1		Deep continental roots and cratons
2		
3		
4		D. Graham Pearson ¹ , James M. Scott ² , Jingao Liu ³ , Andrew Schaeffer ⁴ ,
5		Lawrence Hongliang Wang ⁵ , Jeroen van Hunen ⁶ , Kristoffer Szilas, ⁷ ,
6		Thomas Chacko ¹ , Peter R. Kelemen ⁸
7		Thomas Gracko y Teter Di Refemen
/		
o 9	1)	Department of Earth & Atmospheric Sciences, University of Alberta, Edmonton,
10	2	Alberta, Canada, T6G 2E3.
11	2)	Department of Geology, University of Otago, PO Box 56, Dunedin 9054, New
12		Zealand
13	3)	State Key Laboratory of Geological Processes and Mineral Resources, China
14		University of Geosciences, Beijing 100083, China.
15	4)	Geological Survey of Canada, Pacific Division, Natural Resources, Sidney, BC, Canada
16	5)	Institute for Energy Technology, Instituttveien 18, 2007 Kjeller, Norway
17	6)	Department of Earth Sciences, Durham University, South Road, Durham DH1 3LE,
18		United Kingdom
19	7)	Department of Geosciences and Natural Resource Management, University of
20		Copenhagen, Øster Voldgade 10, 1350 København, Denmark
21	8)	Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964-
22		8000, USA
23		
24		
25		Main Text 5494 Words
26		
27		
28 29		
30		
31		

32 Summary:

33

34 The formation and preservation of cratons - the oldest parts of the continents comprising over 60% of the continental landmass - remains an enduring problem. 35 36 Key to craton development is how and when the thick strong mantle roots that 37 underlie these regions formed and evolved. Peridotite melting residues forming cratonic lithospheric roots mostly originated via relatively low-pressure melting and 38 were subsequently transported to greater depth by thickening produced by lateral 39 40 accretion and compression. The longest-lived cratons assembled during Mesoarchean and Paleoproterozoic times, creating the 150 to 250 km thick, stable mantle roots 41 42 that are critical to preserving Earth's early continents and central to defining the cratons although we extend the definition of cratons to include extensive regions of 43 long-stable Mesoproterzoic crust also underpinned by thick lithospheric roots. The 44 45 production of widespread thick and strong lithosphere via the process of orogenic thickening, possibly in several cycles, was fundamental to the eventual emergence of 46 47 extensive continental landmasses - the cratons. 48 [158 Words]

- 49
- 50

51 **1.** The lithospheric mantle – a brief introduction

52

The outer highly viscous "skin" of the Earth - the lithosphere - separates the surface from its interior. Lithosphere definitions have many nuances¹. Here, we define the lithosphere simply as Earth's strong outer thermal boundary layer through which heat is primarily transferred by conduction (**Box 1**). The base of the lithosphere can be defined as the point at which a linear extrapolation of this conductive geotherm intersects the mantle isentrope. The cooler temperatures and higher viscosities of lithosphere compared to underlying asthenospheric mantle contribute to it being one of the longest-lived large-scale features of

the solid Earth. The mantle portion of the lithosphere, the "mantle root", is generally thicker
and older beneath continents than oceans².

62

Given the controversies surrounding the origin of the crust that we walk on and sample 63 readily as geologists, it should not surprise the reader that the origin of the deeper parts of 64 65 the solid Earth, such as the continental lithospheric mantle, is as controversial and more difficult to constrain. Here, we review some physical and chemical properties of deep 66 67 lithospheric roots beneath continents and examine their integral role in forming the oldest 68 parts of the continents - the cratons. We explore how these properties arose in the context 69 of mantle melting environments. The melting ages of peridotites forming the cratonic roots, 70 and their temporal relationship with the overlying crust are examined before using geodynamic models to constrain the origin of the large-scale geological characteristics of 71 72 cratons, i.e., how the cratons were made.

73

74 2. Making cratons and their lithosphere

75 **2.1. Defining a craton**

Despite lithospheric mantle comprising up to 80% of the thickness of continental plates, the origin and evolution of these deep roots remains contentious. Cratons produce over 90% of the world's gold and platinum and almost 100% of its diamonds. The properties of cratonic lithospheric roots are becoming increasingly recognized as key factors in the topographical expression of continents³, lithospheric volatile storage⁴ and the location of many metal deposits⁵.

83 Understanding the role of lithospheric mantle in the stabilization and subsequent protection of continents requires clarification of the term craton. The original use - kratogen - from the 84 85 Greek "kratos" meaning strong⁶, merely implied a continental terrane displaying long-term stability of 100s of Myr, with no age definition. Following Kennedy⁷, Clifford⁸ recognized an 86 association of ancient continental masses (> 1.5 Ga) with certain mineral deposits, 87 especially diamonds, gold and platinum, though more recent widespread use of "craton" has 88 become synonymous with Archean regions. Yet many "cratons" have long-lived tectonic 89 90 histories that belie the image of post-Archean "stability".

91

92 Studies of the Kaapvaal craton (**Box. 1**), generally use a craton definition specifying a region 93 where basement crustal rocks are > 2.5 Ga (e.g., 9) yet major mid-craton disruption and magmatic addition affected it in Paleo- and Mesoproterozoic times. Studies of the Siberian 94 95 and Amazonian cratons (**Fig. 1**) have followed the broader definition¹⁰ of "a segment of 96 continental crust that has attained and maintained long-term stability, with tectonic 97 reworking being confined to its margins". For the 4.1 million km² Siberian craton, much of the crust surrounding two Archean nuclei was either intensely metamorphosed or formed 98 in Paleoproterozoic times¹¹. Similarly, the Amazonian craton has only a small area of clearly 99 established Archean crust¹² within large regions of Paleoproterozoic crust¹³. It, along with 100 101 numerous other cratons (e.g., Rae, Hearne & Gawler; Fig. 1) have been extensively intruded by felsic plutons in the Paleo- and Mesoproterozoic making the restriction of the definition 102 103 of a craton to geological inactivity since the Archean problematic.

104

A thick lithospheric mantle has long been identified as a distinguishing feature of cratons,
intimately linked to their stability (e.g., ^{2,14} ¹⁵ ¹⁶ ¹⁷). Hence, it seems logical to involve the

mantle root in the definition of a craton. These deep strong mantle keels play a role in
protecting the overlying crust from subsequent reworking and recycling, diverting mantle
plume heat and mass fluxes away from the roots¹⁸ without significant modification, unless
weakened by metasomatism^{19,20}.

111

Seismology can be used to assess the correlation between deep cratonic mantle roots and 112 113 ancient crust (Fig. 1). Areas underlain by cool, thick (>150 km) lithospheric mantle roots 114 with anomalously fast seismic wave speeds extend well beyond the ~55 Archean nuclei of continents²¹⁻²⁵ (**Box 1; Fig. 1**), underpinning the much larger projected outlines of 115 116 composite terranes amalgamated and stabilised in the Paleo- to Mesoproterozoic, for 117 instance well into the Mesoproterozoic terranes of North America²⁴. It is clear from seismology and geochronology (Fig. 1; Box 1&3) that the thickest lithosphere is not 118 119 exclusive to the oldest crust, and most of Earth's crust older than ~ 1 Ga has >150km thick lithospheric roots²⁶ that have been present since that time¹⁶. This naturally leads to a more 120 121 practical definition of craton:

122

123 Cratons - are coherent blocks of Precambrian lithosphere, typically stable for time periods in 124 excess of a billion years due to protection by deep (> 150km) lithospheric keels. The majority of 125 Earth's Archean crust lies within such terranes and can be referred to as Archean cratons or 126 nuclei. But the moniker "craton" is not exclusive to the Archean. Larger composite cratons may 127 consist of Archean nuclei surrounded by Palaeo- Mesoproterozoic crust, all underpinned by 128 thick cool lithospheric mantle. Supercratons comprise multiple composite cratons (Fig. 1).

Cluster analysis of seismic tomographic models²³ or lithospheric thermal properties²⁷, can
produce regionalized maps of upper mantle structure by identifying similar types of
lithospheric mantle. These maps (e.g., Supplementary Fig. 1) successfully match thick
lithosphere with the above definition of cratons, significantly increasing the contiguous
cratonic area of some regions such as the southern African supercraton²⁶ and in global
terms (Fig.1). Cratons, as defined here, comprise ~ 63% of the exposed continental surface,
or ~ 18% of Earth's surface [Supplementary Fig. 1].

137

Exceptions are areas of Archean crust that have recently lost an old thick lithospheric keel
and are now underlain by relatively thin (<100 km) lithosphere, e.g., the eastern North
China and Wyoming cratons (Fig. 1). Crust in these regions survived for billions of years
likely because they were protected by a thick root until lithosphere thinning in Phanerozoic
time²⁸ ²⁹ ³⁰ ³¹. They are classified as "modified cratons". Regions of young crust, underlain by
thick lithosphere such as Tibet, or the Central Asian Orogenic Belt (Fig. 1) have not yet
achieved cratonic stability, but may do so²⁶.

145

146 **2.2 Cratonic mantle lithosphere – composition and properties**

Earth's upper mantle, based on sampling, theory and experiment, is composed largely of
peridotite³², typically a rock dominated by olivine, along with orthopyroxene, clinopyroxene
and an Al-rich mineral that, depending on pressure and bulk composition, is garnet or spinel
beneath continents [**Box 1a**], or rarely plagioclase (<1 GPa). Extraction of melt from
peridotite is the key process defining the formation of Earth's lithospheric mantle. Mantle
peridotites residual after significant melt extraction are referred to as "depleted" whereas
compositions similar to estimates of un-melted mantle are known as "fertile" (**Box 2**).

154 Fertile mantle is characterized by the peridotite sub-type lherzolite, which transforms to harzburgite then dunite as clinopyroxene and then orthopyroxene are consumed by 155 156 progressive melting (**Box 2**). The shift from fertile to depleted compositions has a major 157 influence on peridotite density since Fe is preferentially extracted over the atomically lighter Mg from olivine, the main mantle mineral. In addition, Al - a key component of the 158 dense minerals garnet and spinel - is removed in the melt 14 A maximum of $\sim 2.5~\%$ 159 reduction in bulk density occurs from fertile lherzolite to ultra-depleted dunite ³³ (**Box 2**). 160 161 The resulting systematic variations in Fe and Mg and, in turn, the degree of depletion can be 162 traced via the Mg# (molar 100*Mg/[Mg+Fe]) of olivine, which depends on the upwelling 163 path of the mantle during melt extraction as well as the efficiency of melt removal³³⁻³⁹. Different melting paths engender differences of ~ 0.62% in density at 35% melt extraction³³ 164 165 (Box 2).

166

167 Compositionally-derived density decrease combined with the higher viscosity of cooler
168 melt-depleted lithospheric mantle imparts physical stability to continental lithosphere ^{2,14}.
169 Also, water - as dissolved hydrogen - is a primary control on mantle viscosity⁴⁰. Melt170 depleted, dry, cool lithospheric mantle is much more viscous, and hence stronger, than
171 fertile, warmer upper mantle that has higher water contents, with viscosity and buoyancy
172 being key to the robustness of continental roots ^{41,42} against attack by tectonic processes
173 and mantle plumes.

174

Seismic^{22,24-26} and gravity data⁴³ indicate that cratonic lithosphere is heterogeneous and
that the lithospheric mantle sampled by deeply-derived melts such as kimberlites (Mg-CO₂
H₂O-rich low-volume magmas) may be compositionally atypical, showing more extensive

effects from re-fertilisation due to melt/fluid infiltration (metasomatism). For instance, tens
of km-scale seismic heterogeneities beneath the Lac de Gras kimberlite field, Canada⁴⁴,
likely represent mantle modification by intruded kimberlites. Also, most lithospheric
sections sampled as xenoliths/xenocrysts indicate that the lowermost lithosphere in
regions of kimberlite activity is more Ti and Fe-rich than mantle overlying it^{45,46} due to
metasomatism.

184

Geophysical observations of cratonic mantle and the lack of kimberlite eruptions in the
thickest lithosphere²⁶ imply that the mantle peridotite xenolith record may provide a biased
view – as recognised by petrologists⁴⁷. Modified compositions and mineralogies in many
xenoliths are recorded by anomalously high clinopyroxene and/or garnet contents relative
to their very elevated Mg#^{48,49} and trace element systematics of clinopyroxene and garnet
that commonly reflect their formation from, or equilibration with migrating fluids or melts
long after lithosphere formation⁵⁰⁻⁵³.

192

193 Despite the modified nature of many cratonic mantle xenoliths, no other samples exist.

194 Petrological approaches to correct for the effects of metasomatism can infer the nature of

195 the unmodified peridotite protolith⁵⁴⁻⁵⁶. Compositions derived from these approaches agree

196 with the compositions of the most depleted, least modally metasomatized cratonic

197 peridotite suites, e.g., Murowa, Zimbabwe craton⁵⁷; East and West Greenland^{34,48,58,59} i.e.,

198 that much of the cratonic mantle lithosphere, away from effects of kimberlite transit,

199 comprises harzburgites or dunites with high Mg but low Ca and Al.

200

201 2.3 Melting conditions

How do such depleted peridotite compositions originate? The suggested tectonic melting
regimes vary from deeply-derived mantle plumes (high average pressure of melting: > 5
GPa) building lithosphere by vertical accretion of residues^{55,56,60,61} to decompression
melting in rift-related environments (low average pressure of melting: < 5 GPa), beneath
thin lithosphere, for instance at mid-ocean ridges^{47,62-72}, or hydrous flux-melting in the
mantle wedges of subduction zones⁷³⁻⁷⁶.

