

∇µ∇µφ− ∂φV −
1
4∂φτ F

2 = 0

∇µ∇µρ− ∂ρ2V ρ−
1
4∂ρ2τ ρF 2 − ρ (∂θ + qA)2 = 0

∇µ
(
ρ2 (∇µθ + q Aµ)

)
= 0

∇µ(τ Fµν)− 2q ρ2 (∇νθ + q Aν) = 0 . (2.3)

In order to implement our holographic scenario, we will assume that for small φ and
ψ the potential and the gauge coupling admit the expansions

V ≈ −6 + 1
2m

2
φ φ

2 +m2
ψ |ψ|2 + · · ·

τ ≈ 1 + · · · . (2.4)
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Under these conditions, our theory admits the geometry of AdS4 as solution with metric

ds2 = r2
(
−dt2 + dx2 + dy2

)
+ dr2

r2 (2.5)

and trivial scalars and gauge field. Given the expansion (2.4), the bulk scalars φ and ψ

correspond to operators Oφ and Oψ whose dimensions ∆φ and ∆ψ are fixed by the mass
terms according to ∆φ(∆φ − 3) = m2

φ and ∆ψ(∆ψ − 3) = m2
ψ.

Without loss of generality, a suitable ansatz which captures all the necessary ingredi-
ents is

ds2 = −U(r) dt2 + dr2

U(r) + e2g(r)
(
dx2 + dy2

)
,

φ = φ(r), ρ = ρ(r), A = 0 . (2.6)

This ansatz leads to a non-linear system of ODEs for the radial functions that appear in
it. Notice that the above choice of coordinates does not fully fix the radial coordinate r
which we are still free to shift by an arbitrary constant. We will choose to fix this freedom
by requiring that the horizon of Hawking temperature T is located at r = 0. This allows
us to write the near horizon expansion

U(r) ≈ 4πT r +O(r2), g(r) ≈ g(0) +O(r) ,

φ(r) ≈ φ(0) +O(r), ρ(r) ≈ ρ(0) +O(r) . (2.7)

Ultimately, the backgrounds we wish to consider correspond to thermal states of the theory
deformed by a source of the relevant operator Oφ and a spontaneous VEV for the charged
operator Oψ. Given these considerations, the appropriate near conformal boundary expan-
sions at r →∞ are

U(r) ≈ (r +R)2 + · · ·+ g(v) (r +R)−1 + · · · ,
g(r) ≈ ln(r +R) + . . . ,

φ(r) ≈ φ(s) (r +R)∆φ−3 + · · ·+ φ(v) (r +R)−∆φ + · · · ,
ρ(r) ≈ ρ(s) (r +R)∆ψ−3 + · · · ρ(v) (r +R)−∆ψ + · · · , (2.8)

where we have the leading behaviour as well as the various constants of integration for our
system. Given that we are looking for phases where Oψ takes a VEV spontaneously, we
will either set the sources ρ(s) equal to zero or, as we will do in section 4, keep them as
perturbative deformations. The VEVs of the scalar operators then are fixed by φ(v) and
ρ(v).3 The constant shift R is an artefact of the way we chose to fix our radial coordinate
by placing the horizon at r = 0.

3In general, holographic renormalisation can involve the sources ρ(s) as part of the VEV of our scalar
operators. However, we consider phases in which our operator takes a VEV spontaneously and we will
naturally be working in the limit ρ(s) � ρ

(3−∆ψ)/∆ψ
(v) . In this situation, the VEV will be approximately

fixed by ρ(v).
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At this point, it is worth understanding the asymptotics of the phase field θ. In
the absence of (or for perturbatively small) source ρ(s) a perturbation of δθ admits the
asymptotic expansion

δθ(r) ≈ r2∆ψ−3 δθ(s) + · · ·+ δθ(v) + · · · . (2.9)

In the complete absence of a source for ψ, the relevant bit for us is the constant term in r,
which parametrises the phase of the order parameter. Indeed, for the VEV of the condensed
operator we will have that 〈Oψ〉 ∝ ρ(v) e

i θ(v) . From the boundary point of view, we can
simply change the global phase without any cost in energy. The fact that we can freely
rotate the VEV 〈Oψ〉 without changing the energy of our system reflects the existence of a
Goldstone mode in the boundary theory. This suggests that the dynamics of the Goldstone
mode is captured by the VEV of the operator

OY = 1
2i |〈Oψ〉b|

(〈Oψ̄〉bOψ − 〈Oψ〉bOψ̄) , (2.10)

where 〈Oψ〉 is the thermal state VEV. In the absence of a source for ψ, for the fluctuations
we can write

δ〈OY 〉 = 〈Oψ〉 δθ(v) . (2.11)

In section 4 of this paper will be interested in hydrodynamic perturbations in which
the source δθ(s) will be much smaller than the scale of δθ(v). Given this information, in
this language the perturbative source for the scalar will be δsψ = i(ρ(v) δθ(s) + δρ(s) δθ(v))
while the VEV will be given by 〈Oψ〉 ∝ (2∆ψ − 3) ρ(v) (1 + iδθ(v)) after a perturbation.
Therefore the source of the operator OY will be simply sY = (ρ(v) δθ(s) + δρ(s) δθ(v)) while
for its VEV we can write equation (2.11).

A central point of interest to our paper is the fluctuations of the bulk gauge field A

around the background black holes of equation (2.6). From the equations of motion (2.3),
we see that fluctuations of the gauge field Aµ and phase field θ are captured by the last
two equations. In fact, after defining the one-form field Bµ = ∂µθ + q Aµ, we can simply
consider the equation of motion of a massive vector field in the bulk

∇µ(τ Wµν)− 2q2ρ2Bν = 0 , (2.12)

where we have defined the two formW = dB. The penultimate equation of (2.3) now reads

∇µ
(
ρ2Bµ

)
= 0 , (2.13)

and is simply a consequence of taking the divergence of equation (2.12). For this reason we
will only need to consider equation (2.12). Close to the conformal boundary, in the absence
of background sources for complex scalar, the 1-form field Bν admits the expansion

