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ABSTRACT
Upcoming surveys will use a variety of galaxy selections to map the large-scale structure of the Universe. It is important to make
accurate predictions for the properties and clustering of such galaxies, including the errors on these statistics. Here, we describe
a novel technique which uses the semi-analytical model of galaxy formation GALFORM, embedded in the high-resolution N-body
Planck-Millennium simulation, to populate a thousand halo catalogues generated using the Parallel-PM N-body GLAM code. Our
hybrid scheme allows us to make clustering predictions on scales that cannot be modelled in the original N-body simulation.
We focus on luminous red galaxies (LRGs) selected in the redshift range z = 0.6 − 1 from the GALFORM output using similar
colour-magnitude cuts in the r, z, and W1 bands to those that will be applied in the Dark Energy Spectroscopic Instrument (DESI)
survey, and call this illustrative sample ‘DESI-like’ LRGs. We find that the LRG-halo connection is non-trivial, leading to the
prediction of a non-standard halo occupation distribution; in particular, the occupation of central galaxies does not reach unity
for the most massive haloes, and drops with increasing mass. The GLAM catalogues reproduce the abundance and clustering of
the LRGs predicted by GALFORM. We use the GLAM mocks to compute the covariance matrices for the two-point correlation
function and power spectrum of the LRGs and their background dark matter density field, revealing important differences. We
also make predictions for the linear-growth rate and the baryon acoustic oscillations distances at z = 0.6, 0.74, and 0.93. All
‘DESI-like’ LRG catalogues are made publicly available.

Key words: methods: data analysis – methods: statistical – galaxies: formation – galaxies: haloes – cosmology: theory – large-
scale structure of Universe.

1 IN T RO D U C T I O N

Luminous red galaxies (LRGs) display a strong clustering signal,
thanks to their bright intrinsic luminosity and large stellar masses,
that makes them an ideal tracer of the large-scale structure of
the Universe (Eisenstein et al. 2005a; Zehavi et al. 2005). LRGs
were used to extract the scale of the baryon acoustic oscillations
(BAO) in the local large-scale structure using the redshift-space
correlation function measured from the Sloan Digital Sky Survey
(SDSS; Eisenstein et al. 2005b). LRGs have also been used to
study the impact of redshift-space distortions (RSDs) on their small
and large scale clustering (see e.g. Zehavi et al. 2005; Wake et al.
2008; Cabre & Gaztanaga 2009a,b; Crocce et al. 2011; Samushia,
Percival & Raccanelli 2012). Additionally, the large-scale clustering
of LRGs has also been used to constrain the cosmological parameters
(Eisenstein et al. 2005b; Tegmark et al. 2006; Sanchez et al. 2009;
Aubourg et al. 2015; Tröster et al. 2020), and to test modified gravity
models (see e.g. Barreira, Sánchez & Schmidt 2016; Hernández-
Aguayo et al. 2019).

� E-mail: cesarhdz@MPA-Garching.MPG.DE (CHA); f.prada@csic.es (FP)

LRGs are the main targets of the SDSS-III Baryon Oscillation
Spectroscopic Survey (BOSS; Dawson et al. 2013), in the redshift
range 0.2 < z < 0.75. This survey has provided the most precise
measurements to date of cosmological distances using BAO and the
growth rate using RSDs at effective redshifts z = 0.38, 0.51, and 0.61
(see Alam et al. 2017 and references therein). Recently, the SDSS-IV
extended-BOSS survey (eBOSS; Dawson et al. 2016; Prakash et al.
2016) has presented the first clustering measurements of LRGs at
z ∼ 0.7 (Zhai et al. 2017; Bautista et al. 2018; Icaza-Lizaola et al.
2020).

The Dark Energy Spectroscopic Instrument1 (DESI) survey aims
to measure BAO scales and the growth of structure through RSDs
at an unprecedented level of precision (DESI Collaboration et al.
2016). This imminent survey will target luminous red galaxies in
the redshift range from z = 0.4 to 1, [OII] emission-line galaxies
(ELGs) in the range 0.6 < z < 1.6, QSOs (tracers) up to z = 2.1,
and QSOs (Ly-α) at higher redshifts (2.1 < z < 3.5). In addition to
a bright galaxy sample at low redshifts z < 0.4, DESI will provide
a total of ∼35 million biased tracers of the large-scale structure of

1https://www.desi.lbl.gov
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the Universe over 14 000 deg2 (see Kitanidis et al. 2019 for details).
The LRG target selection at z < 0.6 will be complementary to that
performed in the SDSS-IV/eBOSS (Prakash et al. 2016); hence, we
will focus here on the DESI LRGs at z ≥ 0.6.

Our aim here is to provide a qualitative study of the properties
and clustering of LRGs which meet the selection requirements
of a real survey such as DESI. We select DESI-like LRGs from
the output of the semi-analytic model (SAM) of galaxy formation
GALFORM (Cole et al. 2000) run on the Planck-Millennium N-body
simulation (Baugh et al. 2019), and provide estimates of the large-
scale galaxy clustering using the GLAM code, which allows us to
generate a substantial number of large galaxy mock catalogues
(Klypin & Prada 2018). This hybrid approach takes the SAM
calculations made using a high-resolution, moderate volume N-
body simulation and uses the results to populate a large number
(O(103)) of larger volume low-resolution simulations run with GLAM.
This allows us to make predictions for the large-scale clustering
of LRGs on scales, such as the BAO scale, that were inaccessible
in the simulation used to run the SAM. Furthermore, by being
able to generate a large number of independent realization of the
density field at relatively low computational cost, we can estimate
the covariance on two-point statistics of the large-scale structure.
Note that we describe the LRG samples drawn from the models
as being ‘DESI-like’ because the colour-magnitude selection of
DESI LRGs remains to be finalized (see Section 3). The key point
of using LRGs is that a colour-magnitude selection is applied
to the models, resulting in a non-canonical prediction for the
halo occupation distribution (HOD), illustrating the need to use a
physically motivated galaxy formation model, such as the GALFORM

SAM.
The use of SAMs to study the properties and clustering of LRGs is

not new. Almeida, Baugh & Lacey (2007) and Almeida et al. (2008)
presented predictions for the abundance, structural, and photometric
properties of LRGs using two earlier versions of GALFORM (Baugh
et al. 2005; Bower et al. 2006). The authors found that their
predictions were in good agreement with different observations
from the SDSS (Bernardi et al. 2003, 2005; Wake et al. 2006).
More recently, Stoppacher et al. (2019) used the GALACTICUS SAM
(Benson 2012) run on the MultiDark Planck 2 simulation (Klypin
et al. 2016) to study the galaxy-halo connection and clustering of
the BOSS-CMASS DR12 sample (Alam et al. 2015), finding good
agreement between predictions and observations.

Recently, Zhou et al. (2020a) presented small-scale (r �
20 h−1Mpc) clustering measurements of DESI-like LRGs selected
from the DESI Legacy Imaging Surveys2 (Dey et al. 2019) and
fitted their results using the HOD framework. Since spectroscopic
redshifts are not yet available for these targets, these authors
estimated photometric redshifts (photo-z) using the Dark Energy
Camera Legacy Survey (DECaLS) imaging. There are a number of
differences between the work carried out by Zhou et al. (2020a)
and our paper: first, we are interested in providing a study of
the impact of the DESI-LRG target selection on galaxy properties
and the galaxy-halo connection using a physical model of galaxy
formation, GALFORM; and secondly, we focus on the large-scale
galaxy clustering and in the generation of a large number of mock
catalogues to provide an accurate estimate of the covariance of the
clustering measurements. Both of these objectives are beyond the
reach of the original simulation used to run the SAM and mark a key
advantage of our hybrid approach.