208

209 The different genetic hypotheses have been supported by different geochemical arguments. 210 Authors favoring high-pressure (> 5 GPa) mantle plume melting highlight the low FeO of 211 many Archean peridotites as indicating melt extraction at 5 to 7 GPa^{55,56,77,78}. However, the 212 spread in FeO contents is large, elevated by some types of melt metasomatism and lowered by orthopyroxene growth from Si-rich melts/fluids^{67,79}. While deep-plume initiated 213 214 polybaric melting beginning at high pressures and ending at low pressures beneath thin 215 lithosphere is most effective in extracting the highest total melt-fraction from peridotitic 216 mantle [**Box 2**], melting initiated at lower pressures, under rifts or hot spreading centres, 217 where melting might begin at 5 GPa due to elevated mantle potential temperatures in the Archean and Paleoproterozoic^{66,67,70,80} is also effective at removing melt fractions of 218 between 30 to 40 %. Such melt fractions can generate the typical olivine Mg#s of cratonic 219 peridotites^{37,66} and reproduce olivine Mg# versus depth trends⁸¹. More definitive is the 220 systematic variation in heavy rare earth element (HREE)^{62,67,71,72,76,82} (Fig. 2) and transition 221 222 metal element concentrations⁶³ indicating that garnet was not a residual phase during most 223 of the melting regime, that began at 5 to 3 GPa.

224

Mineral chemistry is also a powerful indicator of the depth of melting. High-Cr garnets in 225 cratonic peridotites and peridotite-type diamond inclusions are best explained by high-226 227 pressure metamorphism of melt residues that originally formed at lower pressures, in the spinel stability field⁷¹. The range of high-temperature garnet compositions produced in 228 229 experimental melt-residues or via exsolution from high-pressure melting residues is narrow 230 and low in Cr $(3 - 5 \text{ wt } \% \text{ Cr}_2 \text{O}_3)$, contrasting strongly with the extended range to higher Cr contents in cratonic peridotite garnets. The higher garnet Cr contents are generated by 231 232 metamorphic formation of garnet - at high pressures - from melt residues produced as 233 spinel peridotites during melting at lower pressures^{62 83}. Some cratonic garnet may have 234 exsolved from high-T orthopyroxene, but calculated pre-exsolution host orthopyroxene 235 compositions have high Al and low Ca, likely formed in shallow melting residues within the spinel stability field⁸⁴. 236

237

Some have suggested, from bulk rock chemistry, that the parental low-pressure melt
residues may have been serpentinites^{85,86} or that parts of the keel formed from hydrous
diapirs from hydrated slabs in the transition zone⁸⁷. However, oxygen isotope compositions
in cratonic peridotites are remarkably homogenous and "mantle-like", over a wide range of
Cr and Si contents⁸⁸ precluding a serpentinite or hydrated slab origin.

243

High-pressure, plume-derived melt residues, produced through Earth history, may also be
present in cratonic lithosphere because they too are buoyant and viscous and may be
entrained during lithosphere accretion. In one conspicuous case, cratonic lithosphere of the
north Slave craton has been thinned by plume erosion and re-thickened ⁸⁹ by the trapping of
higher-pressure melting residues in the "thin-spot", as traced by geochemistry (Fig. 2).

However, while such residues contribute to the compositional heterogeneity of cratonic
mantle, their contribution, based on the geochemical evidence, appears to be subordinate,
with the combined trace-element and mineralogical evidence dominantly reflecting a lower
pressure (< 5 GPa) polybaric decompression melting regime. That many cratonic peridotites
now record equilibration pressures > 5 GPa requires tectonic transport of these buoyant
shallow-formed melting residues to greater depth during thickening of the lithospheric
roots during craton-formation processes^{62,65,66,71,72,74-76,83,90}.

256

257 2.4. Age structure of cratonic mantle, crust-mantle relations and

258 temporal trends

259 Having established the presence of widespread thick mantle lithosphere beneath

260 continental crust of Archean through Mesoproterozoic age (Fig. 1; Box 1) as a key

261 ingredient of cratons, it is important to examine specific age relationships between cratonic

262 roots and their overlying crust, which can constrain the mode craton formation. A challenge

263 is that peridotite ages recorded by trace-element isotopes are not, in all cases, the age of

264 formation of the lithospheric keels – a fact well illustrated by the very large spectra of

265 melting ages for peridotites found beneath the very young continent of Zealandia⁹¹ or the

ancient Os model ages observed in abyssal peridotites^{92,93}.

267

Early radiogenic isotope studies of cratonic mantle and inclusions in diamonds showed very
different isotopic signatures to the asthenosphere, establishing isolation of lithospheric

270 mantle for Gyr periods⁹⁴⁻⁹⁶. The Rb-Sr, Sm-Nd and U-Pb systems used in these studies have

271 very low parent-daughter element concentrations in residual peridotite relative to mantle

272 melts. Hence the ages dominantly reflect "enrichment ages" due to metasomatism rather

273 than the age of the melt extraction relating to lithosphere formation. Subsequent application

274 of the ¹⁸⁷Re-¹⁸⁸Os decay system to mantle peridotites produced ages that more likely

reflected the approximate age of melt depletion^{29,61,77,97} [**Box 3**].

276

Widespread application of the Re-Os isotope system to dating lithospheric peridotites has 277 278 led to a clearer picture of the age of cratonic mantle roots, though the approach is a blunt tool in terms of providing a precise estimate of when melt depletion occurred^{76,81,98-103}. 279 280 Critically, because Os isotope heterogeneity in Earth's mantle increases with time, 281 interpretation of Re-Os model ages from peridotites or sulfides younger than ~ 1.5 Ga have 282 large uncertainty because of the isotopic diversity of Phanerozoic mantle [Box 3]. Portions 283 of modern oceanic lithospheric mantle frequently produce Re-Os model ages of over 1 Ga and sometimes up to 2 Ga, at the mineral to meter scale^{92,93}. This heterogeneous "age" 284 285 spectrum for modern mantle lithosphere demands caution when interpreting single 286 occurrences of ancient ages of 1 to 2 Ga in a lithospheric peridotite suite dominated by 287 much younger ages, derived from Os isotope compositions that are statistically identical to 288 modern upper mantle. Instead, some studies infer the ubiquitous presence of Archean 289 mantle, refertilised in Proterozoic or younger times, from the occurrence of a single Archean 290 Re-Os model age in a peridotite suite¹⁰⁴. But it is increasingly clear that mantle peridotite 291 age spectra are strongly influenced by the persistence of ancient ages in the upper 292 mantle^{105,106}. Similarly, while more ancient Os model ages can be sometimes recovered from 293 sulfide or alloy grains in peridotites than from most whole-rock analyses in a given suite^{93,103,107-109}, it is important to better understand the spectrum of Os isotope 294 295 heterogeneity in Archean mantle before interpreting isolated older ages as the age of

296 lithosphere formation, even though these estimates may well prove accurate with extended297 studies.

298

299 With the above context, we can now explore questions such as: What are the oldest

300 components of cratonic lithospheric mantle and what is the likely age of formation /

301 stabilization of the lithospheric keels? Six first-order observations are:

302

303 1) Some cratons contain crust of Hadean or Eoarchean age, but no such ages are
304 preserved for cratonic mantle, precluding a primary origin for cratonic roots as lithosphere
305 formed, for instance, during any early "stagnant lid" phase of Earth's evolution e.g.¹¹⁰. Some
306 melting residues from these times may have been incorporated into cratonic roots, their
307 ages over-printed.

308 2) Though mantle melt residues were clearly being produced by Earth before the
309 Mesoarchean, the vast majority of the peridotite depletion ages are Meso- to Neoarchean,
310 documenting the rapid growth of thick cratonic keels over a shorter period, and at a
311 different rate than the continental growth curve (**Box 3**).

312 3) A peak in depletion ages between 2.0 and 1.8 Ga occurs in mantle lithosphere
313 beneath Archean and Proterozoic cratons (Box 3), indicating mantle root formation in the
314 Paleoproterozoic¹¹¹⁻¹¹⁴, either coincident with the assembly of some larger composite
315 cratons e.g., Siberia, or prior to / during the formation of the Nuna supercontinent, which
316 created some of the larger composite cratons observed today.

317 4) Despite the association of predominantly Archean mantle underlying Archean
318 nuclei and Proterozoic mantle underlying Proterozoic cratons (Box 3), more age decoupling
319 exists between crust and mantle than originally proposed, e.g.,⁷⁷, with lithospheric mantle

recording Archean melt extraction underlying Paleoproterozoic crust^{48,115}, Paleoproterozoic
mantle residues underlying Archean crust¹¹⁴, Neoarchean mantle residues underlying
Meso- to Eoarchean crust¹¹⁶ and Mesoproterozoic residues underlying Neoarchean crust⁸⁹.
Archean melt residues form some of the lithospheric building blocks to Proterozoic
cratons. Vestiges of these foundations are also seen in lithosphere beneath modified
cratons, but these lithospheric sections have been mostly replaced by more recent mantle
(Box 3)

With the exception of Tibet or the Central Asian Orogenic Belt - cratons in the
 making²⁶ - lithospheric mantle underlying regions of thick (>150km) continental
 lithosphere formed > 1 Ga ago (Box 1; Fig. 1).

330

331 These points are amplified in the context of specific cratons. The Kalahari composite craton, 332 lying within the southern African supercraton, comprises the Kaapyaal and Zimbabwe 333 Archean nuclei and associated Proterozoic terranes (**Box 1b**). The nuclei show broad age 334 correspondence between Archean crust and highly depleted Meso- to Neoarchean cratonic mantle^{62,74,76,77,82,98,100,109,117}. Where younger lithosphere ages exist, such as the center of the 335 336 Kaapvaal nucleus (Premier kimberlite) the Paleoproterozoic melt depletion ages (**Box 1b**)^{74,77} reflect major rifting, disruption and healing of the craton at ~ 2 Ga, coincident with 337 338 the formation of the massive Bushveld complex. The overall crust-mantle age relations 339 indicate a diachronous Meso- to Neoarchean stabilisation age for the ~ 200 km thick lithosphere across the Archean nucleus (**Box 1b**)¹¹⁸, reflected by the broad mode of 340 341 peridotite Re-Os model ages. In the outer portions of the Kalahari craton, crust in the Rehoboth and Namagua-Natal terranes is ~ 1.3 to 2.2 Ga¹¹⁹ (**Box 1b**). Peridotite xenoliths 342 indicate the roots beneath these outer cratonic regions are up to 200 km thick and Re-343

depletion ages range from 1.2 to 2.4 Ga (single locality modes between 1.25 and 1.75 Ga ¹²⁰)
potentially reflecting lithospheric mantle produced during pulses of juvenile magmatism¹²¹.
Subsequent accretion to the craton during the Namaqua-Natal accretionary orogen created
the thick lithosphere observed beneath most of this Proterozoic cratonic region imaged by
seismology^{22,25,122} (Fig. 1).

349

The high degree of crust-mantle age "coupling" beneath cratons implied by early work^{16,77} 350 351 has not withstood further scrutiny (Box 3b). For instance, in the Siberian craton, Re-Os and 352 Lu-Hf dating shows that while some remnant Archean mantle is present, the dominant melt 353 depletion event for cratonic peridotites beneath the Daldyn-Markha portion of the Anabar Archean nucleus occurred ~ 2.0 to 1.8 Ga^{111,112,123}, whereas highly-depleted lithospheric 354 mantle beneath the Olenek terrance of the same nucleus is predominantly Archean^{123,124}. A 355 356 complex age structure is also evident in the mantle beneath the central Rae craton, northern 357 Canada, where older, shallow Archean mantle is underlain by mantle that either formed, or 358 was massively over-printed at circa 1.8 Ga¹²⁵. Similarly, the Archean Sask craton (Canada) 359 is underlain by mantle depleted at ~ 1.8 to 2 Ga, associated with the Trans-Hudson 360 orogeny¹¹⁴, and the central Superior craton experienced significant lithosphere replacement during the Mesoproterozoic ¹²⁶. In contrast, the Paleoproterozoic Halls Creek orogen (West 361 362 Australia composite craton) is underlain by deep lithospheric mantle of Archean age¹¹⁵, and 363 a similar relationship exists in East⁴⁸ and West¹¹⁶ Greenland, part of the Laurentia 364 supercraton (Fig. 1). 365

Some Paleoproterzoic cratonic peridotites have highly depleted major-element and mineral
compositions resembling those formed in the Archean, e.g., in Arctic Canada¹¹³ (Box. 1a).

This and other examples^{58,67,91,127} indicate that very depleted melt residues can be produced
well beyond the Archean/Proterozoic boundary, in contrast to some proposals^{55,128}. Such
highly depleted Paleoproterozoic lithospheric mantle became incorporated into craton
roots during major post-Archean craton-forming accretionary orogens¹²⁹.

372

373 The variation in peridotite compositions - and hence melting conditions - with geological 374 time is of interest in understanding the origins of cratonic peridotites as well as mantle 375 thermal evolution^{70,80,130}. A recent approach⁷⁰, augmented here using the most reliable 376 estimates of melting ages for peridotite suites screened via criteria such as extended PGE patterns^{81,103} (**Box 3b**) indicates that the apparent secular decrease in peridotite olivine 377 378 Mg# with decreasing model age (excluding Phanerozoic arc peridotites) fits well with the 379 expected trend of secular decrease in mantle potential temperature, at Urey ratios of 380 between 0.2 and 0.3. This fit, though imperfect, suggests that no anomalously hot mantle 381 plume is required to explain the melting regime of cratonic peridotite residues, consistent 382 with an origin via relatively shallow decompression melting⁷⁰.

383

2.5 Formation of cratons and cratonic mantle – the importance of

385 lateral accretion

In the context of craton formation, the debate over the relative roles of residual peridotites
formed by mantle plume melting versus those formed by the thickening of residues of
shallow polybaric decompression melting can be addressed through geodynamic modelling.
Mantle lithosphere above modern mantle plumes experiences net lithospheric thinning, e.g.,
beneath Hawaii, where the maximum lithosphere thickness is equal to or thinner than

normal oceanic lithosphere¹³¹. Similarly, in the central North Atlantic craton, the ~ 200 km
thick mantle root present throughout the Proterozoic Eon^{132,133} was thinned locally to 60
km by ~ 60 Ma plume activity¹³⁴. The Ontong Java plateau is an exception since mantle
xenoliths reveal a lithosphere exceeding 120 km¹³⁵. but the uppermost 80 km formed from
normal oceanic lithosphere¹³⁶. Beneath Africa, seismology indicates that plumes are the
sites of lithosphere erosion¹³⁷ and are implicated in plate destruction, not growth¹³⁸.