Bα = ∂αθ(s) r
2∆ψ−3 + · · ·+ vα + · · ·+ q jα

r
+ · · · , (2.14)

where vα = ∂αθ(v) + q µα is a gauge invariant combination of the superfluid velocity ∂αθ(v)
and the source µα for the U(1) current. Moreover, as we will explain later the constants of
integration jα satisfy the Ward identity for the currents which are given by equation (2.20).
Note that in the thermal states we are interested in we have µα = 0; we will only consider
non-zero µα when computing the thermodynamic susceptibilities.
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2.1 Thermodynamics

An important ingredient in studying the thermodynamics and the linear response of our
system is the free energy density w. In order to compute it, we first need to regularise
our bulk action (2.1) by introducing appropriate couterterms which render the total action
finite and the boundary value problem well defined. These form a boundary action which is
defined on a hypersurface ∂M of constant radial coordinate r near the conformal boundary.
An appropriate choice of boundary action includes the terms

Sbdr =−
∫
∂M

d3x
√
−γ (−2K + 4 +Rbdr)

− 1
2

∫
∂M

d3x
√
−γ [(3−∆φ)φ2 − 1

2∆φ − 5 ∂aφ∂
aφ]

−
∫
∂M

d3x
√
−γ [(3−∆ψ)|ψ|2 − 1

2∆ψ − 5 DaψD
aψ∗] + · · · , (2.15)

with γαβ the induced metric on ∂M , Rbdr the associated Ricci scalar and K the extrinsic
curvature scalar of the constant r hypersurface. In fact, for the case with ∆φ = ∆ψ = 2 on
which we focus in our numerics section 5, these are all the terms needed.

In order to compute the free energy we need to evaluate the regularised action Stot =
Sbulk + Sbdr on the Euclidean version of our backgrounds (2.6) with t = −i τ . Since we
are dealing with an infinite field theory system, this is an infinite quantity and we should
be discussing densities instead. After dropping the integration over the boundary spatial
non-compact coordinates, this yields the density Itot which is related to the free energy
density wFE via wFE = TItot with T the Hawking temperature of our black brane. Notice
that, in the absence of sources, the terms which involve the complex scalar ψ in (2.15) will
not contribute to the thermodynamics of our system. However, these are needed in order
to extract the VEV of the complex operator Oψ.

In order to compute the on-shell value of the Euclidean bulk action Ibulk, it is useful
to write the integrand as a total derivative. After exploiting the existence of the Killing
vector ∂t and using a Komar type of argument, we can write

Ibulk = 1
T

∫ ∞
0

dr
(
e2g U ′

)′
. (2.16)

Being in the grand canonical ensemble and at zero background chemical potential, the free
energy density of our system is

wFE = ε− T s, (2.17)

where ε is the energy density and s is the Bekenstein-Hawking entropy. This can be
expressed in terms of the horizon data (2.7) as

s = 4π e2 g(0)
. (2.18)

In the case of e.g. ∆φ = ∆ψ = 2 the bulk on-shell action (2.16) combines with the boundary
action (2.15) to yield

wFE = −2g(v) − φ(s) φ(v) − T s . (2.19)

– 6 –
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Even though we have not included a source µα for the current, this is certainly an
important part of thermodynanics for a superfluid. The response of the system to an
external source includes a non-trivial expectation value for the conserved U(1) current

Jα = lim
r→∞

√
−g τ Fαr = lim

r→∞

√
−g τ Wαr . (2.20)

For our purposes, we will need this information in the context of linear response.
In addition to the free energy w, we are also interested in the thermodynamic suscep-

tibilities of our system. In order to compute them, we consider the static perturbations
δB(t) and δB(x) with zero superfluid velocity. In terms of the asymptotics (2.14), we have
δvν = q δtν δµt and δvν = q δxν δµx. Close to the conformal boundary these perturbations
will admit the expansion

δB
(t)
t = q δµt + q

δjt
r +R

+ · · · ,

δB(x)
x = q δµx + q

δjx
r +R

+ · · · . (2.21)

In terms of the thermodynamic susceptibilities χQQ and χJJ we must have δjt=−χQQ δµt,4

and δjx = −χJJ δµx. Close to the event horizon, regularity demands the expansion

δB
(t)
t = q δµt a

(0)
t r +O(r2) ,

δB(x)
x = q δµx a

(0)
x +O(r) . (2.22)

The quantities a(0)
t and a(0)

x are certainly part of the thermodynamics of a superfluid. Later,
we will see that together with the horizon data of (3.12) they will determine the trans-
port coefficients of our superfluid when we express the current in terms of the superfluid
velocity ∂αθ(v).

Later in the paper, we will also want to understand our hydrodynamic expansion close
to the phase transition. For the case where the transition is second order, close to the
critical temperature Tc we must have ρ ∝

√
Tc − T corresponding to a VEV which scales

like 〈Oψ〉 ∝
√
Tc − T . This will let us see the important fact that the Goldstone mode

does not connect continuously to the diffusive mode of the incoherent current which exists
above Tc. More interestingly, we will see that the source for this discontinuity is that our
hydrodynamic expansion breaks down close to the critical temperature making the radius
of convergence infinitesimally small.

By integrating the bulk equations of motion (2.12) we obtain the relations

δρ = e2g(0)
τ (0)δµt a

(0)
t + 2q

∫ ∞
0

dr ρ2 e
2g

U
δB

(t)
t ,

δjx = −2q
∫ ∞

0
dr ρ2 δB(x)

x . (2.23)

4The charge density is δρ = −δjt.
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As we can see, the right hand side of the above equations still involves the perturbation of
the one-form field. Close to the phase transitions these equations yield

χQQ = e2g(0)
τ (0) a

(0)
t +O (Tc − T ) ,

χJJ = 2q2
∫ ∞

0
dr ρ2 +O

(
(Tc − T )2

)
. (2.24)

This is indeed the behaviour we would have expected close to a superfluid phase transition
with the charge susceptibility χQQ remaining finite and the current susceptibility χJJ
approaching zero.

3 Linear response

In this section, we will study long wavelength fluctuations of the U(1) current of our sys-
tem. The thermal state above the critical temperature is simply an electrically neutral
hot plasma corresponding to a CFT that has been deformed by a relevant operator while
preserving Poincare invariance. In the absence of electric charge, the electric current fluctu-
ations are dominated by a diffusive mode in the hydrodynamic limit [15–17]. The existence
of this mode in a neutral plasma is due to the existence of an incoherent current in strongly
coupled CFTs [18, 19].