2http://www.legacysurvey.org

In order to extract the cosmological information from our GLAM

mock catalogues for the DESI LRG tracers, it is necessary to meet
the requirements of the expected error budget for DESI. Hence,
it is imperative to construct covariance matrices for our clustering
measurements (see e.g. Baumgarten & Chuang 2018; Blot et al. 2019;
Colavincenzo et al. 2019; Lippich et al. 2019 and references therein).
Here, we make predictions of the linear-growth rate through a linear
theory description of RSDs (Kaiser 1987; Hamilton 1992); and an
isotropic analysis of the BAO scale (see e.g. Anderson et al. 2014)
in configuration and Fourier space using the covariance matrices
constructed from our GLAM catalogues.

The outline of the paper is as follows. In Section 2, we present the
simulations used in our analysis. Section 3 describes the selection
of DESI-like LRGs from GALFORM. In Section 4, we provide a
detailed study of the galaxy-halo connection of DESI-like LRGs.
Our results for the galaxy clustering and covariance errors are
presented in Section 5. Finally, in Section 6, we give our summary and
conclusions. We stress that is it not our intention to produce definitive
predictions for the clustering and covariance of DESI LRGs, in part,
because the detailed LRG selection is still to be finalized. Instead,
our aim is to illustrate our approach using a sample that approximates
to DESI LRGs.

2 SI M U L AT I O N S A N D G A L A X Y FO R M AT I O N
I N SEMI -ANA LY TI CAL MODELS

Here, we introduce the Planck Millennium N-body simulation and
the galaxy formation model (Section 2.1). The GLAM simulations
are described in Section 2.2. In Section 2.3, we show the halo mass
function and halo clustering of our simulations.

2.1 Galaxy formation in the Planck Millennium simulation

The Planck Millennium N-body simulation (hereafter the PMILL sim-
ulation; Baugh et al. 2019) follows the evolution of 50403 dark matter
particles in a cosmological volume of 542.163 h−3Mpc3 (8003Mpc3).
The simulation was run using a reduced memory version of the
GADGET-2 N-body code (Springel 2005), employing the cosmolog-
ical parameters corresponding to the 2014 results from the Planck
collaboration (Ade et al. 2014)

{�b, �m, h, ns, σ8} = {0.04825, 0.307, 0.6777, 0.9611, 0.8288}.
The large number of dark matter particles used in the PMILL

simulation gives a mass resolution of 1.06 × 108 h−1M� and a halo
mass limit, corresponding to 20 particles, of 2.12 × 109 h−1M�. The
simulation starts at z = 127, with initial conditions generated using
second-order Lagrangian perturbation theory (Jenkins 2010) and the
PANPHASIA code (Jenkins 2013). The halo properties and selected
particle information are saved in 271 snapshots. Haloes and sub-
haloes were identified with SUBFIND (Springel et al. 2001). SUBFIND

first identifies haloes using a friend-of-friends (FOF) algorithm with
a linking length of b = 0.2 times the mean interparticle separation.
Then, these FOF groups (main or distinct haloes) are split into
subhaloes of bound particles. SUBFIND uses several definitions of
halo mass; we use M200m which is the mass enclosed within a radius
where the average overdensity is 200 times the mean density of
the Universe. The subhalo mass is just the sum of the mass of the
particles that are gravitationally bound to that subhalo. The haloes
and subhaloes are used to build halo merger trees using the DHALO

code (Jiang et al. 2014).
Here, we use the GALFORM semi-analytical model of galaxy

formation (Cole et al. 2000; Baugh 2006; Gonzalez-Perez et al.
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2014; Lacey et al. 2016) to populate the dark matter haloes in
the PMILL simulation with galaxies. We use the recalibration of the
Gonzalez-Perez et al. (2014) model presented by Baugh et al. (2019)
to identify LRGs and study their clustering. In order to match local
observations of galaxies, just two of the parameters describing the
physical processes modelled in GALFORM were changed slightly by
Baugh et al., from the values adopted by Gonzalez-Perez et al.,
to take into account the change in cosmology and mass resolution
in the PMILL compared with the original N-body simulation used by
Gonzalez-Perez et al., and an improvement to the treatment of galaxy
mergers (see Baugh et al. 2019 for further details of these changes;
we note that Gonzalez-Perez et al. 2018 used an updated version of
their model, which also included the new galaxy merger scheme first
implemented by Campbell et al. 2015 and explained in full by Simha
& Cole 2017).

2.2 GLAM simulations

GLAM is a new N-body Parallel Particle-Mesh (PM) code developed
for the massive production of large volume mock galaxy catalogues
(Klypin & Prada 2018). GLAM first generates the density field
at an early epoch, including peculiar velocities, for a particular
cosmological model and initial conditions. The code uses a regularly
spaced three-dimensional (3D) mesh of size N3

g that covers the cubic
domain L3 of a simulation box using N3

p particles. The size of a cell,
�x = L/Ng, and the mass of each particle, mp, define the force and
mass resolutions, respectively (see appendix A of Klypin & Prada
2018 for details).

We generate 1000 GLAM simulations using the same cosmology
and linear perturbation theory power spectrum as used in the PMILL

simulation. Because our goal is to study the clustering of LRGs, the
GLAM simulations follow the evolution of 20003 particles of mass
1.06 × 1010 h−1M� in a cubic box of size 1 h−1Gpc with Ns = 136
time-steps, and mesh of Ng = 4000. This numerical set-up yields a
spatial resolution of �x = 0.25 h−1Mpc. The initial conditions were
generated using the Zeldovich approximation starting at zini = 100.

Haloes in GLAM are identified with the bound density maximum
(BDM) halo finder (Klypin & Holtzman 1997). Only distinct haloes
are saved in our catalogues. In BDM the virial mass, Mvir, is adopted
as the definition of halo mass. The virial mass of a halo corresponds
to the mass enclosed within a spherical overdensity of radius Rvir,
such that the mean overdensity within this radius is �vir ≈ 330 times
the mean matter density of the Universe at the present time. The virial
overdensity, �vir(z), is computed using the approximation of Bryan
& Norman (1998). Only halo catalogues are saved in 21 snapshots
between 0 < z < 1.2 for each realization.

2.3 Halo mass function and halo clustering

To check the performance of our GLAM simulations, we compare
the halo mass function and the halo two-point correlation function
measured from them with those obtained from the PMILL simulation.
Since we are interested in LRGs at z ≥ 0.6, we use halo catalogues
corresponding to snapshots at z = 0.6, 0.74, and 0.93, where z = 0.74
corresponds to the median redshift of the expected n(z) distribution
of LRGs in DESI (DESI Collaboration et al. 2016; Zhou et al. 2020a).
In a future work, we plan to build proper light-cones using all the
GLAM halo catalogues available in the relevant redshift range.

The upper panels in Fig. 1 show the differential halo mass function
measured at z = 0.6, 0.74, and 0.93 from the PMILL run (black solid
lines) and the GLAM simulations (blue dots with errobars) using Mvir

as the halo mass definition. We use the mass conversion algorithm

of Hu & Kravtsov (2003) to convert M200m into Mvir for the PMILL

measurements. We find good agreement between the GLAM and PMILL

results, with a difference of less than 10 per cent for haloes with
mass log10(Mvir/ h−1M�) > 12.5 at all redshifts. This mass value
is well below the typical LRG host halo mass (see below). The
differences seen between the results from GLAM and PMILL for lower
mass haloes are due to the lower resolution in the GLAM simulations.
The differences seen at the high-mass end are due to the much smaller
volume of the PMILL simulation compared with that used in the GLAM

simulations.
The real-space clustering of haloes of mass log10(Mvir/ h−1M�) >

12.5 is shown in the lower panels of Fig. 1 at different redshifts.
We find good agreement in the clustering measured on scales
r > 2 h−1Mpc between the two types of simulations. There is a
10 per cent difference over the separation range 2 < r/ h−1Mpc <

40. Nevertheless, GLAM predicts a higher clustering amplitude for
r ∼ 1 h−1Mpc with respect to that measured in the PMILL simulation.
This effect is due to the different algorithms used to find dark matter
haloes, i.e. BDM predicts more halo pairs at small separations, hence
resulting in a higher clustering amplitude on small scales. As we will
see in Section 5, the difference in the halo clustering does not affect
the clustering of LRGs when an appropriate HOD is applied to the
GLAM catalogues.