398 Geodynamic modelling of the dispersion of plume melting residues (Fig. 3; Supplementary 399 **Video 1**), shows that excess mantle potential temperatures in the upwelling plume, in an 400 ambient mantle that was ~200 K hotter than the present-day MORB source are sufficient to 401 counteract viscosity increases due to melt depletion, allowing rapid dispersal by the plume 402 mass flux, either back into the upper mantle or forming relatively thin, widespread layers of 403 residual mantle, adding slightly to lithospheric depth but not attaining the 200 km thickness 404 of most cratonic lithosphere. Compressional thickening is required to achieve cratonic root 405 thicknesses. Buoyant plume residues seem to be effective at "re-cratonising" lithosphere, 406 after plume-related thinning, coalescing to re-form > 150 km thick lithosphere⁸⁹. In 407 contrast, the residues of high degrees of decompression melting at low average pressures, 408 in rift environments remain at their sites of generation. These residues form at lower 409 mantle potential temperatures, cooling more rapidly to attain the high viscosities needed 410 for stabilization of cratonic roots^{3,139}. The lithospheric columns produced by such melting 411 must then be thickened to depths seen in cratonic roots.

412

The dominant lithosphere during Archean times was unlikely to have been as dynamic as inmodern-day ocean basins, with perhaps only episodic mobility and nascent subduction-like

features^{139,140}. Hence, while extensive polybaric decompression melting at low average 415 pressure is required by cratonic peridotite geochemistry, long-lived mid-ocean ridge 416 417 spreading centres may not have been as extensive in the Archean as in modern Earth. Other 418 models of early Earth lithosphere dynamics invoke extensive melt extraction at sites of lithosphere rifting/divergence leading to formation of segments of strong buoyant 419 420 lithospheric "blocks" via strain localization and cooling, sustaining further extension and melting¹³⁹. The resulting mix of depleted lithospheric blocks can amalgamate and thicken 421 422 via lateral compression/accretion and further cooling into ~ 200 km thick, depleted, cool, 423 cratonic lithospheric roots¹⁴¹.

424

Lateral accretion, by either compression during the formation of accretionary orogens or a 425 426 shallow subduction-like processes involving slab stacking, has long been invoked to play a 427 role in the thickening and stabilization of old and young continental masses and their lithospheric roots^{14,67,91,142-145} and has been illuminated by recent geodynamic 428 simulations^{141,146}. Starting with even present-day thicknesses of melt-depleted oceanic 429 430 lithosphere, lateral compression, perhaps driven by the initiation of some form of 431 subduction, can generate stable 200 km-thick mantle keels via tectonic and gravitational 432 thickening associated with cooling (Fig. 3). This requires the pre-existence of a strong and buoyant depleted mantle lithosphere, such as that produced at rifted margins or spreading 433 434 axes, which, along with the crust, thickens by compression.

435

436 What is the evidence for lateral accretion and compressive thickening? Plate-scale

437 deformation imparts anisotropic fabrics on lithospheric peridotite through lattice-preferred

438 orientation of olivine, detectable with seismology¹⁴⁷. Seismic anisotropy typically occurs in

the upper 150 km of most cratonic lithospheres and is usually interpreted as a deformation
fabric created during the formation and evolution of the craton structure¹⁴⁸. A change in the
seismically fast axis of olivine, from horizontal at depths < 150 km to vertical at depths >
150 km in cratonic roots¹⁴⁹ has also been proposed as evidence for lithospheric shortening
via compression in making the deep roots to cratons.

444

445 The geological evidence for lateral accretion and compression during craton assembly is 446 equally compelling. Most cratonic crust is constructed from numerous individual "blocks" or 447 terranes, now juxtaposed with relatively high aspect ratios, e.g., the Superior craton. Such 448 complex large-scale linear geological fabric requires either subduction or some other lateral 449 accretion process during assembly in accretionary orogens to construct the final craton, perhaps over multiple cycles ^{129,150,151}. In some cratons, e.g., Pilbara, these relationships are 450 not as clear, though most comprise different blocks/terranes that were not originally 451 452 contiguous. Thrust-bounded terranes characterize the assembly of the Neoarchean potions of cratons^{17,129}, with large-scale continental thrust structures observed back into the 453 Mesoarchean¹⁵², clearly documenting compression of lithosphere. Compression and 454 thickening of lithosphere have thermal consequences for the crust^{153,154} and offer a 455 456 mechanism - via consequent crustal melting - to produce the prominent post-orogenic 457 granitic magmatism, sourced in-part or wholly by crustal melting, especially when heat-458 producing nuclides were more abundant in the Archean. Such post-orogenic magmatism, often of a potassic nature, is widespread in cratons, e.g., 2.61 to 2.58 Ga granites of the Slave 459 460 craton¹⁵⁵; 3.1 Ga granites of the Kaapvaal craton¹²¹; 2.67 - 2.62 Ga post-orogenic granites of the Superior craton¹⁵¹; 2.6 Ga Snow Island granites of the Rae craton¹⁵⁶, and is incompatible 461 with a low geothermal gradient in the lower crust that would be expected from the presence 462

of already stable thick, cool cratonic mantle roots. High-T granulite-facies metamorphism
accompanies such lithospheric thickening and is among the hallmarks of "cratonisation" of
the crust. In the Proterozoic, craton assembly continued via lateral accretion during
compressive orogens, as is clearly illustrated by the evolution of the Laurentia supercraton
^{148,150,157}, producing striking widespread radial seismic anisotropy in the lower craton
root¹⁴⁹, and the Siberian composite craton, where 1.8 Ga granulite-facies metamorphism is
widespread.

470

These features of cratons and their roots illustrate that whatever the various models invoked for the genesis of their crust and mantle components, the decisive final phase of assembling and stabilizing cratons, from the Archean through to the Mesoproterozoic, is lateral accretion, compression and lithospheric thickening, as originally envisioned by Jordan ¹⁴. It should be no surprise that the thickest parts of Earth's lithosphere on the modern Earth, outside the cratons are in zones of continental convergence¹⁵⁸, ¹⁴⁴.

477

478 3. **Broader implications and directions**

479

Through the Archean, the relationship between peridotite melt-depletion ages, which
broadly track the melting that formed the cratonic roots, and the continental growth curve **[Box 3]** indicates a disconnect in the genesis of the continental crust and underlying mantle
root. Continental crust genesis began much earlier, growing through a longer time interval,
at a different rate. Since the end of the Archean, the cratonic mantle depletion curve and the
continental growth curve are mirror images. Assembly and stabilization of thick, viscous
cratonic roots were critical to the preservation of Earth's continents. This is supported from

the first appearance, ~2.8 Ga, of mature sediments in the stratigraphic record, with great
diversity in zircon ages [Box 3], likely tracking the first significant rise of continents above
sea level¹⁵⁹ due to the stabilisation of protective cratonic mantle roots in the Meso- to
Neoarchean.

491

492 Cratonic root formation continued to take place through the Proterozoic but the genesis of highly melt-depleted peridotites that formed the craton roots waned significantly after 1 Ga 493 494 (Box 3), perhaps due to mantle cooling. However, mantle residues produced in some 495 Phanerozoic oceanic arcs are as depleted as cratonic peridotites (**Box 3**). Future cratons 496 may be underpinned by the depleted residues of arc melting, swept up during continental 497 assembly, for example, during the formation of Earth's newest continent, Zealandia, a 4.9 498 million km² block of continental crust created in Pacific arc settings and underlain by locally very depleted lithospheric mantle⁹¹ extending over 150km deep where collisional 499 500 thickening is greatest¹⁶⁰. Understanding these recently-formed continental masses and their 501 collisional roots will be key to understanding how thick lithosphere grows, stabilizes and 502 evolves. If the majority of cratonic lithosphere is more depleted than the peridotite record, 503 mantle roots will be more buoyant, affecting hypsometry.

504

Defining what cratons are, and how their lithosphere evolves is critical to finding mineral
deposits. For instance, the spatial association between base metal deposits and the
transition between thick and thin lithosphere provides a basis for further exploration⁵.

509 Our definition of cratons as stable regions of ancient crust, protected by ≥ 150 km thick
510 lithospheric mantle roots, which have experienced minimal tectono-magmatic disturbance

511 since the end of the Mesoproterozoic (1 Ga), (**Box 1, Fig. 1**) is clearly a pragmatic generalization. It is clear that cratons and their roots are periodically disrupted by rifting 512 513 and invaded by magmatic products. It is also evident that some cratons lose part of their mantle root through disruption and weakening and then may "re-cratonise"⁸⁹, re-514 515 establishing thick lithosphere and long-term stability. This re-healing process contributes to 516 the patchwork of lithosphere observed and also is associated, in some cases, with world-517 class mineral deposits, such as the Bushveld intrusion or Premier/Cullinan diamond mine. 518 Understanding what controls the extent of these craton-disrupting events and how they 519 localize mineralization is important for mineral exploration.

520

521 More fundamentally, searching for evidence of a role for Hadean /Eoarchean melting 522 residues in the evolution of lithospheric mantle will help understand the fate of Earth's 523 earliest lithosphere, possibly produced in a stagnant lid tectonic regime, but conspicuously 524 absent from the rock record. These early melting residues may have been quickly recycled 525 back into the upper mantle because too rapid compression/accretion of lithosphere and 526 insufficient depletion-related strengthening prevented deep lithospheric roots from 527 stablising^{139,141}. What remain now as the long-lived lithospheric roots to continents are the 528 successful attempts to stabilize these masses. While evidence of very early melt residues 529 remains elusive, the increasing occurrence, within young lithosphere of oceanic^{92,105,106} and 530 continental⁹¹ affinity, of peridotites or mantle minerals with Archean melt-depletion ages may represent the "ghosts of lithospheres past", recycled back into the upper mantle and re-531 532 housed in later lithosphere construction. Understanding what these vestigial ages tell us 533 about how lithosphere is destroyed and re-constructed, billions of years apart, should be a future endeavor for geochemists. 534

536	The links between hypsometry, continental crust and its underlying lithosphere require			
537	further scrutiny. The coincidence between a change in continental freeboard towards			
538	presents levels by Meso- to Neoarchean times, reflecting the emergence of major			
539	contine	ental masses, and the establishment of thick cratonic roots is striking (Box 3) 159 . This		
540	implica	ates a central role for newly formed, stable continental masses – cratons – with		
541	special	attributes, i.e., thick crust comprising a strong lower crust that is dehydrated and		
542	deplete	ed of its heat producing elements by thickening-induced melting or granulite facies		
543	metamorphism. How these or other attributes were able to offset any negative thermal			
544	buoyancy imparted by the thick cratonic mantle roots underlying this crust requires further			
545	clarification. Such cratonic lithosphere, for the first time, appears to have been able to			
546	suppor	t orography similar to that of modern continents.		
547				
548		REFERENCES		
549				
550 551	1	Artemieva, I. M. <i>The Lithosphere: An interdisciplinary approach</i> . 794 (Cambridge University Press, 2011).		
552	2	Jordan, T. H. Continental tectosphere. <i>Reviews of Geophysics</i> 13 , 1-12,		
553 554 555 556		doi:10.1029/RG013i003p00001 (1975). Key to recognising the fast seismic wave speeds and deep thermal boundary layers beneath parts of the continents. Recognised the need for compositional compensation of the negatve thermsI buoyancy of continental lithosphere		
557	3	Eaton, D. W. & Claire Perry, H. K. Ephemeral isopycnicity of cratonic mantle		
558	Д	keels. Nature Geoscience 6, 967-970, doi:10.1038/ngeo1950 (2013). Gibson S A Books F F Day I A Petrone C M & Leat P T The role of sub-		
560	Т	continental mantle as both "sink" and "source" in deep Earth volatile cycles.		
561		Geochimica et Cosmochimica Acta (2020).		
562	5	Hoggard, M. A. et al. Global distribution of sediment-hosted metals controlled		
563		by craton edge stability. <i>Nature Geoscience</i> 13 , 504-510 (2020).		
564	6	Kober, L. <i>Der Bau der Erde</i> . (Gebr [°] uder Borntraeger, 1921).		
565	7	Kennedy, W. Q. The structural differentiation of Africa in the Pan-African (+/-		
566		500 m.y.) tectonic episode. Annual Report of the Research Institute of African		
56/		Geology, University of Leeas, 48-49 (1964).		