Below the critical temperature the hydrodynamics of the electric current will be dom-
inated by the Goldstone mode associated to the spontaneous breaking of the global U(1)
of the boundary theory. In section 3.1 we will introduce the symplectic current in the bulk
which will be the main technical tool we will use for our computations. In section 3.2
we will construct the hydrodynamic perturbations which couple to the Goldstone mode of
our boundary theory. This will allow us to write constitutive relations for the expectation
value of the current operator in terms of the phase of our order parameter. Using these and
current conservation we will extract the dispersion relation of the second sound mode in
terms of thermodynamic susceptibilities and two transport coefficients which are expressed
in terms of horizon quantities. Finally, in section 3.3 we will include sources for the current
in our analysis. We will give expressions for the retarded Green’s functions of the system
and Kubo formulae for the transport coefficients of our superfluid.

3.1 Symplectic current

A powerful tool we will use is the symplectic current for the bulk theory. This will allow
us to deal with the one-form field fluctuations in an elegant way. Its benefit lies in the fact
that it is a conserved current in the bulk and will allow us to relate boundary quantities
to horizon ones. As we will see, this logic will allow us to express the boundary electric
current in terms of derivatives of the phase of our order parameter, the superfluid velocity,
and the sources.

In order to introduce, it we imagine that we have two perturbations δB<1>
µ and δB<2>

µ

which solve our bulk equation (2.12). We can then construct the vector density

Pµ =
√
−g τ

(
δB<1>

ν δ(W<2>)νµ − δB<2>
ν δ(W<1>)νµ

)
, (3.1)

– 8 –
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which can be shown to be divergence free,

∂µP
µ = 0 . (3.2)

This current is not a consequence of a conservation law as it is based on two independent
solutions. It merely comes from the fact that the equations of motion of our classical
theory in the bulk are derived from a local classical action. In the hydrodynamic limit,
the dominant term in (3.2) will be the one involving the radial derivative which will let us
relate the symplectic current on the black brane horizon to the symplectic current on the
conformal boundary boundary.

This is especially helpful when one of the two solutions we are using in the construction
in the construction of (3.1) is considered to be known. For our purposes, the role of the
known solution will be played by the static perturbations δB(t)

µ and δB
(x)
µ we discussed

in section 2.1. At a philosophical level, we will need to consider as known all the static
black holes which can be used to describe the thermodynamics of our system. That would
include the black holes corresponding to finite chemical potential as well as persistent
supercurrents. The reason is that, as we will see, the susceptibilities χQQ and χJJ will
play an important role even though we will be studying transport in thermal states of
zero chemical potential and external vector field. For the purpose of extracting those, the
knowledge of the static perturbations δB(t)

µ and δB(x)
µ is sufficient.

3.2 Second sound

In this section we would like to construct the bulk perturbation corresponding to the
Goldstone mode of the boundary theory: the second sound. As we discussed in section 2.1,
the Goldstone mode involves the phase of our order parameter and therefore the associated
conserved current due to the global symmetry on the boundary. In the absence of electric
charge, the current decouples from the stress tensor of the theory within linear response.
This will allow us to clearly isolate the dynamics of the Goldstone mode from the rest of
the hydrodynamics modes of our system.

From the bulk point of view we will only need to examine perturbations of the one-
form field Bµ. The spacetime translational symmetries allow us to study Fourier modes.
Thus, in order to study perturbations in the hydrodynamic limit, we will consider long
wavelength excitations of the form

δBµ(t, x; r) = e−iω(t+S(r))+iεk x δbµ(r) dxµ , (3.3)

for some small number ε. The function S(r) is chosen so that it drops faster that O(1/r3)
close to the conformal boundary and it therefore doesn’t interfere with holographic renor-
malisation. However, close to the horizon, it is chosen so that it approaches S(r)→ 1

4πT ln r
and the combination t+S(r) is regular and ingoing. Note that we picked the momentum k

to point in the direction x without loss of generality given that the background is isotropic.
An important ingredient in extracting the second sound is the absence of boundary

sources. In general, the asymptotic expansion close to the conformal boundary is

δbα = δv̂α + q
δĵα
r

+ · · · . (3.4)

– 9 –
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The leading terms are a gauge invariant combination of the external one-form source and
the superfluid velocity. Absence of sources is equivalent to demanding

δv̂t = −iω δĉ, δv̂x = iεk δĉ , (3.5)

so that vα = ∂αθ(v) in the notation of equation (2.14). Moreover, charge conservation
implies that

∂αδj
α = 0⇒ ωδĵt + εkδĵx = 0 . (3.6)

At this point it will be illuminating to count constants of integration. This is crucial in
order to see that we are doing the right thing in terms of boundary conditions since we are
after specific quasi-normal modes. The equation of motion (2.12) yields two second order
equations for δbt and δbx while δbr can be solved algebraically. In order to find a unique
solution we will therefore need to fix four constants.

Close to the conformal boundary we have the constant δĉ, while δĵt and δĵt give one
more constant since they have to satisfy the constraint (3.6). Close to the horizon, in-falling
boundary conditions fix the expansion

δbα = δb(0)
α + r δb(1)

α + · · · ,

δbr = 1
4πTrδb

(0)
t + δb(1)

r + · · · . (3.7)

We therefore have an extra two constants of integration coming from the near horizon
expansion, giving an overall total of 4 constants. However, we are only solving a linear
system of homogeneous equations. Since we are not introducing any sources, we can use
the scaling symmetry of the problem to set any of the above constants of integration
to one leaving with only three. The fourth constant is precisely the frequency ω which
will ultimately become a function of the wavenumber k that we are free to choose. This
procedure will fix the dispersion relation for ω(εk) for the quasi-normal modes.

