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Abstract

Economists have long recognized that the effect of the order of actions in sequential contests

on performance of the contestants is far from negligible. We model the tiebreak mechanisms,

known as penalty shootouts, which have sequential move order and are used in several team-

sports contests, as a practical dynamic mechanism-design problem. We characterize all order-

independent mechanisms; in such mechanisms two balanced teams have equal chances to win

the shootout whenever the score is tied after equal numbers of attempts and hence move

order has no relevance for winning chances. Using additional desirable properties, we uniquely

characterize practical mechanisms. In most sports, such as football and hockey, the order

in which teams take the penalties is fixed, known as ABAB, and a few high-level football

competitions recently adopted the alternating-order variant mechanism, ABBA. Our results

imply that these two and all other exogenous-order mechanisms – with one exception – are

order dependent in regular rounds. Although ABBA is order independent in sudden-death

rounds, ABAB fails there, too. Our theory supports empirical studies linking ABAB to unfair

outcomes and multiple equilibria in terms of winning chances of the first- vs. second-kicking

teams in different football traditions.
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1 Introduction

In this paper, we model shootouts that are used as tiebreak mechanisms in several team sports such

as football and hockey as a mechanism design problem with order independence of the outcome in

mind: which team starts kicking first should not matter for the outcome of the shootout but lead

to even chances of winning when all players are equally talented.

Economists have long recognized that the effect of the order of actions in sequential contests

on performance of the contestants is far from negligible. Examples in specific sequential individual

and team contests are plenty, e.g., R&D races (Fudenberg et al., 1983 and Harris and Vickers,

1985, 1987), dynamic games in general (Cabral, 2002), job promotions (Rosen, 1986), political

campaigns (Klumpp and Polborn, 2006), music competitions (Ginsburgh and van Ours, 2003) as

well as penalty shootouts in football matches (Apesteguia and Palacios-Huerta, 2010) and tennis

matches (Cohen-Zada, Krumer, and Shapir, 2018 and the references therein).1 Clearly, an order

of actions that provides a systematic first- or second-mover advantage to one of the parties may

decrease the probability of the ‘better’ contestant to win, causing efficiency and fairness issues.

Therefore, a focal direction is to aim for order independence in such team contests.

The history and experience of football and other sports’ tiebreak mechanisms, known as penalty

shootouts, present us a unique natural experiment to understand the strategic role of move order.

Penalty shootouts currently constitute the only way to determine the winning team when the score

is tied in major football elimination tournament matches after the regular 90-minute period and

the 30-minute extra time, known as overtime. It is customary to use tiebreak mechanisms in many

other sports as well to determine the eventual winner when the regular match ends with a tie, e.g.,

tennis, ice hockey, field hockey, water polo, handball, cricket, and rugby.

In a football shootout, since 1970 each team takes five penalty kicks from the penalty mark

in fixed order (ABAB for short, meaning that Team A kicks first then Team B kicks, then in the

second round Team A kicks first again and so on), and the order of the kicks has always been

decided by the referee’s initial even coin toss. If the shootout score is tied after each team takes

five penalty kicks, sudden-death rounds are reached, which go on until the tie is broken, such that

the kicking order remains the same as regular rounds.2

A particular observation shared by multiple empirical studies regarding football penalty

shootouts is that the degree of how much the kicking order in the ABAB mechanism matters

may differ across different football competitions/traditions. For example, although kicking order

does not matter for the German national cup, the Spanish national cup shootouts favor first-kicking

teams significantly. On the other hand, in English cups, the first-kicking team has only a slight

advantage.3 Hence, in different tournament/country environments, ABAB leads to different fo-

1Football is called soccer in some countries, most notably in the US and Australia.
2Recently some top-level competitions started to experiment with alternating-order shootout mechanism ABBA,

where order of kicking alternates after each round. See Appendix D.2 more on background on ABBA.
3See Table 5.1 in Palacios-Huerta (2014) and Table 1 in Kocher, Lenz, and Sutter (2012), which are summarized

in Figure A.1 in Appendix D.1.
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cal outcomes in terms of first- and second-moving teams’ winning chances. In addition, some

researchers provide evidence that the first-kicking team wins significantly more often overall with

ABAB, while some others dispute some of that evidence.4 No study, however, provides evidence

that the second-kicking team wins more often overall.

Shootouts tend to be shorter and more structured than a regular match. They can be modeled

like dynamic versions of contests. We introduce such a model in which the kickers not only care about

their team’s winning the shootout but also about the individual performance they display during

taking their penalty shot. We provide empirical evidence to support this modeling assumption from

Bar-Eli and Azar (2009) and Almeida, Volossovitch, and Duarte (2016): even high level players often

aim at safer spots where the kick can be saved more often by the goalie than optimal spots, which

provide higher chances of scoring, but also higher chances of kicking out. To capture this feature

of penalty kicks, we assume that for a kicker, a save of his kick by a goalie is less irritating and

more desirable than kicking the penalty out (as in the former case, the miss is caused by somebody

else’s, i.e., goalkeeper’s, luck or effort, but not by the kicker’s own mistake as in the latter case).

We explain this empirical evidence in detail in Section 2.

Then we define order independence as the requirement that equally balanced teams – in terms

of their players’ shootout abilities – have equal chance of winning any time when the score is tied

at the beginning of any round, i.e., after equal numbers of attempts, under all state-symmetric

equilibria of the induced shootout game.5,6 Note that this property has implications only when the

score is tied at the beginning of a round but is silent when it is not tied. Thus, it implies ex-ante

fairness, i.e., an equal chance of winning at the beginning of the shootout at all state-symmetric

equilibria even following a totally unfair coin toss.

First, we characterize order-independent mechanisms in regular rounds in Theorem 1. All ex-

ogenous mechanisms that have a predetermined kicking-order pattern – with one exception – are

found to be order dependent, even if the sudden-death rounds were order independent for these

mechanisms, e.g., even if the winner were determined by an even coin flip in sudden death. There is

only one class of exogenous order-independent mechanisms, in which the kicking order after Round

1 is determined by an even coin flip in each round.

An important implication of this finding is that, as ABAB and ABBA have exogenous orders,

regardless of the initial coin flip to determine which team goes first, they are both order dependent

in regular rounds.

The whole class of order-independent mechanisms in regular rounds has the feature that when

4See Apesteguia and Palacios-Huerta (2010) for evidence on the first kicking team winning significantly more

often. Kocher, Lenz, and Sutter (2012), on the other hand, dispute this finding. Later Palacios-Huerta (2014) uses

a larger data set to find again a first-mover advantage (see also Figure A.1 in Appendix D.1).
5A precursor of our concept of order independence can be found in Che and Hendershott (2008), who use it for

only one round in which teams take turns.
6A state-symmetric equilibrium is a Markov perfect Bayesian equilibrium in which each kicker uses the same

strategy when the state of the game defined by the score difference and kicking order is (symmetrically for each

team) the same at the round he moves.
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the score is tied at the beginning of a round, the kicking order does not matter for that round.

Thus, we obtain order independence at the beginning of the shootouts.

On the other hand, all other order-independent mechanisms have an endogenous kicking-order

determination when score is not tied at the beginning of a round: the probability of which team

moves first in this round is the same for both teams whenever they are in each other’s shoes. E.g.,

consider two cases in which Team 1 is ahead 1− 0 and Team 2 is ahead 0− 1 at the beginning of

Round 2, respectively; then Team 1’s probability of moving first in Round 2 in the first case is the

same as Team 2’s probability of moving first in the second case. We refer to the class of mechanisms

that fully characterize the continuum of order-independent mechanisms in regular rounds as uneven

score symmetric.

Then we move from regular rounds to sudden-death rounds. That is, we consider order inde-

pendence in sudden-death rounds when the score is tied after regular rounds. Interestingly, as the

score is never uneven at the beginning of any sudden-death round, both ABAB and ABBA are

tautologically uneven score symmetric in sudden-death rounds. ABAB induces an infinite game

such that each sudden-death round is a repetition of the previous one and the game only ends

when one team scores and the other does not. We show that ABAB is not order-independent in

sudden-death rounds for reasons very different than those for regular rounds (Theorem 2). It turns

out that ABAB leads to multiplicity of equilibria as in that game: For every equilibrium in which

Team 1 wins more often, there is a dual equilibrium in which Team 1 and Team 2 players swap

their strategies, and hence Team 2 wins more often, and yet there is always an equilibrium in which

both teams win with equal probability.7

On the other hand, we show in Theorem 3 that alternating order of the teams as in ABBA

is enough to rule out asymmetric equilibria in which teams win with different probabilities as

state-symmetric and to sustain order independence back. Then we provide a large class of order-

independent mechanisms in sudden-death rounds in Theorem 4.

Order independence implies ex-ante fairness. If there is a unique equilibrium of ABAB after who

goes first is determined and this dictates the first moving team wins at least as much probability

as the second moving team (or just the opposite), then ABAB will be ex-ante fair as long as it

determines who kicks first with an even coin toss. However, an interesting implication of our result

is that despite the initial even coin toss, ABAB is not ex-ante fair if it has multiple equilibria in

sudden-death rounds. Under the sufficient conditions for equilibrium multiplicity we pin down in

Theorem 6 in Appendix B, it has a state-symmetric equilibrium in which one team wins with a

higher probability regardless it kicks first or second (such an equilibrium also exists for the other

team winning more often). This implies ABAB is not ex-ante fair as we cannot tell, in general,

which state-symmetric equilibrium will be selected.

As our notion of order independence involves all state-symmetric equilibrium winning chances

7We also show in Appendix H that it is possible to devise an equilibrium refinement using the sequential kicking

aspect in a single round so that any potential equilibrium candidate with the second-mover advantage does not

survive this refinement.
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being equal, this is different from the commonly used notion of procedural ex-ante fairness (or also

commonly referred to as symmetry).8 We also give a tight characterization of practical procedurally

fair and order-independent mechanisms that can be adopted in real-life shootouts in Theorem 5

depending on the difficulty level of the shootouts.9 We can classify penalty shootouts as easy task

or difficult task based on the goal scoring probability. A shootout is easy if the goal probability

is greater than 50% for any kick in any round and it is difficult if the goal probability is less than

50%. A football shootout is an example of an easy task, while a hockey shootout is an example

of a difficult task. One particular class of mechanisms in easy-task shootouts is the behind-first

mechanisms: the team which is behind at the end of a round goes first in the next round; but

if the score is tied after any round, then any random or fixed exogenous or endogenous order is

admissible at the next round. We conclude by elaborating which of these mechanisms are practical

and procedurally fair as well as order independent.10

2 Background: Football Shootouts

Until 1970, elimination matches in football that were tied after extra time were either decided

by a coin toss or replayed in two days if it was a finals match. Finally, the events in the 1968

European Football Championship that involved coin toss as tie breaks led FIFA in 1970 to try

penalty shootouts instead. Given that the current shootout mechanism, ABAB, is no panacea,

FIFA, England, and The Netherlands are now experimenting with alternating the orders of kicking

teams, i.e., using the alternating-order ABBA scheme.

The outcomes of players’ kicks pertain to their teams as well as to themselves. From the team’s

perspective a goal is preferred to a non-goal, and clearly there is no difference at all between a saved

kick and a kick that misses the goal.

8Flipping a fair coin to determine which team will kick first makes ABAB only procedurally fair under such

equilibrium multiplicity. However, as we have explained above, who goes first has no importance whatsoever for

an order-independent mechanism in Round 1. Only when the score is not tied at the beginning of a round, an

order-independent mechanism needs to endogenously regulate the kicking order, which is not done by ABAB even

though it starts with an initial even coin toss.
9See Appendix F for further details of this characterization.

10Economists have long focused on design of sports contests, such as the optimal number of entrants/teams in a

race/league, the optimal structure of prizes (revenue sharing) for a tournament (league), and so on (see Szymanski,

2003 for a review of this particular literature and see Bergantinos and Moreno-Ternero, 2018 for a more recent paper).

Two other papers in this strand are about sports competition restructuring through efficient matching (Frechétte,

Roth, and Ünver, 2007) and fair matching of teams in a competition (Boczoń and Wilson, 2018). After initial draft

of our paper became publicly available (Anbarcı, Sun, and Ünver, 2015), order of moves in sports competitions is

also studied by Echenique (2017) and Brams, Ismail, Kilgour, and Stromquist (2018). The first study shows under

certain exogenous scoring probability assumptions ABBA is fairer than ABAB. The latter study uses the idea of the

catch-up rule (Brams and Ismail, 2018) to introduce schemes to increase competitiveness in various sports, where

parties take turns in service sports such as tennis and volleyball. Server is the loser of the previous point in catch-up

rule. Csató (2020) introduces a variant of this to make it even fairer.

5



Bar-Eli and Azar along with Lurie have written key papers analyzing and modeling the be-

havior of penalty kickers (Bar-Eli and Azar, 2009; Bar-Eli, Azar, and Lurie, 2009). Based on the

distributional data of 311 penalty kicks from important top league games, World Cup, and other

international championships that had televised or archived footage in Israel’s major TV networks,

Bar-Eli and Azar (2009) statistically find that very frequently kickers use a safer strategy of kicking

the ball to the lower part of the goal, and this is stopped frequently by the goalkeepers. On the

other hand, they use the risky strategy of kicking the ball to the upper part of the goal less often,

although it results with 100% success rate when it hits the target. They conclude based on the data

that it is optimal to kick this portion of the goal rather than the frequented lower portion. They

explain the reason as follows for our purposes (on page 189):

“A third possible reason for kicking low might be that players prefer to take the risk that the

goalkeeper will stop the ball rather than the risk that their kick will miss the goal, because in

the former case it will not be perceived as being entirely their fault that a goal is not scored,

while in the latter case it will be. Such preferences can lead to wrong decisions by players

and their team will be hurt.”

Almeida, Volossovitch and Duarte (2016) confirm these findings using a similar analysis of the

penalty kicks in UEFA competitions between 2010 and 2015. They use a data set consisting of a

total of 536 penalties. We give some of the summary statistics of their regression analysis here.

They show that when the shots are aimed low, they are more likely saved (out of 320 kicks, 62

saved – 19.3%, 247 goals – 77%, 11 missed out – 3.7%, for left-lower and left-right) compared to

when they are aimed high (out of 80 kicks, 3 saved – 3.75%, 69 goals – 86%, and 8 missed out -

10% for left-upper and right-upper). Observe that despite the fact that the successful strategy is

kicking upper-left or upper-right of the goal based on data, only about 15% of the kicks were aimed

in this region, while 60% of the kicks were aimed lower left or right.11 These pieces of evidence

from multiple studies indicate that indeed kickers care about other outcomes besides scoring a goal.

One rational explanation for their consistent behavior is they get higher disutility from missing the

target altogether than their kick being saved by the goalkeeper as pointed out by Bar-Eli and Azar

(2009).12 Our one dimensional goal model setup that we introduce in the next section is a proxy

11The rest were aimed lower or upper middle regions, with much lower success rate for lower-middle region of the

goal.
12A famous anecdote supporting this explanation, the empirical evidence, and also our utility representation comes

from Italy’s Roberto Baggio, who had a stellar career and his five goals in the tournament helped Italy to reach the

final’s match of the 1994 World Cup against Brazil. With the shootout score at 3-2, as the last kicker in regular

rounds Baggio had to score to keep Italy’s chances alive. He aimed for the middle but the ball sailed over the

crossbar. The following quote is from Baggio’s (2001) autobiography.

“As for the penalty, I don’t want to brag but I’ve only ever missed a couple of penalties in my career. And

they were because the goalkeeper saved them not because I shot wide. That’s just so you understand that

there is no easy explanation for what happened at Pasadena. When I went up to the spot I was pretty lucid,

as much as one can be in that kind of situation. I knew [the Brazilian goalie] Taffarel always dived so I

decided to shoot for the middle, about halfway up, so he couldn’t get it with his feet. It was an intelligent
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for the two dimensional goal for tractability purposes to capture these nuances in revealed kicker

utility functions.

When we analyze our kicker optimal strategy, the resulting behavior mimics the empirical find-

ings using our utility function representation: kickers end up aiming at a safer spot instead of

goal-optimal spot so that they can avoid the higher likelihood outcome of kicking out. Therefore,

our utility function provides a rational explanation for this revealed kicker behavior.13

Besides this compelling evidence regarding penalty kick performance of kickers relying how a

goal is missed, the relevant literature also points out that overall players care about their own

performance, besides their team’s outcome in other dynamic team contests. Chapsal and Vilain

(2019) provide evidence from international team squash tournaments that players care not only

about their team’s win or loss, but also their individual performance.

3 Model

3.1 The Setup

Two football teams, which we refer to as Team 1 (T1 in mathematical notation) and Team 2 (T2

in mathematical notation), are facing off in a penalty shootout. Each team shall take n sequential

rounds of penalty shots. Each round consists of one team kicking first, and, after observing the

outcome of that shot, the second team taking the next shot. If one team scores more goals than the

other at the end of n rounds, then it wins the match. We refer to these n rounds as the regular

rounds. Throughout the paper we will assume that n = 2. This is sufficient to characterize order

independence and analyze the current scheme, ABAB, as well as other proposed mechanisms, such

as the alternating-order mechanism, ABBA. Thus, with n = 2, the analysis is tractable and yet rich

enough to capture the multi-round feature of penalty shootouts.14

decision because Taffarel did go to his left, and he would never have got to the shot I planned. Unfortunately,

and I don’t know how, the ball went up three meters and flew over the crossbar. I failed that time. Period.

And it affected me for years. It is the worst moment of my career. I still dream about it. If I could erase a

moment from my career, it would be that one.”

13 We also infer from Baggio’s quote in Footnote 12 that goalies typically feel the need to dive at the time the ball

is kicked. This is because, at the optimal speed-accuracy combinations of world-class kickers, the kicked ball typically

takes around 0.3 seconds to reach the goal line (see, e.g., Harford, 2006, Chiappori et al., 2002, and Palacios-Huerta,

2003), which is less than the total of (1) roughly 0.2 seconds’ reaction time of the goalie to clearly recognize the kick

direction of the ball first, plus (2) the time during his dive to reach the expected arrival spot of the ball before it

reaches the goal plane. Hence, a goalie cannot afford to wait until he clearly observes the kick direction: to prevent

a goal with non-trivial probability, he must commit to pick a side to dive – or alternatively to stay in the middle.