3 SE L E C T I O N O F LU M I N O U S R E D G A L A X I E S

The DESI team plan to use the 3.4μm band (W1) from the space-
based Wide-Field Infrared Survey Explorer (WISE), in combination
with the r and z bands from the DESI Legacy Imaging Surveys (Dey
et al. 2019), to select LRGs efficiently in the redshift range 0.6 < z

< 1.0 (DESI Collaboration et al. 2016). The DESI LRG selection is
currently being developed and will doubtless be revised further once
the DESI Survey Validation is completed and the performance of the
spectrograph on the telescope has been quantified. As we stated in
the introduction, it is not our intention to make definitive predictions
for DESI LRGs, but rather to present a ‘proof-of-concept’ study
that illustrates our methodology. To meet this purpose, we adopt the
LRG selection described by Zhou et al. (2020a). This is an updated
version of the DESI LRG target selection from DESI Collaboration
et al. (2016), which we hereafter refer to as ‘DESI-like’, since it
uses the same filter set that will be applied in the final DESI-LRG
selection, if not the precise numerical values of the cuts

z < 20.41 (1)

−0.6 < (z − W1) − 0.8(r − z), (2)

r − z > 0.9, (3)

r − z > (z − 17.18)/2. (4)

We note that, for reference, at the time of writing, the DESI LRG
selection based on Legacy Surveys Data Release 8 is described in
Zhou et al. (2020b).

GALFORM outputs observer frame absolute magnitudes with dust
attenuation, MAB, so we need to convert these into apparent magni-
tudes, mAB, in order to apply the above cuts

mAB = MAB + 5 log10(dL(z)/ h−1Mpc) + 25 − 2.5 log10(1 + z), (5)

where the magnitudes are on the AB-magnitude system, dL(z) is the
cosmological luminosity distance in units of h−1Mpc, and the factor
−2.5log10(1 + z) is from the band shifting of the filter width.

The left-hand panel of Fig. 2 shows GALFORM galaxies in the
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Properties and clustering of DESI-like LRGs 2321

Figure 1. Top row: differential halo mass function in the PMILL (black solid lines) and the mean of 1000 GLAM simulations (blue dots) as a function of Mvir.
Bottom row: Real-space halo two-point correlation function measured from the PMILL (black solid lines) and the mean of 1000 GLAM simulations (blue dots)
for haloes with mass Mvir > 1012.5 h−1M�. We show measurements at z = 0.60 (left-hand column), z = 0.74 (middle column), and z = 0.93 (right-hand
column). Errobars correspond to the 1σ standard deviation over 1000 GLAM realization. The lower subpanels show the relative difference between the GLAM

measurements and that from the PMILL. The horizontal dashed lines indicate a 10 per cent difference.

redshift range 0.6 < z < 1 in the (r − z) − (z − W1) colour–colour
plane. The black contours show the locus of galaxies with stellar
mass in excess of 109 h−1M� and the red contours show the galaxies
that meet the DESI LRG selection criteria set out in equations (2) and
(3). The right-hand panel of Fig. 2 shows the distribution of galaxies
in the z − (r − z) colour–magnitude plane, again showing all galaxies
with stellar mass above 109 h−1M� (black contours) along with those
which satisfy the LRG selection (red contours). The stellar mass cut
of 109 h−1M� is much lower than we expect for the stellar mass of
LRGs (see below), but is applied for illustrative purposes, to allow
us to see the locus of the GALFORM galaxies in the colour–magnitude
planes, before the photometric LRG selection is applied. Note that in
these panels, we simply show all of the galaxies that pass the stellar
mass cut or LRG selection from each of the nine PMILL snapshots that
fall within the redshift interval. As such, we are mainly interested in
the locus of the GALFORM galaxies in these colour–magnitude planes,
rather than the detailed changes in the density of points.

Reassuringly, the red contours in the (r − z) − (z − W1) colour–
colour plane are well within the black polygons denoting the selection
boundaries; the blue colour boundary of the r − z versus z selection
box is a key component in setting the space density of LRGs, as
the red contours touch this cut. At z = 0.6, GALFORM predicts that
around 6.2 million galaxies in the PMILL volume have stellar mass
M∗ > 109 h−1M� but only a small fraction (0.84 per cent) of these
galaxies are selected as LRGs.

Fig. 3 shows the space density, n(z), of DESI LRGs predicted using
GALFORM. We have applied the colour–magnitude cuts (equation 1
to 4) to nine PMILL snapshots in the redshift range 0.6 < z < 1
to obtain the abundance of LRGs – the redshift of the snapshots
is indicated by the points in Fig. 3. In the same figure, we show
the number density of DESI-like LRGs inferred from observations
using photometric redshifts from Zhou et al. (2020a) (black dashed
line). We note that GALFORM underpredicts the abundance of LRGs
at all redshifts, with the discrepancy reaching a factor of ≈1.7 at z ∼
0.66. The predicted space densities could be reconciled with those
inferred observationally using photometric redshifts by perturbing,
for example, the r − z selection to a bluer colour in Fig. 2. This
would result in a modest shift in the predicted clustering, a reduction
of around 10 per cent over the scales of interest, and without any
material change to the HODs predicted by GALFORM. Here, we are
interested in showing the theoretical predictions from the GALFORM

model and the applications on the large-scale clustering of our
GLAM catalogues, rather than making a detailed prediction for LRG
clustering, so we proceed without changing the colour selection in
this way.

To further investigate the impact of the LRG colour–magnitude
selection on the galaxy population predicted by GALFORM, we present
in Fig. 4, the stellar mass and luminosity functions for all galaxies
and for those selected as DESI LRGs. The top panels of Fig. 4 show
the evolution with redshift of the stellar mass function (sMF) for

MNRAS 503, 2318–2339 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/503/2/2318/6136269 by U
niversity of D

urham
 user on 14 July 2021



2322 C. Hernández-Aguayo et al.

Figure 2. Colour–colour (left-hand) and colour–magnitude (right-hand) diagrams predicted using the GALFORM snapshots at z = 0.6 to 1 and using the r, z, and
W1 bands. Dashed black lines represent the distribution of all galaxies with stellar mass M∗ > 109 h−1M� from the GALFORM output. Red solid lines show the
locus of GALFORM galaxies which remain after applying the DESI LRG selection cuts. The solid black polygons indicate the DESI LRG photometric selection
given by equations (1)–(4), the same used by Zhou et al. (2020a). For the (r − z) − (z − W1) panel, the contours display the abundance of objects with values:
log10n = −8.20, −7.20, −6.69, −5.65, −5.46, −5.20, −4.72, −4.50, −4.35, −4.20 (M∗-selected galaxies; black dashed lines), and log10n = −8.00, −7.40,
−6.49, −5.35, −5.16, −5.00, −4.77 (LRGs; solid red lines). Whereas, the contours in the z − (r − z) panel show values of the number density log10n = −8.20,
−7.50, −6.90, −6.50, −6.20, −5.79, −5.49, −5.19, −4.89 (M∗-selected galaxies; black dashed lines), and log10n = −7.30, −6.70, −6.30, −6.10, −5.69,
−5.39 (LRGs; solid red lines).