For our purposes however, we are after a particular mode which is hydrodynamic and
has ω = 0 for ε = 0. This simply corresponds to the trivial solution for the one form field.
This allows us to consider the hydrodynamic expansion

ω = ε ω[1] + ε2 ω[2] + · · · ,

δĵµ = ε δĵµ[1] + ε2 δĵµ[2] + · · · . (3.8)

For the radial function in the ansatz (3.3) we will write the expansion

δbt(r) = ε δB̂
(t)
t (r) + ε2 δB

(2)
t (r) + · · · ,

δbx(r) = ε δB̂(x)
x (r) + ε2 δB(2)

x (r) + · · · ,

δbr(r) = ε2 δB(2)
r (r) + · · · , (3.9)

where δB̂(t)
t (r) and δB̂(x)

x (r) are precisely the thermodynamic perturbations we discussed
in equation (2.14) with

δµt = −
iω[1]
q
δĉ, δµx = ik

q
δĉ . (3.10)
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For the subleading terms we impose the near conformal boundary expansion

δB
(n)
t = −iω[n]δĉ+ q

δĵt[n]
r

+ · · · ,

δB(n)
x = q

δĵx[n]
r

+ · · · , (3.11)

which is simply a reorganisation of the perturbation with boundary conditions as in equa-
tion (3.5). Close to the horizon, we impose in-falling boundary conditions. This gives us
the expansion,

δB
(n)
t = δB

(n)(0)
t + δB

(n)(1)
t r + · · · ,

δB(n)
r = δB

(n)(0)
t

4πTr + δB(n)(0)
r + · · · ,

δB(n)
x = δB(n)(0)

x + δB(n)(1)
x r + · · · . (3.12)

At leading order in the ε expansion the components of the conserved current are

q δĵt[1] = iω[1]χQQ δĉ, q δĵx[1] = −ikχJJ δĉ , (3.13)

which follows from the definition of the charge and current susceptibilities. At that order,
we see that equation (3.6) gives

ω[1]δĵt[1] + kδĵx[1] = 0⇒ ω2
[1] χQQ − k

2 χJJ = 0

⇒ ω[1] = ± cs k , (3.14)

with c2
s = χJJ/χQQ being the universal speed of second sound.

To specify ω[2], we will need to fix the currents δĵα[2]. In order to do this we will employ
the conservation (3.2) of the symplectic current (3.1). As we explained in section 3.1, the
symplectic current is particularly useful when we compare the solution we are after to a
solution we already know. For this reason we will consider it for two different choices
of pairs of perturbations. For both cases, we will choose δB<1> to be the perturbation
in (3.3).

Our first choice for δB<2> is the static perturbation δB(x) of section 2.1. This will
allow us to specify the component δĵx. Expanding the symplectic current in ε we have

Pµ = e−iω(t+S(r))+iεk x
(
ε2 pµ(2) + ε3 pµ(3) + · · ·

)
. (3.15)

One would expect that the leading term would be O(ε) since our perturbation δB<1> starts
at order ε and δB<2> starts at zeroth order. However, the leading term in the ε-expansion
of δB<1> in equation (3.9) is proportional to δB<2> and the would-be leading term in the
symplectic current turns out to vanish.

More explicitly we have

pt(2) = iτ

U
δB(x)

x

(
ω[1]δB̂

(x)
x + kδB̂

(t)
t

)
,

pr(2) = −Uτ
(
δB(2)

x ∂rδB
(x)
x + δB(x)

x

(
iω[1]S

′ δB̂(x)
x − ∂rδB(2)

x

))
,

px(2) = Uτ δB(2)
r ∂rδB

(x)
x . (3.16)
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We now consider the divergence (3.2) and keep only terms up to O(ε2) giving

∂rp
r
(2) = 0 . (3.17)

Integrating this equation from the horizon up to the conformal boundary, we obtain the
relation

q δĵx[2] = −ω[1]k σd δĉ , (3.18)

where we have defined5

σd = τ (0) (a(0)
x )2 . (3.19)

Choosing now δB<2> to be δB(t), we obtain

pt(2) = −e2gτ δB(2)
r ∂rδB

(t)
t ,

pr(2) = e2gτ
(
δB

(2)
t ∂rδB

(t)
t + δB

(t)
t

(
iω[1]S

′ δB̂
(t)
t − ∂rδB

(2)
t

))
,

px(2) = − iτ
U
δB

(t)
t

(
ω[1] δB̂

(x)
x + k δB̂

(t)
t

)
. (3.20)

Keeping once again only terms up to order O(ε2) in equation (3.2) and integrating from
the horizon up to the conformal boundary, we obtain

q δĵt[2] = iω[2] χQQ δĉ+ e2g(0)
τ (0) δB

(2)(0)
t a

(0)
t . (3.21)

We have used the near horizon expansion (3.12) and we need to specify the constant of
integration δB

(2)(0)
t . We can do this by considering the near horizon limit of the radial

component of the equation of motion (2.12) along with the expansion (3.12). This fixes

δB
(2)(0)
t = −

ω2
[1]

2q2(ρ(0))2a
(0)
t τ (0) δĉ , (3.22)

yielding

q δĵt[2] = iω[2] χQQ δĉ− e2g(0) (τ (0)a
(0)
t )2

2q2(ρ(0))2 ω
2
[1] δĉ . (3.23)

Moving on to next to leading order in equation (3.6) along with (3.23) and (3.18),
we have

ω[2] δĵt[1] + ω[1] δĵt[2] + k δĵx[2] = 0⇒

2i χQQ ω[2] − e2g(0) (τ (0)a
(0)
t )2

2q2(ρ(0))2 ω
2
[1] − k

2σd = 0⇒

ω[2] = −i 1
2χQQ

(
e2g(0) (τ (0)a

(0)
t )2

2q2(ρ(0))2
χJJ
χQQ

+ σd

)
k2 . (3.24)

5For this transport coefficient, a similar result was obtained in [20]. Here we clarify the significance of
the quantities that appear in this equation as data related to the geometries dual to the thermal state after
the inclusion of the superfluid velocity in the ensemble variables.
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Equations (3.13), (3.18) and (3.23) can be considered as the expansion of the consti-
tutive relations for the conserved current. By introducing the Fourier transform δc of δĉ,
we can write them in the form

q δjt = −χQQ ∂tδc+ Ξ ∂2
t δc ,

q δjx = −χJJ ∂xδc− σd ∂x∂tδc , (3.25)

where we have defined

Ξ = e2g(0) (τ (0)a
(0)
t )2

2q2(ρ(0))2 . (3.26)

In addition to the constitutive relations for the currents, the VEV of our charged scalar
operator is

〈Oψ〉 = 〈Oψ〉b (1 + i δc) , (3.27)

at leading order in the ε expansion. Here, we have introduced the VEV of the scalar in the
thermal state 〈Oψ〉b = (2∆− 3) ρ(v).