As Baggio’s quote also indicates, a shot aimed at the middle may be missed outright or may hit the feet or the legs

of the diving goalie that cover part of the middle; thus, the shot can be saved even if the goalie dives.
14We have n = 3 results in Appendix G, and no extra insight are obtained in this analysis. Similarly, we skip

n > 3 as the analysis becomes extremely cumbersome and lengthy. Although, we do not have a proof for n > 3, we

have no reason to suspect it would not generalize to this setting.
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If the shootout score is tied at the end of n regular rounds, the format reverts to sudden death;

that is, teams take an additional round of shots, and then, if one team scores while the other one

does not, the former team wins the match; otherwise a further round of sudden-death penalty shots

is taken. We refer to the sudden-death rounds as n+ 1, n+ 2, . . ..

Since potentially the match can continue forever, we assume that each team consists of an infinite

number of kickers and that each kicker takes at most one shot.15

A penalty kick consists of a probabilistic event with three outcomes: Either a goal is scored (G),

the shot goes out (O), or the shot is saved by the goalie (S). The latter two outcomes lead to the

same score for the team: a goal is not scored.

While each kicker is a strategic player, for tractability the goalie is modeled as a probabilistic

machine. The goalie waits in the middle of the goal line prior to the shot. He jumps to one side or

the other with probabilities 1
2

: 1
2

prior to the penalty shot, as he needs to react early to have any

realistic chance to save the kick (see Footnote 13). So with probability 1
2

he reaches to the same

side of the goal as the kick. Hence, we model the goal line as a one-dimensional line segment [0, 1],

where x = 0 refers to the center of the goal, and x = 1 refers to the goal pole on the side of the

kick.

Each kicker, who is a single-round player in our game, has an action summarized as aiming at

coordinate x ∈ [0, 1] of the goal line, which we refer to as the intended spot. When a kicker aims

at x, the exact spot the ball reaches on the goal line is determined by a continuous probability

density function σx in a closed support [εx, εx] for some εx > x > εx. The spot the ball reaches, χ,

is observable by all other players, but not the intended spot, x. Both x and χ are observable by

the kicker himself. Moreover, given that the shot is aimed at x, there is a PG(x) probability that a

goal will be scored and a PO(x) probability that the shot will go out. Hence, the shot is saved by

the goalie with probability 1− PG(x)− PO(x).16 We assume that PG, PO, and σx for all x ∈ [0, 1]

are all common knowledge. The probability of kicking out and the probability of scoring are all

reduced form from the model in which there are two sides of the goal and the kicker also decides

which side to kick.

We assume that PG is a twice continuously differentiable strictly concave function, which reaches

its maximum at some interior x ∈ (0, 1).17

15In reality, each football player can take at most one shot, unless all players in his team have already kicked

penalty shots. As each team consists of 11 players, 11 shots need to be taken by each team before any player can

kick a second shot. As n = 5, this happens very rarely.
16Actually PG and PO are summary functions obtained from the following process: As mentioned before, the spot

the ball reaches, χ, is observable by all other players, but not the intended spot, x. If χ > 1, then the ball goes

out. So PO(x) =
∫ εx
y=1

σx(χ)dχ. On the other hand, the goalkeeper can save the ball that arrives at spot χ with

probability S(χ), which is a continuous function. Thus, PG(x) =
∫ 1

εx
[1 − S(χ)]σx(χ)dχ. Hence, we assume that the

family of densities {σx}x∈[0,1] and save probability function S have all the properties that need the below restrictions

to hold for PG and PO.
17In fact PG is not concave around 0, and it is decreasing, as the ball can go both sides of the middle, x = 0, when

it is aimed at x = 0. Nevertheless, we assume the goal-maximizing point is farther to the right. Therefore, without
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Although so far we developed our theory taking football as our primary application, the insights

we discover apply to other contests and sports. In particular, we can classify penalty shootouts

as easy-task or difficult-task based on the goal scoring probability PG(x). A shootout is easy if

PG(x) > 1
2

for all x ∈ [0, x]. A shootout is difficult if PG(x) < 1
2

for all x ∈ [0, x]. A football

shootout is an example of an easy task, while a hockey shootout is an example of a difficult task.
18 This distinction will not matter in our results until we discuss different efficiency notions and

practical design considerations in Appendix F. We assume that the shootout is either easy or

difficult, but not mixed, throughout the paper. Thus, our analysis will focus on these two cases

throughout.

Function PO, on the other hand, is an increasing twice continuously differentiable convex func-

tion. Increasing PO is straightforward to motivate: the closer to the middle the ball is aimed,

the lower is the chance that the ball will go out. Single-peakedness of PG is also easy to motivate:

Whenever the ball is aimed at low x values, it can be saved with a higher chance by the diving goalie

(see Footnote 18 for hockey dynamics). For higher x values, although the goalie’s chances of saving

the ball decrease as he may no longer be able to reach it, the chances of the ball going out increase.

Hence, it is easy to motivate the unique spot x, which maximizes the goal probability. We will refer

to it as the goal-optimal spot. Concavity of PG and convexity of PO are primarily assumed for

the tractability of our analysis, and do not play any other major role for the interpretation of our

results.

We assume that each kicker on both teams is identical in ability and has the same goal-scoring

and kicking-out probability.19

3.2 Shootout Mechanisms and the Shootout Game

A shootout mechanism is a function, φ, that assigns a probability φ(hk−1; gT1 : gT2) to Team

1 kicking first in Round k, given the sequence of first-kicking teams in the first k − 1 rounds is

hk−1 = (hk−1r )k−1r=1 where hk−1r ∈ {T1, T2} is the team that kicked first in Round r and gT1 : gT2 is

the score (i.e., the goals scored by Team 1 and Team 2, respectively) at the beginning of Round k.

Thus, the probability of Team 2 kicking first in Round k is 1− φ(hk−1; gT1 : gT2).

Each shootout mechanism φ induces a hidden-action extensive-form game, which we will simply

refer to as the game, such that the exact spot that each kicker aims the ball on the goal line is

unobservable by others. Given (hk−1; gT1 : gT2), for Rounds k = 1, 2, . . ., i.e., the order of first-

loss of generality, we use a strictly concave PG.
18As alluded to in the Introduction, scoring a penalty shot is easy in football with a success probability

greater than 59% in each round (for example, see Apesteguia and Palacios-Huerta, 2010), while it is difficult in

hockey with a probability less than 35% (for example, see http://businessofhockey.wordpress.com/2015/01/

04/a-deep-look-into-advanced-shootout-statistics/ retrieved on Feb 13, 2018). As different from football,

usually hockey goalies do not dive one side of the goal as the goal is substantially smaller, hence, the goal probabilities

are uniformly less than 50%.
19We consider one particular exception in Appendix E, where we assess chances of unbalanced teams.
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kicking teams in the previous k−1 rounds hk−1, and feasible scores gT1 : gT2 , the Nature determines

with probability φ(hk−1; gT1 : gT2) Team 1 kicking next first and probability 1 − φ(hk−1; gT1 : gT2)

Team 2 kicking next first. Then a kicker of the first-kicking team takes the penalty shot, observing

the state and the history of the outcomes of all the shots up to that point as goal, out, or save.

The kicker aims at his intended spot x ∈ [0, 1] to maximize his expected individual payoff (which

we explain in the next paragraph). Then the Nature determines with probability distribution

PG(x), PO(x), 1 − PG(x) − PO(x) whether the penalty kick results in a goal, goes out, or is saved,

respectively. After the outcome of this shot is observed, the other team’s kicker takes a penalty

shot, observing the history of the outcomes of the shots up to that point. We continue until the

end of regular rounds, Round k = n, similarly. If the score is tied after the last regular round,

sudden-death rounds take place until the tie is broken at the end of a sudden-death Round k > n.

Each kicker aims to maximize his expected individual payoff in the game. Each kicker’s payoff

function consists of two additive components. The first is the utility received when his team wins or

loses the shootout: VW is the team win payoff and VL < VW is the team loss payoff. This component

of the payoff is common to each kicker on the team. The second component of the individual payoff

consists of an individual outcome based valuation: If the kicker scores a goal, he gets payoff UG > 0;

if he kicks the ball out, he receives payoff UO < 0; if the goalie saves the kick, he receives payoff

US = 0. The latter is a normalization which guarantees that scoring a goal is the most desirable

outcome for the kicker, and kicking the ball out is less desirable than kicking the ball inside the

goal frame and yet the goalie saves it. With this normalization, we can also drop a variable from

our notation without affecting our analyses. Thus, the overall ex-post payoff of a kicker i of Team

k is then

ui,Tk = Vt + Up (1)

where t ∈ {W,L} refers to the overall team outcome, win or loss, and p ∈ {G,O, S} refers to the

kicker’s penalty outcome, goal, out, or save.

An information set is H ∈ Hi,Tk , which is the collection of information sets that kicker

i ∈ {1, 2, . . .} of Team k ∈ {1, 2} can move, consists of the exact spot the ball went to for each of

the previous kicks, the team of each kick, and whether the kick was scored as a goal, went out, or

was saved by the goalie. Thus, they are all observable by kicker i of Team k moving in information

set H. What is not observable by him is the intended spots of previous kicks. Each information set

also has an associated round (without loss of generality indexed with the kicker, i.e. i’th round),

order of kicking in the round as 1st or 2nd, and a current score difference between Team 1 and Team

2. We refer to all of this observable information as the state of the information set. Note that

from the point of view of the kicker, who is a single-shot player in the game, all payoff-relevant

information of an information set is given through its state.

A pure strategy Xi,Tk : Hi,Tk → [0, 1] is a function from the collection of information sets that

Team k’s i’th kicker’s move to the intended spots that he can target while taking the penalty shot.

As alluded to before, this is a hidden-action sequential game, as what each player observes
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about others’ kicks are only where the ball goes and whether the kick was a goal, out, or a save

in previous kicks, but not the intended spot towards which the ball was kicked. Hence, as a kicker

takes a penalty shot, he has a belief over intended spots of previous kicks. Formally, a belief µ(H)

is a function that maps each information set H ∈ Hi,Tk that Team k’s i’th kicker’s move with

positive probability to a probability distribution over histories of actions taken that would lead to

the same information set.

3.3 Markov Perfection and State-Symmetric Equilibria

Our solution concept is state-symmetric (perfect Bayesian) equilibrium, in which strategies in regular

rounds depend only on the state of the game, i.e., on the round number, kicking order, and score

difference; strategies in sudden-death rounds depend only on the current kicking order and score

difference. The strategies in state-symmetric equilibria are memoryless in that they depend only

on the current state.

A perfect Bayesian equilibrium in the game of shootout mechanism φ is an assess-

ment, i.e., a strategy profile and a belief profile pair [X = (Xi,Tk′
)i∈{1,2,...},k′∈{1,2}, µ =

(µ(H))H∈Hi,Tk′ ,i∈{1,2,...},k
′∈{1,2}] such that for any k, ` ∈ {1, 2} s.t. k 6= `, i ∈ {1, 2, . . .}, and

H ∈ Hi,Tk ,

• spot Xi,Tk(H) ∈ [0, 1] maximizes the expected value of all possible payoffs ui,Tk at information

set H, given X−i,Tk and XT` = (Xj,T`)j∈{1,2,...} among all spots in [0, 1]; and

• belief µ(H) is consistently derived by Bayes’ rule from φ, X, PG, PO, µ(H ′) for all H ′ 6= H.

Each kicker is a one-shot player and maximizes his individual expected payoff over his ex-post

payoffs ui,Tk defined in Equation 1. The exact formulation of this expected payoff will be made clear

later in our analysis.

In this game, once the equilibrium strategies are found, beliefs are straightforward to construct.

At any information set H, the kicking player believes with probability one that other kickers before

him used equilibrium strategies. This is because the payoffs explicitly depend on the actual outcome

of each kick, which is observable as Goal (G) or No Goal (NG), but not on the intended spots of kicks

(which are not observable). Further, beliefs will not play a role in finding the optimal strategies in

equilibria as the kicker decides on his best action by taking into consideration only future players’

kicks, not those of the past ones. We will not explicitly calculate the beliefs from this point on,

except when we refine the possible multiple equilibria of ABAB in Appendix H.

We will focus on a Markovian symmetric equilibrium concept (i.e., unless we refine the possible

multiple equilibria of ABAB):

A state-symmetric assessment (X,µ) is defined as

• In regular rounds: Xi,Tk(H) = Xi,T`(H
′) and µ(H) = µ(H ′) for any k, ` ∈ {1, 2} where

both information sets H ∈ Hi,Tk and H ′ ∈ Hi,T` pertain to the same Regular Round i ≤ n,
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and the same kicking order, 1st or 2nd, in the round while the score difference between Team

1 and Team 2 in H, s, and in H ′, s′, satisfy s = −s′ if ` 6= k and s = s′ if ` = k.

• In sudden-death rounds: Xi,Tk(H) = Xj,T`(H
′) and µ(H) = µ(H ′) for any k, ` ∈ {1, 2}

where information sets H ∈ Hi,Tk and H ′ ∈ Hj,T` involve (possibly different) Sudden-death

Rounds i, j > n but they refer to the same kicking order, 1st or 2nd, while the score difference

between Team 1 and Team 2 in H, s, and in H ′, s′, satisfy s = −s′ if k 6= ` and s = s′ if

k = `.

A state-symmetric assessment in sudden-death rounds, for instance, dictates that two players

on the same team or different teams will exactly aim at the same intended spot and have exactly

the same beliefs if they were in each other’s shoes. Note that before every sudden-death round the

score is identical if the game reaches it, while before each regular round after Round 1 it could be

different. Unlike the sudden-death rounds, the number of regular rounds is finite, and therefore the

round number as well as the kicking order and score would matter in regular rounds. Therefore,

even if two teams are tied in different regular rounds, the players who kick first need not use the

same strategy in those two rounds.

A state-symmetric equilibrium of a shootout mechanism φ is defined as a state-symmetric

perfect Bayesian equilibrium of the game induced by φ. This solution concept is identical to sym-

metric Markov-perfect equilibrium if one were to ignore the beliefs and focused only on strategies

assuming that each state of the game spans a subgame of the game. As noted above, beliefs play

no role other than equilibrium selection when there are multiple equilibria; this is without loss of

generality.

3.4 Order Independence

Using the concept of state-symmetric equilibrium, we now define the key design concept in our anal-

ysis as follows: an assessment (X,µ) of the game induced by mechanism φ is order independent if

for all problems with equally balanced teams (i.e., for any underlying utility values VW , VL, UG, UO,

and goal and ball going out probability functions PG, PO), at any (hk−1; gT1 : gT2) with gT1 = gT2
(i.e., when they are tied at the beginning of Round k for any k), each team has exactly a 50% chance

of winning. In order to ensure order independence, we will focus on shootout mechanisms whose

all state-symmetric equilibria are order independent. We will refer to such mechanisms as order-

independent mechanisms. Note that it is not the shootout mechanism that is procedurally fair,

but its state-symmetric equilibria that need to be order independent.

We will analyze order independence in sudden-death rounds as well. It will be useful to formally

define this concept. A mechanism is order independent in sudden-death rounds if, for all

problems with equally balanced teams, for any Sudden-death Round k > n, at any (hk−1; gT1 : gT2)

with gT1 = gT2 , (i.e., when they are tied at the beginning of Round k), each team has exactly a 50%

chance of winning.
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We will determine whether ABAB’s equilibria are order independent and inspect other plausible

mechanisms by characterizing the class of order-independent mechanisms in regular rounds and

providing a large class of order-independent mechanisms in sudden-death rounds.

4 Analysis: A Kicker’s Optimization Problem

We first analyze each kicker’s optimization problem for a given mechanism φ and other agents’

strategies. The best response determination problem of the i’th kicker of Team k, denoted by

κ ≡ (i, Tk), boils down to

max
xκ∈[0,1]

Uκ(xκ;WG,κ,WNG,κ) ≡
(
PG(xκ)WG,κ+[1−PG(xκ)]WNG,κ

)
+

(
PG(xκ)UG+PO(xκ)UO

)
(2)

where PG(xκ)UG + PO(xκ)UO is Kicker κ’s expected individual kick payoff, and PG(xκ)WG,κ + [1−
PG(xκ)]WNG,κ is Kicker κ’s expected continuation team payoff given expected continuation values

WG,κ conditional on he scores and WNG,κ conditional on he does not score. These values, WG,κ and

WNG,κ, are functions of the shootout mechanism, the score difference, the round number (i in this

case), kicking order in that round, and other players’ strategies. We drop them from our notation

for simplicity.

Hence, the necessary first-order conditions for an interior maximum turn out to be

P ′G(x∗κ)(WG,κ −WNG,κ + UG) + P ′O(x∗κ)UO = 0. (3)

The second-order conditions lead to the first-order conditions being sufficient, since we have

P ′′G(x∗κ)(WG,κ −WNG,κ + UG) + P ′′O(x∗κ)UO < 0, (4)

which follows from the facts that P ′′G < 0, WG,κ−WNG,κ ≥ 0,20 UG > 0, P ′′O ≥ 0 and UO < 0. Hence,

if an interior maximum exists, it is unique given WG,κ −WNG,κ. We will refer to WG,κ −WNG,κ as

the expected marginal contribution of the kicker to his team. We turn our attention to analyze

the properties of the optimum for a kicker.