568 560		Laid the foundations of recognising stability as a key part of continental evolution
509	0	Clifford T N Tectone motallogenetic units and metallogenetic provinces of
	0	Africe Forth and Dispeters Science Letters 1 , 421, 424 (10(6))
5/1	0	Alfica. Eurin and Planetary Science Letters 1, 421-434 (1966).
5/2	9	Dewit, M. J. & Hart, R. A. Earths Earliest Continental Lithosphere,
573		Hydrothermal Flux and Crustal Recycling. <i>Lithos</i> 30 , 309-335 (1993).
574	10	Bleeker, W. Archaean tectonics: a review, with illustrations from the Slave
575		craton. <i>Geological Society, London, Special Publications</i> 199 , 151-181 (2002).
576	11	Priyatkina, N., Khudoley, A. K., Collins, W. J., Kuznetsov, N. B. & Huang, HQ.
577		Detrital zircon record of Meso- and Neoproterozoic sedimentary basins in
578		northern part of the Siberian Craton: Characterizing buried crust of the
579		basement. Precambrian Research 285 , 21-38,
580		doi:10.1016/j.precamres.2016.09.003 (2016).
581	12	Santos, I. O. S. <i>et al.</i> Duration of the Trans-Amazonian Cycle and Its Correlation
582		within South America Based on U-Pb SHRIMP Geochronology of the La Plata
583		Craton Uruguay International Geology Review 45 27-48 doi:10.2747/0020-
584		6814.45.1.27 (2003).
585	13	Carneiro, M. A., Iúnior, I. M. D. C. & Teixeira, W. Petrologia, geoquímica e
586		geocronologia dos diques máficos do complexo metamórfico bonfim
587		setentrional (quadrilátero ferrífero) e suas implicações na evolução crustal do
588		craton do São Francisco meridional. <i>Revista Brasileira de Geociências</i> 28 . 29-
589		44 (2017).
590	14	Jordan, T. H. Composition and development of the continental tectosphere.
591		Nature 274 , 544-548 (1978).
592		Furthered the notion of the compositionally induced robustness of continents to
593		convective disruption and proposed a compressional thickening model for the
594	4 5	origin of deep continental roots
595	15	Boyd, F. R. & Gurney, J. J. Diamonds and the African Lithosphere. Science 232,
596		472-477 (1986).
597	16	Pearson, D. G. The age of continental roots. <i>Lithos</i> 48 , 171-194 (1999).
598	17	Hawkesworth, C. J., Cawood, P. A., Dhuime, B. & Kemp, T. I. S. Earth's
599		Continental Lithosphere Through Time. <i>Annual Review of Earth and Planetary</i>
600		<i>Sciences</i> 45 , 169-198, doi:10.1146/annurev-earth-063016-020525 (2017).
601	18	Sleep, N. H., Ebinger, C. J. & Kendall, J. M. Vol. 199 135-150 (Geological
602		Society, London, Special Publications, 2003).
603	19	Foley, S. F. Rejuvenation and erosion of the cratonic lithosphere. <i>Nature</i>
604		<i>Geoscience</i> 1 , 503-510, doi:10.1038/ngeo261 (2008).
605	20	Wang, H., van Hunen, J. & Pearson, D. G. The thinning of subcontinental
606		lithosphere: the roles of plume impact and metasomatic weakening.
607		Geochemistry, Geophysics, Geosystems 16, 1156-1171 (2015).
608	21	Simons, F. J., Zielhuis, A. & van der Hilst, R. D. The deep structure of the
609		Australian continent from surface wave tomography. <i>Lithos</i> 48 , 17-43,
610		doi:10.1016/s0024-4937(99)00041-9 (1999).
611	Showe	d the widespread presnce of very deep mantle roots beneath western Australia,
612		outside of Archean nuclei.
613	22	James, D. E., Fouch, M. J., VanDecar, J. C., van der Lee, S. & Kaapvaal-Seismic-
614		Group. Tectospheric structure beneath Southern Africa. Geophysical Research
615		<i>Letters</i> 28 , 2485-2488 (2001).

616	23	Schaeffer, A. & Lebedev, S. in <i>The Earth's heterogeneous mantle</i> 3-46
617		(Springer, 2015).
618	24	Schaeffer, A. J. & Lebedev, S. Imaging the North American continent using
619		waveform inversion of global and USArray data. Earth and Planetary Science
620		<i>Letters</i> 402 , 26-41, doi:10.1016/j.epsl.2014.05.014 (2014).
621	25	Ortiz, K. <i>et al.</i> Upper mantle P and S wave velocity structure of the Kalahari
622		Craton and surrounding Proterozoic terranes, southern Africa, <i>Geophysical</i>
623		research letters 46 , 9509-9518 (2019).
624	26	Mckenzie, D. & Priestley, K. The influence of lithospheric thickness variations
625		on continental evolution. <i>Lithos</i> 102 . 1-11. doi:10.1016/i.lithos.2007.05.005
626		(2008).
627	27	Artemieva, I. M. Global 1 degrees x 1 degrees thermal model TC1 for the
628		continental lithosphere: Implications for lithosphere secular evolution.
629		<i>Tectonophysics</i> 416 , 245-277, doi:DOI 10.1016/i.tecto.2005.11.022 (2006).
630	28	Menzies, M. A., Fan, WM. & Zhang, M. Paleozoic and Cenozoic lithoprobes and
631		the loss of >120 km of Archean lithosphere. Sino-Korean craton, China. <i>In:</i>
632		H.M. Prichard, H.M. Alabaster, T. Harris and C.R. Neary (Editors), Maamatic
633		Processes and Plate Tectonics Geological Soc. London 71-81 (1993)
634	First to	propose the dramatic lithospheric thinning beneath the eastern North China Craton
635	29	Carlson, R. W. & Irving, A. J. Depletion and Enrichment History of
636		Subcontinental Lithospheric Mantle - an Os, Sr, Nd and Pb Isotopic Study of
637		Ultramafic Xenoliths from the Northwestern Wyoming Craton. Earth and
638		Planetary Science Letters 126 , 457-472 (1994).
639	30	Gao, S., Rudnick, R. L., Carlson, R. W., McDonough, W. F. & Liu, Y. S. Re-Os
640		evidence for replacement of ancient mantle lithosphere beneath the North
641		China craton. <i>Earth and Planetary Science Letters</i> 198 , 307-322, doi:Pii S0012-
642		821x(02)00489-2 (2002).
643	Convin	ncing demonstration, using peridotite dating, of the ancient deep root of the North
644		China Craton being replaced by shallow young lithosphere
645	31	Snyder, D. B., Humphreys, E. & Pearson, D. G. Construction and destruction of
646		some North American cratons. <i>Tectonophysics</i> 694 , 464-485,
647		doi: <u>https://doi.org/10.1016/j.tecto.2016.11.032</u> (2017).
648	32	Ringwood, A. E. Composition and petrology of the earth's upper mantle.
649		McGraw-Hill, (1975).
650	33	Afonso, J. C. & Schutt, D. L. The effects of polybaric partial melting on density
651		and seismic velocities of mantle restites. <i>Lithos</i> 134 , 289-303 (2012).
652	34	Bernstein, S., Kelemen, P. B. & Brooks, C. K. Highly depleted spinel harzburgite
653		xenoliths in Tertiary dikes from East Greenland. Earth and Planetary Science
654		<i>Letters</i> 154 , 221-235 (1998).
655	35	Walter, M. J. Melting of garnet peridotite and the origin of komatiite and
656		depleted lithosphere. <i>Journal of Petrology</i> 39 , 29-60 (1998).
657	Bench	mark melting experiments that calibrate much of our understanding of how the
658	26	composition of mantle melt residues vary with melt fraction
659	36	Herzberg, C. Geodynamic Information in Peridotite Petrology. Journal of
660	27	<i>Petrology</i> 45 , 2507-2530, doi:10.1093/petrology/egh039 (2004).
661	37	Bernstein, S., Kelemen, P. B. & Hanghøj, K. Consistent olivine Mg# in cratonic
662		mantle reflects Archean mantle melting to the exhaustion of orthopyroxene.
663		<i>Geology</i> 35 , doi:10.1130/g23336a.1 (2007).

664	Recog	nised, using olivine composition, the ultra-depleted harzburgite/dunite nature of
665		cratonic mantle, prior to ubiquitous metasomatism of these protoliths
666	38	Afonso, J. C. <i>et al.</i> 3-D multiobservable probabilistic inversion for the
667		compositional and thermal structure of the lithosphere and upper mantle. I: a
668		priori petrological information and geophysical observables. <i>Journal of</i>
669		<i>Geophysical Research-Solid Earth</i> 118 , 2586-2617, doi:10.1002/jgrb.50124
670		(2013).
671	39	Baptiste, V. & Tommasi, A. Petrophysical constraints on the seismic properties
672		of the Kaapvaal craton mantle root. <i>Solid Earth</i> 5 , 45 (2014).
673	40	Peslier, A. H., Schönbächler, M., Busemann, H. & Karato, SI. Water in the
674		Earth's interior: Distribution and origin. <i>Space Sci Rev</i> 212 , 743-810 (2017).
675	41	Doin, M. P., Fleitout, L. & Christensen, U. Mantle convection and stability of
676		depleted and undepleted continental lithosphere. <i>Journal of Geophysical</i>
677		<i>Research-Solid Earth</i> 102 , 2771-2787, doi:Doi 10.1029/96jb03271 (1997).
678 679	Along	with Lenardic (below) the pioneering dynamical models exploring the factors
680	42	Lenardic A & Moresi I. N. Some thoughts on the stability of cratonic
681	74	lithosphoro: Efforts of huovancy and viscosity Journal of Geophysical
692		Descarch, Solid Earth 104 (B6) 12747 12759 (1000)
692	12	Artomiova I M. Thuba H & Charananava V Isanusnisitu of cratonic mantla
601	43	Al termeva, I. M., Thybo, H. & Cherepanova, T. Isopychicity of clatonic manue
004		12 10 doi:10.1016/ji and 2010.00.024 (2010)
685	1 1	13-19, $001:10.1016$ /J.epSi.2018.09.034 (2019).
686	44	Snyder, D. B. & Lockhart, G. Does seismically anisotropic subcontinental
687		mantie lithosphere require metasomatic wenrite-pyroxenite dyke
688	4 5	stockworks? Litnos 112, 961-965, doi:10.1016/j.iitnos.2009.03.033 (2009).
689	45	Smith, D., Griffin, W. L., Kyan, C. G. & Sie, S. H. Trace-Element Zonation in
690		Garnets From the Thumb - Heating and Melt Infiltration Below the Colorado
691	1.6	Plateau. Contributions to Mineralogy and Petrology 10 7, 60-79 (1991).
692	46	Kopylova, M. G. & Russell, J. K. Chemical stratification of cratonic lithosphere:
693		constraints from the Northern Slave craton, Canada. Earth and Planetary
694		<i>Science Letters</i> 181 , 71-87, doi:10.1016/s0012-821x(00)00187-4 (2000).
695	47	Pearson, D. G. & Wittig, N. in <i>Treatise on Geochemistry (Second Edition)</i> (ed
696		Heinrich D. HollandKarl K. Turekian) 255-292 (Elsevier, 2014).
697	48	Hanghoj, K., Kelemen, P., Bernstein, S., Blusztajn, J. & Frei, R. Osmium isotopes
698		in the Wiedemann Fjord mantle xenoliths: A unique record of cratonic mantle
699		formation by melt depletion in the Archaean. <i>Geochemistry Geophysics</i>
700		<i>Geosystems</i> 2 , Paper number 2000GC000085, doi:2000gc000085 (2001).
701	49	Pearson, D. G., Irvine, G. J., Carlson, R. W., G., K. M. & Ionov, D. A. in <i>The Early</i>
702		Earth: Physical, Chemical and Biological Development Vol. 199 65-90
703		(Geological Society, London, Special Publication, 2002).
704	50	Smith, D. & Boyd, F. R. Compositional Zonation in Garnets in Peridotite
705		Xenoliths. Contributions to Mineralogy and Petrology 112 , 134-147 (1992).
706	51	van Achterbergh, E., Griffin, W. L. & Stiefenhofer, J. Metasomatism in mantle
707		xenoliths from the Letlhakane kimberlites: estimation of element fluxes.
708		Contributions to Mineralogy and Petrology 141 , 397-414 (2001).
709	52	Shimizu, N., Pokhilenko, N. P., Boyd, F. R. & Pearson, D. G. Geochemical
710		characteristics of mantle xenoliths from Udachnaya kimberlite pipe. Geologiya
711		I Geofizika 38 , 194-205 (1997).

712	53	Simon, N. S. C., Irvine, G. J., Davies, G. R., Pearson, D. G. & Carlson, R. W. The
713		origin of garnet and clinopyroxene in "depleted" Kaapvaal peridotites. <i>Lithos</i>
714		71 , 289-322, doi:10.1016/s0024-4937(03)00118-x (2003).
715	54	Boyd, F. R. <i>et al.</i> Composition of the Siberian cratonic mantle: evidence from
716		Udachnava peridotite xenoliths. <i>Contributions to Mineralogy and Petrology</i>
717		128 , 228-246, doi:10.1007/s004100050305 (1997).
718	55	Griffin, W. L., O'Reilly, S. Y., Afonso, J. C. & Begg, G. C. The Composition and
719		Evolution of Lithospheric Mantle: a Re-evaluation and its Tectonic
720		Implications. <i>Journal of Petrology</i> 50 , 1185-1204.
721		doi:10.1093/petrology/egn033 (2009).
722	56	Aulhach, S. Craton nucleation and formation of thick lithospheric roots. <i>Lithos</i>
723	20	149 , 16-30, doi:10.1016/i.lithos.2012.02.011 (2012).
724	57	Pearson D G et al in Geoscience and Exploration of the Arayle Bunder Diavik
725	57	and Murowa Diamond Denosits Vol. 20 Society of Economic Geologists Special
726		Publication (eds A T. Davy et al.) Ch. 19, 403-424 (2018)
727	58	Bernstein S. Hanghøi K. Kelemen P. B. & Brooks C. K. Illtra-denleted
728	50	shallow cratonic mantle beneath West Greenland: dunitic venoliths from
729		Ilbekendt Filand Contributions to Mineralogy and Petrology 152 , 335-347
720		doi:10.1007/s00410-006-0109-0 (2006)
730	59	Wittig N $et al$ Origin of cratonic lithospheric mantle roots: A geochemical
731	57	study of poridotitos from the North Atlantic Craton West Groonland <i>Earth</i>
732		and Planetary Science Latters 274 , 24-33, doi:10.1016/j.opsl.2008.06.034
733		(2009)
734	60	(2000). Boyd F. P. Compositional distinction between oceanic and cratenic
735	00	lithosphoro Earth and Planatary Science Latters 06 15-26 (1080)
737	Docum	nented the striking compositional contrast between modern oceanic and cratonic
738		mantle lithosphere and proposed the latter are residues from komatiite extraction.
739	61	Pearson, D. G. <i>et al.</i> Re-Os, Sm-Nd, and Rb-Sr Isotope Evidence for Thick
740		Archean Lithospheric Mantle beneath the Siberian Craton Modified by
741		Multistage Metasomatism. <i>Geochimica et Cosmochimica Acta</i> 59, 959-977
742		(1995).
743	62	Brey, G. P. & Shu, Q. The birth, growth and ageing of the Kaapvaal subcratonic
744		mantle. <i>Mineralogy and Petrology</i> 112 , 23-41 (2018).
745	63	Canil, D. Mildly incompatible elements in peridotites and the origins of mantle
746		lithosphere. Lithos 77, 375-393, doi:10.1016/j.lithos.2004.04.014 (2004).
747	64	Gibson, S. A., Malarkey, J. & Day, J. A. Melt Depletion and Enrichment beneath
748		the Western Kaapvaal Craton: Evidence from Finsch Peridotite Xenoliths.
749		<i>Journal of Petrology</i> 49 , 1817-1852, doi:10.1093/petrology/egn048 (2008).
750	65	Helmstaedt, H. H. & Schulze, D. I. in <i>Kimberlites and related rocks, GSA Spec</i>
751		<i>Publ</i> 14 Vol. Vol. 1 (eds I. Ross & et al.) 358-368 (Blackwell, 1989).
752	66	Herzberg, C. & Rudnick, R. Formation of cratonic lithosphere: An integrated
753	00	thermal and petrological model. <i>Lithos</i> 149 , 4-15.
754		doi:10.1016/i.lithos.2012.01.010 (2012).
755	67	Kelemen, P. B., Hart, S. R. & Bernstein, S. Silica enrichment in the continental
	5.	
756		upper mantle via melt/rock reaction. <i>Earth and Planetary Science Letters</i> 164 .
756 757		upper mantle via melt/rock reaction. <i>Earth and Planetary Science Letters</i> 164 , 387-406, doi:10.1016/s0012-821x(98)00233-7 (1998).