Using this notation, the dispersion relation for our sound mode is

ω = ± cs k −
i

2χ2
QQ

(χJJ Ξ + χQQ σd) k2 . (3.28)

Note that these constitutive relations are based on the two thermodynamic susceptibilities
χQQ and χJJ as well as the two transport coefficients σd and Ξ. In the next section we will
introduce sources for the external vector field which will allow us to compute the retarded
Green’s functions of the current. As a result, we will manage to write Kubo formulae for
our transport coefficients σd and Ξ.

Before moving on, we would like to examine the behaviour of our hydrodynamics close
to the critical temperature Tc. As one can see from the constitutive relations (3.33), the
coefficients that enter in our hydrodynamic expansion include the susceptibilities χJJ and
χQQ. The behaviour of these coefficients close to Tc was given in equation (2.24). The first
derivative with respect to the temperature of both of them exhibits the expected disconti-
nuity close to the transition with the former approaching zero. From that, we can easily
see that the speed of second sound fixing the linear part of the dispersion relation (3.14)
behaves like cs ≈ (Tc − T )1/2 close to the phase transition.

The dissipative part of the constitutive relations (3.25) is determined by the transport
coefficients σd and Ξ. The holographic expressions that we obtained for these are given in
equations (3.19) and (3.26) respectively. The behaviour of σd is fairly simple to understand
as τ (0) goes to a fixed value as we increase temperature and a(0)

x is simply unity at Tc. On
the other hand, equation (3.26) is telling us that Ξ blows up close to the transition since
ρ(0) ∝ (Tc − T )1/2 and everything else remains finite in our holographic expression. We
interpret this fact as the breakdown of the hydrodynamic expansion making the radius
of convergence smaller and smaller as we approach phase transition. One would have
expected such a breakdown since the phase δc becomes a not well defined field close to the
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transition. This is easy to see directly from the definition of OY itself in equation (2.10).
Note that there is another mode in the theory which becomes gapless close to the transition
which is associated with the modulus of the complex VEV 〈Oψ〉 [21]. However, this mode
completely decouples from the system we are examining as it is captured by the bulk field
ρ in our parametrisation.

Despite this fact, the speed of sound and the attenuation in the dispersion rela-
tion (3.28) remain finite since, according to equation (2.24), the current-current scalars
behave like χJJ ≈ (Tc − T ). We can easily see that close to the transition the dispersion
relation (3.14) becomes

ω ≈ − i2

(
4π
s

∫ ∞
0

dr
ρ2

(ρ(0))2 + σd
χQQ

)
k2 , (3.29)

which remains finite as we take the T → Tc limit. Note that this dispersion relation holds
for k � Tc − T .

Above the phase transition where our system is in its normal phase, the U(1) current
hydrodynamic excitations are given by the constitutive relations,

δjt = −χQQ δµ ,
δjx = −σd ∂xδµ , (3.30)

with δµ the local chemical potential and σd the incoherent conductivity. We therefore see
that above the critical temperature we will have a single diffusive mode determined by
the diffusion constant Dinc = χ−1

QQ σd. So, even though our sound modes tend to become
diffusive close to the transition, the attenuation constant does not continuously connect to
the diffusion constant of the normal phase incoherent mode at the critical temperature.

3.3 Green’s functions

In this section we will introduces sources for the conserved U(1) current in our system
which should be of order δsα ≈ O(ε). The construction of the hydrodynamic perturbation
in the bulk is identical to that of equation (3.9). However, this time the frequency is fixed
by the external sources and our ultimate goal is to express the boundary current of the
system in terms of the sources and the phase of the condensed operator.

The above suggests that we will simply need to replace the boundary conditions (3.5) by

δv̂t = δŝt − iω δĉ, δv̂x = δŝx + iεk δĉ , (3.31)

with δŝα ∝ O(ε). Effectively, the whole analysis of section 3.2 goes through after replacing
−iω δĉ → δŝt − iω δĉ and iεk δĉ → δŝx + iεk δĉ. In terms of spacetime coordinates on the
boundary, this is equivalent to replacing the partial derivatives of the phase by the gauge
invariant combination

∂αδc→ δsα + ∂αδc . (3.32)
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One can of course check this explicitly but here we will just state the final result for
the expressions of the components of the boundary current

q δjt = −χQQ (δst + ∂tδc) + Ξ ∂t (δst + ∂tδc) ,
q δjx = −χJJ (δsx + ∂xδc)− σd ∂t (δsx + ∂xδc) . (3.33)

After having obtained the constitutive relations (3.33), we can impose the continuity equa-
tion (3.6) to obtain an equation for the Goldstone mode. Doing this in momentum space,
gives us an expression for δĉ in terms of the sources δŝα which we can plug back in (3.33).
From that linear relation between the VEVs for the current and the sources we read off
the retarded Green’s functions

GJtJt(ω, εk) = (εk)2 G(ω, εk), GJxJx(ω, εk) = ω2 G(ω, εk) ,

GJtJx(ω, εk) = GJxJt(ω, εk) = εk ω G(ω, εk) , (3.34)

where we have defined

G(ω, εk) = (χQQ + iΞω) (i χJJ + σd ω)
ω2 (−i χQQ + Ξω) + (εk)2 (i χJJ + σd ω ) . (3.35)

Notice that the last equation in (3.34) is compatible with the Onsager relation GJtJx(ω, εk)=
−GJxJt(ω,−εk) given that G is even in k. Moreover, the positions of poles of the Green’s
functions (3.34) are set by the roots of the denominator of the function (3.35). As expected,
these are located precisely on the curves ω = ω±(εk) set by the dispersion relations we
found in section 3.2 for the superfluid sound mode.