Proposition 1 At any interior best response of Kicker κ, x∗κ < x is the kicker-optimal spot, and

the higher his expected marginal contribution, the higher is his goal-scoring probability.21

Also note that if kicking out and the goal being saved were valued equally, i.e., UO = US = 0,

then x∗κ = x, i.e., x∗κ would be also goal-optimal. But since x∗κ < x because UO < US = 0, a kicker

chooses to kick more conservatively. The relative magnitude P ′G(x∗κ)/P
′
O(x∗κ) as well as magnitudes

20Although WG,κ −WNG,κ is endogenous and can potentially be negative, it is positive for all the mechanisms we

consider.
21We provide Proofs of Proposition 1 and Theorem 1 in Appendix A and the proofs of other results in the main

text are in Appendix C.
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of expected marginal contribution WG,κ −WNG,κ, UO, and UG determine how much he shaves off

the goal-optimal spot to determine his kicker-optimal spot.22

Observe that the choice of kicker-optimal spot is costly because of the probability of kicking the

shot out, and therefore, it can be interpreted as a choice of an effort level. The goal-optimal spot

also translates in the goal-optimal effort. The closer the spot gets (from the center) to the goal-

optimal spot, it can be interpreted as exerting higher effort. From now on, when it is convenient,

we will use this analogy more freely and refer to the choice of targeted spot as exerting an effort.

5 Regular Rounds

In this section we characterize order-independent mechanisms in regular rounds assuming that

once the shootout extends to sudden-death rounds, there is an order-independent ending i.e., each

team wins with the same probability.23 A natural question is whether ABAB or ABBA is order

independent in regular rounds.

We define ABAB as follows: The first kicker is determined before Round 1 with an even lottery

and then the procedure continues with the same kicking order throughout. Formally, (the fixed-

order mechanism) ABAB φABAB is defined as follows:

φABAB(∅; 0 : 0) = 0.5 and φABAB(hk−1; gT1 : gT2) =

{
1 if hk−11 = T1

0 if hk−11 = T2

for all rounds k ≥ 2, orders of first-kicking teams in the previous k − 1 rounds hk−1, and feasible

scores gT1 : gT2 at the beginning of Round k.

On the other hand, formally (the alternating-order mechanism) ABBA φABBA is defined

as follows:

φABBA(∅; 0 : 0) = 0.5 and φABBA(hk−1; gT1 : gT2) =

{
1 if hk−1k−1 = T2

0 if hk−1k−1 = T1

for all Rounds k ≥ 2, orders of first-kicking teams in the previous k − 1 rounds hk−1, and feasible

scores gT1 : gT2 at the beginning of Round k.

It turns out that neither ABAB nor ABBA is order independent in regular rounds, even if

they were order independent in sudden death.24 In fact a large class of intuitive mechanisms

turns out to be order dependent. In addition, a large class of mechanisms, which we refer to as

exogenous mechanisms, turns out to be order dependent except for one exception. A mechanism

22If the game involved only n = 1 round and ties at the end were resolved through a coin toss, we would have

WG,κ −WNG,κ = VW−VL

2 .
23For example, an even coin flip can determine who wins if the score is tied after regular rounds, or any other

order-independent mechanism in sudden-death rounds can be used.
24In Section 6.2 we show that ABAB is not order independent in sudden-death rounds, while ABBA is. Therefore,

there are two sources of order dependence of ABAB while the order dependence of ABBA comes from regular rounds

only.
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φ is exogenous if, for all rounds k, and kicking orders hk−1 regarding the beginning of round k,

φ(hk−1 : gT1 : gT2) = ρ(k) for some function ρ, i.e., who goes first in each round is determined

independent of the current score but as a function of the current round. Hence, both ABAB and

ABBA are exogenous, and even the version of ABBA in which the 5th round’s kicking order is

randomly determined is exogenous.

One particularly interesting exogenous mechanism, however, is the random-order mechanism

φ, which determines who goes first in every round using an unbiased lottery at the beginning of that

round, that is φ(hk−1; gT1 , gT2) = 1
2

for all k. Despite its impracticality, this particular exogenous

mechanism turns out to be order independent. However, the class of order-independent mechanisms,

which also involve some practical mechanisms, is far richer than the random-order mechanism.

We will next characterize all order-independent mechanisms in the regular rounds. We will then

show that there are uncountably many such mechanisms in Section 6.2.

We first introduce a class of mechanisms that will be crucial in our analysis of order-independent

mechanisms. A mechanism φ is uneven score symmetric if for all (hk−1; gT1 : gT2) and (h′ k−1; gT2 :

gT1) such that gT1 6= gT2 and k ≤ n, we have φ(hk−1; gT1 : gT2) = 1 − φ(h′ k−1; gT2 : gT1). That is,

as long as the score is not tied at the end of a round, the probability of who kicks first in the next

round is the same for Team 1 and Team 2 whenever they are in each other’s shoes. E.g., when

Team 1 is ahead 1− 0 in (the beginning of) Round 2, and when Team 2 is ahead in Round 2 with a

score of 0− 1, in Round 2 Team 1’s probability of kicking first in the first case is the same as Team

2’s probability of kicking first in the second case.

It turns out that such mechanisms fully characterize the order-independent mechanisms in the

regular rounds.

Theorem 1 (Order-independent mechanisms in regular rounds) Suppose a mechanism φ

is order independent in sudden-death rounds. φ is order independent in regular rounds if and only

if it is uneven score symmetric.

When a regular round starts with an even score, the first team’s kicker and the second team’s

kicker both exert the same effort and kick to the same intended spot. This is almost like asserting

that when the score is even, kicking order is of minimum importance. The importance of kicking

order, on the other hand, stems from the fact that when the score is uneven at the beginning

of a round, kickers assert different levels of effort in their kicks depending on when they kick.

Under an uneven score symmetric mechanism, each team’s kickers foresee that their team will be

treated symmetrically as the other team, in case either team falls behind or jumps ahead in score.

Therefore, this assurance in essence takes the reason behind the importance of kicking order out of

the equation.

A corollary to the proof of this theorem is of independent interest. It tells how effort levels can

be compared between the teams in different states and rounds (see also Figure 1).

Corollary 1 Let φ be an order-independent mechanism in regular rounds. Suppose effort levels,

i.e., the state-symmetric equilibrium intended spots, are denoted as follows:
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Round 2
First Mover (ξ)

Second Mover (ω)0            ω1B=ω1E x                1

ξ2E =ω2B =ω2E

x

0            ξ1 x                1
x

Round 1

First Mover (ξ)

Second Mover (ω)

Figure 1: The effort levels of teams under an order-independent mechanism is state-symmetric

equilibria in an easy shootout.

• In Round 1: (1) for first kicking team as ξ1; and (2) for second kicking team as ω1E when

score is even and as ω1B when it is behind.

• In Round 2: (1) for first kicking team as ξ2A when it is ahead, as ξ2E when the score is even,

and as ξ2B when it is behind; and (2) for second kicking team as ω2E when score is even and

as ω2B when it is behind.

Then the following relations hold for easy shootouts:

Round 1. ξ1 = ω1E = ω1B < ω2B.

Round 2. ξ2B < ξ2A < ξ2E = ω2E = ω2B.

For difficult shootouts, only the first inequality reverses in Round 2 relations above.

Next we provide the intuition behind our characterization in Theorem 1 (with also Proposition

1 and Corollary 1). The difference in kickers’ best responses in a round stems from their different

marginal contribution to their team’s winning chances. The marginal contribution of a kicker is the

difference between his team’s expected payoff in cases he scores a goal and fails to score. Suppose

teams enter the last regular round tied. Moreover, suppose order independence is sustained in

sudden-death rounds: if there is a tie after the last regular round, each team wins with probability
1
2

at the beginning of sudden-death rounds. Then the best response of the first-kicking team’s

player, who we refer to as Kicker 1, turns out to be identical to that of the second-kicking team’s

player, Kicker 2. This is because these two scenarios lead to the same marginal contributions for

both kickers, although this may not look obvious. We explain the reason for this in the next few

paragraphs.

For Kicker 2, after a failed goal attempt by Kicker 1, the probability of his team winning after

Kicker 2’s goal is 1, while the probability of his team winning after his miss is 1
2

with the marginal

contribution in terms of probabilities as 1 − 1
2

= 1
2
. The same marginal contribution for Kicker 2

holds, if Kicker 1 scores and Kicker 2’s team falls behind: If Kicker 2 scores, the shootout goes to

sudden death and his team wins with probability 1
2
; if he misses, his team loses for sure, resulting

with a marginal contribution of winning probability 1
2
.

On the other hand, for Kicker 1, if he scores, the probability of his team winning is the probability

Kicker 2 misses (let’s say this occurs with probability p) plus Kicker 2 scores (with probability

(1− p)), and then with probability 1
2

Kicker 1’s team wins (as the game goes to sudden death with
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a tie). If he fails to score, the probability of his team winning is the probability Kicker 2 misses

(with the same probability p, as we showed above Kicker 2 uses the same strategy in both cases)

and with probability 1
2

Kicker 1’s team wins in sudden death. The difference between these two

probabilities is p + 1
2
(1 − p) − 1

2
p = 1

2
, and this is Kicker 1’s marginal contribution to his team

winning. Thus, Kickers 1 and 2 use the same strategies in any event in the last regular round when

it starts with a tie. This leads to equal chances to win for both teams.

However, if the score were not tied at the beginning of the last regular round, say for example,

Kicker 1’s team were ahead, he would be less aggressive compared to when the score were tied.

This is because his maximum marginal contribution to winning would be less than 1
2

(as there is

a more than 1
2

probability his team will win anyway even if he misses, and for sure if he scores).

As a result he does not take the shot with a high risk of the ball going out, although it may result

with a goal with a higher probability. The case turns out to be even more dire if the first-kicking

team is behind in the last round: Kicker 1’s maximum marginal contribution is even smaller than

the case when his team is ahead (this requires more in depth calculation to illustrate).

Therefore, Kicker 1 of the last regular round has decreasing accuracy in his shot in the order of

the states for his team as tie, being ahead, and being behind. On the other hand, the states and

strategies are identical for Kicker 2 as the case when that round started tied. Therefore, Kickers 1

and 2 use different strategies in the last regular round if the round does not start with a tie.

Next consider penultimate-round kickers when this round starts with a tie. We refer the first-

kicking team’s player in this round as Kicker 1 and the other player as Kicker 2. By backward

induction, consider Kicker 2. If the game is tied before he kicks, his contribution (i) from scoring is

p2A, which is the probability that Kicker 2’s team wins when it starts last round ahead and (ii) from

missing is 1
2
, as the score will be tied in last round and by above intuition either team has equal

chance of winning (for any mechanism that is order independent in sudden-death rounds when last

regular round starts with a tie); so his marginal contribution is p2A − 1
2
. If Kicker 1’s team is ahead

before Kicker 2 kicks, his contribution (i) from scoring is 1
2
, as teams enter last round tied and (ii)

from missing is p2B, which is the probability that Kicker 2’s team wins when it starts last round

behind; so his marginal contribution is 1
2
− p2B.

The crucial argument is that these two marginal contributions are equal if and only if the

mechanism is uneven score symmetric. It follows from the fact that in any round the sum of

probabilities of one team winning plus the other team winning is always 1, because the shootout

always ends with a winner. Thus, in the last round, if one team is ahead then the other team is

behind, and hence, p1A + p2B = 1, when Kicker 1’s team is ahead and p1A is its winning probability,

and p1B + p2A = 1, when Kicker 1’s team is behind and p1B is its winning probability. Only in an

uneven-score symmetric mechanism, p1B = p2B and p1A = p2A as both teams are treated symmetrically

when they are ahead or behind. This follows from the fact that the last-round’s first kicker is

more aggressive when his team is ahead than behind as we explained previously. (It can also be

shown that with a similar argument Kicker 1 of penultimate round has exactly the same marginal

contribution as Kicker 2 when this round starts tied under uneven-score symmetric mechanisms.)
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In particular, this is exactly why ABAB or ABBA, or any fixed-order mechanism is not order

independent: In the last round, as first kicking team is pre-determined and its kicker is more

aggressive when it is ahead than behind, the equalities p1A = p2A and p1B = p2B do no longer hold

(i.e., ξ1 = ω1B = ω1E shown in Figure 1, no longer holds). Hence, even if the penultimate round

starts tied, there are possible state-symmetric equilibria in which the kickers of this round will

exert different efforts leading to different winning chances for their teams at the beginning of the

penultimate round.

The theorem leads to another interesting point: There is only one class of order-independent

exogenous mechanisms; the post-Round-1 random-order mechanisms that determine which team

will kick first with an unbiased coin toss in each round after the first, while who goes first in Round

1 can be determined freely. We formalize it below, and it follows directly from Theorem 1.

Proposition 2 The class of post-Round-1 random-order mechanisms are the only exogenous mech-

anisms that are order independent.

Note that one does not need to treat both teams symmetrically all the time to obtain order

independence. In fact, when the score is tied, it does not matter which team kicks first. However,

when the score is not tied, teams need to be treated symmetrically. This feature opens the door for

some interesting practical mechanisms to be order independent. Two subclasses of such mechanisms

are the behind-first and ahead-first mechanisms. In behind first (ahead first), the team that is

behind (ahead) in score after a round kicks first in the next round, and otherwise the order of the

teams is determined in some other manner. There are also many other uneven score symmetric

mechanisms in which lotteries play a significant role. For example, a lottery mechanism that forces

the behind team to go first in 75% of the time and also Team 1 always to go first 60% of the time

when the score is tied is also order independent.

Next we ask as the sudden-death rounds induce an infinite game, what do order-independent

mechanisms look like in sudden-death rounds. It turns out that there order matters when the score

is tied unlike in regular rounds.

6 Sudden-death Rounds

Sudden-death analysis is substantially different as regular-round analysis assumes that winning

chances are equal after they are over and score is still tied, while sudden-death rounds make the

game an infinite game and tries to analyze what actually the winning chances are after regular

rounds.

Under ABAB or ABBA, one can have uneven scores, such as Team 1 being ahead, in an in-

termediate regular round. As we showed, however, they cannot satisfy uneven score symmetry of

order-independent mechanisms in regular rounds. On the other hand, in the sudden-death rounds,

the score is never uneven at the beginning of a round. Suppose sudden death is reached in ABAB
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and ABBA. Would they at least be order independent in sudden-death rounds? If not, what do

sudden-death order-independent mechanisms look like? We start with ABAB to answer these ques-

tions.

6.1 ABAB in Sudden-death Rounds

We will now characterize the state-symmetric equilibria of ABAB in the sudden-death rounds. As

the game is infinite now, we will pedantically take the reader through the kickers’ dynamic problem

as we did in Section 4 for a single round. Without loss of generality assume that Team 1 wins the

coin toss before Round 1 and kicks first throughout.

At state-symmetric equilibria, if they exist, each Team 1 kicker will use exactly the same action

when he kicks in the sudden-death rounds, as Team 1 always goes first and the score is tied at the

beginning of each sudden-death round. Similarly, by symmetry, each Team 2 kicker will use exactly

the same action when his team is behind (which can be by one goal at most), and he will use exactly

the same action when the score is even (which can happen if the preceding Team 1 kicker kicks out

or his kick is saved).

On the other hand, Team 1 and Team 2 kickers may potentially use different actions at state-

symmetric equilibria, as they kick in different orders: in each round Team 1 goes first and Team 2

goes second. Hence, if a state-symmetric equilibrium exists, for a given k = 1, 2, the probability of

Team k winning is the same at the beginning of each sudden-death round.

At a state-symmetric equilibrium, let us define VT1 to be the value function of Team 1, that is

the expected utility it contributes by winning or losing to its all kickers, in the first sudden-death

round. Denote by x the kicking strategy for Team 1’s kickers. Define V B
T2

as the value function of

Team 2 in the first sudden-death round when Team 2 is currently behind by one goal and V E
T2

as the

value function of Team 2 in the first sudden-death round when the score is currently even. Team

2’s kickers’ optimal kicking strategy in each scenario is yB and yE respectively.

We can write the following Bellman equation for VT1 :

VT1 = PG(x)WG,T1 + [1− PG(x)]WNG,T1 (5)

whereWG,T1 is the expected future value conditional on the kicker scoring andWNG,T1 is the expected

future value conditional on the kicker not scoring. We have

WG,T1 =PG(yB)VT1 + [1− PG(yB)]VW (6)

WNG,T1 =PG(yE)VL + [1− PG(yE)]VT1 (7)

For Team 2, we have

V B
T2

= PG(yB) VT2︸︷︷︸
=WB

G,T2

+[1− PG(yB)] VL︸︷︷︸
=WB

NG,T2

(8)

V E
T2

= PG(yE) VW︸︷︷︸
=WE

G,T2

+[1− PG(yE)] VT2︸︷︷︸
=WE

NG,T2

(9)
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where

VT2 =VW + VL − VT1 (10)

is the continuation payoff attributed to Team 2 in our win-or-lose game.

Next, we solve the decision problem faced by each kicker given other players’ actions and beliefs

using the first-order necessary and sufficient conditions given in Equation 3. Recall that for a Kicker

`

P ′G(x`)(WG,` −WNG,` + UG) + P ′O(x`)UO = 0 (11)

where x` is the optimal spot for Kicker `.

We can then solve (x, yB, yE) by plugging Equations 5 – 10 into Equation 11. To do that we

need to resolve the continuation values VT1 and VT2 for each team.

From Equations 5, 6, and 7,

VT1 =
PG(x)[1− PG(yB)]VW + [1− PG(x)]PG(yE)VL
PG(x)[1− PG(yB)] + [1− PG(x)]PG(yE)

= αVW + (1− α)VL (12)

where the winning probability of T1, α, is given by

α =
PG(x)[1− PG(yB)]

PG(x)[1− PG(yB)] + [1− PG(x)]PG(yE)
. (13)

A value for α > 0.5 at a state-symmetric equilibrium will signal that ABAB is biased in favor of the

first-kicking team in the sudden-death rounds, and for α < 0.5 it is vice versa for the second-kicking

team. On the other hand, ABAB is an order-independent mechanism if and only if α = 0.5 at every

state-symmetric equilibrium. For Team 2, then, we get by Equation 10,

VT2 = (1− α)VW + αVL. (14)

Hence, Equations 5 – 10 through Equation 11 become self-contained to solve for x, yB and yE. The

following theorem characterizes the state-symmetric equilibrium strategy candidates solving these

equations:

Theorem 2 (ABAB in sudden-death rounds) In sudden-death rounds, a state-symmetric in-

terior equilibrium of ABAB exists if and only if P ′G(0)[VW−VL
2

+ UG] + P ′O(0)UO > 0.25

(ii)When it exists, all equilibria with strategy profiles (x, yB, yE), all of which are to the left of

the goal-optimal spot, satisfying

• x = yE, i.e., the Team 1 kicker and Team 2 kicker, when the score is even, kick at the same

spot; and

• for every equilibrium with (yE, yB), there exists another equilibrium with (ŷE, ŷB) such that

ŷE = yB and ŷB = yE.