758	First to	outline a quantitative metasomatic origin for orthopyroxene enrichment in cratonic
759		mantle - uses trace elements to document low-pressure melt extraction followed by
760	60	nigner pressure growin of metamorphic garnet
701	00	Lee, CT. A., Luin, P. & Chin, E. J. bunding and Destroying Continential Manue.
762		Annual Review of Earth and Planetary Sciences 39 , 59-90,
/63	(0	dol:10.1146/annurev-earth-040610-133505 (2011).
764	69	Lee, C. T. A. in Archean Geodynamics and Environments 89-110 (Geophysical
765	-	Monograph - American Geophysical Union, 2006).
766	70	Servali, A. & Korenaga, J. Oceanic origin of continental mantle lithosphere.
767		<i>Geology</i> 46 , 1047-1050 (2018).
768	71	Stachel, T., Viljoen, K. S., Brey, G. & Harris, J. W. Metasomatic processes in
769		Iherzolitic and harzburgitic domains of diamondiferous lithospheric mantle:
770		REE in garnets from xenoliths and inclusions in diamonds. <i>Earth and</i>
771		<i>Planetary Science Letters</i> 159 , 1-12 (1998).
//Z 772	Used g	arnet Cr systematics to document high-P metamorphic origin of cratonic peridotites
773	72	Tainton K M & McKanzia D The Constantion of Kimberlites Lamproites and
775	12	Their Source Decks, Journal of Detrology 25 , 797, 917 (1004)
776	70	Darman S. W. Crows T. L. Dann I. C. & Da Wit M. L. A subduction origin for
770	75	Parinan, S. W., Glove, T. L., Dann, J. C. & De Wit, M. J. A Subduction of gin for
770		107 107 110 (2004)
770	74	Carleon D. W. Deerson D. C. & James D. F. Dhysical shemical and
779	/4	Carison, R. W., Pearson, D. G. & James, D. E. Physical, chemical, and
780		chronological characteristics of continental manue. <i>Reviews of Geophysics</i> 43 ,
/01	75	Contraction of the contract of
/82	/5	Simon, N. S. C., Carison, R. W., Pearson, D. G. & Davies, G. R. The origin and
/83		40 500 (25 doi:10.1002/notrology/cod074 (2007)
784	70	48 , 589-625, doi:10.1093/petrology/egi0/4 (2007).
/85	/6	Pearson, D. G. & Wittig, N. Formation of Archaean continental lithosphere and
/86		its diamonds: the root of the problem. <i>Journal of the Geological Society</i> 165 ,
/8/		895-914, doi:10.1144/0016-76492008-003 (2008).
/88	//	Pearson, D. G., Carison, R. W., Snirey, S. B., Boyd, F. R. & Nixon, P. H.
789		Stabilization of Archean Lithospheric Mantle - a Re-Us Isotope Study of
790		Peridotite Xenoliths from the Kaapvaal Craton. Earth and Planetary Science
791	-	Letters 134 , 341-357 (1995).
792	78	Walter, M. J. Melt extraction and compositional variability in the mantle. <i>In:</i>
793		Holland, H.D., Turekian, K.K. (Eds.), Treatise on Geochemistry, vol. 2. Elsevier,
794	-	Amsterdam, pp. 363-394. Chapter 8. (2003).
795	79	Bell, D. R. <i>et al.</i> Silica and volatile-element metasomatism of Archean mantle: a
796		xenolith-scale example from the Kaapvaal Craton. <i>Contributions to Mineralogy</i>
797		and Petrology 150 , 251-267, doi:10.1007/s00410-005-0673-8 (2005).
798	80	Ganne, J. & Feng, X. Primary magmas and mantle temperatures through time.
799		Geochemistry, Geophysics, geosystems 18, 872-888,
800		doi: <u>https://doi.org/10.1002/2016GC006787</u> (2017).
801	81	Pearson, D. G. & Wittig, N. The formation and evolution of the subcontinental
802		mantle lithosphere - evidence from mantle xenoliths. Treatise of
803		Geochemistry, Volume 3: The Mantle and Core, Chapter 3.6, 255–292. (2014).

804	82	Shu, Q. et al. The evolution of the Kaapvaal craton: A multi-isotopic
805		perspective from lithospheric peridotites from Finsch diamond mine
806		Precambrian Research 331 , 105380. (2019).
807	83	Su, B. & Chen, Y. Making cratonic lithospheric mantle. <i>Journal of Geophysical</i>
808		Research: Solid Earth 123 , 7688-7706 (2018).
809	84	Gibson, S. A. & Mills, S. On the nature and origin of garnet in highly-refractory
810		Archean lithospheric mantle: constraints from garnet exsolved in Kaapvaal
811		craton orthopyroxenes. <i>Mineralogical Magazine</i> 81 , 781-809 (2017).
812	85	Canil, D. & Lee, C. T. A. Were deep cratonic mantle roots hydrated in Archean
813		oceans? <i>Geology</i> 37 , 667-670, doi:10.1130/g25610a.1 (2009).
814	86	Schulze, D. J. Calcium anomalies in the mantle and a subducted
815		metaserpentinite origin for diamonds. <i>Nature</i> 319 , 483-485 (1986).
816	Initial e	exploration of the idea of subducted precursors to deep cratonic roots
817	87	Perchuk, A. L., Gerya, T. V., Zakharov, V. S. & Griffin, W. L. Building cratonic
818		keels in precambrian plate tectonics. <i>Nature</i> 586 , 395-401 (2020).
819	88	Regier, M. <i>et al.</i> An oxygen isotope test for the origin of Archean mantle roots.
820		Geochemical Perspectives Letters 9 , 6-10 (2018).
821	89	Liu, J. et al. Mesoproterozoic plume-driven re-cratonisation of deep
822		continental lithospheric mantle. <i>Nature</i> (2021 - in press).
823	90	Lee, CT. A. & Chin, E. J. Calculating melting temperatures and pressures of
824		peridotite protoliths: Implications for the origin of cratonic mantle. <i>Earth and</i>
825		Planetary Science Letters 403 , 273-286 (2014).
826	91	Scott, J. et al. Continent stabilisation by lateral accretion of subduction zone-
827		processed depleted mantle residues; insights from Zealandia. <i>Earth and</i>
828		Planetary Science Letters 507 , 175-186 (2019).
829	92	Brandon, A. D., Snow, J. E., Walker, R. J., Morgan, J. W. & Mock, T. D. Pt-190-Os-
830		186 and Re-187-Os-187 systematics of abyssal peridotites. <i>Earth and</i>
831		<i>Planetary Science Letters</i> 177 , 319-335, doi:10.1016/s0012-821x(00)00044-3
832		(2000).
833	93	Harvey, J. <i>et al.</i> Ancient melt extraction from the oceanic upper mantle
834		revealed by Re–Os isotopes in abyssal peridotites from the Mid-Atlantic ridge.
835		Earth and Planetary Science Letters 244 , 606-621,
836		doi:10.1016/j.epsl.2006.02.031 (2006).
837	94	Kramers, J. D. Lead, uranium, strontium, potassium and rubidium in inclusion-
838		bearing diamonds and mantle-derived xenoliths from southern Africa. <i>Earth</i>
839		and Planetary Science Letters 42 , 58-70 (1979).
840	95	Menzies, M. & Murthy, V. R. Enriched mantle: Nd and Sr isotopes in diopsides
841		from kimberlite nodules. <i>Nature</i> 283 , 634-636 (1980).
842	Along	with Kramers (above) ad Richardson (below), pioneering studies defining the
843		geochemical evidence for the longevity of crtaonic roots
844	96	Richardson, S. H., Gurney, J. J., Erlank, A. J. & Harris, J. W. Origin of diamonds in
845		old enriched mantle. <i>Nature</i> 310 , 198-202 (1984).
846	97	Walker, R. J., Carlson, R. W., Shirey, S. B. & Boyd, F. R. Os, Sr, Nd, and Pb Isotope
847		Systematics of Southern African Peridotite Xenoliths - Implications for the
848		Chemical Evolution of Subcontinental Mantle. Geochimica Et Cosmochimica
849		<i>Acta</i> 53 , 1583-1595 (1989).

850	98	Carlson, R. W. et al. in The J.B. Dawson Volume, Proceedings of the VIIth
851		International Kimberlite Conference (eds J.J. Gurney, J.L. Gurney, M.D. Pascoe,
852		& S.H. Richardson) 99-108 (Red Roof Design, 1999).
853	99	Griffin, W. L., Spetsius, Z. V., Pearson, N. J. & O'Reilly, S. Y. In situ Re-Os analysis
854		of sulfide inclusions in kimberlitic olivine: New constraints on depletion
855		events in the Siberian lithospheric mantle. Geochemistry Geophysics
856		Geosystems 3 , doi:1069
857		10.1029/2001gc000287 (2002).
858	100	Irvine, G. J., Pearson, D. G. & Carlson, R. W. Lithospheric mantle evolution of
859		the Kaapvaal Craton: A Re-Os isotope study of peridotite xenoliths from
860		Lesotho kimberlites. <i>Geophysical Research Letters</i> 28 , 2505-2508,
861		doi:10.1029/2000gl012411 (2001).
862	101	Rudnick, R. L. & Walker, R. J. Interpreting ages from Re-Os isotopes in
863		peridotites. <i>Lithos</i> 112 , 1083-1095, doi:10.1016/j.lithos.2009.04.042 (2009).
864	102	Liu, J. et al. Mapping lithospheric boundaries using Os isotopes of mantle
865		xenoliths: An example from the North China Craton. <i>Geochimica Et</i>
866		Cosmochimica Acta 75, 3881-3902, doi:10.1016/j.gca.2011.04.018 (2011).
867	103	Luguet, A. & Pearson, G. Dating mantle peridotites using Re-Os isotopes: The
868		complex message from whole rocks, base metal sulfides, and platinum group
869		minerals. <i>American Mineralogist</i> 104 , 165-189 (2019).
870	104	Griffin, W. L. et al. The world turns over: Hadean–Archean crust–mantle
871		evolution. <i>Lithos</i> 189 , 2-15,
872		doi: <u>http://dx.doi.org/10.1016/j.lithos.2013.08.018</u> (2014).
873	105	Meibom, A. et al. Re-Os isotopic evidence for long-lived heterogeneity and
874		equilibration processes in the Earth's upper mantle. <i>Nature</i> 419 , 705-708
875		(2002).
876	106	Pearson, D. G., Parman, S. W. & Nowell, G. M. A link between large mantle
877		melting events and continent growth seen in osmium isotopes. <i>Nature</i> 449 ,
878		202-205, doi:10.1038/nature06122 (2007).
879	107	Bragagni, A. <i>et al.</i> The geological record of base metal sulfides in the cratonic
880		mantle: A microscale 1870s/1880s study of peridotite xenoliths from
881		Somerset Island, Rae Craton (Canada). <i>Geochimica et Cosmochimica Acta</i> 216 ,
882		264-285, doi: <u>https://doi.org/10.1016/j.gca.2017.04.015</u> (2017).
883	108	van Acken, D. <i>et al.</i> Mesoarchean melting and Neoarchean to Paleoproterozoic
884		metasomatism during the formation of the cratonic mantle keel beneath West
885		Greenland. <i>Geochimica Cosmochimica Acta</i> 203 , 37-53 (2017).
886	109	Wainwright, A. N., Luguet, A., Fonseca, R. O. C. & Pearson, D. G. Investigating
887		metasomatic effects on the 1870s isotopic signature: A case study on
888		micrometric base metal sulphides in metasomatised peridotite from the
889		Letlhakane kimberlite (Botswana). <i>Lithos</i> 232 , 35-48,
890		doi: <u>https://doi.org/10.1016/j.lithos.2015.06.017</u> (2015).
891	110	Beall, A. P., Moresi, L. & Cooper, C. M. Formation of cratonic lithosphere during
892		the initiation of plate tectonics. <i>Geology</i> 46 , 487-490, doi:10.1130/g39943.1
893		(2018).
894	111	Doucet, L. S., Ionov, D. A. & Golovin, A. V. Paleoproterozoic formation age for
895		the Siberian cratonic mantle: Hf and Nd isotope data on refractory peridotite