Figure 3. The space density of LRGs meeting the DESI selection criteria, as
predicted using GALFORM, as a function of redshift. We show the nine PMILL

snapshots between 0.6 < z < 1 (red dots). The red solid line simply connects
the points. The dashed black line shows the space density of DESI-LRGs
estimated observationally using photometric redshifts by Zhou et al. (2020a).

all galaxies and for LRGs, for z = 0.6, 0.74, and 0.93. Given the
halo mass resolution of the PMILL, robust predictions can be made
using GALFORM for galaxies with stellar masses M∗ > 107 h−1M�
(Baugh et al. 2019). As expected, the LRG sample is dominated

by massive galaxies, although not all massive galaxies are LRGs.
These massive galaxies are predicted to be in massive dark matter
haloes above the mass at which heating by active galactic nuclei
suppresses gas cooling (Contreras et al. 2015; Mitchell et al. 2016).
Some massive galaxies, however, have recent star formation driven
by the cold gas accreted in galaxy mergers, making their r−z colour
too blue to be selected as LRGs. The predicted sMF of LRGs drops
sharply below log10(M∗/ h−1M�) = 11.1, but is similar to the overall
SMF for larger stellar masses. The amplitude of the LRG SMF is
similar at z = 0.6 and 0.74, which reflects the lack of evolution
seen in the overall SMF. As we can see from Fig. 3, the number
density of LRGs drops from 4.11 × 10−4 h3Mpc−3 at z = 0.6 to
3.02 × 10−4 h3Mpc−3 at z = 0.74, while at z = 0.93 the abundance
of LRGs is 0.99 × 10−4 h3Mpc−3.

Similar to the plots showing the galaxy sMF, in the lower panels
of Fig. 4, we show, at the same redshifts as used in the top row, the
luminosity functions for the r, z, and W1 bands for all galaxies and
for LRGs. We find a similar trend as that discussed for the sMFs.
The fraction of bright galaxies that are selected as LRGs increases
with the wavelength of the band: above a threshold luminosity, all
galaxies in the W1-band are LRGS, whereas only a fraction, around
a half, of galaxies that are bright in the r-band are LRGs. Below the
threshold luminosity, the fraction of galaxies that are LRGs plunges
dramatically.

4 TH E G A L A X Y−( S U B ) H A L O C O N N E C T I O N O F
DESI LUMI NOUS RED G ALAXI ES

To explore the galaxy–(sub)halo connection of the DESI-like LRGs
predicted by GALFORM, we first examine their HOD. The HOD is an
useful tool to understand the galaxy–halo connection, clustering and
evolution of galaxies in general (see the review by Wechsler & Tinker
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Properties and clustering of DESI-like LRGs 2323

Figure 4. Stellar mass (upper panels) and luminosity (lower panels) functions predicted by GALFORM at z = 0.6 (left-hand), z = 0.74 (middle), and z = 0.93
(right-hand) for all galaxies from the GALFORM output and LRGs. Different colours and line styles indicate different properties and selections as indicated in the
legend.

2018). The HOD specifies the average number of galaxies (centrals
and satellites) hosted by a dark matter halo. Previous observational
studies have described the HOD of LRGs using a functional form that
distinguishes between central and satellite galaxies (see e.g. Blake,
Collister & Lahav 2008; Brown et al. 2008; Padmanabhan et al. 2009;
Zheng et al. 2009). In a traditional HOD, there is a transition in the
mean number of central galaxies from 〈Nc〉 = 0 to 〈Nc〉 = 1 with
increasing halo mass and the occupation by satellites (〈Ns〉) follows
a power law in halo mass (Zheng et al. 2005).

Fig. 5 shows the evolution of the HOD of DESI LRGs as predicted
by GALFORM in the redshift range z = 0.6 − 1. We show the predicted
HOD for the nine redshifts we used to measure the evolution of the
LRG number density distribution in Fig. 3. At first glance, we see that
the occupancy of central galaxies (〈Nc〉) does not reach the canonical
value of unity at high halo masses, and even begins to decline after
a peak at intermediate halo masses. This behaviour is typically seen
in the models when galaxies are selected by their star formation rate
instead of a property that correlates more closely with stellar mass
(Contreras et al. 2013; Cowley et al. 2016; Jiménez et al. 2019). More
recently Gonzalez-Perez et al. (2018) found similar behaviour for the
HOD of emission-line galaxies selected by the colour–magnitude
cuts that will be used by the DESI emission-line galaxy survey (see
also Merson et al. 2019 and Gonzalez-Perez et al. 2020). The LRG
population is dominated by central galaxies and contains a satellite
fraction of fsat ∼ 0.10–0.04 in the redshift range = 0.6−1, where the
mean number of satellites 〈Ns〉 is close to a power law.

Fig. 5 shows that there is a clear turnover in the HOD predicted
by GALFORM for central galaxies at intermediate redshifts (z = 0.74,
0.80). At higher redshifts than this, the trend is less clear due to the
evolution in the halo mass function and the resulting lack of high
mass haloes. One might have expected that the mean number of
centrals would reach unity in massive haloes, due to the suppression
of gas cooling through the heating of the hot gas halo by active
galactic nuclei. However, some central galaxies in massive haloes
can become too blue to be selected as LRGs due to star formation
triggered by mergers, which use the cold gas brought in by the
merging galaxy.

To develop a deeper understanding of the galaxy–(sub)halo con-
nection, we now explore which subhaloes are able to host an LRG.
To do so, we consider the number of subhaloes in haloes of different
mass and the subhalo mass function, including a version that shows
only those subhaloes that host an LRG. We also define a new galaxy
sample for comparison purposes by ranking galaxies in order of
decreasing stellar mass, and choosing a stellar mass cut to match
the number density of the LRG sample. This comparison sample
allows us to understand the impact of the selection cuts on the haloes
and subhaloes that host LRGs; we call this the stellar mass selected
sample.

The upper panels of Fig. 6 show the HOD for the LRG and stellar
mass selected galaxy samples, which we compare to the total number
of subhaloes available to host an LRG (see below for how this is
defined). Focusing on the galaxy HODs first, the black, blue, and
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2324 C. Hernández-Aguayo et al.

Figure 5. Halo occupation distribution of DESI-like LRGs predicted by GALFORM (symbols) as a function of their host halo masses. Each panel shows a
different redshift between z = 0.6 and 1 as labelled. The solid lines connect the symbols. Outside the mass range for which model predictions are available,
the solid lines show a power-law extrapolation of the HOD for centrals and satellites, based on the last measured points. The total, central, and satellite galaxy
occupancy is shown in black, blue, and green, as labelled.

green lines in Fig. 6 show the number, respectively, of all galaxies,
central galaxies and satellites galaxies as a function of halo mass;
solid lines show the model predictions for the LRG sample and
the dashed lines for the stellar mass selected sample. The light
blue dashed lines show the number of subhaloes more massive than
Msubhalo > 1012.5 h−1M� as a function of the mass of their main host
halo. This mass cut is arbitrary but was chosen because the HODs for
the galaxy samples are significant for halo masses above this value.
In an illustrative sense, a subhalo mass of Msubhalo ≈ 1012.5 h−1M�,

based on the mass coverage of the galaxy sample HODs, could be
loosely thought of as the minimum subhalo mass needed to host an
LRG or a galaxy in the comparator stellar mass selected sample.

Fig. 6 shows us that only a small fraction of subhaloes with masses
above Msubhalo > 1012.5 h−1M� host an LRG: this fraction reduces
from 22 to 8 per cent as the redshift increases from z = 0.6 to 0.93.
The shape of the total (centrals+satellites) and satellite-only HOD
is similar for LRGs and the stellar mass selected sample at z =
0.6 and 0.74. However, at z = 0.93, the DESI LRG selection cuts
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Properties and clustering of DESI-like LRGs 2325

Figure 6. Upper panels: Halo occupation distribution of subhaloes (dashed cyan line), LRGs (solid lines), and galaxies ranked by stellar mass (dashed lines) at
z = 0.6 (left-hand panel), z = 0.74 (middle panel), and z = 0.93 (right-hand panel). For galaxies, the occupation of total, centrals, and satellites are specified
as black, blue, and green lines, respectively. Lower panels: Subhalo mass functions measured using all galaxies (black solid lines), LRGs (red solid lines), and
galaxies ranked by stellar mass (orange solid lines) at z = 0.6 (left-hand panel), z = 0.74 (middle panel), and z = 0.93 (right-hand panel).

modify the form of the LRG HOD away from that of the stellar mass
selected sample. The HODs of central galaxies in the two samples
are markedly different at all redshifts shown in Fig. 6. The HOD of
stellar mass selected central rises to unity with increasing halo mass,
but for the LRGs it turns over after reaching a maximum below unity.
This behaviour is swamped by the satellite HOD so that the overall
HODs for the LRG and stellar mass samples differ less than the
central HODs. At the highest redshift shown in Fig. 6, the transition
from zero to peak occupancy fraction for centrals is slower for the
LRGs than for the stellar mass sample. As centrals dominate the
overall sample at lower halo masses, this produces a significant
difference in the HOD for LRGs and the stellar mass selected
sample.