25An interior equilibrium is an equilibrium where kicker-optimal spots are interior.
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We quantify when multiple equilibria exist and what the equilibrium strategies are for ABAB

in Appendix B, we also give a numerical example of a set of parameters that makes ABAB order

dependent in sudden-death rounds.

We briefly explain the intuition behind Theorem 2. It turns out that shootout mechanisms may

in general generate a dynamic-team version of the hawk-dove game in sudden-death rounds: Sup-

pose Team 1, either the first-kicking or the second-kicking, has a more aggressive kicking strategy,

involving more accurate kicks to score but riskier to kick out, with respect to Team 2. Suppose the

same strategy is used by all of Team 1’s players. Then, Team 2 will win with a smaller probability

than 1
2
. To see how this can be sustained in an equilibrium, consider one of Team 2’s kickers and

the round he takes his shot: If the score is tied again at the end of this round, his team will lose

with a higher probability in the future because of his teammates’ less aggressive strategies. Thus,

given enough chance of the tie continuing at the end of this round, trying to kick more aggres-

sively is costly for him, now, as he may kick the ball out with a higher probability. Given also

the more aggressive behavior of Team 1’s kicker in his round, the Team 2 kicker does not have

an incentive to be aggressive. A similar argument can be made for Team 1 players’ best response

involving more aggressive strategies given the others’ fixed strategies. Observe that ABAB imposes

always a different situation being faced by the first-kicking and second-kicking team players. Thus,

an exogenous symmetry requirement has no constraint on the strategies of two teams as in our

state-symmetric equilibrium concept. Thus such equilibria survive symmetric-state treatments and

a state-symmetric equilibrium involving unequal chances of winning for the teams is feasible.

We also show in Appendix H that it is possible to devise a forward-looking equilibrium refinement

- similar in vein to the Intuitive Criterion of Cho and Kreps (1987) - to get rid of the multiplicity

of equilibria, so that the first-kicking team wins more often. Any potential equilibrium candidate

with the second-mover advantage does not survive this refinement, however.

6.2 ABBA and Order Independent Mechanisms in Sudden-death

Rounds

Next, we consider ABBA. Contrary to ABAB, ABBA is order independent in sudden-death rounds,

although it is not in regular rounds. It turns out that, alternating the order creates an opportunity

symmetry for the future causing this particular scheme to be order independent in sudden death.

Theorem 3 (ABBA, sudden-death rounds) ABBA is order independent in sudden-death

rounds.

Actually, for such a restriction to hold, we do not even need the teams to be in each other’s

shoes as frequently as in ABBA. In fact, there are uncountably many other mechanisms that are

order independent in sudden-death rounds:
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Theorem 4 (Order-independent mechanisms) Take any mechanism φ and any order-

independent mechanism ϕ. Fix a Sudden-death Round k. Construct a mechanism ψ such that

for sudden-death rounds from the beginning until Round k−1’s end, it uses φ’s order structure, and

for any other round, it uses ϕ’s order structure. Formally,

• for all ` such that n < ` < k, feasible scores gT1 : gT2, and beginning of Round ` kicking orders

h`−1, let ψ(h`−1; gT1 : gT2) = φ(h`−1; gT1 : gT2), and

• for all ` ≥ k and ` ≤ n, feasible scores gT1 : gT2, and beginning of Round ` kicking orders h`−1,

let ψ(h`−1; gT1 : gT2) = ϕ(h`−1; gT1 : gT2).

Then ψ is order independent.

We can use Theorem 4 recursively, to obtain a very large class of order-independent mechanisms.

The intuition of this result is as follows: Take the last round before order independence kicks in,

say Round k. By backward induction, as teams are tied at the beginning of Round k and in Round

k + 1 they have a 50%− 50% chance of winning, in all situations the two kickers of Round k exert

the same effort regardless of kicking order (as we explained in the intuition behind Theorem 1).

Therefore, at the beginning of Round k, both teams have an equal chance of winning as well. An

example of such a mechanism is a behind-first mechanism such that in the first n+ 10 rounds Team

1 kicks first whenever the game is tied, and then we alternate the order. Note that in the first

10 sudden-death rounds Team 1 kicks first, and yet, the mechanism is order independent as it is

appended by an order-independent mechanism in sudden-death rounds, namely ABBA.

Although state-symmetric equilibria of ABAB in which teams exert different effort are still

equilibria of ABBA, these equilibria are no longer state-symmetric under ABBA: If Team 1 kickers

always exert a higher effort than Team 2’s in ABAB, now their position as first or second kickers

will alternate in ABBA. Thus, when the state is “kicking first,” if it is a Team 1 kicker then he will

exert higher effort in the same state than Team 2 kicker, violating state symmetry.

7 Discussion: Order Independence vs Procedural Fairness

Order independence implies ex-ante fairness, and in our context they are both about the distribution

of state-symmetric equilibria. The starting team can be determined by alphabetical order of the

names of the teams and yet we can still obtain order independence. Thus, not only an even coin

flip to determine which team will start first is not needed, the existence of such coin flip does not

guarantee ex-ante fairness of the state-symmetric equilibrium outcomes. That is one other aspect

ABAB fails: it is not even ex-ante fair in this sense.

However, there is a certain appeal of procedural fairness that an even coin flip determines which

team will start first. This appeal is not only aesthetic: procedural fairness matters, as there are

clearly many other factors that are known to affect the outcome, maybe, unfairly. For example,
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performance under pressure is one that is investigated in both sports sciences (see Jordet et al., 2006

and Jordet, 2009) and in economics (see Apesteguia and Palacios-Huerta, 2010 and Vandebroek,

McCann, and Vroom, 2018). Hence, the more we can equalize the stressful situations the teams

face, the better it will be according to this criterion. The random-order exogenous mechanism,

determining the team that will go first in each round by an even coin flip is both order independent

and procedurally fair. However, it involves certain kinds of ex-post unfairness with non-negligible

probabilities, such as a team kicking first in back-to-back rounds (more than 90% chance) or one

team kicking first at least in four rounds (more than 35% chance) unrelated to the current score of

the shootout. Moreover, it is rather impractical to implement during a penalty shootout.

A desirable shootout mechanism should answer above concerns appropriately as well. With that

goal in mind, we are able to obtain a tight characterization using procedural fairness and order

independence and other efficiency-oriented properties that we discussed together with a practical

simplicity property in Appendix F. Here, we only summarize this characterization result (where the

characterization and more elaboration on other properties too can be found in that appendix).

We start with a property that can be used to give the opportunity of kicking to as many players as

possible. For easy contests, we show that there is a class of order-independent mechanisms satisfying

maximization of the expected number of attempts, which we term the behind-first mechanisms, such

that the team that is behind in score after a round always kicks first in the next round, but if the

score is tied after any round, then any random or fixed exogenous or endogenous order is admissible

at the next round. In difficult contests, the same property is satisfied by ahead-first mechanisms.

Note that order-independent mechanisms, including behind-first and ahead-first subclasses, leave

unspecified how one should choose which team would kick first when the score is tied, which would

be a major issue especially during the sudden-death rounds of a shootout. We use a procedural

fairness property in sudden-death rounds as much as possible short of flipping a coin before every

round (which we have already noted as impractical). One thing we showed is that ABAB is not order

independent, and the order should somehow alter in sudden-death rounds. Hence, we propose to

embed the ABBA structure to our behind-first and ahead-first mechanisms in sudden-death rounds.

Although there are many other ways to obtain order independence by altering order in sudden-death

rounds, this mechanism provides a procedural fairness notion that we dub as sudden-death equality

of opportunity to both teams in addition to its practicality. This also addresses almost all fairness

concerns of previous investigators regarding performance difficulties under stress criteria: One team

kicks first at most one more or less time than the other team in stressful situations of kicking while

behind (and equal times when the sudden-death rounds are even).

This change of order also naturally translates to the regular rounds with a formally defined

simplicity property. Our simplicity property minimizes the patterns of how kicking order changes

across rounds while keeping the probability of either team kicking first ex-ante positive. We uniquely

characterize easy shootout mechanisms, such as the ones in football, satisfying order independence

and maximization of the expected number of attempts together with the other two properties,

namely, simplicity and sudden-death equality of opportunity: The team that is behind in score
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after a round always kicks first in the next round, but if the score is tied after any round, then the

team that kicked second at that round kicks first in the next round. We refer to this mechanism the

alternating-order behind-first mechanism. Symmetrically, in difficult shootouts, such as in hockey,

its symmetric counterpart, alternating-order ahead first uniquely characterizes this class.

We state this theorem formally here while the properties are defined formally in Appendix F:

Theorem 5 (Practical order-independent mechanisms) In an easy shootout, alternating or-

der behind first is the unique order-independent mechanism that maximizes the expected number of

attempts and satisfies simplicity and sudden-death equality of opportunity.

On the other hand, in a difficult shootout, alternating-order ahead first is the unique order-

independent mechanism that maximizes the expected number of attempts and satisfies simplicity

and sudden-death equality of opportunity.26

This characterization is agnostic about which team should start the shootout, as this is imma-

terial for the equilibrium outcome for endogenous order-independent mechanisms. We can add to

this characterization one additional ex-ante procedural fairness notion: Each team should face the

same sequence of orders ex ante. This motivates an even coin flip at the beginning to determine

which team will kick first. Then, we have a unique practical mechanism to propose for each contest

structure, easy-task or difficult-task. We summarize the properties of practical mechanisms we have

uncovered so far in Table 1.

Mechanism Procedurally Ex-ante Order Independent Order Independent Order

Fair Fair in Regular Rounds in Sudden Death Independent

ABAB 3 7 7 7 7

ABBA 3 3 7 3 7

Alternating Order

Behind/Ahead First
3 3 3 3 3

Table 1: Properties of Mechanisms

To conclude, our model adds only one parameter to the standard dynamic tug-of-war framework.

A kicker has different utility levels for saved or missed kicks, even though they are outcome equiv-

alent from his team’s perspective (which is supported by empirical evidence). This small nuance in

the model generates rich results and explains certain stylized empirical facts of ABAB. Moreover,

it helps us characterize order-independent shootout mechanisms in this setting. This is the first

paper using rational economic theory to address this design issue, and it addresses many empirical

abnormalities surprisingly well through our approach of one parameter deviation from a model of

players with only outcome-oriented preferences.27

26Maximizing the expected number of attempts property only holds for n = 2 regular rounds; thus, this particular

characterization holds for n = 2.
27As pointed out by an anonymous referee, because the outcome of a single penalty kick is binary (score or not),

risk and preferences over risk are irrelevant for a rational model to capture such first-order conditions.
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A Proofs of Proposition 1, Theorem 1, Corollary 1

Proof of Proposition 1. First observe that x solves Equation 4 when UO = 0. As the partial

derivative w.r.t. UO on the (left-hand side of) first-order condition is P ′O(x∗`) > 0, the implicit

function theorem implies that x∗` < x. Moreover, as the partial derivative w.r.t. WG,` −WNG,` on

the first-order condition is P ′G(x∗`) > 0 (as x∗` < x), the implicit function theorem again implies that

the higher the expected marginal contribution, WG,` −WNG,`, the higher is x∗` ; and the higher is

PG(x∗`).

Proof of Theorem 1. We will prove the theorem for easy shootouts for n = 2. The proof

is symmetric for difficult shootouts. For n = 3, the proof is given in Appendix G. For n = 1, the

proof follows from Round 2’s analysis below and all mechanisms are uneven score symmetric for

n = 1. Suppose n = 2. We solve it by backward induction. As both teams have an equal chance

of winning in sudden-death rounds, the value function is VW+VL
2

for each team at the end of the

regular rounds.

Round 2, Second Kick. Whether the score is even or the last-kicking team is behind, it can

readily be verified that the optimal kicking strategy is always ξ < x, where ξ is determined by the

following first-order condition by Equation 3 where WG,2,T2 − WNG,2,T2 = VW−VL
2

is his marginal

contribution (as explained in the main text):

P ′G(ξ)[
VW − VL

2
+ UG] + P ′O(ξ)UO = 0 (15)

Round 2, First Kick. Next we look at the optimal kicking strategy for the first-kicking team

in Round 2. Consider two cases:

Case 1: When Team 2 kicks first in Round 2. There are three possible states: when the score is

currently even, when Team 2 is currently behind (by one goal), and when Team 2 is currently ahead

(by one goal).

•When the score is currently even: Let y2E denote the optimal kicking strategy for Team 2’s kicker

in Round 2 when the score is even. The value function for Team 2 is

VT2,P2,E = [PG(y2E)PG(ξ) + (1− PG(y2E))(1− PG(ξ))]
VW + VL

2

+ PG(y2E) (1− PG(ξ))VW + (1− PG(y2E))PG(ξ)VL

By Equation 11, y2E solves the following first-order condition:

P ′G(y2E)
[
[PG(ξ)− (1− PG(ξ))]

VW + VL
2

+ (1− PG(ξ))VW − PG(ξ)VL + UG

]
+ P ′O(y2E)UO = 0

=⇒ P ′G(y2E)[
VW − VL

2
+ UG] + P ′O(y2E)UO = 0

Therefore,

y2E = ξ (16)
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and VT2,P2,E = VW+VL
2

.

•When Team 2 is currently behind : Let y2B denote the optimal kicking strategy for Team 2’s kicker

in Round 2 when Team 2 is currently behind. The value function for Team 2 is

VT2,P2,B = PG(y2B)PG(ξ)VL + PG(y2B) (1− PG(ξ))
VW + VL

2
+ (1− PG(y2B))VL

y2B satisfies the following first-order condition:

P ′G(y2B)[PG(ξ)VL + (1− PG(ξ))
VW + VL

2
− VL + UG] + P ′O(y2B)UO = 0

=⇒ P ′G(y2B)
[
(1− PG(ξ))

VW − VL
2

+ UG
]

+ P ′O(y2B)UO = 0

•When Team 2 is currently ahead : Let y2A denote the optimal kicking strategy for Team 2’s kicker

in Round 2 when Team 2 is currently ahead. The value function for Team 2 is

VT2,P2,A = PG(y2A)VW + (1− PG(y2A))
[
(1− PG(ξ))VW + PG(ξ)

VW + VL
2

]
The optimal kicking strategy, y2A, satisfies the following first-order condition:

P ′G(y2A)[VW − (1− PG(ξ))VW − PG(ξ)
VW + VL

2
+ UG] + P ′O(y2A)UO = 0

=⇒ P ′G(y2A)[PG(ξ)
VW − VL

2
+ UG] + P ′O(y2A)UO = 0 (17)

As

PG(ξ) >
1

2
=⇒ y2A > y2B. (18)

Moreover, since PG(ξ) < 1, Equations 15 and 17 imply

y2A < ξ. (19)

Case 2: When Team 1 kicks first in Round 2. Let x2E, x2B, and x2A denote the optimal kicking

strategy for Team 1′s kicker in Round 2 when the score is even, when Team 1 is behind, and when

Team 1 is ahead respectively. By symmetry, we have the following results:

• When the score is currently even: The optimal kicking strategy is

x2E = y2E = ξ, (20)

and the value function for Team 1 is VT1,P2,E = VW+VL
2

.

• When Team 1 is currently behind : The optimal kicking strategy is

x2B = y2B < ξ, (21)

and the value function for Team 1 is

VT1,P2,B = PG(x2B)PG(ξ)VL + PG(x2B)(1− PG(ξ))
VW + VL

2
+ (1− PG(x2B))VL
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• When Team 1 is currently ahead : The optimal kicking strategy is

x2B < x2A = y2A < ξ, (22)

and the value function for Team 1 is

VT1,P2,A = PG(x2A)VW + (1− PG(x2A))
[
(1− PG(ξ))VW + PG(ξ)

VW + VL
2

]
Round 1, Second Kick. Next we study the second team’s optimal kicking strategy in Round

1. There are two possible states:

• When Team 1 does not score in Round 1 : The value function for Team 2 in this case is

VT2,P1,E = PG(y1E)[φ(T1; 0 : 1)(VW+VL−VT1,P2,B)+(1−φ(T1; 0 : 1))VT2,P2,A]+(1−PG(y1E))
VW + VL

2
,

where

VT1,P2,B = PG(x2B)PG(ξ)VL + PG(x2B)(1− PG(ξ))
VW + VL

2
+ (1− PG(x2B))VL

=
VW + VL

2
− [1− PG(x2B)(1− PG(ξ))]

VW − VL
2

VT2,P2,A = PG(y2A)VW + (1− PG(y2A))
[
(1− PG(ξ))VW + PG(ξ)

VW + VL
2

]
=
VW + VL

2
+ [1− (1− PG(y2A))PG(ξ)]

VW − VL
2

We substitute the equations of VT1,P2,B and VT2,P2,A into VT2,P1,E as follows:

VT2,P1,E =
VW + VL

2
+ PG(y1E)

[
φ(T1; 0 : 1)[1− PG(x2B)(1− PG(ξ))]

+(1− φ(T1; 0 : 1))[1− (1− PG(y2A))PG(ξ)]
]VW − VL

2

The optimal kicking strategy, y1E, satisfies the following first-order condition:

P ′G(y1E)[α1
VW − VL

2
+ UG] + P ′O(y1E)UO = 0, where

α1 = φ(T1; 0 : 1)[1− PG(x2B)(1− PG(ξ))] + (1− φ(T1; 0 : 1))[1− (1− PG(y2A))PG(ξ)].