896		xenoliths from the Udachnaya kimberlite. <i>Chemical Geology</i> 391 , 42-55,
897		doi:10.1016/j.chemgeo.2014.10.018 (2015).
898	112	Ionov, D. A., Liu, Z., Golovin, A. V., Korsakov, A. V. & Xu, Y. The age and origin of
899		cratonic lithospheric mantle: Archean dunites vs. Paleoproterozoic
900		harzburgites from the Udachnaya kimberlite, Siberian craton. <i>Geochimica</i>
901		Cosmochimica Acta 281 , 67-90 (2020).
902	113	Liu, J. <i>et al.</i> Diamondiferous Paleoproterozoic mantle roots beneath Arctic
903		Canada: A study of mantle xenoliths from Parry Peninsula and Central Victoria
904		Island. <i>Geochimica et Cosmochimica Acta</i> 239 , 284-311 (2018).
905	114	Czas, J., Pearson, D. G., Stachel, T., Kjarsgaard, B. A. & Read, G. H. A
906		Palaeoproterozoic diamond-bearing lithospheric mantle root beneath the
907		Archean Sask Craton, Canada. Lithos 356 , 105301 (2020).
908	115	Luguet, A. <i>et al.</i> An integrated petrological, geochemical and Re-Os isotope
909		study of peridotite xenoliths from the Argyle lamproite, Western Australia
910		and implications for cratonic diamond occurrences. <i>Lithos</i> 112 , 1096-1108,
911		doi:10.1016/j.lithos.2009.05.022 (2009).
912	116	Wittig, N. et al. Formation of the North Atlantic Craton: Timing and
913		mechanisms constrained from Re-Os isotope and PGE data of peridotite
914		xenoliths from SW Greenland. <i>Chemical Geology</i> 276 , 166-187,
915		doi:10.1016/j.chemgeo.2010.06.002 (2010).
916	117	Griffin, W. L., Graham, S., O'Reilly, S. Y. & Pearson, N. J. Lithosphere evolution
917		beneath the Kaapvaal Craton: Re–Os systematics of sulfides in mantle-derived
918		peridotites. <i>Chemical Geology</i> 208 , 89-118,
919		doi:10.1016/j.chemgeo.2004.04.007 (2004).
920	118	Schoene, B., de Wit, M. J. & Bowring, S. A. Mesoarchean assembly and
921		stabilization of the eastern Kaapvaal craton: A structural-
922		thermochronological perspective. <i>Tectonics</i> 27 , (10.1029) (2008).
923	119	Eglington, B. Evolution of the Namaqua-Natal Belt, southern Africa–A
924		geochronological and isotope geochemical review. Journal of African Earth
925		Sciences 46 , 93-111 (2006).
926	120	Janney, P. E. <i>et al.</i> Age, Composition and Thermal Characteristics of South
927		African Off-Craton Mantle Lithosphere: Evidence for a Multi-Stage History.
928		<i>Journal of Petrology</i> 51 , 1849-1890, doi:10.1093/petrology/egq041 (2010).
929	121	Eglington, B. M. & Armstrong, R. A. The Kaapvaal Craton and adjacent orogens,
930		southern Africa: a geochronological database and overview of the geological
931		development of the craton. <i>South African Journal of Geology</i> 107 , 13–32
932		(2004).
933	122	Mather, K. A., Pearson, D. G., McKenzie, D., Kjarsgaard, B. A. & Priestley, K.
934		Constraints on the depth and thermal history of cratonic lithosphere from
935		peridotite xenoliths, xenocrysts and seismology. <i>Lithos</i> 125 , 729-742,
936		doi:10.1016/j.lithos.2011.04.003 (2011).
937	123	Ionov, D. A., Carlson, R. W., Doucet, L. S., Golovin, A. V. & Oleinikov, O. B. The
938		age and history of the lithospheric mantle of the Siberian craton: Re–Os and
939		PGE study of peridotite xenoliths from the Obnazhennaya kimberlite. <i>Earth</i>
940		and Planetary Science Letters 428 , 108-119,
941		doi:https://doi.org/10.1016/j.epsl.2015.07.007 (2015).

942	124	Pernet-Fisher, J. F. <i>et al.</i> Plume impingement on the Siberian SCLM: Evidence
943		from Re-Os isotope systematics <i>Lithos</i> 218-219 , 141-154 (2015).
944	125	Liu, J. <i>et al.</i> Age and evolution of the deep continental root beneath the central
945		Rae craton, northern Canada. Precambrian Research 272, 168-184,
946		doi: <u>http://dx.doi.org/10.1016/j.precamres.2015.11.001</u> (2016).
947	126	Smit, K. V., Pearson, D. G., Stachel, T. & Seller, M. Peridotites from
948		Attawapiskat, Canada: Mesoproterozoic Reworking of Palaeoarchaean
949		Lithospheric Mantle beneath the Northern Superior Superterrane. <i>Journal of</i>
950		<i>Petrology</i> 55 , 1829-1863, doi:10.1093/petrology/egu043 (2014).
951	127	Liu, J., Scott, J. M., Martin, C. E. & Pearson, D. G. The longevity of Archean
952		mantle residues in the convecting upper mantle and their role in young
953		continent formation. <i>Earth and Planetary Science Letters</i> 424 , 109-118,
954		doi: <u>http://dx.doi.org/10.1016/j.epsl.2015.05.027</u> (2015).
955	128	Kamber, B. S. & Tomlinson, E. L. Petrological, mineralogical and geochemical
956		peculiarities of Archean cratons. <i>Chemical Geology</i> 511 , 123-151 (2019).
957	129	Cawood, P. A. <i>et al.</i> Accretionary orogens through Earth history 1-36
958		(Geological Society, London, Special Publications 2009).
959	130	Herzberg, C., Condie, K. & Korenaga, J. Thermal history of the Earth and its
960		petrological expression. <i>Earth and Planetary Science Letters</i> 292 , 79-88,
961		doi:10.1016/j.epsl.2010.01.022 (2010).
962	131	Li, X., Kind, R., Yuan, X., Wolbern, I. & Hanka, W. Rejuvenation of the
963		lithosphere by the Hawaiin plume. <i>Nature</i> 427 , 827-829 (2004).
964	132	Sand, K. K. <i>et al.</i> The lithospheric mantle below southern West Greenland: A
965		geothermobarometric approach to diamond potential and mantle
966		stratigraphy. <i>Lithos</i> 112 , 1155-1166, doi:10.1016/j.lithos.2009.05.012
967		(2009).
968	133	Bernstein, S., Szilas, K. & Kelemen, P. B. Highly depleted cratonic mantle in
969		West Greenland extending into diamond stability field in the Proterozoic.
970		<i>Lithos</i> 168–169 , 160-172, doi: <u>http://dx.doi.org/10.1016/j.lithos.2013.02.011</u>
971		(2013).
972	134	Hamilton, M. A., Pearson, D. G., Thompson, R. N., Kelley, S. P. & Emeleus, C. H.
973		Rapid eruption of Skye lavas inferred from precise U-Pb and Ar-Ar dating of
974		the Rum and Cuillin plutonic complexes. <i>Nature</i> 394 , 260-263 (1998).
975	135	Nixon, P. H. Kimberlites in the south-west Pacific. <i>Nature</i> 287 , 718-720
976		(1980).
977 978	First st	udy to recognise thick oceanic lithospheric mantle and deeply derived oceanic
979	136	Ishikawa A Pearson D G & Dale C W Ancient Os isotone signatures from
980	150	the Ontong Java Plateau lithosphere: Tracing lithospheric accretion history
981		Farth and Planetary Science Letters 301 159-170
982		doi 10 1016/i ensl 2010 10 034 (2011)
983	137	Celli N L Lebedev S Schaeffer A L & Gaina C African cratonic lithosphere
984	107	carved by mantle plumes <i>Nature Communications</i> 11 92
985		doi:https://doi.org/10.1038/s41467-019-13871-2 (2020)
986	138	Avalew, D. & Gibson, S. L. Head-to-tail transition of the Afar mantle nlume
987	100	Geochemical evidence from a Miocene himodal basalt-rhvolite succession in
988		the Ethiopian Large Igneous Province. <i>Lithos</i> 112 . 461-476 (2009).
-		

989	139	Capitanio, F. A., Nebel, O. & Cawood, P. A. Thermochemical lithosphere
990		differentiation and the origin of cratonic mantle. <i>Nature</i> 588 , 89-94 (2020).
991	140	Moyen, J. F. & van Hunen, J. Short-term episodicity of Archaean plate tectonics.
992		Geology 40 , 451-454 (2012).
993	141	Wang, H., van Hunen, J. & Pearson, D. G. Making Archean cratonic roots by
994		lateral compression: A two-stage thickening and stabilization model.
995		Tectonophysics 746 . 562-571.
996		doi + https://doi.org/10.1016/i tecto.2016.12.001 (2018)
997	142	Oxhurgh E B & Parmentier E M Thermal processes in the formation of
998	112	continental lithosphere <i>Philos Trans A Math Phys Fng Sci</i> 288 415-425
999		(1978)
1000	143	Iordan T H Structure and formation of the continental lithosphere $In: MA$
1000	145	Manzias and K Cox (Editors). Oceanic and Continental Lithosphere: similarities
1001		and differences I Detrol Special Lithesphere Issue pp 11 27 (1099)
1002	111	McKenzie D. Jackson J. & Priostley K. Thermal structure of ecoopie and
1003	144	mcKelizie, D., Jacksoli, J. & Fliestley, K. Illerinal structure of oceanic and
1004		doi:10.1016/j.orgl 2005 02.005 (2005)
1005	145	uoi:10.1010/j.epsi.2005.02.005 (2005). McKanzia D. & Drigstlau K. Snagylations on the formation of gratang and
1000	145	McKenzie, D. & Priesuey, K. Speculations on the formation of cratons and
1007		cratonic basins. Earth and Planetary Science Letters 435 , 94-104,
1008	110	$\begin{array}{c} \text{doi:10.1016/j.epsi.2015.12.010} (2016). \\ \text{Currence} \text{R} \text{R} \text{Reschere and } \text{R} \text{Reschere and } \text{R} \text{R}$
1009	146	Gray, R. & Pyskiywec, R. N. Geodynamic models of mature continental
1010		consion: Evolution of an orogen from lithospheric subduction to continental
1011		retreat/delamination. Journal of Geophysical Research: Solid Earth 117
1012	4 4 17	
1013	14/	Nicolas, A., Boudler, F. & Boullier, a. M. Mechanisms of flow in naturally and
1014		experimentally deformed peridotites. <i>american Journal of Science</i> 273 , 853-
1015	Karra	876 (1973).
1010	ney s	anisotrony
1018	148	Liddell M V Bastow I D Darbyshire F Gilligan A & Pugh S The formation
1010	110	of Laurentia: Fuidence from shear wave splitting Farth and Planetary Science
1020		Letters 479 170-178 (2017)
1020	149	Priestley K Ho T & McKenzie D The formation of continetal roots <i>Geology</i>
1021	117	49 doi:https://doi.org/10.1130/G47696.1 (2020)
1022	150	Hoffman P. F. United plates of America, the hirth of a craton: Farly
1025	150	Proterozoic assembly and growth of Laurentia Annual Paviaus of Farth and
1024		Planetary Sciences 16 543-603 (1988)
1025	151	Parcival I A & Dycklywar P N Are Archaen lithespheric kools inverted?
1020	151	Farth and Planetary Science Letters 254 , 303-403
1027		d_{0i} 10 1016 /i and 2006 11 047 (2007)
1020	152	VanKranandank M I Smithias D H Hickman A H & Champion D C
1029	152	Socular toctonic evolution of Archean continental crust: internlay between
1021		berizental and vertical processes in the formation of the Dilbara Craton
1021		Austrolia, Terra Neus 10 , 1, 29 (2007)
1032	152	Australia. <i>Terru Nova</i> 19 , 1-50 (2007). Erencheteeu L et al Uich heet fleuvin eeuthern Tihet Nature 22 26 (1004)
1024	155	Francheteau, J. et al. fright fleat now in Southern Tibet. Nature 52-30 (1984).
1034 1025	134	England, F. C. & Hompson, A. D. m considering formers vol. 19 (eas M. P. Coward & A. C. Dois) 92 04 (The Coological Society of London Special
1035		Dublication 100()
1030		rudiicaudii, 1980j.