To gain further insight into the LRG subhalo population, we show
the subhalo mass function in the lower panels of Fig. 6. Two versions
of the subhalo mass function are shown: one is the ‘dark matter view’,
in which we include all subhaloes and the other is the ‘galaxy view’,
in which case, a subhalo is only included if it contains a galaxy
in the sample. If the ‘galaxy view’ version of the subhalo mass
function coincides with the ‘dark matter view’, then all subhaloes at
that mass that could host a galaxy do so. In the case of the stellar
mass selected samples shown in the bottom row of Fig. 6, we see
that the most massive subhaloes all host a galaxy. As we move to
lower masses, the galaxy-view subhalo mass function falls below
the dark-matter view version; for these masses only a fraction of

the available subhaloes host a galaxy. Eventually, as we continue
to move towards even lower subhalo masses, there is a dramatic
downturn in the galaxy-view subhalo mass function, with only a tiny
fraction, less than one in a thousand subhaloes hosting a galaxy.
Qualitatively, the galaxy-view subhalo mass functions for the LRGs
are similar to those for the stellar mass selected sample, with one
exception: at the massive end, not all subhaloes host an LRG. This
difference becomes more pronounced with increasing redshift. The
conclusion of this comparison is that it is essential to perform the full
colour–magnitude selection to define the LRG sample. Applying a
stellar mass cut to attain a target number density of objects is a fair
approximation to performing the full photometric selection at low
redshifts, but results in a fundamentally different set of subhaloes
being chosen with increasing redshift.

5 G ALAXY CLUSTERI NG

In previous sections, we explored the impact of the DESI LRG
colour–magnitude selection on galaxy statistics such as the sMF and
the luminosity functions at different wavelengths. We also presented
predictions for which haloes and subhaloes contain LRGs. Here, we
take this a step further by investigating the evolution of the clustering
in configuration and Fourier space, in both real- and redshift-space.
We measure the clustering from the simulations with the NBODYKIT

toolkit (Hand et al. 2018).
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2326 C. Hernández-Aguayo et al.

5.1 Galaxy clustering in the PMILL and GLAM simulations

First, we present in Fig. 7 a comparison of the predicted real-space
galaxy two-point correlation function for pair separations in the range
0.7<r/[ h−1Mpc]<50 at redshifts 0.6, 0.74, and 0.93 for LRGs and
the stellar mass selected sample. Since LRGs do not populate all
of the most massive (sub)haloes, as seen in the lower panels of
Fig. 6, the LRG sample is less biased than the stellar mass selected
one, leading to a smaller clustering amplitude on all scales. We find
a constant offset in the clustering amplitude of around 10 per cent
between the samples at z = 0.6 and 0.74 on all scales. At higher
redshifts, where the DESI-LRG colour–magnitude cuts have a bigger
impact on which subhaloes host LRGs, we find that the difference in
clustering amplitude increases to 50 per cent on large scales, rising
to ∼150 per cent on small scales. The larger difference on small
scales at z = 0.93 is due to the abundance of satellite galaxies in the
different galaxy samples; as seen in the upper right-hand panel of
Fig. 6, the stellar mass selected sample has a larger satellite fraction
than the DESI-LRG sample. This comparison shows that selecting
LRGs using stellar mass as a proxy for the full colour–magnitude
selection leads to a significant change in the predicted clustering
signal.

As we mentioned before, one of our aims is to produce a large
number of mock DESI LRG catalogues using the GLAM code to
give an accurate estimate of the galaxy clustering signal and its full
covariance matrix of errors. For this reason, we populate our 1000
GLAM simulations with LRGs using the tabulated HOD predicted by
GALFORM (see Fig. 5), as explained below.

Since GALFORM predicts an HOD for DESI-LRGs that does not
appear to follow any of the popular parametric forms in the literature
(see appendix A of Contreras et al. 2013), we bypass carrying out
a fit altogether and instead use the tabulated model predictions for
the HOD directly to populate GLAM haloes with LRGs. Hence, in
order to populate a given GLAM halo, we interpolate between the
HOD values predicted by GALFORM to the GLAM halo mass (see
below for further details). In the case of the most massive haloes,
we extrapolate beyond the halo mass range of the HOD values;
we do not have robust predictions for these haloes from the PMILL

simulation due to its smaller volume compared to the GLAM boxes.
This method was used recently by Merson et al. (2019), where the
authors extracted the HOD of H α galaxies from the GALACTICUS

SAM catalogue (Benson 2012; Merson et al. 2018), and used this to
populate the Millennium-MXXL halo light-cone from Smith et al.
(2017).

In detail our HOD method is as follows. We assign a central galaxy
to a GLAM halo if 〈Nc〉 > U(0, 1), where 〈Nc〉 is the mean number of
central galaxies that could be found in a GLAM halo and U(0, 1) is a
uniform random number between 0 and 1. Recall that the GALFORM

predictions for the HOD of central galaxy LRGs never reach unity.
We place the central galaxy at the centre of mass of the host halo,
and give it the velocity of the centre of mass. The number of satellite
galaxies is drawn from a Poisson distribution with mean equal to
〈Ns〉, as derived from the tabulated HOD predicted using GALFORM.
Satellite galaxies are radially distributed within the virial radius,
(0 < r < Rvir), following a Navarro–Frenk–White (NFW) density
profile (Navarro, Frenk & White 1996, 1997), with a uniform angular
distribution. The satellite is assigned a velocity that is made up of
the halo velocity plus a perturbation along the x, y, and z coordinates
drawn from a Gaussian distribution with variance equal to the 1D
velocity dispersion of the host halo.

We measure the real- and redshift-space clustering in configuration
and Fourier space from the GLAM-HOD catalogues and compare

these with their PMILL counterparts to corroborate the precision of our
method. In addition, the real-space clustering measurements provide
us a relation between the distribution of galaxies and the underlying
dark-matter density field via the galaxy bias (Peebles 1980). The
galaxy bias is directly measured from our GLAM LRG mocks as

b(k, z) =
√

Pg(k, z)

Pm(k, z)
or b(r, z) =

√
ξg(r, z)

ξm(r, z)
, (6)

where Pg(k, z) (ξg(r, z)) and Pm(k, z) (ξg(r, z)) are the real-space
galaxy and dark matter power spectra (correlation functions) at
a given redshift, respectively. We tried both approaches, using
the power spectrum and correlation function to estimate the bias.
We determine the galaxy bias on scales k < 0.1 h Mpc−1 for the
power spectrum and r > 3 h−1Mpc for the correlation function
and found consistent answers, b(z) = 1.84, 1.96, 2.06 at z = 0.6,
0.74, and 0.93, respectively. The DESI-like LRG bias has been
estimated from the measured angular power spectrum and from
the halo model of the photo-z LRGs giving the following rela-
tions, b(z) = 1.6/D(z) (Kitanidis et al. 2019) and b(z) = 1.5/D(z)
(Zhou et al. 2020a). Note these relations are slightly different
to the value of b(z) = 1.7/D(z) reported in DESI Collaboration
et al. (2016), where D(z) is the linear growth factor at redshift
z, with D(z = 0) = 1. For the cosmological parameters used
in the PMILL simulation, the linear growth factor is D(z = 0.6)
= 0.73, D(z = 0.74) = 0.69, and D(z = 0.93) = 0.63, which
means that the values we recover for the bias are slightly lower
than those inferred from the observations, more similar to b(z) =
(1.3 − 1.4)/D(z). We also note that Zhai et al. (2017) estimated the
bias for a slightly different LRG sample, finding b = 2.3 for z ∼
0.7.