• When Team 1 scores in Round 1: The value function for Team 2 is

VT2,P1,B = PG(y1B)
VW + VL

2
+(1−PG(y1B))

[
(1−φ(T1; 1 : 0))VT2,P2,B+φ(T1; 1 : 0)(VW+VL−VT1,P2,A)

]
,

where

VT2,P2,B = PG(y2B)PG(ξ)VL + PG(y2B)(1− PG(ξ))
VW + VL

2
+ (1− PG(y2B))VL

=
VW + VL

2
−
[
1− PG(y2B)(1− PG(ξ))

]VW − VL
2

VT1,P2,A = PG(x2A)VW + (1− PG(x2A))
[
(1− PG(ξ))VW + PG(ξ)

VW + VL
2

]
=
VW + VL

2
+ [1− (1− PG(x2A))PG(ξ)]

VW − VL
2

27



We substitute the equations of VT2,P2,B and VT1,P2,A into VT2,P1,B as follows:

VT2,P1,B =
VW + VL

2
− (1− PG(y1B))

[
(1− φ(T1; 1 : 0))[1− PG(y2B)(1− PG(ξ))

]
+φ(T1; 1 : 0)[1− (1− PG(x2A))PG(ξ)]

]VW − VL
2

The optimal kicking strategy, y1B, satisfies the following first-order condition:

P ′G(y1B)[α2
VW − VL

2
+ UG] + P ′O(y1B)UO = 0, (23)

where

α2 = (1− φ(T1; 1 : 0))[1− PG(y2B)(1− PG(ξ))] + φ(T1; 1 : 0)[1− (1− PG(x2A))PG(ξ)]

Then y1B = y1E iff α1 = α2 iff

φ(T1; 0 : 1)[1− PG(x2B)(1− PG(ξ))] + (1− φ(T1; 0 : 1))[1− (1− PG(y2A))PG(ξ)]

= (1− φ(T1; 1 : 0))[1− PG(y2B)(1− PG(ξ))] + φ(T1; 1 : 0)[1− (1− PG(x2A))PG(ξ)]

⇐⇒ (1− φ(T1; 0 : 1)− φ(T1; 1 : 0))[1− (1− PG(y2A))PG(ξ)]

= (1− φ(T1; 0 : 1)− φ(T1; 1 : 0))[1− PG(x2B)(1− PG(ξ))]

⇐⇒ (1− φ(T1; 0 : 1)− φ(T1; 1 : 0))[(1− PG(y2A))PG(ξ)− PG(x2B)(1− PG(ξ))] = 0

However, (1− PG(y2A))PG(ξ)− PG(x2B)(1− PG(ξ)) > 0 as x > ξ > x2B and y2A < ξ. Accordingly,

y1B = y1E ⇐⇒ φ(T1; 0 : 1) + φ(T1; 1 : 0) = 1. (24)

Round 1, First Kick. Finally, we solve for Team 1’s optimal kicking strategy in Round 1.

The value function for Team 1 is

VT1 = PG(x1)[VW + VL − VT2,P1,B] + (1− PG(x1))[VW + VL − VT2,P1,E]

= VW + VL − PG(x1)VT2,P1,B − (1− PG(x1))VT2,P1,E

We substitute the equations of VT2,P1,B and VT2,P1,E into VT1 as follows:

VT1 =
VW + VL

2
+ [PG(x1)(1− PG(y1B))α2 − (1− PG(x1))PG(y1E)α1]

VW − VL
2

The optimal kicking strategy, x1, satisfies the following first-order condition:

P ′G(x1)
[[

(1− PG(y1B))α2 + PG(y1E)α1

]VW − VL
2

+ UG

]
+ P ′O(x1)UO = 0

Therefore

x1 R y1E ⇐⇒ (1− PG(y1B))α2 R (1− PG(y1E))α1 (25)

On the other hand, we have

VT1 =
VW + VL

2
⇐⇒ PG(x1)(1− PG(y1B))α2 = (1− PG(x1))PG(y1E)α1
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Given that both teams have an equal chance of winning in sudden-death rounds and VT2,P2,E =

VT1,P2,E = VW+VL
2

, φ is order independent if and only if VT1 = VW+VL
2

. We first make the following

claim:

Claim 1. PG(x1)(1 − PG(y1B))α2 = (1 − PG(x1))PG(y1E)α1 if and only if (1 − PG(y1B))α2 =

(1− PG(y1E))α1.

Proof of Claim 1. ( =⇒ ) Suppose to the contrary that (1 − PG(y1B))α2 6= (1 − PG(y1E))α1

but PG(x1)(1 − PG(y1B))α2 = (1 − PG(x1))PG(y1E)α1. If (1 − PG(y1B))α2 > (1 − PG(y1E))α1,

then from the first-order condition of x1 we have x > x1 > y1E. Then PG(x1)(1 − PG(y1B))α2 >

PG(y1E)(1−PG(y1B))α2 > PG(y1E)(1−PG(y1E))α1 > (1−PG(x1))PG(y1E)α1, a contradiction. The

other case can be analyzed in a similar fashion.

(⇐= ) If (1− PG(y1B))α2 = (1− PG(y1E))α1, then from the first-order condition of x1 we have

x1 = y1E, which in turn implies

PG(x1)(1−PG(y1B))α2 = PG(y1E)(1−PG(y1B))α2 = PG(y1E)(1−PG(y1E))α1 = (1−PG(x1))PG(y1E)α1

Hence the Claim is established. �

Accordingly, φ is order independent if and only if

(1− PG(y1B))α2 = (1− PG(y1E))α1. (26)

This equality holds for an arbitrary pair of (feasible) probabilities, {PG, PO}, if and only if α1 = α2,

which holds if and only if φ(T1; 0 : 1) + φ(T1; 1 : 0) = 1, i.e., φ is uneven score symmetric.

Proof of Corollary 1. It can readily be seen from the proof of Theorem 1 that the optimal

kicking strategy at that state is solely determined by the state (the score difference and the kicking

order in Round 2), and hence is independent of which order-independent mechanism leads to that

state. W.l.o.g., suppose Team 1 moves first in Round 1 and Team 2 moves second. Consider Round

1 first. Equation 24 in the proof of Theorem 1 implies that ω1E = ω1B. Equations 25 and 26 imply

that ξ1 = ω1E. Next consider Round 2. Equation 15 implies that ω2B = ω2E. Equations 15 and

16 when Team 1 moves second in Round 2 and Equation 20 when Team 1 moves first in Round 1

imply that ξ2E = ω2E. For an easy shootout, Equations 18 and 19 when Team 1 moves second in

Round 2 and Equations 21 and 22 when Team 1 moves first in Round 2 imply that ξ2E > ξ2A > ξ2B.

(where easiness of the shootout is only used in Equation 18, for a difficult shootout, we would have

ξ2E > ξ2B > ξ2A). Finally, Equations 15 and 23 and the fact that α2 < 1 imply ω1B < ω2B.

B Order Dependence of ABAB in Sudden-death Rounds

Theorem 6 (Order dependence of ABAB in sudden-death rounds) Suppose that in the

sudden-death rounds of ABAB a state-symmetric interior equilibrium exists. Then
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• Multiple state-symmetric equilibria exist if and only if there are multiple solutions β to the

equation

Υ(β) ≡ β −
1− PG

(
y(1− β)

)
2− PG

(
y(β)

)
− PG

(
y(1− β)

) = 0, (27)

where y(β) = f−1
( −UO
(VW−VL)β+UG

)
for f(x) = P ′G(x)/P ′O(x) for all x ∈ [0, 1].

• Υ(β) = 0 has multiple solutions if

UG
VW − VL

<

(
ln
(
1− PG(x)

))′
2
(

ln f(x)
)′

∣∣∣∣∣
x=y( 1

2)

− 1

2
. (28)

• There is an odd number of solutions with β = 1
2

always being a solution and others being

located symmetrically around it. We also have yB = y(β) and x = yE = y(1 − β) for any

solution β.

• ABAB is not order independent in sudden-death rounds if and only if there are multiple state-

symmetric equilibria of ABAB in sudden-death rounds.

We can interpret the condition in Equation 27 as follows. If we rewrite the definition of y(β) we

get

−UOP ′O
(
y(β)

)
= P ′G

(
y(β)

)(
(VW − VL)β + UG

)
.

Here, the left hand side is the expected marginal disutility of kicking out for a player if β is his

team’s continuation winning probability and his effort is accordingly y(β). The right hand side is

the expected marginal benefit for the same player from scoring; recall that (VW − VL)β + UG is

the marginal benefit for the player from scoring. Thus, this equation is nothing but the first-order

condition for a player to maximize his expected payoff.

When Team 1 wins with probability β, then Team 2 wins with probability 1 − β. We refer to

y(1−β) as the state-symmetric equilibrium effort of Kicker 2 in sudden death if his team is behind.

Also we had shown in Theorem 1 and explained aftewards that when the score is even before Kicker

2 moves in the last regular round or in any sudden-death round, the effort of Kicker 2 is equal to the

effort of Kicker 1. Then the winning probability α defined in Equation 13 boils down to Equation

27 for α = β. Automatically β = 1
2

solves this equation, and each team wins the shootout with

equal probability in sudden death. But there can be asymmetric solutions for β < 1
2

and β > 1
2
;

moreover directly whenever β = p solves it then β = 1− p also solves it.

Thus, ABAB is not order independent as the winning probability of Team 1, β 6= 1
2

in equilib-

rium, whenever yB 6= yE.

On the other hand, the sufficiency condition in Equation 28 is a technical condition. The

following example satisfies this condition and has multiple state-symmetric equilibria.
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Example 1 (Order dependent equilibria) Suppose the game has the following structure:

VW − VL = 5.12; UG = 1; UO = −28

PG(x) = 0.935− 1.5(0.5− x)2; PO(x) = 0.12x+ 1x≥0.541.5(x− 0.54)2,

where 1x≥0.53 is an indicator function. It can be readily verified that (x, yE, yB) =

(0.2020, 0.2020, 0.1667) with β = 0.5388 (and hence (x, yE, yB) = (0.1667, 0.1667, 0.2020) with

β = 0.4611) constitutes an equilibrium. On the other hand (x, yE, yB) = (0.1853, 0.1853, 0.1853)

is the equilibrium in which both teams have equal winning chance.28
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C Remaining Proofs of Results

Proof of Theorem 2.

We write the three first-order conditions using Equation 11 (or 3) as:

P ′G(x)[PG(yB)VT1 + (1− PG(yB))VW − PG(yE)VL − (1− PG(yE))VT1 + UG] + P ′O(x)UO = 0

P ′G(yB)[VT2 − VL + UG] + P ′O(yB)UO = 0

P ′G(yE)[VW − VT2 + UG] + P ′O(yE)UO = 0

We first prove that x = yE in any state-symmetric equilibrium.

Claim 1. x = yE.

Proof of Claim 1. Define

∆ = PG(yB)VT1 + (1− PG(yB))VW − PG(yE)VL − [1− PG(yE)]VT1 − VW + VT2 .

From the first-order conditions of x and yE, x ≥ yE if and only if ∆ ≥ 0. Recall that the winning

probability of Team 1 in equilibrium, α, is given in Equation 13. Hence,

∆ = PG(yB)(VT1 − VW ) + PG(yE)(VT1 − VL) + VT2 − VT1
= PG(yB)(1− α)(VL − VW ) + PG(yE)α(VW − VL) + (1− 2α)(VW − VL)

= [−PG(yB)(1− α) + PG(yE)α + 1− 2α](VW − VL)

= [1− PG(yB) + (PG(yE) + PG(yB)− 2)α](VW − VL)

We substitute α from Equation 13 as follows:

∆ = [1− PG(yB) + (PG(yE) + PG(yB)− 2)
PG(x)(1− PG(yB))

PG(x)(1− PG(yB)) + (1− PG(x))PG(yE)
](VW − VL)

= (1− PG(yB))[1 +
(PG(yE) + PG(yB)− 2)PG(x)

PG(x)(1− PG(yB)) + (1− PG(x))PG(yE)
](VW − VL)

= [
(1− PG(yB))(VW − VL)

PG(x)(1− PG(yB)) + (1− PG(x))PG(yE)
]

× [PG(x)(1− PG(yB)) + (1− PG(x))PG(yE) + (PG(yE) + PG(yB)− 2)PG(x)]

=
(1− PG(yB))(VW − VL)

PG(x)(1− PG(yB)) + (1− PG(x))PG(yE)
[PG(yE)− PG(x)]
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Suppose x > yE, then as both x, yE < x and PG is increasing on the left of x, we have PG(x) >

PG(yE). But then ∆ < 0, contradicting that x > yE. Supposition x < yE leads to a similar

contradiction. Therefore, we must have x = yE. �

Given x = yE, α can be simplified as

α =
PG(x)(1− PG(yB))

PG(x)(1− PG(yB)) + (1− PG(x))PG(yE)
=

1− PG(yB)

2− PG(yB)− PG(yE)
,

and α = 1
2

iff x = yB. Then the first-order condition w.r.t. yB can be simplified as:

P ′G(yB)[VT2 − VL + UG] + P ′O(yB)UO = 0

=⇒ P ′G(yB)
[
(1− α)(VW − VL) + UG

]
+ P ′O(yB)UO = 0

=⇒ P ′G(yB)
[
(VW − VL)

1− PG(yE)

2− PG(yB)− PG(yE)
+ UG

]
+ P ′O(yB)UO = 0 (29)

Similarly, the first-order condition w.r.t. yE can be simplified as:

P ′G(yE)[VW − VT2 + UG] + P ′O(yE)UO = 0

=⇒ P ′G(yE)[α(VW − VL) + UG] + P ′O(yE)UO = 0

=⇒ P ′G(yE)
[
(VW − VL)

1− PG(yB)

2− PG(yB)− PG(yE)
+ UG

]
+ P ′O(yE)UO = 0 (30)

Now we are ready to prove part (i). First we show that P ′G(0)[VW−VL
2

+ UG] + P ′O(0)UO > 0 implies

the existence of an interior equilibrium. Define H(z) ≡ P ′G(z)[VW−VL
2

+ UG] + P ′O(z)UO. H(z) is

continuous with H ′(z) < 0 as P ′′G(z) < 0 and P ′′O(z) ≥ 0. Then H(0) = P ′G(0)[VW−VL
2

+ UG] +

P ′O(0)UO > 0 and H(x) = P ′O(x)UO < 0 implies that there exists some a ∈ (0, x) such that

H(a) = 0. It can readily be seen that (x, yB, yE) = (a, a, a) solves the two first-order conditions and

hence constitutes an equilibrium. On the other hand, assume now P ′G(0)[VW−VL
2

+UG] +P ′O(0)UO =

H(0) ≤ 0. As H ′(z) < 0, H(z) < 0 for every z ∈ [0, 1]. Suppose to the contrary that there exists

an interior equilibrium (x, yB, yE). Clearly yB 6= yE, for otherwise 1−PG(yE)
2−PG(yB)−PG(yE)

= 1
2

and the

first-order condition of yB becomes H(yB) < 0. Suppose yB > yE. Then the first-order condition

w.r.t. yE in Equation 30 becomes:

P ′G(yE)
[
(VW − VL)

1− PG(yB)

2− PG(yB)− PG(yE)
+ UG

]
+ P ′O(yE)UO

< P ′G(yE)[
VW − VL

2
+ UG] + P ′O(yE)UO = H(yE) < 0,

a contradiction. Then yB < yE; and similarly, the first-order condition for yB is negative, leading

to a contradiction. Therefore, an interior equilibrium exists if and only if P ′G[VW−VL
2

+ UG] +

P ′O(0)UO = H(0) > 0. There may be multiple solutions (yE, yB), and whenever one exists, then

(ŷE, ŷB) satisfying ŷE = yB and ŷB = yE also leads to a state-symmetric equilibrium.

Proof of Theorem 3. Without loss of generality, assume Team 1 kicks first in the first

sudden-death round (i.e., in Round n + 1). In a state-symmetric equilibrium, denote by xI the
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optimal kicking strategy for the first kicker in each sudden-death round, and xB (xE) the optimal

kicking strategy for the second kicker in each sudden-death round when the score is behind (tied).

Let VT1 (VT2) denote Team 1’s (Team 2’s) value function at the beginning of the first sudden-death

round (Round n+ 1). Then

VT1 = [PG(xI)PG(xB) + (1− PG(xI))(1− PG(xE))]VT2

+ PG(xI)(1− PG(xB))VW + (1− PG(xI))PG(xE)VL

VT2 = [PG(xI)PG(xB) + (1− PG(xI))(1− PG(xE))]VT1

+ PG(xI)(1− PG(xB))VL + (1− PG(xI))PG(xE)VW

We substitute VT2 into the equation of VT1 as follows:

VT1 = [PG(xI)PG(xB) + (1− PG(xI))(1− PG(xE))]2VT1

+
[
[PG(xI)PG(xB) + (1− PG(xI))(1− PG(xE))]PG(xI)(1− PG(xB)) + (1− PG(xI))PG(xE)

]
VL

+
[
[PG(xI)PG(xB) + (1− PG(xI))(1− PG(xE))](1− PG(xI))PG(xE) + PG(xI)(1− PG(xB))

]
VW

Then VT1 can be solved as:

VT1 = γVW + (1− γ)VL, where

γ =
1− (1− PG(xI))PG(xE)

2− (1− PG(xI))PG(xE)− PG(xI)(1− PG(xB))
.

As this is a zero-sum game, we have VT2 = (1 − γ)VW + γVL. The optimal kicking strategy, xI ,

satisfies the following first-order condition:

P ′G(xI)
[
[PG(xB)− (1− PG(xE))]VT2 + (1− PG(xB))VW − PG(xE)VL + UG

]
+ P ′O(xI)UO = 0.

Similarly, the optimal kicking strategies xB and xE are determined by the following conditions:

P ′G(xB)[VT1 − VL + UG] + P ′O(xB)UO = 0

P ′G(xE)[VW − VT1 + UG] + P ′O(xE)UO = 0

We are going to claim that all three kicking strategies are equivalent, i.e., xI = xB = xE, which in

turn implies that VT1 = VT2 = VW+VL
2

as γ = 1
2
, and order independence is established. First we

compare xI and xE. Define

∆IE = [PG(xB)− (1− PG(xE))]VT2 + (1− PG(xB))VW − PG(xE)VL − (VW − VT1)

By comparing the first-order conditions of xI and xE, we observe that

∆IE T 0 if and only if xI T xE.