The final result we would like to present in this section is the Kubo formulae for our
transport coefficients σd and Ξ. By using the Green’s functions (3.34) we can write

σd = lim
ω→0

lim
k→0

ImGJxJx

ω
, Ξ = lim

k→0
lim
ω→0

ImGJtJt

ω
. (3.36)

4 Scalar sources and pinning

In this section we would like to explicitly deform our theory by a perturbatively small
pinning parameter δρ(s) and study the resulting pseudo-Goldstone mode. In other words,
we would like to explicitly break the global U(1) in a controlled fashion. In order to do
this, we will have to deform the backgrounds we have considered so far by adding a small
perturbative source ρ(s) = δρ(s) ∝ O(ε2) in the near conformal boundary expansion of
equation (2.8).

Before applying our logic to the class of holographic theories we are considering, it
is worth revisiting our expectations in field theory terms. Suppose that we couple our
theory to an external gauge field Aα and that we also introduce a source λ for our charged
scalar operators O∗ψ. If the resulting theory is invariant under the infinitesimal gauge
transformations

δAα = ∂αδΛ, δλ = −iqλ δΛ , (4.1)
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then we can show that the corresponding Ward identity for the current gets modified to

∇α〈Jα〉 = iq
(
〈Oψ〉λ∗ − 〈O∗ψ〉λ

)
. (4.2)

This equation makes clear that the order parameter and the source need to align in the
complex plane in equilibrium. In other words we can no longer freely rotate the order
parameter in the complex plane after fixing a source without generating a current.

In holography, the small background perturbation we want to consider changes the
interpretation of the angle θ(v) that we introduced in equation (2.9). To see this, we need
to consider the asymptotic expansion of the charged scalar close to the conformal boundary.
To do this, we first need to better understand the asymptotics of the vector field Bµ to
include sources θ(s) for the Goldstone mode. In the absence of background sources for the
charged scalar field, we have

Bα = ∂αθ(s) (r +R)2∆−3 + · · ·+ vα + · · ·+ q jα (r +R)−1 + · · · , (4.3)

where θ(s), vα and jα are constants of integration, with the equations of motion implying
the constraint

∂αj
α = 2q ρ2

(v) (2∆− 3) θ(s) +O(∂2θ(s)) , (4.4)

where we dropped terms of higher order in derivatives of θ(s). The reason for doing this
is that we will be interested in satisfying this equation up to order O(ε3) and such terms
would be higher order provided that θ(s) ∝ O(ε2). We will show this later when we consider
the proper boundary conditions, compatible with the absence of time dependent sources
for the charged scalar operator Oψ.

After including the perturbative source terms, the angle θ and the background source
term δρ(s) enter the asymptotic expansion of the charged scalar perturbations according to,

δψ = i(ρ(v) θ(s) + δρ(s)θ(v)) (r +R)∆−3 + · · ·+ iρ(v) θ(v) (r +R)−∆ + · · · . (4.5)

This shows that equation (4.4) is nothing but the Ward identity (4.2) after identifying

〈Jα〉 = jα +O(∂θ(s)),

λ = δρ(s) + i(ρ(v) θ(s) + δρ(s)θ(v)) +O(δρ(s) θ(s)),

〈Oψ〉 = 〈Oψ〉b (1 + iθ(v)) +O(δρ(s) θ(s)) . (4.6)

From the above we see that in order to correctly identify the time dependent perturbative
source δsψ for the scalar field, we need to impose

θ(s) = 1
ρ(v)

(
−δρ(s) θ(v) + δsψ

)
. (4.7)

Note that in this notation, the time dependent source of the complex scalar introduces
only a source δsY = δsψ for the operator OY that we introduced in section 2. The above
equation shows that the source term θ(s) for the perturbation of Bµ and the background
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perturbation source δρ(s) need to be of the same order in the ε expansion. After this
observation, the constraint equation (4.4) becomes

∂αj
α = −2 q |〈Oψ〉b| δρ(s) θ(v) + 2 q |〈Oψ〉b| δsY . (4.8)

From the point of view of hydrodynamics, the goal is to have the correct constitutive
relations for the currents jα up to second order in ε. That would allow us to satisfy
equation (4.8) up to third order in ε provided that we take the source for the charged
scalar to be of order O(ε2). This is justified by the fact that the terms we dropped in
equation (4.4) are of order O(ε4). This argument shows that the constitutive relations of
equations (3.33) and (3.27) are sufficient for this task. Finally, one might worry that we
should take in account the fact that the background quantities which enter equation (2.12)
will bring their own ε corrections to the perturbation of Bµ. However, as we argued above,
the correction of the bulk scalar due to the perturbative source δρ(s) will be of order O(ε2).
That would induce corrections to our perturbation δBµ at order O(ε3) which is certainly
beyond our scope.

In order to compute the retarded Green’s functions of the system of our operators, we
need to solve the Ward identity (4.8) after identifying θ(v) = δc. By doing so we obtain
the explicit expressions

GJtJt(ω, εk) = f (w + (ε k)2 g)
h

, GJxJx(ω, εk) = (−w + ω2f) g
h

GJxJt(ω, εk) = GJtJx(ω, εk) = ε k ω
f g

h
,

GJtOY (ω, εk) = −iqω |〈Oψ〉b| f
h

, GJxOY (ω, εk) = −iqk |〈Oψ〉b| g
h

GOY Jt(ω, εk) = i
qω |〈Oψ〉b| f

h
, GOY Jx(ω, εk) = i

qk |〈Oψ〉b| g
h

GOY OY (ω, εk) = q2 |〈Oψ〉b|2

h
(4.9)

where we have defined

f = χQQ + iΞω, g = χJJ − i σd ω ,
h = w − ω2 f + ε2 k2 g, w = 2q2 |〈Oψ〉b| δρ(s) . (4.10)

The poles of the Green’s functions in equation (4.9) reveal that the second sound mode has
acquired a resonance frequency as well as a gap. More specifically, we find the dispersion
relation

ω = ±
√
w + k2 χJJ

χQQ
− i

2χ2
QQ

(
wΞ + k2 (ΞχJJ + σd χQQ)

)
, (4.11)

from which we can read off the resonance frequency ωr =
√
w/χQQ and the gap6 ωgap =

wΞ/(2χ2
QQ).

6Notice that in the language of [14], we have ωgap ∼ χ−1
Y Y with χY Y the susceptibility of the operator

OY . Moreover, in the language of [12] we have ωgap ∼ ω2
r .
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It is interesting to notice that, when w < 0, the theory develops an instability. This
can be easily seen from the square root in (4.11) which will become imaginary in this case.
This instability is simply a mode of the system which wants to align the VEV and explicit
deformation of the system in the complex plane.