We use the distant-observer approximation to shift the positions
of galaxies from real- to redshift-space, treating the z-axis as the line
of sight

s = r + (1 + z)vz

H (z)
êz, (7)

where r is the coordinate vector in real space, s is the equivalent of
this in redshift-space, and z is the redshift of the simulation snapshot
used to generate the galaxy catalogue. H(z) is the Hubble parameter,
vz and êz are the components of the velocity and the unit vector along
the z-direction.

We measure the monopole and quadrupole moments of the
redshift-space correlation function, ξ l(s), and power spectrum, Pl(k),
using

ξl(s) = (2l + 1)
∫ 1

0
ξ (s, μ)Ll(μ) dμ, (8)

Pl(k) = (2l + 1)
∫ 1

0
P (k, μ)Ll(μ) dμ, (9)

where ξ (s, μ) and P(k, μ) are the full 2D correlation function and
power spectrum, μ is the cosine of the angle between the separation
vector, s or k, and the line of sight in configuration or Fourier space,
respectively. The Ll(μ) are the Legendre polynomials where l = 0 is
the monopole and l = 2 is the quadrupole. We use 20 bins logarith-
mically spaced over the separation range 0.7 < s/[ h−1Mpc] < 50
in which to measure the correlation function. The power spectrum is
measured in the range 0 < k/[ h Mpc−1] < kNyq using linear bins in
k with separation �k = 0.006 h Mpc−1, where kNyq = πNmesh/Lbox

is the 1D Nyquist frequency, Nmesh = 512 and Lbox is the box size
of the PMILL or GLAM simulations. In all cases, we adopt 30 linearly
spaced bins between 0 and 1 for μ.
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Properties and clustering of DESI-like LRGs 2327

Figure 7. The real-space galaxy correlation functions predicted by GALFORM for LRGs (red lines) and the stellar mass selected sample (orange line) at z = 0.6
(left-hand panel), z = 0.74 (middle panel), and z = 0.93 (right-hand panel). The lower subpanels show the relative difference between the LRG and the stellar
mass selected samples. The horizontal dashed lines indicate a 10 per cent difference.

Figure 8. Upper panels: Real-space galaxy correlation function of the GALFORM-PMILL LRGs (black lines) and the HOD-GLAM LRGs (blue symbols with error
bar). We also show the best-fitting power-law form, ξ (r) = (r/r0)−γ , to the DESI-LRG measurements reported by Kitanidis et al. (2019, red dashed lines) and to
our measurements (blue solid lines). Lower panels: Redshift-space monopole and quadropole moments of the correlation function for GALFORM-PMILL LRGs
(solid lines) and GLAM-HOD LRGs (symbols with error bar). In the case of the GLAM-HOD LRGs measurements, we show the mean and standard deviation
over 1000 realization. The measurements are made at z = 0.6, 0.74, and 0.93, as labelled at the top of each panel.

In the upper panels of Fig. 8, we display the real-space
clustering measured from the GALFORM output (black line) and
the GLAM LRG mock catalogues (blue symbols with error-
bars). Additionally, we show the best-fitting power-law fit to the

correlation function reported by Kitanidis et al. (2019) (r0 =
7.78 h−1Mpc, γ = 1.98) which agrees well with our measure-
ments, especially on scales r ≥ r0. Note that Kitanidis et al.
fitted the angular correlation function in the range 0.001◦ <
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2328 C. Hernández-Aguayo et al.

θ < 1◦ which translates to comoving separation θminDA(z) <

r/[ h−1Mpc] < θmaxDA(z), where DA is the angular-diametre dis-
tance. We also show results when fitting our GLAM measurements
with a power law using the range mentioned above, ξ (r) = (r/r0)−γ ,
finding r0/[ h−1Mpc] = (7.316±0.022, 7.346±0.024, 6.883±0.04)
and γ = (1.623 ± 0.006, 1.592 ± 0.007, 1.589 ± 0.012) at z = 0.6,
0.74, and 0.93.

The lower panels of Fig. 8 shows the predicted multipoles of
the redshift-space correlation function of the GLAM-HOD LRGs
(symbols with errorbars), plotted in comparison with their GALFORM

counterparts (solid lines). We find excellent agreement between the
clustering measured in both real- and redshift-space for the GLAM

and GALFORM LRGs at all scales and all redshifts.
In Fig. 9, we display the clustering measurements in Fourier

space. First, we note the good agreement between the GALFORM

and GLAM measurements on all scales. In the upper panels of
Fig. 9, we also show the measured dark-matter power spectrum
scaled by the galaxy bias squared relations of Kitanidis et al.
(2019, cyan lines), Zhou et al. (2020a, magenta lines), and from our
simulations, equation (6). We find that our measurements slightly
underpredict the bias value compare to the measured relations
estimated by Kitanidis et al. (2019) and Zhou et al. (2020a). In
the lower panels of Fig. 9, we show the multipole moments of
the redshift space power spectrum, finding almost perfect agree-
ment between the GALFORM and GLAM measurements on scales
k>0.1 h Mpc−1. Nevertheless, there is a noisy signal for the GAL-
FORM quadrupole of the redshift-space power spectrum, due to
the smaller box size of the PMILL. Nevertheless, this signal is in
good agreement with the predictions from GLAM over the range
0.1<k/[ h Mpc−1]<0.3.

We conclude that populating GLAM haloes using our interpolated-
HOD method reproduces accurately the clustering of LRGs predicted
directly by GALFORM on all scales of interest.

5.2 Large-scale galaxy clustering and covariance matrices

In general, it is not possible to measure the 3D clustering of galaxies
in real-space from observations. Some compromise involving pro-
jection is usually required to obtained a real-space statistic, such as
the angular correlation function or the projected correlation function.
The most direct 3D clustering measurements from surveys provide
statistics in redshift-space, which are affected by peculiar velocities.
Moreover, future surveys like DESI aim to measure galaxy clustering
on scales up to ∼ 200 h−1Mpc. Hence, taking advantage of our GLAM-
HOD machinery, here, we present predictions for the large-scale
galaxy clustering and covariance matrices of DESI-like LRGs for
the correlation function and power spectrum. These quantities are
fundamental for error estimates on the measurements of BAO and
RSD (see e.g. Alam et al. 2017).

In the following, we focus our attention on the large-scale
clustering of DESI-like LRGs for pair separations in the range
0 < s/[ h−1Mpc] < 150 for the correlation function. For the power
spectrum, we show results in the wavenumber range 0.01 <

k/[ h Mpc−1] < 0.3.
The upper panels of Figs 10 and 12 display the mean and standard

deviation of the multipoles of the correlation function and the power
spectrum calculated over 1000 GLAM DESI-like LRGs realization at
z = 0.6, 0.74, and 0.93. We also measure the covariance matrix, C,
of each estimator E, as follows

Cij = 1

Ns − 1

Ns∑
k=1

(
Ek

i − Ēi

) (
Ek

j − Ēj

)
, (10)

where Ns = 1000 is the number of mocks, Ēi = 1/Ns

∑
k Ek

i is the
mean value of the estimator in the i-th separation bin, and Ek

i is
the corresponding measurement from the k-th mock. The standard
deviation is estimated from the diagonal elements of the covariance
matrix,

σi =
√

Cii . (11)

We show the diagonal error contribution, σEi
/Ei , of the moments of

the correlation function and power spectrum in the lower subpanels
of the upper row of Figs 10 and 12. We observe an increase in the size
of the error contribution at large scales, especially for the monopole
and quadrupole in configuration space.