Substituting the equations of VT2 and VT1 into ∆IE gives us

∆IE = VT1 − VT2 − PG(xB)(VW − VT2) + PG(xE)(VT2 − VL)

= [2γ − 1− PG(xB)γ + PG(xE)(1− γ)](VW − VL)

=
[
(2− PG(xB)− PG(xE))γ − 1 + PG(xE)

]
(VW − VL).
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Plugging in the expression of γ and doing some simplifications, we have

∆IE =
PG(xI)(1− PG(xB))− PG(xB)(1− PG(xE))

2− (1− PG(xI))PG(xE)− PG(xI)(1− PG(xB))
(VW − VL)

We can then conclude that xI T xE if and only if xI T xB. Next we compare xI and xB. Define

∆IB = [PG(xB)− (1− PG(xE))]VT2 + (1− PG(xB))VW − PG(xE)VL − (VT1 − VL)

By comparing the first-order conditions of xI and xB, we observe that

∆IB T 0 if and only if xI T xB.

By the same token, we can simplify ∆IB as

∆IB =
PG(xE)(1− PG(xI))− PG(xB)(1− PG(xE))

2− (1− PG(xI))PG(xE)− PG(xI)(1− PG(xB))
(VW − VL)

Therefore

xI T xB if and only if xE T xB.

Finally we compare xE and xB. Define

∆EB = VW − VT1 − (VT1 − VL)

∆EB can be simplified as

∆EB =
PG(xE)(1− PG(xI))− PG(xI)(1− PG(xB))

2− (1− PG(xI))PG(xE)− PG(xI)(1− PG(xB))
(VW − VL)

Accordingly,

xE T xB if and only if xE T xI .

Combining all three observations (inequalities) above, we conclude that in a state-symmetric equi-

librium we must have xI = xE = xB.

Proof of Theorem 4. Take any mechanism φ and any order-independent mechanism ϕ.

Construct a mechanism ψ such that for a given Sudden-death Round k, for all n < ` < k, kicking-

order histories h`−1, and feasible scores gT1 : gT2 , ψ(h`−1; gT1 : gT2) = φ(h`−1; gT1 : gT2) and for all

` ≥ k and ` ≤ n, kicking-order histories h`−1, and feasible scores gT1 : gT2 , ψ(h`−1; gT1 : gT2) =

ϕ(h`−1; gT1 : gT2). Now in the Sudden-death Round k and after, whenever the game reaches this

round, the probability of winning is given as 1
2

for each team. By backward induction, consider

Round k − 1. Consider the team that kicks second. Without loss of generality suppose it is Team

2, and Team 1 goes first in Round k − 1. We can reuse the same first-order conditions for both

teams that we used in the proof of Theorem 2, setting

VT1 = VT2 =
VW + VL

2
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as the continuation value under the order-independent mechanism in Round k. Suppose x is Team

1’s kicker’s optimal spot, yE is Team 2’s kicker’s optimal spot when they are still tied, and yB is

Team 1’s kicker’s optimal spot when Team 1 is ahead (by one goal). Recall the first-order conditions

through Equation 11 (or 3):

P ′G(x)[PG(yB)VT1 + (1− PG(yB))VW − PG(yE)VL − (1− PG(yE))VT1 + UG] + P ′O(x)UO = 0

P ′G(yB)[VT2 − VL + UG] + P ′O(yB)UO = 0

P ′G(yE)[VW − VT2 + UG] + P ′O(yE)UO = 0

We rewrite Team 2’s kicker’s first-order conditions plugging in VT1 = VT2 :

P ′G(yB)[
VW − VL

2
+ UG] + P ′O(yB)UO = 0

P ′G(yE)[
VW − VL

2
+ UG] + P ′O(yE)UO = 0

The last two equations yield yB = yE (each has a unique solution by assumptions). Given that

Team 1’s equation yields:

P ′G(x)[
VW − VL

2
+ UG] + P ′O(x)UO = 0

As Team 1 has the same first-order conditions as Team 2, we get x = yB = yE. So each team’s

winning probability is the same, 1
2

in Round k, as well. The mechanism ψ is order independent

starting from Round k. We repeat this argument for each Sudden-death Round ` = k − 2, k −
3, . . . , n+ 1 and obtain the desired result.

Proof of Theorem 6. The first-order conditions are given by Equations 29 and 30 for yB and

yE in the proof of Theorem 2, respectively. We get yB = y(β) and yE = y(1−β), since f = P ′G/P
′
O is

an invertible differentiable decreasing function in the region [0, x̄] by assumption that PO is convex

and increasing and PG is strictly concave and increasing in the interval [0, x̄]. Thus, circularly,

plugging in yB and yE, we get Equation 27. Optimal spots yB and x = yE are multiple valued if

and only if β is multiple valued. β = 1
2

always solves Equation 27, and if β = α is a solution then

β = 1− α is also a solution. Thus, there is an odd number of solutions.

Sufficient Condition for Multiplicity:

First observe that Υ(0) < 0 and Υ
(
1
2

)
= 0. If Υ′(β)|β= 1

2
< 0, then Υ(1

2
− ε) > 0 for ε sufficiently

small. Combining this with the fact that Υ(0) < 0 and Υ(β) is continuous, we conclude that there

exists some β̂ ∈ (0, 1
2
) such that Υ(β̂) = 0 when Υ′(β)|β= 1

2
< 0. Hence, Υ(β) has multiple solutions

if Υ′(β)|β= 1
2
< 0. In the following, we provide a sufficient condition for Υ′(β)|β= 1

2
< 0.

We have

Υ′(β)|β= 1
2

= 1−

{
[P ′G
(
y(1− β)

)
y′(1− β)][2− PG

(
y(β)

)
− PG

(
y(1− β)

)
]

−[−P ′G
(
y(β)

)
y′(β) + P ′G

(
y(1− β)

)
y′(1− β)][1− PG

(
y(1− β)

)
]

}
[2− PG

(
y(β)

)
− PG

(
y(1− β)

)
]2

∣∣∣∣∣
β= 1

2

= 1−
P ′G
(
y
(
1
2

) )
2
(
1− PG

(
y(1

2
)
))y′(1

2

)
.
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As y(β) = f−1
( −UO
(VW−VL)β+UG

)
and f(x) = P ′G(x)/P ′O(x), y′

(
1
2

)
can be computed as:

y′
(

1

2

)
=

1

f ′(y(β))

(VW − VL)UO

((VW − VL)β + UG)2

∣∣∣∣∣
β= 1

2

=

(
P ′O(y

(
1
2

)
)
)2

P ′′G(y
(
1
2

)
)P ′O(y

(
1
2

)
)− P ′′O(y

(
1
2

)
)P ′G(y

(
1
2

)
)
· (VW − VL)UO(

(VW − VL)1
2

+ UG
)2 .

Also we have

y

(
1

2

)
= f−1

(
−UO

(VW − VL)1
2

+ UG

)
=⇒ (VW − VL)

1

2
+ UG = −

P ′O
(
y(1

2
)
)

P ′G
(
y
(
1
2

) )UO.
Then

y′
(

1

2

)
=

(
P ′O(y(1

2
))
)2

P ′′G(y
(
1
2

)
)P ′O(y(1

2
))− P ′′O(y

(
1
2

)
)P ′G(y(1

2
))
· VW − VL

(VW − VL)1
2

+ UG
·
−P ′G

(
y
(
1
2

) )
P ′O
(
y
(
1
2

) )
=

−P ′O(y
(
1
2

)
)P ′G(y

(
1
2

)
)

P ′′G(y
(
1
2

)
)P ′O(y(1

2
))− P ′′O(y

(
1
2

)
)P ′G(y

(
1
2

)
)
· VW − VL

(VW − VL)1
2

+ UG
,

and

Υ′(β)|β= 1
2

= 1−
P ′G
(
y
(
1
2

) )
2
(
1− PG

(
y
(
1
2

) )) · −P ′O(y
(
1
2

)
)P ′G(y

(
1
2

)
)

P ′′G(y
(
1
2

)
)P ′O(y(1

2
))− P ′′O(y

(
1
2

)
)P ′G(y

(
1
2

)
)
· VW − VL

(VW − VL)1
2

+ UG
.

Therefore Υ′(β)|β= 1
2
< 0 if and only if

1 +
2UG

VW − VL
<
−P ′G

(
y
(
1
2

) )
1− PG

(
y
(
1
2

) ) · P ′O(y(1
2
))P ′G(y

(
1
2

)
)

P ′′G(y(1
2
))P ′O(y

(
1
2

)
)− P ′′O(y(1

2
))P ′G(y

(
1
2

)
)

⇐⇒ 1 +
2UG

VW − VL
<

(ln(1− PG(x)))′

(ln f(x))′

∣∣∣∣∣
x=y( 1

2)

.

D Field Evidence

D.1 Shootout Winning Percentages in Major Tournaments
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Figure 2: Empirical Evidence from Table 5.1 in Palacios-Huerta (2014) and Table 1 in Kocher,

Lenz, and Sutter (2012): The winning proportions of first-kicking teams are given on the vertical

axis while the numbers of shootouts in the considered championships are given on the horizontal

axis. Euro int refers to combined proportion for all European international championships such as

European Championship, Champions League, Cup Winners Cup, and UEFA Cup. Observe that

as sample size increases (i.e., data points 50 or more) second-mover advantage disappears in major

football data tournaments. While there is undisputed first-mover advantage in Spanish Cup, Euro

int and English Cup display somewhat first-mover advantage, and German Cup displays neither

first- nor second-mover advantage. We also thank Martin Kocher, Marc Lenz, and Matthias Sutter

for providing us their data set.
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D.2 ABBA vs ABAB in the Field

Recently ABBA replaced ABAB at the U-17 Women’s and Men’s World Football Championships.

The International Football Association Board (IFAB) decided to implement the ABBA sequence

in various trials before eventually using it in Women’s World Cup. In addition, the ABBA format

for penalty shootouts is adopted in all English Football League (EFL) competitions in 2017-18,29

and recently in Dutch Cup in 2018-19, while the rest of the world still uses ABAB as of this

writing. In dynamic individual contests too, we observe that the ABBA format being utilized. It is

used in the U.S. presidential debate sequences. Similarly, FIDE, the governing body of chess, has

recently changed the rules for the FIDE World Chess Championship and switched from ABAB to

a generalized ABBA structure that reverses the sequence of players who play with white pieces at

the half-way, i.e., ABABAB-BABABA.30 Traditionally, however, ABBA has always been used in

tennis for serve order in tiebreak sets.31

The rationale behind experimenting with ABBA in football is the belief that ABBA will elim-

inate or at least alleviate a first-mover advantage if it exists. Indeed, using simple calculations

assuming exogenous first-kick and second-kick success probabilities, Brams and Ismail (2018) and

Echenique (2017) show that ABBA is less biased than ABAB. For example, Echenique performs

calculations to argue that if the first-mover advantage ranges between 60% and 70% in the ABAB

system, it should move to the 52-55% range under the ABBA system. We show in our paper that not

only ABAB but ABBA is not order independent either, as it imposes an exogenous order sequence.

However, ABBA is at least order independent in sudden-death rounds, while ABAB fails to satisfy

it. Thus, problems associated with ABBA seem less severe. On the other hand, as ABBA has a

unique state-symmetric equilibrium, it is also ex-ante fair as the team that goes first is determined

with an initial even coin toss.

So far, since ABBA has been used in few instances and it did not replace ABAB in majority of

the high-level competition, there is lack of sufficient data to suggest empirically that the problems

associated with ABAB continue or are resolved under ABBA. It would be an interesting future

research question to make controlled random trial experiments testing these mechanisms as well as

the mechanisms that we propose.

E Better Teams under Order Independent Mechanisms

Uneven score symmetric mechanisms have another nice feature. Theorem 1 states that when two

teams have the same kicking ability, they have equal winning probability. What if one team is better

than the other? Suppose there is one player who has a better kicking ability than the rest of the

29EFL manages the second-tier leagues and cups of English football.
30González-Dı́az and Palacios-Huerta (2016) show that winning percentage in chess is in favor of the player drawing

the white pieces in the first game with 60%-40% when ABAB was employed.
31Cohen-Zada et al. (2018) show that there is no first mover advantage with the ABBA format in tennis tiebreak

serve sequences.
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players, i.e., the player has a higher PG(x) and a lower PO(x) for every x ∈ [0, 1]. We formally define

a better player as follows: Let {PG, PO} represent all players’ kicking ability except the better

player, and {P̃G, P̃O} represent the better player’s kicking ability. We assume (a) PG(x) < P̃G(x)

and PO(x) > P̃O(x), and (b)
P ′G(x)

P̃ ′G(x)
=

P ′O(x)

P̃ ′O(x)
for all x ∈ [0, 1]. We show that the team with this

better player – now named the better team – has a higher winning probability under uneven score

symmetric mechanisms.

Theorem 7 Suppose a mechanism that is order independent in sudden-death rounds and uneven

score symmetric in regular rounds is used in the shootout. Then a better team has a higher ex-

ante chance of winning at the unique state-symmetric equilibrium of the shootout induced by this

mechanism, if the better player is used strategically in the best kicking order possible by the better

team.

Proof of Theorem 7. We show that by having the better player kick in Round 1, the better

team has a higher chance of winning under an uneven score symmetric mechanism. Consider two

subcases:

(i) When the better player is in Team 2. Since the better player is placed in Round 1,

the second-round maximization problems remain unchanged. Following the proof of Theorem 1, we

have x2A = y2A > x2B = y2B, and the last kicker’s optimal kicking strategy is ξ. Next we study the

second team’s optimal kicking strategy in Round 1. When Team 1 does not score in Round 1, the

value function for Team 2 is32

VT2,P1,E = P̃G(y1E)[φ(T1; 0 : 1)(VW+VL−VT1,P2,B)+(1−φ(T1; 0 : 1))VT2,P2,A]+(1−P̃G(y1E))
VW + VL

2
,

where

VT1,P2,B = PG(x2B)PG(ξ)VL + PG(x2B)(1− PG(ξ))
VW + VL

2
+ (1− PG(x2B))VL

=
VW + VL

2
− [1− PG(x2B)(1− PG(ξ))]

VW − VL
2

VT2,P2,A = PG(y2A)VW + (1− PG(y2A))
[
(1− PG(ξ))VW + PG(ξ)

VW + VL
2

]
=
VW + VL

2
+ [1− (1− PG(y2A))PG(ξ)]

VW − VL
2

Therefore

VT2,P1,E =
VW + VL

2
+ P̃G(y1E){φ(T1; 0 : 1)[1− PG(x2B)(1− PG(ξ))]

+(1− φ(T1; 0 : 1))[1− (1− PG(y2A))PG(ξ)]}VW − VL
2

32Recall that kicking order T1 in expression φ(T1; gT1 : gT2) refers to the beginning of Round 2 when Team 1 kicked

first in Round 1.
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The optimal kicking strategy, y1E, satisfies the following first-order condition:

P̃ ′G(y1E)[α1
VW − VL

2
+ UG] + P̃ ′O(y1E)UO = 0, where

α1 = φ(T1; 0 : 1)[1− PG(x2B)(1− PG(ξ))] + (1− φ(T1; 0 : 1))[1− (1− PG(y2A))PG(ξ)].

When Team 1 scores in Round 1, the value function for Team 2 is

VT2,P1,B = P̃G(y1B)
VW + VL

2
+(1−P̃G(y1B))

[
(1−φ(T1; 1 : 0))VT2,P2,B+φ(T1; 1 : 0)(VW+VL−VT1,P2,A)

]
,

where

VT2,P2,B = PG(y2B)PG(ξ)VL + PG(y2B)(1− PG(ξ))
VW + VL

2
+ (1− PG(y2B))VL

=
VW + VL

2
− [1− PG(y2B)(1− PG(ξ))]

VW − VL
2

VT1,P2,A = PG(x2A)VW + (1− PG(x2A))[(1− PG(ξ))VW + PG(ξ)
VW + VL

2
]

=
VW + VL

2
+ [1− (1− PG(x2A))PG(ξ)]

VW − VL
2

We substitute the equations of VT2,P2,B and VT1,P2,A into VT2,P1,B as follows:

VT2,P1,B =
VW + VL

2
− (1− P̃G(y1B))

[
(1− φ(T1; 1 : 0))[1− PG(y2B)(1− PG(ξ))]

+φ(T1; 1 : 0)[1− (1− PG(x2A))PG(ξ)]
]VW − VL

2

The optimal kicking strategy, y1B, satisfies the following first-order condition:

P̃ ′G(y1B)

[[[
(1− φ(T1; 1 : 0))[1− PG(y2B)(1− PG(ξ))]

+φ(T1; 1 : 0)[1− (1− PG(x2A))PG(ξ)
]]VW − VL

2
+ UG

]
+ P̃ ′O(y1B)UO = 0

Given that y2B = x2B and x2A = y2A, the first-order condition can be rewritten as

P ′G(y1B)[α2
VW − VL

2
+ UG] + P ′O(y1B)UO = 0, where

α2 = (1− φ(T1; 1 : 0))[1− PG(x2B)(1− PG(ξ))] + φ(T1; 1 : 0)[1− (1− PG(y2A))PG(ξ)].

Under an order-independent mechanism, φ(T1; 0 : 1) + φ(T1; 1 : 0) = 1, and we have α1 = α2.