Finally, we would like to flesh out some of the global effects of the explicit breaking on
our observables. In order to do this, we will consider the Green’s functions in equation (4.9)
at k = 0. In that limit, from the Green’s function GOY Jx we see that the transport current
Jx and the operator OY completely decouple. Similarly, we will see that Jx also decouples
from the charge density J t. It is therefore natural to expect that the small explicit breaking
will have no effect on the low frequency electric conductivity,

σAC(ω) = GJxJx(ω, k = 0)
i ω

= i χJJ
ω

+ σd . (4.12)

However, we see that at k = 0 the charge density and the scalar operator OY remain coupled
turning the electric charge to an almost conserved quantity in the deformed theory.

5 Numerical checks

In this section we carry out a series of numerical checks of the results derived in the
previous sections and in particular, we numerically confirm the sound mode dispersion
relation (3.28), the Green’s functions (3.34)–(3.35) and the formula for the gap (4.11).

We consider the action (2.2) with the following potential and gauge coupling

V = −6 +m2
ρρ

2 + c2

2 φ
4 +

m2
φ

2 φ2 + λ ρ2φ2 , m2
ρ = −2 , m2

φ = −2 ,

τ = coshφ, (5.1)

where we note that, for ρ = 0, ∂φV = 0 both at φ = 0 and at φ = 1/c.
Given the choices above, the corresponding equations of motion admit a unit-radius

AdS4 vacuum solution with ρ = φ = A = θ = 0, which is dual to a d = 3 CFT. Placing the
CFT at finite temperature corresponds to considering the Schwarzschild black hole, which
typically serves as the configuration dual to the normal phase of holographic systems.
However, here we choose to deform our boundary theory by a relevant operator, Oφ, with
scaling dimension ∆φ = 2. Then, the corresponding backreacted solution dual to the
normal phase of our system will be given by black brane with a non-trivial profile for the
scalar field φ. As the temperature goes to zero, T → 0, these configurations will approach
a flow between the unit-radius AdS4 in the UV, with φ = 0, and an IR AdS4 with radius
L2

IR = 12c2/(1 + 12c2) supported by φ = 1/c.
To construct these solutions explicitly we consider the ansatz (2.6) with ρ(r) = 0 and

the IR and UV boundary conditions, (2.7) and (2.8) respectively, with ρ(0) =ρ(s) = ρ(v) = 0.
This boundary condition problem is then solved using a double-sided shooting technique.
In figure 1, we plot the logarithmic derivative of the entropy of the system with respect to
the temperature, TS′(T )/S(T ) for φ(s) = 1 and c = 1. We clearly see that both at very
high and very low temperatures the entropy scales like T 2 which is compatible with having
AdS4 on both sides of the RG flow.
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Figure 1. Plot of the logarithmic derivative of the entropy TS′(T )/S(T ) as a function of the
temperature indicating that our solutions interpolate between two AdS4 geometries. Here φ(s) = 1
and c = 1.

On top of these thermal states, we will consider instabilities associated to the scalar
field ρ. To ensure that such instabilities exist in our model we need to make sure that the
scalar field ρ violates the BF bound associated with the AdS4 in the IR, i.e.

L2
IR m

IR
ρ

2 = 12
1 + 12c2 (c2m2

ρ + λ) < −9
4 , (5.2)

but is nevertheless stable in the UV: m2
ρ ≥ −9

4 . For example, this is the case for
c = 1, λ = −3/2 and so we expect an instability to occur for this choice of parameters.
Thus, for temperatures below a critical one, we expect a new branch of black holes to
emerge characterised by a non-trivial condensate for ρ. To determine the critical temper-
ature at which these instabilities set in we need to study the associated zero mode. In
particular, we consider a linearised perturbation around the background constructed above
of the form

ρ = 0 + δρ . (5.3)

Plugging the above perturbation in the equations of motion, we obtain one second order
linear ODE, which we solve by imposing the following boundary conditions at the black
hole horizon

δρ = δρh + · · · , (5.4)

and asymptotically

δρ = 0 + δρv
r2 + · · · , (5.5)

where we have already set the source for δρ to 0, so that the emergence of the new phase is
spontaneous. Overall, the boundary conditions are determined by 2 constants δρh , δρv, one
of which can be set to 1 because of the linearity of the equation. Consequently, performing
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Figure 2. (left) Plot of the condensate as a function of the temperature. (right) Plot of the free
energy of the system in the normal phase (red line) and in the broken phase (blue line) as a function
of the temperature. Both plots demonstrate that there is a second order phase transition at T = Tc.

the numerical integration will fix the highest value of the temperature, Tc = 0.022, for
which one can find non-trivial solutions for δρ.

The next step is to construct the backreacted solutions corresponding to the broken
phase. To achieve this we use the ansatz (2.6) and the IR and UV boundary condi-
tions, (2.7), (2.8). When plugging this ansatz in the equations of motion we obtain a set
of three second order ODEs and one first order. Thus, a solution is specified in terms of 7
constants of integration. Looking at the expansion (2.7), we see that it is specified in terms
of 3 constants, in addition to the temperature T . Similarly, the asymptotic expansion (2.8)
is parametrised by 4 constants in addition to φ(s) —note that we keep ρ(s) = 0 so that the
condensation is spontaneous. Overall, in the IR and UV expansions we have a total of 7
constants as well as T and φ(s), which matches the 7 constants of integration. We pro-
ceed to solve this boundary condition problem numerically using double-sided shooting. In
figure 2 we show the condensate as well as the free energy as functions of the temperature, T ,
in support of the phase transition being second order. Here φ(s) = 1 and c = 1, λ = −3/2.

5.1 Static perturbations

Having constructed the backreacted black holes corresponding to the broken phase, we now
turn our attention to studying perturbations around them. In particular, to check numer-
ically the validity of the analytic expressions for the dispersion relation of the sound mode
and the spatially resolved two-point functions, we need to construct the static perturbations
as in section 2.1 and extract from them χJJ , χQQ.