1037	155	Davis, W. J., Fryer, B. J. & King, J. E. Geochemistry and Evolution of Late
1038		Archean Plutonism and Its Significance to the Tectonic Development of the
1039		Slave Craton. Precambrian Research 67, 207-241 (1994).
1040	156	Peterson, T. D., Scott, I. M. I., LeCheminant, A. N., Jefferson, C. W. & Pehrsson, S.
1041		L The Kivallig Igneous Suite: Anorogenic himodal magmatism at
1042		1 75&#va0·Ga in the western Churchill Province Canada <i>Precambrian</i></td></tr><tr><td>10/12</td><td></td><td>Research 262 101-119</td></tr><tr><td>1043</td><td></td><td>d_{0}</td></tr><tr><td>1044</td><td>1 - 7</td><td>uol:<u>Inttp://ux.uol.org/10.1016/J.precamres.2015.02.019</u> (2015).</td></tr><tr><td>1045</td><td>157</td><td>weller, O. M., Copley, A., Miller, W. G. R., Palin, R. M. & Dyck, B. The</td></tr><tr><td>1046</td><td></td><td>relationship between mantle potential temperature and oceanic lithosphere</td></tr><tr><td>1047</td><td></td><td>buoyancy. Earth and Planetary Science Letters 518, 86-99 (2019).</td></tr><tr><td>1048</td><td>158</td><td>Rudnick, R. L. & Fountain, D. M. Nature and composition of the lower</td></tr><tr><td>1049</td><td></td><td>continentalL-crust - A lower crustal perspective. <i>Reviews of Geophysics</i> 33,</td></tr><tr><td>1050</td><td></td><td>267-309, doi:10.1029/95rg01302 (1995).</td></tr><tr><td>1051</td><td>159</td><td>Reimink, J. R., Davies, J. H. F. L. & Ielpi, A. Global zircon analysis records a</td></tr><tr><td>1052</td><td></td><td>gradual rise of continental crust throughout the Neoarchean. <i>Earth and</i></td></tr><tr><td>1053</td><td></td><td>Planetary Science Letters 554, 116654 (2021).</td></tr><tr><td>1054</td><td>160</td><td>Stern, T. A. et al. in Continental Plate Boundary, Tectonics at South Island, New</td></tr><tr><td>1055</td><td></td><td>Zealand Vol. 175 (eds D. O'kaya, T. Stern, & F. Davey) 207-233 (American</td></tr><tr><td>1056</td><td></td><td>Geophysical Union, Geophysical Monograph, 2007).</td></tr><tr><td>1057</td><td>161</td><td>Chesley, J. T., Rudnick, R. L. & Lee, C. T. Re-Os systematics of mantle xenoliths</td></tr><tr><td>1058</td><td></td><td>from the East African Rift: Age, structure, and history of the Tanzanian craton.</td></tr><tr><td>1059</td><td></td><td>Geochimica Et Cosmochimica Acta 63 1203-1217 doi:10.1016/s0016-</td></tr><tr><td>1060</td><td></td><td>7037(99)00004-6 (1999)</td></tr><tr><td>1061</td><td>162</td><td>Pearson D G Irvine G I Jonov D A Boyd F R & Dreibus G F Re-Os</td></tr><tr><td>1062</td><td>102</td><td>isotone systematics and platinum group element fractionation during mantle</td></tr><tr><td>1062</td><td></td><td>molt avtraction, a study of massif and vanalith paridatita suitas. <i>Chamical</i></td></tr><tr><td>1003</td><td></td><td>Coology 209 20 50 doi:10.1016/j.chomgoo.2004.04.005 (2004)</td></tr><tr><td>1004</td><td>1()</td><td>Geology 200, 29-39, uol:10.1010/j.chenigeo.2004.04.003 (2004).</td></tr><tr><td>1065</td><td>163</td><td>Alard, U., Griffin, W. L., Pearson, N. J., Lorand, JP. & O Relly, S. Y. New insights</td></tr><tr><td>1066</td><td></td><td>into the Re–Os systematics of sub-continental lithospheric mantie from in situ</td></tr><tr><td>1067</td><td></td><td>analysis of sulphides. Earth and Planetary Science Letters 203, 651-663,</td></tr><tr><td>1068</td><td></td><td>doi:<u>https://doi.org/10.1016/S0012-821X(02)00799-9</u> (2002).</td></tr><tr><td>1069</td><td>164</td><td>Aulbach, S. <i>et al.</i> Mantle formation and evolution, Slave Craton: constraints</td></tr><tr><td>1070</td><td></td><td>from HSE abundances and Re–Os isotope systematics of sulfide inclusions in</td></tr><tr><td>1071</td><td></td><td>mantle xenocrysts. <i>Chemical Geology</i> 208, 61-88,</td></tr><tr><td>1072</td><td></td><td>doi:10.1016/j.chemgeo.2004.04.006 (2004).</td></tr><tr><td>1073</td><td>165</td><td>Korenaga, J. Urey ratio and the structure and evolution of Earth's mantle.</td></tr><tr><td>1074</td><td></td><td>Reviews in Geophysics 46 (2008).</td></tr><tr><td>1075</td><td>166</td><td>Crameri, F., Shephard, G. E. & Heron, P. J. The misuse of colour in science</td></tr><tr><td>1076</td><td></td><td>communication. <i>Nature Communications</i> 11, 5444 (2020).</td></tr><tr><td>1077</td><td></td><td></td></tr><tr><td>1078</td><td></td><td></td></tr><tr><td>1079</td><td></td><td></td></tr><tr><td>1080</td><td></td><td></td></tr><tr><td>1081</td><td></td><td></td></tr><tr><td>1001</td><td></td><td></td></tr><tr><td>1002</td><td></td><td></td></tr></tbody></table>

1083	Acknowledgements:
1084	DGP is grateful for a Canada Excellence Research Chair that allowed the development of the
1085	data and ideas presented. A University of Otago, William Evans Visiting Fellowship was
1086	crucial to completing this manuscript. Modelling performed by LHW was funded by
1087	Research Council of Norway (Grant 280567). We thank Peter Cawood for constructive
1088	comments and John VanDecar for patience and encouragement.
1089	
1090	Author contributions:
1091	DGP wrote the manuscript, with major contributions to the various concepts covered by JS,
1092	TC, JL, AS, LHW, JvH, PK & KS. AS provided the seismology models, HLW performed the
1093	geodynamic models, augmented by JvH. JL performed the trace element modelling.
1094	
1095	Competing interests:
1096	The authors declare no competing interests.
1097	
1098	
1099	DISPLAY ITEM CAPTIONS
1100	
1101 1102	Box 1 Craton definition and Earth's mantle lithosphere and crust-mantle relationships
1103	SEE FIGURE FOR BOX 1
1104	Der 1 - Cohematic deristion of Fouth's months lither where defined have so the outer larger
1105	BOX 1a: Schematic depiction of Earth's mantie lithosphere defined here as the outer layer of Earth where heat is lost by conduction (the "tectosphere" of Iordan ^{2,14}). Geotherms depict
1107	pressure - temperature relations for thermally equilibrated lithosphere, with surface heat
1108	flow in mWm ⁻² . Depth to the base of the lithosphere is taken as the intersection of the
1109	conductive geotherm with the typical mid oceanic ridge (MOR) isentrope. Adjacent idealised
1110	cross section through northern Canada starting in the SE Slave craton (~ 60 °N) to the
1111 1112	Sverdrup basin $\sim 80^{\circ}$ N, with generalized locations of Rimberlite fields and other magmatic
1112	geotherms and magma geochemistry. Typical range in olivine compositions given as the
1114	fosterite content (Fo# in blue text). Lithospheric thickness varies between crust of different
1115	age, though lithospheric thicknesses of up to 200 km are present beneath crust of
1116	Proterozoic as well as Archean age ^{24,89,113} (See also Fig 1). Lithospheric thickness is much
1117	thinner beneath Phanerozoic continental crust and the oceans. Box 1b: 3-D perspective of
1118	the lithosphere beneath southern Africa showing the Archean nuclei and Paleo to
1120	Mesoproterozoic domains of the Kalanari craton that comprises the Kalapvaal and Zimbabwe Archean nuclei and intervening Paloe, to Mesoproterozoic regions. Location of
1120	kimberlite pipes supplying mantle xenolith data for lithosphere ages given by circles. Colour

- of circles denotes median age of lithospheric mantle (data from ^{57,74,77,98,120}). Crustal ages 1122
- are representative only. Present day depth of lithosphere taken from seismology^{25,74}. 1123
- 1124
- 1125

1126 FIGURE 1 Seismic imaging of continental mantle lithosphere - defining cratonic regions.

Global S-wave tomographic slice (oceans excluded) through Earth at 150 km depth displaying the 1127

- 1128 wide-spread high wave-speed anomalies of deep cratonic mantle roots - in shades of blue - that
- 1129 extend far beyond the boundaries of the exposed/inferred crust of 55 identifiable Archean nuclei
- 1130 (% Vs anomalies relative to a modified AK135 reference model²⁴). Cratons, with crust stable since 1131 \sim 1 Ga and underpinned by lithosphere > 150km thick occupy \sim 63% of the continental
- landmass. Asterix represents modified cratons where ancient crust is underlain by recently 1132
- 1133 thinned lithosphere. Composite cratons comprise multiple Archean nuclei/cratons. The 5
- Supercratons comprise multiple composite cratons. Diagonal stripes cover regions strongly 1134
- influenced by subducting slabs and are not classified as cratons. For a 200 km tomographic slice, 1135
- and a similar image coloured according to conventions for scientific maps, see Supplementary 1136
- 1137 Material.
- 1138
- 1139
- 1140 **Box 2** *Mantle peridotite density and mineralogy as a function of melt depletion*: Bulk density
- 1141 variation, as relative % change from a fertile (un-melted) mantle peridotite (lherzolite) as a
- 1142 function of fraction of melt extracted, for polybaric perfect fractional melting of 3 different
- pressures of melt initiation: 3 GPa, 5GPa and 7 GPa, following³³. Green horizontal bars show the 1143
- variation in residual (melt-depleted) peridotite mineralogy (for pyroxenes and olivine 1144
- 1145 normalized to 100%) and hence lithological change, as extracted melt fraction increases. The
- 1146 most residual (melt-depleted) mantle peridotite is a dunite.
- 1147 1148
- 1149 FIGURE 2: Estimating depth of melt extraction for lithospheric peridotites. Peridotite bulk rock molar Mg/Al ratio variation with bulk rock Yb concentration along with polybaric, perfect 1150 fractional melting curves for mantle melting beginning at different depths, following similar 1151 1152 approaches to⁶⁷. Residual mantle melting mineralogy variations with pressure and melt fraction 1153 from³⁶. Melt fraction extracted (in wt. %) given along evolution lines for residual mantle. Data points shown for cratonic peridotites, data fields for oceanic mantle (abyssal and ocean island 1154 1155 peridotites) and modified cratonic mantle, e.g., the eastern North China Craton. The majority of cratonic peridotites plot between the trends for melting beginning at 7 and 3 GPa melting, 1156 1157 indicating typical starting melting pressures of 5 to 3 GPa. A much smaller fraction of cratonic 1158 peridotite residues, e.g., those form Artemisia⁸⁹ (north Slave craton) began melting at 7 GPa or deeper and are likely plume-derived melting residues. 1159
- 1160
- 1161

Box 3 Dating lithospheric mantle: Lithospheric mantle age versus composition and 1162 1163 relationship to crust

- 1164
- 1165 *General text:* Os is a compatible element, remaining in the mantle residue during melt
- extraction^{29,77,97}. Much higher Os concentrations in the melt-depleted peridotites versus any later 1166
- 1167 metasomatic melts make Re-Os model ages more robust than many ages constraints on melting
- 1168 provided by incompatible element-based systems such as Rb-Sr, Sm-Nd and Lu-Hf, though the

- 1169 system is not immune from disturbance^{101,103,161}. The use of whole rock platinum group element
- 1170 (PGE) patterns to evaluate later disturbance of peridotite Re-Os systematics by
- 1171 metasomatism^{49,162} is essential. Emphasis is placed on ages from the most melt depleted, sulfide-
- 1172 absent peridotites, with the lowest Re and Pd concentrations. The advent of in-situ Re-Os dating
- 1173 of sulfides in peridotites^{99,163,164}, or mechanical extraction and dissolution of whole sulfides¹⁰⁷⁻¹⁰⁹
- increased the utility of Re-Os dating in peridotites, though sulfide should be absent in highly
 depleted peridotite compositions. For discussion of the relative merits of these approaches
- 1175 depleted peridotite of 1176 see^{47,101,103}.
- 1176 1177
- 1177
- 1179 **Box 3** CAPTION: **Dating mantle melt depletion, mantle ages versus craton crust ages and** 1180 **evolution, age versus melt residue composition for mantle peridotites: A)** *Left panel* - Re-Os
- 1181 model age calculation assuming that during extensive (>25%) melt extraction from a peridotite,
- 1182 all Re goes into the melt, yielding a melt residue with Re/Os = 0. Extrapolation to a "mantle
- 1183 evolution curve" (black, blue and green lines representing different models of mantle evolution)
- 1184 give "Re depletion model ages" (vertical axis). *Middle and right panels* Probability density plots
- 1185 (bandwidth = 100 Myr) for melt depletion ages of mantle beneath cratons dominated by Archean
- 1186 crust (Archean cratonic mantle), Proterozoic cratons (Proterozoic cratonic mantle), Modified
- 1187 cratonic mantle (>1Ga crust with thin lithospheric roots, e.g., eastern North China craton, East
- Greenland), and Modern oceanic mantle (abyssal peridotites and Phanerozoic ophiolites). See Fig.1 and text for craton classifications.
- 1190 Far-right panel Model continental growth curve¹⁷ (green), plus (yellow shaded area) a moving
- 1191 average of the proportion of sediments with a given age distribution¹⁵⁹ for "mature sediment
- sources", with a relative age spread between the modal zircon U-Pb age and the age of the
- 1193 sediment of 0.4 (normalized to the age of the Earth at the time of deposition). Note the
- appearance of these mature sediments with the dramatic increase in cratonic mantle asdocumented Re-depletion ages.
- 1196 **B)** Variation in olivine composition (box and whisker plots) in suites of mantle peridotites (single
- 1197 locations) versus Re-Os depletion age, where the most reliable age is based on combined Os PGE
- systematics. Red boxes = mantle xenoliths erupted through crust of Archean nuclei, light-blue =
- 1199 mantle xenoliths erupted through crust of Proterozoic cratons, green = massif peridotites, deep-
- 1200 blue = Phanerozoic oceanic mantle. Note the occurrence of Archean mantle beneath
- 1201 Paleoproterozoic crust (e.g., locations 2 & 7) and Paleoproterozoic mantle beneath Archean crust
- 1202 (locations 16, 17, 19). Ages for locations where lithosphere formation is <100 Ma are given in
- 1203 arbitrary order in the expanded blue inset. Key to location numbers is given in the Supplementary
- 1204 Information. Salmon-coloured curves denote different present-day Urey ratio curves¹⁶⁵ (the ratio
- 1205 of internal heat generation in the mantle over the internal heat flux).
- 1206
- 1207

FIGURE 3: Geodynamic modelling of possible craton formation processes: Lateral compression and plume residue dispersal.

- 1210
- 1211 Panels A-B: Lateral compression (pure shear) model of Wang et al. ¹⁴¹ showing the lithosphere
- 1212 temperature and melt depletion fields at ~52 Myr (immediately after shortening) and at 503 Myr,
- 1213 after the start of the model. After initial compressional shortening the lithosphere thickens by
- 1214 cooling, becoming denser to the point where negative thermal buoyancy starts to exceed the
- 1215 inherent chemical buoyancy and results in further thickening. The melt depletion field is

1216 converted from the compositional field by assuming a maximum melt depletion of 35% for

1217 mantle peridotite.