Accordingly, y1E = y1B. Finally, we solve for Team 1’s optimal kicking strategy in Round 1. The

value function for Team 1 is

VT1 = PG(x1)[VW + VL − VT2,P1,B] + (1− PG(x1))[VW + VL − VT2,P1,E]

= VW + VL − PG(x1)VT2,P1,B − (1− PG(x1))VT2,P1,E

=
VW + VL

2
+ [PG(x1)(1− P̃G(y1B))α2 − (1− PG(x1))P̃G(y1E)α1]

VW − VL
2
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The optimal kicking strategy, x1, satisfies the following first-order condition:

P ′G(x1)
[[

(1− P̃G(y1B))α2 + P̃G(y1E)α1

]VW − VL
2

+ UG

]
+ P ′O(x1)UO = 0

=⇒ P ′G(x1)[α1
VW − VL

2
+ UG] + P ′O(x1)UO = 0

Therefore x1 = y1E = y1B, and

VT1 =
VW + VL

2
+ [PG(x1)(1− P̃G(x1))− (1− PG(x1))P̃G(x1)]α1

VW − VL
2

<
VW + VL

2
.

Hence Team 2 has a higher chance of winning.

(ii) When the better player is in Team 1. Following the same procedure in (i), we conclude

x1 = y1E = y1B. But now VT1 becomes

VT1 = P̃G(x1)[VW + VL − VT2,P1,B] + (1− P̃G(x1))[VW + VL − VT2,P1,E]

= VW + VL − P̃G(x1)VT2,P1,B − (1− P̃G(x1))VT2,P1,E

=
VW + VL

2
+ [P̃G(x1)(1− PG(x1))− (1− P̃G(x1))PG(x1)]α1

VW − VL
2

>
VW + VL

2
.

Again, the team with a better player has a higher chance of winning.

Therefore, order-independent mechanisms satisfy the second part of the Aristotelean Justice

criterion according to the definition of better/worse teams above. Unfortunately, we cannot make

any more generalizations for other types of asymmetries between abilities of teams.

F Practical Considerations

Order independence is capable of ruling out almost all exogenous mechanisms in regular rounds,

including ABAB and ABBA. In terms of endogenous mechanisms, however, order independence

does not pose as much of a restriction. One needs further desirable properties to help refine the

set of order-independent mechanisms. We will next define additional criteria to provide concrete

practical advice in that regard. We can talk about efficiency or inefficiency of an attempt, to the

extent it maximizes the effort levels of kickers. In other economic contests, efficiency could be even

more important. Among order-independent mechanisms, it turns out that behind first and ahead

first are the two extremes in terms of inducing kickers’ efforts in Round 1:

Proposition 3 Behind-first (ahead-first) mechanisms maximize (minimize) Round 1 efforts of all

kickers among all order-independent mechanisms at the state-symmetric equilibrium.

Proof of Proposition 3. From the proof of Theorem 1, we observe that any order-independent

mechanism φ must satisfy the condition φ(T1; 0 : 1) + φ(T1; 1 : 0) = 1.33 Moreover, under this

33Recall that kicking order T1 in expression φ(T1; gT2 : gT2) refers to the beginning of Round 2 when Team 1 kicked

first in Round 1.
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condition, the three optimal kicking strategies in Round 1 are the same: x1 = y1E = y1B (see

Corollary 1) and they are determined by the following first-order condition:

P ′G(x1)[α1
VW − VL

2
+ UG] + P ′O(x1)UO = 0, where

α1 = φ(T1; 1 : 0)[1− (1− PG(y2A))PG(ξ)] + (1− φ(T1; 1 : 0))[1− PG(x2B)(1− PG(ξ))].

Hence the higher the value of α1, the higher x1. As x2B < ξ, which is Round 2 second kicking team’s

intended spot, and y2A < ξ, we obtain 1−PG(x2B)(1−PG(ξ)) > 1− (1−PG(y2A))PG(ξ). Therefore

maximum x1 is achieved in an order-independent mechanism when φ(T1; 1 : 0) = 0, i.e., when φ is

a behind-first mechanism. On the other hand, minimum x1 is achieved when φ(T1; 1 : 0) = 1, i.e.,

when φ is an ahead-first mechanism.

The intuition behind this result can be summarized as follows for behind first (ahead first is

symmetric). First we summarize the incentives facing Round 2 kickers. In Round 2, kicking first is

not good at all for higher goal efforts: the first-kicking team’s player (if his team is either behind or

ahead) will always exert less effort than he would in the case when he kicks second in Round 2. This

is true because his marginal contribution will be less in the first case, as the other team’s kicker –

who will go second – can always miss or offset the first kicker’s failure. So he has higher incentives

to shirk when he kicks first. Now, we turn our attention to Round 1 kickers’ marginal contributions

under both mechanisms. First, observe that both teams’ kickers under any uneven score symmetric

mechanism exert the same effort in Round 1, by Corollary 1. Therefore, understanding the first-

kicking team player’s incentives is sufficient to draw the difference between the two mechanisms

regardless of the kicking order or score during Round 1. A Round 1 kicker, if he does not exert high

effort under behind first, may cause his team to fall behind with higher probability. This causes

his teammate to shirk more, when he goes first, and the other team’s second player to exert higher

effort, when he goes second in Round 2. On the other hand, under ahead first, the Round 1 kicker’s

incentives are exactly the opposite! If he does not exert high effort in Round 1, his team may fall

behind with higher probability, but his teammate will exert relatively higher effort under ahead first

by going second in Round 2 (with respect to behind first) and the other team’s second kicker will

exert less effort in Round 2 (with respect to behind first). Hence, Round 1 kicker’s possible failure

can still be salvaged with higher probability under ahead first. So he shirks under ahead first vis-a-

vis behind first. Therefore, behind first dominates any random (i.e., convex combination of ahead

first and behind first) and ahead-first mechanisms among all uneven score symmetric mechanisms.

On the other hand, observe that ahead first and behind first cannot be compared with each other

in Round 2 whenever the score is not tied: in ahead first when Team 1 is ahead, Team 1 kicks

first while in behind first, it kicks second under the same scenario. So there are no two comparable

information sets that are reached with positive probability under both mechanisms in Round 2.

When the score is tied however, all uneven score symmetric mechanisms lead to the same goal

efforts and are equivalent in Round 2. Thus, round by round we are not able to establish an effort

ranking among different order-independent shootout mechanisms. Nevertheless, we can still obtain
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a partial ranking based on the expected number of attempts. Maximizing the expected number of

attempts can be desirable from a social perspective, as well as a team perspective, if the attempt

cost is negligible or negative. Spectators may wish to see more scoring attempts. Recall that we

had defined two particular cases of shootouts earlier. In easy shootouts, the goal probability of each

kick is greater than 50% for each intended spot, as in football, while in difficult shootouts, the goal

probability of each kick is less than 50% for each intended spot, as in hockey. Then we have the

following result as a proposition:

Proposition 4 An order-independent mechanism maximizes the expected number of attempts taken

by both teams if and only if

• it is behind first in an easy shootout, and

• it is ahead first in a difficult shootout.

Proof of Proposition 4. When a tie occurs at the end of Round 1, both teams take a shot

with probability 1 in Round 2. So an attempt is not taken only if the game is not tied at the

end of Round 1. As both team players always exert the same effort ξ1 in an order-independent

mechanism at all state-symmetric equilibria in Round 1 (see the Corollary 1), the probability of one

team being ahead at the beginning of Round 2 is 2PG(ξ1)(1− PG(ξ1)). Consider any uneven score

symmetric mechanism in which the ahead team moves first with probability α ∈ [0, 1] in Round 2.

An attempt from the second-moving team in Round 2 is not made if and only if the ahead team

moves first and scores or the behind team moves first and misses. This happens with a probability

2PG(ξ1)(1− PG(ξ1))[αPG(ξ2A) + (1− α)(1− PG(ξ2B))], where ξ1 is the Round 1 effort level of this

shootout and ξ2B, ξ2A are the Round 2 effort levels at state-symmetric equilibrium for the first-

moving team. For an easy shootout, we have PG(x) > 1
2

for all x ∈ [0, x̄]. Given that the optimal

first-period effort ξ1 < x̄, 2PG(ξ1)(1 − PG(ξ1)) is decreasing in ξ1. Since behind first maximizes ξ1

among all order-independent shootouts by Proposition 3, 2PG(ξ1)(1 − PG(ξ1)) is minimized under

behind first. Moreover, in an easy shootout 1− PG(ξ2B) < 1
2
< PG(ξ2A). Hence, the probability of

not making an attempt is minimized for behind first among all order-independent easy shootouts.

For a difficult shootout, we have PG(x) < 1
2

for all x ∈ [0, x̄]. Given that the optimal first-period

effort ξ1 < x̄, 2PG(ξ1)(1 − PG(ξ1)) is increasing in ξ1. Since ahead first minimizes ξ1 among all

order-independent shootouts by Proposition 3, 2PG(ξ1)(1−PG(ξ1)) is minimized under ahead first.

Moreover, in a difficult shootout 1− PG(ξ2B) > 1
2
> PG(ξ2A). Hence, the probability of not making

an attempt is minimized for ahead first among all order-independent easy shootouts.

The intuition for this result is as follows for easy shootouts: In Round 1, all teams take penalties.

In Round 2 however, both teams take penalties for sure if and only if the score is tied after Round 1.

It turns out that this occurs with the most probability in a behind-first shootout (see Proposition

3). Moreover, when the score is not tied after Round 1, the second-moving team in Round 2

46



does not take a kick if the ahead team moves first and scores or the behind team moves first and

misses. Given that in an easy shootout the probability of scoring is higher than the probability of

missing, this probability is minimized under behind first. Hence, overall, behind first maximizes the

expected number of attempts among all order-independent mechanisms. The intuition is reversed

for difficult shootouts. Although behind-first mechanisms have nice features when the score is

uneven, as mentioned before they are silent on how to define the kicking order when the score is

tied. Order independence in regular rounds, by our characterization in Theorem 1, is also mute

on this issue, but reversing the kicking order is a sure way of establishing order independence in

sudden-death rounds (Theorem 3). ABBA, which is not order independent in regular rounds since

it does not satisfy uneven score symmetry, does possess a nice property: When the score is tied in

most crucial rounds, i.e., in sudden-death rounds, it gives both teams an equality of opportunity

of kicking first. Clearly, such an equality-of-opportunity property is nowhere more important than

in sudden-death rounds in which the score must be tied before every round. We would like to

preserve the equality-of-opportunity feature of this mechanism, especially in sudden-death rounds.

The behind-first (ahead-first) mechanism defined below has this feature.

The alternating-order behind-first (ahead-first) mechanism: The team that is behind

(ahead) in score after any Round r kicks first in Round r + 1. If the score is tied after Round

r, then the team that kicked second in Round r kicks first in Round r + 1.34

Besides its simplicity, this mechanism possesses several nice features. We will start with sudden-

death equality of opportunity. This property would emerge naturally since a simple but strong case

could be easily made against the same team kicking multiple times in a row in those rounds in a

lop-sided fashion:

Sudden-death equality of opportunity: Whenever the shootout ends after the Sudden-death

Round n + r with r even, each team will have kicked first exactly r/2 times in the sudden-death

rounds.

Then we have the following corollary:

Corollary 2 The alternating-order behind-first (ahead-first) mechanism satisfies sudden-death

equality of opportunity.

Another justification of alternating-order behind first and ahead first is as follows: Eclectic

mechanisms could be confusing for players, coaches, referees, and fans. One can combine an order-

independent mechanism in regular rounds with another order-independent mechanism in sudden-

death rounds in an eclectic fashion to come up with an overall order-independent mechanism. For

example, consider the following mechanism in regular rounds coupled with the alternating-order

34We are agnostic about how Round 1 order is determined in the definition of the mechanism. It can be determined

in any manner. However, in practice we suggest it be determined by an even coin toss as in ABAB.
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mechanism in sudden-death rounds: Team 1 kicks first in Round r as long as the score is tied or

Team 1 is behind in Round r − 1 ; once Team 2 falls behind after some Round r′ > r, Team 2

kicks first until Team 1 falls behind in score after some Round r′′ > r′, after which Team 1 kicks

first. One can improve on such a patchy mechanism by requiring that such an eclecticism should be

eliminated. We will introduce two properties such that the latter uses the former in its definition to

formalize this intuition of simplicity. Before introducing the first property, we formally introduce

how an order pattern can be recognized in a mechanism:

A finite machine representation of a mechanism is a triple (Q,A, t) such that

• Q is a finite set of (machine) states such that state q = (Tk)w ∈ Q denotes that Team

k taking the first penalty shot in the round associated with this state and w is just an

index number. Thus, Q can be partitioned into two as QT1 = {(T1)1, . . . , (T1)w1} and QT2 =

{(T2, . . . , (T2)w2} for some w1 and w2 as the sets of states in which Team 1 and Team 2 kick

first, respectively.

• A = {(g1 : g2)} is the set of possible scores.

• t : Q ∪ {∅} × A × Q → [0, 1] is a state transition probability function such that∑
q′∈Q t(q, (g1 : g2), q

′) = 1 for all q ∈ Q ∪ {∅} and (g1 : g2) ∈ A. Here, t(q, (g1 : g2), q
′)

is the probability of moving from state q to state q′ when after round associated with q is

played and the score is g1 : g2 just before q′ and after q.

We refer to null state ∅, as the start of the shootout. In this representation, we envision that

each machine state is associated with a round of penalty kicks taken by each team consecutively.

However, as round numbers proceed, the game will have to come back to some previous machine

state, as the set of states is finite whereas a game can last arbitrarily long in theory. A mechanism

φ is said to have finite machine representation (Q,A, t), if (1) t(∅, (0 : 0), (T1)1) = φ(∅, 0 : 0)

and t(∅, (0 : 0), (T2)1) = 1 − φ(∅, 0 : 0); and (2) recursively, for any kicking-order history hr−1 at

the beginning of Round r, and feasible score gT1 : gT2 at the beginning of Round r, if the associated

machine state with round r − 1 was q ∈ Q, then we have t(q, (gT1 : gT2), (T1)w) = φ(hr−1, gT1 : gT2)

for some state (T1)w ∈ QT1 and t(q, (gT1 : gT2), (T2)w) = 1 − φ(hr−1, gT1 : gT2) for some state

(T2)w ∈ QT2 ; and once a transition occurs to a state q′ from q, ex post we refer to q′ as the machine

state associated with round r. Note that a machine representation does not specify when the

shootout game ends, as no round information is kept in the machine representation. It only keeps

track of how transitions are made between different kicking orders in a well-defined pattern. We

are now ready to introduce our next property:

A mechanism is stationary if it has a finite machine representation (Q,A, t) such that for all

states qi ∈ Q ∪ {∅} and qj ∈ Q, t(qi, (gT1 : gT2), qj) = t(qi, (g
′
T1

: g′T2), qj) for all scores such that

gT1 − gT2 = g′T1 − g
′
T2

.

Thus, stationarity implies that state transitions are made in the same manner whenever score
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differences are the same. For example, the alternating-order behind-first mechanism has this type

of a representation as shown in Figure 3. We state the following proposition whose proof is given

Figure 3: The state transition representation for the alternating-order behind-first mechanism.

Transitions from the start of the shootout are omitted for simplicity. In general one of the two

states in the figure will be chosen randomly with an unbiased lottery. Alternating-order ahead

first’s representation is symmetrically defined.

in the figure for behind first:

Proposition 5 The alternating-order behind-first (ahead-first) mechanism is stationary.

Machine representations can be used to measure the complexity of an algorithm.35 However,

very complicated mechanisms can also be stationary.36 On the other hand, if we would like to

have a chance of both teams kicking first in at least one round, we need at least two states, one

Team-1-kicking-first state and one Team-2-kicking-first state. Thus, |Q| = 2 is the minimum we

can hope for in a reasonable mechanism.37 Our alternating-order behind-first mechanism also has

this property (see Figure 3). We formalize this property as follows:

A mechanism is simple if it has a stationary machine representation with only two states such that

in one state Team 1 kicks first and in the other Team 2 kicks first. An important motivation for

simplicity stems from the FIFA football rules. These rules state that a rule violation by the referees

35For example, in game theory, they are used to represent the recall requirement needed for implementing a

repeated game strategy (see Rubinstein, 1998, for an excellent survey).
36Consider a modified Prouhet-Thue-Morse behind-first mechanism. First we define the fractal Prouhet-Thue-

Morse mechanism (see Palacios-Huerta, 2014): The kicking order proceeds in an exogenous manner as follows:

ABBABAAB..., i.e., the order sequence since the beginning of the shootout reverses after 2k rounds for each k =

1, 2, . . .. We define the following modified Prouhet-Thue-Morse behind-first mechanism: If one team is behind, it kicks

first; otherwise, at even scores the first-kicking team follows the sequence ABBABAAB; then this sequence reverses

starting with Team 2 and keeps reversing until the shootout ends. Any behind-first mechanism compatible with a

Prouhet-Thue-Morse order is stationary, and the simplest stationary machine representation of such a mechanism

cannot have fewer than |Q| = 16 states. On the other hand, the truly fractal Prouhet-Thue-Morse sequence is not

stationary.
37Indeed, ABAB has |Q| = 2, as according to the initial coin toss, either team can go first. However, it is not order

independent. The random-order mechanism has also |Q| = 2 and is order independent, however, does not maximize

the expected number of attempts.
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during a game necessitates replay of the game. Shootout mechanisms that satisfy the simplicity

property will make the process easier to administer for the referees and will make the process less

prone to rule violations. We see simplicity as a vital requirement of a real-life shootout mechanism.

The current mechanism satisfies simplicity but none of the other properties we have introduced in

this paper. We formalize the simplicity of the alternating-order behind first (ahead first) with the

following proposition. We gave its proof earlier through Figure 3:

Proposition 6 The alternating-order behind-first (ahead-first) mechanism is simple.

We state the main result of this appendix as follows (which was stated as Theorem 5 in Discussion

section of the main text).

Theorem 8 In an easy shootout, alternating order behind first is the unique order-independent

mechanism that maximizes the expected number of attempts and satisfies simplicity and sudden-

death equality of opportunity. On the other hand, in a difficult shootout, alternating order ahead

first is the unique order-independent mechanism that maximizes the expected number of attempts

and satisfies simplicity and sudden-death equality of opportunity.