Specifically, considering the perturbations δB(t)
t (r) and δB(x)

x (r) gives rise to two decou-
pled linear second order equations, which we solve subject to boundary conditions (2.21),
(2.22). Then, given the numerical solutions, the susceptibilities are simply obtained by
dividing the corresponding expectation values by the associated sources as extracted by
the asymptotic expansion

χQQ = −δjt/δµt , χJJ = −δjx/δµx . (5.6)

On the other hand, Ξ, σd are calculated using horizon data. For {T, c, λ, φ(s)} =
{0.015, 1,−3/2, 1}, we find χJJ = 0.12238, χQQ = 0.138, Ξ = 0.408, σd = 0.318.
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5.2 Second sound and spatially resolved two-point functions

In order to compute the second sound and the two-point functions we need to go beyond
static perturbations. In particular, we consider the linearised perturbation (3.3), with

S(r) =
∫ r

∞

dy

U(y) . (5.7)

Plugging this ansatz in the equations of motion, we obtain two second order ODEs, along
with an algebraic equation for δBr. We now turn to the boundary conditions for these
functions. In the IR we impose in-falling boundary conditions at the horizon which is
located at r = 0

δBt = bt + . . .

δBx1 = bx1 + . . . .

Thus, we see that the expansion is fixed in terms of 2 constant bt, bx1 , in addition to ω, k.
The UV expansion takes the form

δBt = δst − iωδc+ δjt
r +R

+ . . .

δBx1 = δsx1 + ikδc+ δjx1

r +R
+ . . . , (5.8)

where δjt is fixed in terms of the other parameters. Overall, this expansion is determined
in terms of the sources δst, δsx and the 2 parameters δc, δjx1 , in addition to ω, k.

For constructing the second sound, we solve the above equations around the numerical
background of the previous section, imposing that the sources vanish δst = δsx1 = 0. In
addition, due to the linearity of the equations we also impose bx1 = 1. Thus, for fixed k, the
shooting method determines bt, δjx1 , δc, ω. In figure 3, we compare our numerical results
with the analytics of the previous section by plotting certain derivatives of the dispersion
relation. For small values of k, where our analytic arguments are valid, we see a good
quantitative agreement.

For constructing the two point functions we again employ a double-sided shooting tech-
nique, but now we set either δst or δsx1 to zero and scale the remaining source to one using
the linearity of the equations. Thus, for fixed ω, k and say δst = 0, δsx = 1, the bound-
ary condition system determines bt, bx1 , δc, δjx, allowing one to compute Gxx = ω2 G(k, ω),
Gtx = Gxt = kω G(k, ω), Gtt = k2 G(k, ω) where

G(k, ω) = δjx + iω − kωδc
ω2 . (5.9)

In figure 4 we plot G (scaled appropriately) as function of the frequency, either for zero
and finite k. In the small frequency limit, these quantities approach the constants χQQ
(top, left), −χJJ (top, right), σd (bottom, left) and Ξ (bottom, right), in agreement with
the analytic expressions (3.34)–(3.35).
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Figure 5. Plots of the real and imaginary part of the gap as function of the source ρ(s). The
dashed black lines corresponds to the analytic prediction. Here {T, c, λ, φ(s)} = {0.015, 1,−3/2, 1}
and k = 10−4.

5.3 Pseudo-gapless modes

In this subsection we outline the numerical computation of the pseudo-gapless modes in
the presence of pinning. We perform a calculation similar to the one for second sound,
but we now consider linearised fluctuations (3.3), (5.7) around a background configuration
that has a small but finite source, ρ(s), for the scalar ρ. The only difference to the previous
subsection is the expansion of the perturbations in the UV part of the geometry. In this
case we find that

δBt = 0 + δjt
r +R

+ . . .

δBx1 = 0 + δjx1

r +R
+ . . . . (5.10)

Note that this expansion differs from (5.8), not only because there are no sources for the
perturbations in this case, but also because having ρ(s) 6= 0 pushes the VEV of the goldstone
mode to appear at order 1/(r + R) leading to δjt, δjx1 being independent constants. The
parameter counting follows just like above, suggesting that for fixed k we expect to find
a discrete set of solutions. In figure 5, we plot our numerical results for the real and
imaginary part of the gap and we overlay them with the analytics of the previous section.
We see a good quantitative agreements for small values of ρ(s), as expected.

6 Discussion

In this paper we studied first order dissipative effects in the hydrodynamic regime of holo-
graphic superfluid phases of matter. At zero chemical potential and charge density, the nor-
mal and the superfluid collective degrees of freedom remain decoupled. This fact simplified
our analysis in extracting the transport coefficients relevant to the superfluid dissipation.

For a relativistic superfluid, in principle we would only have to determine four invariant
quantities that would fully fix the constitutive relation of the conserved current in terms
of the phase [6]. In our case, only two of them were non-trivial and they were both fixed
in terms of susceptibilities and black hole horizon data. For a specific class of models the
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coefficient σd had been computed earlier in the literature [20, 22]. Here, we presented
a technique which is applicable also in inhomogeneous black hole backgrounds relevant
to phases of matter in which translations are broken either spontaneously or explicitly.
Interesting extensions of our work include the reduced hydrodynamics of superfluid phases
without momentum conservation [23].

One interesting aspect of our work concerns the coefficient Ξ which appears in the time
component of constitutive relations (3.33) for the current. We have shown that this grows
like (Tc−T )−1 close to the transition signalling the breakdown of the derivative expansion.
More specifically, judging from the next to leading term in the hydrodynamic expansion,
we have made explicit that this will converge for wavenumbers with k � Tc − T . It would
be interesting to explore the precise way that the hydrodynanic expansion breaks down
by following the logic of e.g. [24–26]. Finally, we have studied the hydrodynamics of the
system upon introducing sources which break the global symmetry in a controlled manner.

An interesting extension we will report on in the future is the inclusion of a background
finite magnetic field [23]. That would imply the existence of background vortices which
have been previously studied in the framework of holography in [27]. One step further
would include the presence of disorder and the resulting flux pinning which relaxes the
supercurrent leading to finite DC electric conductivity at finite temperature.

Finally, holography provides access to a plethora of superfluid phase ground states [28,
29]. An interesting direction would be to study the low temperature behaviour of the trans-
port coefficients we computed in this paper. This is possible by extracting the behaviour
of low temperature black hole horizons by following the techniques of e.g. [30].
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