We display the correlation matrix

rij = Cij√
CiiCjj

, (12)

in the middle (monopole) and bottom (quadrupole) panels of Figs 10
and 12 for the correlation function and power spectrum, respectively.
The diagonal and non-diagonal components have different magni-
tudes and evolve differently with redshift. Figs 11 and 13 show cuts
through the correlation matrices corresponding to our measurements
in configuration and Fourier space, respectively. These diagrams
help us to better display the level of correlation and the structure
of the matrices. In the case of the moments of the correlation
function (Fig. 11), we show the cuts at four different separation
bins, si = (37.5, 72.5, 107.5, 142.5) h−1Mpc, while in Fourier space
(Fig. 13), we use ki = (0.081, 0.154, 0.222, 0.289) h Mpc−1. We see
a strong correlation between the bins close to the diagonal elements
in the monopole and quadrupole of the correlation function at z =
0.60 and 0.74; this correlation becomes weaker at z = 0.93 (Fig. 11).
In the case of the multipoles of the power spectrum, the off-diagonal
elements are much less correlated than the diagonal components,
with values close to zero (Fig. 13). This trend is strongest for the
quadrupole of the power spectrum.

Klypin & Prada (2018) carried out an extensive study of the
covariance and correlation matrix associated with the dark-matter
power spectrum of GLAM simulations. Our results for the estimation
of errors from the GLAM-HOD catalogues extends the work of
Klypin & Prada to galaxies and to the correlation function. In detail,
Fig. 14 shows the covariance analysis of the real-space DM and LRG
power spectra. We summarize our findings as follows. First, in the
upper panels, we display the measurements from our simulations,
we observe that the size of the error is similar for both DM and
LRGs at large-scales (k < 0.05 h Mpc−1) but on smaller scales the
amplitude of the error of the galaxy power spectrum becomes larger
with increasing redshift. We also show the DM power spectrum and
its errors scaled by the LRG bias squared (see Section 5.1 for details)
as a blue solid line (with a shaded region showing the 1σ error) in
the upper panel of the first row of Fig. 14. Secondly, the correlation
matrices are shown in the middle panels (upper middle panels for DM
and lower middle panels for LRGs), we find that the amplitude of the
DM correlation matrices are consistent with those reported by Klypin
& Prada (2018). On the other hand, the correlation amplitude of the
LRG power spectrum is similar to its analogue in redshift space (see
middle panels of Fig. 12). Lastly, the evolution of the non-diagonal
terms of the correlation matrices are displayed in the bottom panels
of Fig. 14. We compare the level of correlation at four values of the
separation bin, ki = (0.081, 0.154, 0.222, 0.289) h Mpc−1, finding a
more complex behaviour from the LRGs correlation matrices with an
increase amplitude at small scales, this behaviour is also consistent
with our findings in redshift space (see Fig. 12). Moreover, the
amplitude of the non-diagonal elements are similar for both DM
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Properties and clustering of DESI-like LRGs 2329

Figure 9. Upper panels: Real-space galaxy power spectrum of the GALFORM-PMILL LRGs (black lines) and the GLAM-HOD LRGs (blue lines, the shaded region
represents the 1σ error over 1000 realization), we also show the dark-matter power spectrum multiplied by the galaxy bias squared estimations of Kitanidis et al.
(2019, cyan solid lines), Zhou et al. (2020a, magenta solid lines), and from equation (6) (red solid line). Lower panels: Redshift-space monopole and quadropole
moments of the power spectrum for GALFORM LRGs (solid lines) and GLAM LRGs (symbols with error bar). For the GLAM-HOD LRGs measurements, we show
the mean and standard deviation over 1000 realization. The measurements are made at z = 0.6, 0.74, and 0.93, as labelled at the top of each panel.

and LRGs at z = 0.93 (bottom right-hand panel of Fig. 14). For all
redshifts, we find that the off-diagonal terms of the LRGs correlation
matrices are sizeable compared to their DM counterparts.

Finally, we can use the covariance matrix of each estimator to
define a chi-squared to find the best-fitting cosmological parameters
as follows

χ2 =
Ns∑

i,j=1

(
Eth

i − Eobs
i

)
C−1

ij

(
Eth

j − Eobs
j

)
, (13)

where C−1
ij is the inverse of the covariance matrix, equation (10), Eth

is the theoretical expectation of the estimator that depends on the
cosmological parameters, and Eobs is the measured estimator from
our GLAM-HOD catalogues. This definition is used in Sections 5.3
and 5.4.

It is instructive to compare the errors we obtain in the GLAM

simulation boxes with the errors expected in the DESI measurements.
DESI will measure the clustering of LRGs in a series of redshift
shells over a solid angle of 14 000 deg2. We anticipate that DESI
will sample a comoving volume of V/[h−3Gpc3] = 2.63, 3.15,
and 4.10, respectively on bins centred at redshifts of z = 0.65,
0.75, and 0.95 (DESI Collaboration et al. 2016). Hence, to get a
rough impression of how our error estimates (on the cosmological
parameters) will scale to those expected for DESI, we can scale the

GLAM errors by the square root of the inverse volume ratio (e.g.
Feldman, Kaiser & Peacock 1994): σ ′(z) = σ (z)

√
VGLAM/VDESI(z),

where VGLAM = 1 h−3Gpc3. Note that we refrain from carrying
out a more detailed comparison with the errors reported in DESI
Collaboration et al. (2016), as there are a number of differences in the
estimation of the errors in that study and ours. For example, the DESI
Collaboration study uses a Fisher matrix method, which assumes
Gaussian errors and neglects off-diagonal terms. They also employ
multiple tracers, considering ELGs and quasars, as well as LRGs,
and apply reconstruction techniques to sharpen the BAO signal.

5.3 Linear redshift-space distortions

In large volume galaxy surveys, we can extract information about the
growth of structure through the linear growth rate, f, which is defined
as the logarithmic derivative of the linear growth function of density
perturbations, D, with respect to the scale factor, a

f ≡ d ln D

d ln a
. (14)

In linear perturbation theory, the relation between the redshift-
space galaxy power spectrum, Ps, and its real-space counterpart, Pr,
is given by Kaiser (1987)

Ps(k, μ) = (1 + βμ2)2Pr(k). (15)
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2330 C. Hernández-Aguayo et al.

Figure 10. Upper panels: Measured monopole (blue lines) and quadrupole (green lines) of the redshift-space two-point correlation function of DESI-like LRGs
from our GLAM-HOD catalogues, the lower subpanels show the fractional error on the monopole and the quadrupole. The error is calculated using equation (11).
Middle panels: Correlation matrix, equation (12), of the monopole. Bottom panels: Correlation matrix, equation (12), of the quadrupole. The colour bars in the
correlation matrices display values from −1 ≤ R(si, sj) ≤ 1. The measurements are made at z = 0.6, 0.74, and 0.93, as labelled at the top of each panel.

From equation (15), we can see that the amplitude of the RSD is
related to the distortion parameter β, defined as

β(z) ≡ f (z)

b(z)
, (16)

where f is the linear growth rate (equation 14) and b is the linear
galaxy bias both of which vary with redshift, equation (6).

The monopole and quadrupole moments of the power spectrum
can be estimated from equations (9) and (15)

P0(k) =
(

1 + 2β

3
+ β2

5

)
Pr(k), (17)

P2(k) =
(

4β

3
+ 4β2

7

)
Pr(k), (18)

where Pr(k) is galaxy power spectrum in real-space.
On the other hand, the redshift-space correlation function can be

expressed as follows (Hamilton 1992, 1998)

ξ (s, μ) = [1 + β(∂/∂z)2(∇2)−1]2ξ (r), (19)

In linear theory, the monopole and quadrupole of the correlation
function can be estimated using (Hamilton 1992), i. e.

ξ0(s) =
(

1 + 2β

3
+ β2

5

)
ξ (r), (20)
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Properties and clustering of DESI-like LRGs 2331

Figure 11. Cuts through the correlation matrix of the monopole (upper panels) and the quadrupole (bottom panels) of the redshift-space correlation function at
four different values of si in units of [ h−1Mpc] as indicated in the panels. The measurements are made at z = 0.6, 0.74, and 0.93, as labelled at the top of each
panel.