Proof of Theorem 8. Observe that the mechanisms that satisfy the properties should be

behind-first, since behind-first mechanisms are the only ones that satisfy order independence and

maximizing expected number of attempts (by Proposition 4). The mechanisms that satisfy the

sudden-death equality of opportunity (SDEO from now on) have to have each team kicking first in

every two sudden-death rounds exactly once. Hence, the only kicking order that is simple and SDEO

in the sudden-death rounds is alternating-order. Stationarity (as implied by simplicity) implies that

the order of kicking switches when the score stays even between two rounds – i.e., if the state was

reached after a tie in score, the order switches after this state if the tied score continues. But this

does not imply how the kicking order changes if we transition to a tied score from an uneven score.

Simplicity implies that we have two states as Q = {(T1)1, (T2)1}. Thus, we need to use the same

states of sudden-death rounds also in the regular rounds. Hence, as kicking order switches when

the score is tied, i.e. we transition from (T1)1 to (T2)1 or the other way around in the sudden-death

rounds, we should do the same in the regular rounds as well. Thus, whenever a round ends with a

tied score, we should reverse the kicking order. We end up with the unique machine representation

in Figure 3, i.e. with the alternating-order behind-first.

We next demonstrate the independence of properties in Theorem 8: An order-independent mech-

anism that satisfies all properties but violates the maximization of expected number of attempts is

the alternating-order ahead-first (behind-first) mechanism for easy (difficult) shootouts. An order-

independent mechanism that satisfies all properties but the sudden-death equality of opportunity

is a behind-first (an ahead-first) mechanism for easy (difficult) shootouts, which randomly deter-

mines with an even lottery who goes first when the score is tied. An order-independent mechanism
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that satisfies all properties but is not simple is a Prouhet-Thue-Morse behind-first (ahead-first)

mechanism for easy (difficult) shootouts.

Finally, an interesting and relevant question is whether the behind-first feature has been used

in real life. Perhaps it is nowhere more blatant and effectively at work than in the rules of petanque

(a.k.a. boules or bocce), which was invented in ancient times by the Greeks, later modified by

Romans, and is now popular in various parts of the world including France and Italy – and currently

expanding.38 In this game, the goal is to throw metal or wooden balls as close as possible to a small

special wooden target, while standing inside a small starting circle. The rules are as follows: A

player from the team that threw (and established) the target also throws the first ball. Then a

player from the other team throws the second ball. The team with the ball that is closest to the

target is said to have the point or be winning and other team is losing. Then the losing team gets to

throw the next ball.39 Thus, in essence, just like our behind-first mechanisms, petanque too intends

to give the losing team a chance to recover. Further, if the two balls closest to the target are from

opposing teams and equidistant, teams play alternately until one team becomes the winning team

and the other one the losing team.40

G Order Independent Mechanisms with Three Regular

Rounds

Let us define Vi,j,s to be the value function for the kicker who is the jth kicker to kick in Round k

when the state is s = (s1, s2), where si is the score for the team who kicks ith in Round k. Denote

by xi,j,s the optimal kicking strategy for this kicker.

Round 3, Second Kick. Whether the team is currently even or behind, the optimal kicking

strategy is always x∗, where x∗ is determined by the following first-order condition:

P ′G(x∗)[
VW − VL

2
+ UG] + P ′O(x∗)UO = 0

Round 3, First Kick. When the score is currently even (s = (2, 2), (1, 1) or s = (0, 0)), the

value function for the team is VW+VL
2

. When s = (0, 1), the value function for the kicker is

V3,1,(0,1) = PG(x3,1,(0,1))PG(x∗)VL + PG(x3,1,(0,1))(1− PG(x∗))
VW + VL

2
+ (1− PG(x3,1,(0,1)))VL

=
VW + VL

2
− [1− PG(x3,1,(0,1))(1− PG(x∗))]

VW − VL
2

=
VW + VL

2
− α3,1,(0,1)

VW − VL
2

The optimal kicking strategy, x3,1,(0,1), satisfies the following first-order condition:

P ′G(x3,1,(0,1))
[
(1− PG(x∗))

VW − VL
2

+ UG
]

+ P ′O(x3,1,(0,1))UO = 0

38We thank William Thomson for bringing the sports of petanque to our attention.
39See Article 16 of the world governing body of petanque FIPJP’s official rulebook at http://fipjp.org/index.

php/en/2015-05-10-11-11-42/petanque-rules retrieved on Feb 13, 2018.
40See Article 29 of the FIPJP’s official rulebook.
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Similarly, we have V3,1,(0,1) = V3,1,(1,2) and x3,1,(0,1) = x3,1,(1,2). When s = (1, 0), the value function

for the kicker is

V3,1,(1,0) = PG(x3,1,(1,0))VW + (1− PG(x3,1,(1,0)))
[
(1− PG(x∗))VW + PG(x∗)

VW + VL
2

]
=
VW + VL

2
+ [1− (1− PG(x3,1,(1,0)))PG(x∗)]

VW − VL
2

=
VW + VL

2
+ α3,1,(1,0)

VW − VL
2

The optimal kicking strategy, x3,1,(1,0), satisfies the following first-order condition:

P ′G(x3,1,(1,0))[PG(x∗)
VW − VL

2
+ UG] + P ′O(x3,1,(1,0))UO = 0

Similarly, we have V3,1,(1,0) = V3,1,(2,1) and x3,1,(1,0) = x3,1,(2,1).

Round 2, Second Kick. Denote by φ3(s) the prob. that the first-kicking team in Round 2

kicks first in Round 3 when the state at the end of Round 2 is s. When s = (0, 0), the value function

for the kicker is

V2,2,(0,0) = PG(x2,2,(0,0))[φ3(0, 1)(VW + VL − V3,1,(0,1)) + (1− φ3(0, 1))V3,1,(1,0)] + (1− PG(x2,2,(0,0)))
VW + VL

2

=
VW + VL

2
+ PG(x2,2,(0,0))α2,2,(0,0)

VW − VL
2

,

where

α2,2,(0,0) = φ3(0, 1)α3,1,(0,1) + (1− φ3(0, 1))α3,1,(1,0)

The optimal kicking strategy, x2,2,(0,0), satisfies the following first-order condition:

P ′G(x2,2,(0,0))[α2,2,(0,0)
VW − VL

2
+ UG] + P ′O(x2,2,(0,0))UO = 0

When s = (1, 0), the value function for the kicker is

V2,2,(1,0) = PG(x2,2,(1,0))
VW + VL

2
+ (1− PG(x2,2,(1,0)))[φ3(1, 0)(VW + VL − V3,1,(1,0)) + (1− φ3(1, 0))V3,1,(0,1)]

=
VW + VL

2
− (1− PG(x2,2,(1,0)))α2,2,(1,0)

VW − VL
2

,

where

α2,2,(1,0) = φ3(1, 0)α3,1,(1,0) + (1− φ3(1, 0))α3,1,(0,1).

The optimal kicking strategy, x2,2,(1,0), satisfies the following first-order condition:

P ′G(x2,2,(1,0))[α2,2,(1,0)
VW − VL

2
+ UG] + P ′O(x2,2,(1,0))UO = 0

When s = (1, 1), the value function for the kicker is

V2,2,(1,1) = PG(x2,2,(1,1))[φ3(1, 2)(VW + VL − V3,1,(1,2)) + (1− φ3(1, 2))V3,1,(2,1)] + (1− PG(x2,2,(1,1)))
VW + VL

2

=
VW + VL

2
+ PG(x2,2,(1,1))α2,2,(1,1)

VW − VL
2

,
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where

α2,2,(1,1) = φ3(1, 2)α3,1,(1,2) + (1− φ3(1, 2))α3,1,(2,1)

The optimal kicking strategy, x2,2,(1,1), satisfies the following first-order condition:

P ′G(x2,2,(1,1))[α2,2,(1,1)
VW − VL

2
+ UG] + P ′O(x2,2,(1,1))UO = 0

When s = (2, 1), the value function for the kicker is

V2,2,(2,1) = PG(x2,2,(2,1))
VW + VL

2
+ (1− PG(x2,2,(2,1)))[φ3(2, 1)(VW + VL − V3,1,(2,1)) + (1− φ3(2, 1))V3,1,(1,2)]

=
VW + VL

2
− (1− PG(x2,2,(2,1)))α2,2,(2,1)

VW − VL
2

,

where

α2,2,(1,0) = φ3(2, 1)α3,1,(2,1) + (1− φ3(2, 1))α3,1,(1,2).

The optimal kicking strategy, x2,2,(2,1), satisfies the following first-order condition:

P ′G(x2,2,(2,1))[α2,2,(1,0)
VW − VL

2
+ UG] + P ′O(x2,2,(2,1))UO = 0

When s = (0, 1), the value function for the kicker is

V2,2,(0,1) = PG(x2,2,(0,1))VW + (1− PG(x2,2,(0,1)))[φ3(0, 1)(VW + VL − V3,1,(0,1)) + (1− φ3(0, 1))V3,1,(1,0)]

=
VW + VL

2
+ α2,2,(0,1)

VW − VL
2

,

where

α2,2,(0,1) = PG(x2,2,(0,1)) + (1− PG(x2,2,(0,1)))[φ3(0, 1)α3,1,(0,1) + (1− φ3(0, 1))α3,1,(1,0)].

The optimal kicking strategy, x2,2,(0,1), satisfies the following first-order condition:

P ′G(x2,2,(0,1)){[1− [φ3(0, 1)α3,1,(0,1) + (1− φ3(0, 1))α3,1,(1,0)]]
VW − VL

2
+ UG}+ P ′O(x2,2,(0,1))UO = 0

When s = (2, 0), the value function for the kicker is

V2,2,(2,0) = PG(x2,2,(2,0))[φ3(2, 1)(VW + VL − V3,1,(2,1)) + (1− φ3(2, 1))V3,1,(1,2)] + (1− PG(x2,2,(2,0)))VL

=
VW + VL

2
− α2,2,(2,0)

VW − VL
2

,

where

α2,2,(2,0) = PG(x2,2,(2,0))[φ3(2, 1)α3,1,(2,1) + (1− φ3(2, 1))α3,1,(1,2)] + 1− PG(x2,2,(2,0)).

The optimal kicking strategy, x2,2,(2,0), satisfies the following first-order condition:

P ′G(x2,2,(2,0)){[1− [φ3(2, 1)α3,1,(2,1) + (1− φ3(2, 1))α3,1,(1,2)]]
VW − VL

2
+ UG}+ P ′O(x2,2,(2,0))UO = 0
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Round 2, First Kick. When s = (0, 0) or s = (1, 1), the value function for the team is VW+VL
2

.

When s = (0, 1), the value function for the kicker is

V2,1,(0,1) = PG(x2,1,(0,1))(VW + VL − V2,2,(1,1)) + (1− PG(x2,1,(0,1)))(VW + VL − V2,2,(0,1))

=
VW + VL

2
− α2,1,(0,1)

VW − VL
2

,

where

α2,1,(0,1) = PG(x2,1,(0,1))PG(x2,2,(1,1))α2,2,(1,1) + (1− PG(x2,1,(0,1)))α2,2,(0,1).

The optimal kicking strategy, x2,1,(0,1), satisfies the following first-order condition:

P ′G(x2,1,(0,1)){[α2,2,(0,1) − PG(x2,2,(1,1))α2,2,(1,1)]
VW − VL

2
+ UG}+ P ′O(x2,1,(0,1))UO = 0

When s = (1, 0), the value function for the kicker is

V2,1,(1,0) = PG(x2,1,(1,0))(VW + VL − V2,2,(2,0)) + (1− PG(x2,1,(1,0)))(VW + VL − V2,2,(1,0))

=
VW + VL

2
+ α2,1,(1,0)

VW − VL
2

,

where

α2,1,(1,0) = PG(x2,1,(1,0))α2,2,(2,0) + (1− PG(x2,1,(1,0)))(1− PG(x2,2,(1,0)))α2,2,(1,0).

The optimal kicking strategy, x2,1,(1,0), satisfies the following first-order condition:

P ′G(x2,1,(1,0)){[α2,2,(2,0) − (1− PG(x2,2,(1,0)))α2,2,(1,0)]
VW − VL

2
+ UG}+ P ′O(x2,1,(1,0))UO = 0

Round 1, Second Kick. When s = (0, 0), the value function for the kicker is

V1,2,(0,0) = PG(x1,2,(0,0))[φ2(0, 1)(VW + VL − V2,1,(0,1)) + (1− φ2(0, 1))V2,1,(1,0)] + (1− PG(x1,2,(0,0)))
VW + VL

2

=
VW + VL

2
+ PG(x1,2,(0,0))α1,2,(0,0)

VW − VL
2

,

where

α1,2,(0,0) = φ2(0, 1)α2,1,(0,1) + (1− φ2(0, 1))α2,1,(1,0).

The optimal kicking strategy, x1,2,(0,0), satisfies the following first-order condition:

P ′G(x1,2,(0,0))[α1,2,(0,0)
VW − VL

2
+ UG] + P ′O(x1,2,(0,0))UO = 0.

When s = (1, 0), the value function for the kicker is

V1,2,(1,0) = PG(x1,2,(1,0))
VW + VL

2
+ (1− PG(x1,2,(1,0)))[φ2(1, 0)(VW + VL − V2,1,(1,0))

+ (1− φ2(1, 0))V2,1,(0,1)]

=
VW + VL

2
− (1− PG(x1,2,(1,0)))α1,2,(1,0)

VW − VL
2

,
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where

α1,2,(1,0) = φ2(1, 0)α2,1,(1,0) + (1− φ2(1, 0))α2,1,(0,1).

The optimal kicking strategy, x1,2,(1,0), satisfies the following first-order condition:

P ′G(x1,2,(1,0))[α1,2,(1,0)
VW − VL

2
+ UG] + P ′O(x1,2,(1,0))UO = 0.

Round 1, First Kick. The value function for the kicker is

V1,1,(0,0) = PG(x1,1,(0,0))[VW + VL − V1,2,(1,0)] + (1− PG(x1,1,(0,0)))[VW + VL − V1,2,(0,0)]

=
VW + VL

2
+ [PG(x1,1,(0,0))(1− PG(x1,2,(1,0)))α1,2,(1,0)

− (1− PG(x1,1,(0,0)))PG(x1,2,(0,0))α1,2,(0,0)]
VW − VL

2

The optimal kicking strategy, x1,1,(0,0), satisfies the following first-order condition:

P ′G(x1,1,(0,0))
[[

(1−PG(x1,2,(1,0)))α1,2,(1,0)+PG(x1,2,(0,0))α1,2,(0,0)

]VW − VL
2

+UG

]
+P ′O(x1,1,(0,0))UO = 0

Therefore

x1,1,(0,0) R x1,2,(0,0) ⇐⇒ (1− PG(x1,2,(1,0)))α1,2,(1,0) R PG(x1,2,(0,0))α1,2,(0,0)

On the other hand, we have

V1,1,(0,0) =
VW + VL

2
⇐⇒ PG(x1,1,(0,0))(1− PG(x1,2,(1,0)))α1,2,(1,0) = (1− PG(x1,1,(0,0)))PG(x1,2,(0,0))α1,2,(0,0)

⇐⇒ (1− PG(x1,2,(1,0)))α1,2,(1,0) = (1− PG(x1,1,(0,0)))α1,2,(0,0)

The condition holds if φ2(1, 0) + φ2(0, 1) = 1.

H First-Mover Advantage: A Refinement

Here, we address the question as to which state-symmetric equilibrium is more likely to be observed

when there are multiple state-symmetric equilibria in ABAB. To that end, we use a selection cri-

terion. Suppose there are multiple state-symmetric equilibria. Let the state-symmetric equilibrium

with (x∗, y∗E, y
∗
B) be the one with highest x, i.e., the intended spot by Team 1’s kickers is the closest

to the goal-optimal spot among all state-symmetric equilibria. We will refer to this equilibrium as

the most aggressive equilibrium for Team 1 for the following reason: As x∗ = y∗E > y∗B, we have

the winning probability of Team 1, α =
1−PG(y∗B)

2−PG(y∗E)−PG(y
∗
B)
> 1

2
by Equation 13; and moreover, such

a winning probability for Team 1 is the highest among all state-symmetric equilibria. As a result,

Team 1’s kickers can collectively enforce the most aggressive kicking equilibrium for their team and

win more often, in which the first kicker can set the tone of aggressiveness for his team. Being the

first mover, if Team 1 can credibly signal Team 2 that they are indeed playing this most aggressive
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equilibrium, this would be the most beneficial for Team 1. In this case, we can use such a signaling

through beliefs in the state-symmetric equilibrium to obtain a refinement. For example, if σx∗ , the

probability density function of the ball reaching a particular spot on the goal line when it is aimed

at x∗ has the support set [x∗− εx∗ , x∗+ εx∗ ]. Suppose that this support is disjoint from such support

sets of other equilibria. Then, whenever Team 2 kickers observe a kick spot in σx∗ ’s support, they

can credibly deduce that indeed Team 1 is playing this aggressive equilibrium. Hence, the beliefs

of Team 2’s kickers in information sets that are never reached in a state-symmetric equilibrium can

be fine-tuned so that less aggressive equilibria can be eliminated.

Definition 1 (Refinement Criterion) If the most aggressive state-symmetric equilibrium for

Team 1 involves aiming at x∗ for each kicker, and the possible spots that the ball can go under

x∗ (as determined by the support of σx∗, [x∗− εx∗ , x∗+ εx∗ ]) are different from any of the spots that

the ball can go under all other state-symmetric equilibria, then Team 1 can credibly enforce the most

aggressive state-symmetric equilibrium.

Hence, we get the following corollary:

Corollary 3 (Team 1 wins more often) If the state-symmetric equilibria can be refined, then

Team 1, the team that kicks first, wins with a higher probability than Team 2 in the sudden-death

rounds of ABAB.

Hence, in our analysis with equally-skilled players and goalies, ABAB is biased toward the

first-moving team and further multiple equilibria certainly exist. Indeed, empirically as well, these

multiple equilibria and the overall first-mover advantage are evident. The relative frequency figures

regarding the winning probability of the teams that kick first vary significantly across tournaments

throughout the world (see Figure A.1).
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