1218

- 1219 Panels C-D: Dynamic model of plume upwelling tracking the path of melt residues. The
- 1220 temperature and melt depletion fields for residual peridotite comprising the lithospheric mantle
- 1221 keel shown at ~33 Myr and ~102 Myr after model initiation. Isotherms plotted at T=350 °C, 550
- 1222 °C,900 °C,1300 °C. The calculation includes rheological strengthening due to melt depletion in the
- residual mantle. Note how the depleted plume residues rapidly disperse, partially accumulatingbeneath lithospheric traps, some being recycled back to the asthenosphere. Rheological
- 1225 strengthening due to melt depletion does not prevent plume melting residues from dispersing
- 1226 laterally by plume introduced flow, although a significant fraction of these buoyant residues
- 1227 remain in the uppermost mantle and may become accreted to craton roots during accretion or
- 1228 beneath much younger continents⁹¹. Model colours follow recommendations of ¹⁶⁶ scientifically
- 1229 derived colour maps. Model details in Supplementary Methods.
- 1230

1231

1232 1233

On-line Methods

1234 Numerical models

1235 We use finite element code "Citcom" ¹⁶⁷⁻¹⁶⁹ to solve the thermochemical flow with extended

1236 Boussinesq approximation^{170, 171}. A particle-tracking technique is used to track the movement of

1237 different chemical fields, including cratonic root and melt depletion. For detailed description of

- 1238 numerical method, including governing equations, rheology, and mantle plume setup, please refer
- 1239 to Wang et al. 2015¹⁷². The temperature plot is the model temperature after removing the
- 1240 adiabatic gradient, in order to make the plume clear in the temperature field.
- 1241 We further include melting of mantle peridotite and depletion-dependent buoyancy and
- 1242 strengthening in the model. The anhydrous melting parameterization of ¹⁷³ is used for mantle
- 1243 melting. The amount of melting is calculated for each particle, and any melt generated is removed
- 1244 immediately, assuming instantaneous extraction to the surface. The depletion field is updated
- with accumulated melting degree with each particle, which is then advected with particles just aswith other chemical fields.
- 1247 We apply an exponential change of mantle peridotite due to melt depletion¹⁷⁴

1248
$$\rho = \rho_0 exp(\alpha_d D)$$

1249

1250 where α_d defines the rate of density change due to melt depletion D. α_d =-0.0003 is used as

- 1251 reference value, which leads to 1.04% of density change at a melt depletion of 35%.
- 1252
- A composite rheology of non-Newtonian and Newtonian viscosity is used, with consideration of
 composition-dependent effects. The strengthening factor for the cratonic root and plume residue
 can be calculated as:
- 1256

1257
$$\Delta \eta = \Delta \eta_0^{\min(1, \frac{C}{C_\eta})}$$

- 1259 where C is the composition field, including cratonic root and melt depletion. C_{η} is the composition
- 1260 threshold for the maximum strengthening. A "constant strain-rate" definition is used for $\Delta \eta$,
- 1261 which would lead to an increase of non-Newtonian viscosity by $\Delta\eta^n$ in the definition of "constant

- 1262 stress"¹⁷². For depletion related rheological strengthening, we use a strengthening factor $\Delta \eta = 3$
- 1263 in the reference model and vary $\Delta \eta$ between 1 and 10 in other models.
- 1264
- 1265 *Model setup*: The model domain is 2640 km wide and 660 km deep. A no-slip boundary condition
- 1266 is used on the top boundary, while other boundaries are at a free-slip condition. We use a total
- 1267 number of 384-by-96 elements with vertical mesh refinement at depth between $60 \sim 240$ km
- 1268 depth. This provides a spatial resolution of 6.9 km by 4.3 km in this region. To track the
- 1269 composition field, \sim 1.7 million particles are used in the model domain, resulting in an average
- 1270 particle density of \sim 47 particles per element.
- 1271 We start the models with a quasi-steady state thermal field that has ~ 100 km thick lithosphere. A
- 1272 hot plume with a maximum temperature anomaly of 250 °C rises up from the basal 660 km depth
- 1273 and the residual mantle from plume melting is produced and dispersed. The mantle potential
- 1274 temperature is 1550 °C, which leads to about 1800 °C at the base (660 km) due to adiabatic
- heating. However, the adiabatic thermal gradient is removed in Fig. 3C-D in order to emphasizethe thermal anomaly introduced by the mantle plume.
- Fig. 3C-D shows how the plume residue greatly disperses with the plume induced flow even with the rheological strengthening of 3 due to melt depletion. We varied the rheological strengthening
- 1279 factor from 1 to 10 and found that it did not prevent the dispersion of the residual mantle. The
- 1280 videos (PrTempDepletion.avi and PrTempVisc.avi) show the evolution of temperature, depletion,
- 1281 and viscosity field through time.
- 1282
- 1283

1284 **References** 1285

- 1286167.Moresi, L.-N. & Solomatov, V. S. Numerical investigation of 2D convection with extremely1287large viscosity variations. *Physics of Fluids* 7, 2154–2162 (1995).
- 1288 168. Zhong, S., Zuber, M. T., Moresi, L. & Michael, G. Role of temperature-dependent viscosity
 and surface plates in spherical shell models of mantle convection. *Journal of Geophysical Research* 105, 11063–11082 (2000).
- 1291 169. van Hunen, J., Zhong, S., Shapiro, N. M. & Ritzwoller, M. H. New evidence for dislocation
 1292 creep from 3-D geodynamic modeling of the Pacific upper mantle structure. *Earth & Planetary Science Letters* 238, 146–155 (2005).
- 1294170.Christensen, U. & Yuen, D. Layered convection induced by phase transitions. Journal of1295Geophysical Research. 90, 10291–10300 (1985).
- 1296171.King, S. D. *et al.* A community benchmark for 2-D Cartesian compressible convection in1297the Earth's mantle. *Geophysical Journal* **180**, 73–87 (2010).
- 1298 172. Wang, H., van Hunen, J. & Pearson, D. G. The thinning of subcontinental lithosphere: The
 roles of plume impact and metasomatic weakening. *Geochemistry, Geophysics &*1300 *Geosystems* (2015). doi:10.1002/2015GC005784
- 1301173.Katz, R. F. A new parameterization of hydrous mantle melting. *Geochemistry Geophysics*1302*Geosystems* 4, 1–19 (2003).
- 1303174.Schutt, D. L. & Lesher, C. E. Effects of melt depletion on the density and seismic velocity of1304garnet and spinel lherzolite. Journal of Geophysical Research 111, B05401 (2006).
- 1305

Re-depletion Os model age (peak, Ga)

SI Guide

Supplementary Notes:

Supplementary Figures 1a & b and captions – a: Global seismic tomography section at 150km coloured according to recommendations for scientific maps; b: Regionalisation of lithospheric seismic properties.

Supplementary Location Notes to Box 3a (locations used in craton and oceanic age plots) & Box 3b (locations used in age versus Mg# plot).

Supplementary Videos (4)

LateralCompression_TempDepletion.avi

Video of dynamic model of lateral compression of cratonic mantle showing temperature and degree of melt depletion in the mantle. See "On-line Methods" for model methodology and caption to Figure 3 for further details.

LateralCompression_TempVisc.avi

Video of dynamic model of lateral compression of cratonic mantle showing temperature and viscosity in the mantle. See "On-line Methods" for model methodology and caption to Figure 3 for further details.

PlumeResidue_TempDepletion.avi

Video of the dynamics of the dispersion of mantle melting residues produced by mantle plumes showing temperature and extent of melt depletion in the mantle. See "On-line Methods" for model methodology and caption to Figure 3 for further details.

PlumeResidueTempVisc.avi

Video of the dynamics of the dispersion of mantle melting residues produced by mantle plumes showing temperature and viscosity in the mantle. See "On-line Methods" for model methodology and caption to Figure 3 for further details.

SUPLLEMENTARY NOTES

Supplementary Figure 1a: Seismic imaging of continental mantle.

Global S-wave tomographic slice (oceans excluded) through the Earth at 150 km depth. The scale bar displays % Vs anomalies relative to a modified AK135 reference model [References 23 and 24 of the main manuscript]. Colour scale is the "Vik" scheme derived using the recommendations for colour scales on maps [Reference 166 of the main manuscript].

Supplementary Figure 1b : Seismic tectonic regionalisation of lithosphere.

Tectonic regionalisation [using the method of reference 23 – Main Manuscript] of the seismic data to objectively classify seismic velocities into regions of similarity within the Earth's upper mantle; falling out naturally from this is the division of continents from oceans (not shown), and the subdivision of continents into cratonic very deep lithosphere (green) that broadly coincides with the Archean crustal nuclei to cratons, cratonic deep lithosphere (150 km thick or more – blue colour), broadly coinciding with the Super-cratons and Composite cratons defined in Fig. 1 of the main manuscript, and non-cratonic mantle underpinned by lithospheric mantle extending to <150km to the lithosphere boundary (grey shading). Diagonal stripes cover regions with apparent thick lithosphere that are strongly influenced by subducting slabs and are not classified as cratons. The boundaries of the *cratons as a whole*, as defined as the edges of the blue shaded regions, underpinned by lithosphere > 150km thick, *comprise 63% of the total continental landmass*. *Cratonic nuclei* with the deepest lithospheres, from this classification occupy ~ 34% of the total continental landmass.

Box 3a: Locations grouped by type of craton in Re-Os model age compilation

Names are either the name of a given mine, or the location of the host kimberlite, lamproite or basalt

Archean Cratonic Mantle:

Kalahari craton Archean nuclei – Letseng Mine, Lhiqhobong Mine, Matsoku, Mothae Mine, Thaba Putsoa, Newlands Mine, Monastery Mine, Kimberley Mines (Bultfontein), Jagersfontein Mine, Finsch Mine, Murowa Mine.
Karelian craton – Kaavi, Kaavi-Kupio
Rae craton – Somerset Island, Repulse Bay, Pelly Bay, Darby
Slave craton – Jericho Mine, Diavik Mine, Ekati Mine, Artemisia, Gahcho Kué
North Atlantic Craton – Chidliak Mine (Baffin Island), Safartoq (W. Greenland), Nigerlikasik and Pyramidefjeld (W. Greenland)
Superior craton – Attawapiskat
Eastern North China craton – Fuxian, Mengyin (Pre-lithosphere thinning kimberlites).
Wyoming craton – Fort a la Corne

Proterozoic Cratonic Mantle

Kalahari composite craton – Venetia Mine, Orapa Mine, Lethlakane, Namaqua-Natal terrane kimberlites (Ramatseliso, East Griqualand, Abbotsford, Melton Wold, Uintjiesberg, Markt, Hebron, Hoedkop, Gansfontein, Klipfontein), Rehoboth terrane kimberlites (Gibeon field) *Congo composite craton* – Usagaran terrane (Labait, Tanzania) *Western Australian composite craton* – Argyle Mine *Laurentia Super-craton* – Mackenzie craton (Parry Peninsula), Victoria Island; Hearne Terrane (Buffalo Head Hills), Central Plains Orogen (Sloan) *South American Super-craton* – Alto Paranaiba *Siberian composite craton* – Udachnaya Mine, Obnazhennaya

Modified Cratonic Mantle

South East Siberia – Tok East China craton – Longquanlongwan, Kuandian, Hanuoba, Qixia, Yangyuan, Jining, Datong, Fansi, Fushan, Hebi, Dalongwan, Penglai, Shanwang, Baekryeong Island, Jeju Island, Pyeongtaek Colorado Plateau - Big Creek Mojavia – Cima West Greenland – Ubekent Ejland East Greenland - Wiedemann Fjord

Phanerozoic Oceanic Mantle (Abyssal, Arcs, Ophiolites)

Abyssal – Mid Atlantic Ridge Hole 1274A (ODP Leg 209), Kane Fracture Zone, SW Indian and American-Antarctic Ridges, MAR 15 20 FZ Cruise: Academic Boris Petrov, SWIR Atlantic II FZ Cruise: Robert Conrad 27-9, SWIR Du Toit FZ Cruise: Protea 5, Gakkel ridge (Arctic Ocean), Lena Trough, Arctic basin, Mid Atlantic Ridge (MAR) Saint Paul Fracture Zone

Ophiolites – Tiebaghi massif, New Caledonia; Ouassë Bay, New Caledonia; Me Maoya massif, New Caledonia; Massif du Sud, New Caledonia; Poum, New Caledonia; Babouillat, New Caledonia; Kopeto, New Caledonia; Mamonia complex, Cyprus, Troodos, Cyprus; Oman Ophiolite, Shetland Ophiolite, Taitao ophiolite; southern Chile, Koycegiz,

Turkey; Tekirova, Turkey, Marmaris, Turkey; Macquarie Island, Australia, Ligurian ophiolites, Italy; Totalp, Austria; Purang ophiolite, southwestern Tibet; Central Tibet - Bangong-Nuijang suture zone; Yarlung-Zangbo ophiolite, Tibet;

Arcs – Kamchatka (Bakening, Avachinsky, Valovayam; Cascade arc (Simcoe); Japan arc (Ichinomegata); SW Japan (Kurose); Bismark Archipelago (PNG); Izu-Bonin-Mariana Forearc, Conical seamount.

Box 3b: Locations plotted on Age versus olivine composition plot

- 1) Siberia (Udachnaya, Archean samples, plus Obnazhennaya)
- 2) Argyle, Australia
- 3) Kalahari craton Kaapvaal nucleus (excluding Kimberley & Premier)
- 4) Tanzania craton
- 5) Kalahari Craton Kaapvaal nucleus (Kimberley)
- 6) Wyoming craton
- 7) North Atlantic Craton (E, W. and SW Greenland)
- 8) Slave craton
- 9) Congo craton
- 10)Kalahari Craton Zimbabwe nucleus (Murowa-Sese)
- 11)North China craton (Archean samples)
- 12)Rae craton Somerset Island
- 13)Kalahari craton East Griqualand
- 14)Kalahari craton Namaqualand
- 15)Kalahari craton Namibia
- 16)Kalahari Craton Kaapvaal nucleus (Premier)
- 17)Siberia (Udachnaya, Proterozoic samples)
- 18) Pyrenees orogenic massifs
- 19) Parry Peninsula & Victoria Island
- 20) North China Craton (Post-Archean samples)
- 21) Ronda Massif, Spain
- 22) China Songshugou
- 23) San Carlos USA
- 24) Bay of Islands Ophiolite
- 25) Iwanadake ophiolite, Japan
- 26) Dun Mountain ophiolite, New Zealand
- 27) Ontong Java Plateau, Pacific Ocea
- 28) Anita peridotite, New Zealand
- 29) Mariana Arc, Pacific Ocean
- 30) Kamchatka, Russia
- 31) South Sandwich Islands, S. Atlantic Ocean
- 32) Lihir Island, Papua New Guinea
- 33) Japan arc-related mantle xenoliths various locations