ξ2(s) =
(

4β

3
+ 4β2

7

)
[ξ (r) − ξ̄ (r)], (21)

where ξ (r) is the galaxy correlation function in real-space and ξ̄ is
its volume integral out to pair separation r

ξ̄ (r) = 3

r3

∫ r

0
ξ (r ′)r ′2 dr ′. (22)

From equations (17)−(18) and equations (20)−(21), we can define
two estimators to obtain the distortion parameter, β, or the linear
growth rate, f, (Cole, Fisher & Weinberg 1994; Hawkins et al. 2003),

R(k/s) = P0(k)

Pr(k)
= ξ0(s)

ξ (r)
= 1 + 2β

3
+ β2

5
, (23)

and

Q(k/s) = P2(k)

P0(k)
= ξ2(s)

ξ0(s) − ξ̄0(s)
= (4/3)β + (4/7)β2

1 + (2/3)β + (1/5)β2
, (24)

where F (k/s) indicates that the quantity F can be a function of k or
s and

ξ̄0(s) = 3

s3

∫ s

0
ξ0(s ′)s ′2 ds ′, (25)

is the volume average of the monopole in redshift space, the analogue
of equation (22).

Fig. 15 shows our measurements of the R(k/s), and the Q(k/s)
estimators from our DESI-GLAM LRG mock catalogues at the

median redshift z = 0.74. The black dashed line in each panel
corresponds to the linear theory predictions. From the measurements
in Fourier space (left-hand panels of Fig. 15), we can see that
both estimators become closer to the linear theory predictions at
scales k � 0.1 h Mpc−1, this means that linear theory is only valid
on sufficiently large scales. On small scales, where the non-linear
motions of galaxies dominate, we observe a downturn in the signal
of each estimator. The trend is similar in configuration space (right-
hand panel of Fig. 15), where we observe that the linear theory limit
is reached on scales s > 20 h−1Mpc. All panels in Fig. 15 show
the same range of values on the vertical axis, allow us to see that
the errors are slightly different in Fourier and configuration space,
especially in R.

To extract the linear growth rate, f, from our measurements,
we perform a likelihood analysis by minimizing χ2 defined by
equation (13) by fitting the measurements of R(k/s), equation (23),
and Q(k/s), equation (24) over the range of scales k < 0.1 h Mpc−1

in Fourier space and s > 20 h−1Mpc in configuration space. We fix
the galaxy bias and just allow the linear growth rate to vary. To do
so, we employ the Monte Carlo Markov Chain (MCMC) technique
implemented in the EMCEE PYTHON package (Foreman-Mackey et al.
2013).

In Fig. 16, we compare the predictions for the linear growth rate
f(z) obtained from our DESI-GLAM LRG mocks at z = 0.6, 0.74
and 0.93 with the current observational measurements from large
galaxy surveys, including 6dFGRS at z = 0.067 (Beutler et al. 2012),
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2332 C. Hernández-Aguayo et al.

Figure 12. Same as Fig. 10, but for the multipoles of the power spectrum.

SDSS MGS at z = 0.15 (Howlett et al. 2015), 2dFGRS at z = 0.17
(Percival et al. 2004), GAMA at z = 0.18 and 0.38 (Blake et al.
2013), WiggleZ at z = 0.22, 0.41, 0.6, and 0.78 (Blake et al. 2011a),
BOSS DR12 at z = 0.32, 0.51 and z = 0.61 (Alam et al. 2017),
eBOSS LRGs at z = 0.698 (Bautista et al. 2021; Gil-Marı́n et al.
2020), FastSound at z = 1.4 (Okumura et al. 2016) and the eBOSS
DR14 QSO sample at z = 1.52 (Zarrouk et al. 2018). The black
errorbars over the �CDM predictions indicate the estimated error
from the DESI forecast (see table 2.3 of DESI Collaboration et al.
2016). Note that in this work, we do not include the light-cone and
survey geometry effects on our mocks. These will be considered in
a forthcoming paper.

Table 1 summarizes the best-fitting values of the linear growth
rate, f, at z = 0.60, 0.74, and 0.93 obtained from the estimators
R (equation 23) and Q (equation 24) in configuration and Fourier

space. We also show the values from the fidiciual cosmology.
We find very good agreement between our estimations and the
theoretical predictions. The largest errors come from the R estimator
in configuration space and Q in Fourier space, this might be due
to the size of the error contribution of our measurements (see
Section 5.2 for details). The best case is R in Fourier case, which
estimates the linear growth rate with a precision better than 4 per
cent.

It is expected that DESI will provide a means to distinguish
between gravity models. For this reason, in Fig. 16, we also show
the theoretical expectations from two representative modified gravity
models: the f(R) Hu–Sawicki model (Hu & Sawicki 2007) and the
normal branch of the DGP model (nDGP; Dvali, Gabadadze &
Porrati 2000). Previously, Hernández-Aguayo et al. (2019) presented
predictions for the linear and non-linear RSDs in configuration space
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Properties and clustering of DESI-like LRGs 2333

Figure 13. Same as Fig. 11, but for the multipoles of the power spectrum. In this case, we show the cuts through the correlation matrices at four different values
of ki in units of [ h Mpc−1].

for these models but for the BOSS-CMASS sample at z ≤ 0.5 (Manera
et al. 2012).

The linear growth for the matter fluctuations in these gravity
models can be obtained by solving the equation of the linear growth
factor, D,

D′′ +
(

2 − 3

2
�m(a)

)
D′ − 3

2

Geff

G
�m(a)D = 0, (26)

where
′
denotes a derivative with respect to ln a and Geff takes values

of

Geff

G
=

{
1 + k2/[3(k2 + a2m2

fR
(a))] f (R),

1 + 1/[3βDGP(a)] nDGP,
(27)

where

m2
fR

(a) = H 2
0 (�m + 4��)

2|fR0|
(

�ma−3 + 4��

�m + 4��

)3

, (28)

and

βDGP(a) = 1 + �ma−3 + 2��

2
√

�rc(�ma−3 + ��)
, (29)

where H0 is the present-day value of the Hubble parameter, �m

and �� are the current matter and dark energy density parameters,
respectively. fR0 and �rc are free parameters of each model that
affect the deviation from the �CDM model. Note that G

f (R)
eff is a

function of time and scale, which means that the linear growth of
structure for f(R) gravity is scale dependent, while for nDGP it is

scale independent. In Fig. 16, we show the theoretical values of the
linear growth rate, equation (14), of these models for the cases: fR0

= −10−5 and the range of scales 0.01 ≤ k/[ h Mpc−1] ≤ 0.1 for
f(R)-gravity and �rc = 0.25 for the nDGP model.

We see that the size of the errors from the DESI forecast is small
enough to distinguish between the �CDM and the nDGP model.
However, it is still unclear if we will be able to rule out f(R) gravity
models using RSDs.

5.4 Isotropic measurements of the baryon acoustic oscillations
scale

Another direct application of our GLAM-HOD catalogues is the
prediction of the BAO feature for DESI-like LRGs at different
redshifts. This scale was not accessible in the PMILL run due to
its volume. We extract the BAO scale through the dilation parameter,
α, which is related to physical distances via (Eisenstein et al. 2005b)

α ≡ DV(z)rfid
d

Dfid
V (z)rd

, (30)

where

DV(z) = [
cz(1 + z)2D2

A(z)H−1(z)
]1/3

, (31)

DA(z) is the angular-diametre distance, rd is the sound horizon at the
baryon drag epoch (zd ∼ 1020), and the superscript ‘fid’ indicates
the value of the distances in our fiducial cosmology, i.e. the PMILL
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2334 C. Hernández-Aguayo et al.

Figure 14. Covariance analysis of the real-space dark matter and LRG power spectra at z = 0.6, 0.74, and 0.93. Upper panels: Measured DM (black lines) and
LRG (red lines) power spectrum from our GLAM simulations together with the DM power spectrum multiplied by the bias squared (blue lines; equation 6), the
lower subpanels show the error contribution. Middle top and middle lower: Correlation matrices of the real-space power spectrum for the DM density field and
LRGs, respectively. Bottom panels: Slices through the correlation matrices at different values of ki in units of [ h Mpc−1].
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Properties and clustering of DESI-like LRGs 2335

Figure 15. Estimators R (upper subpanels) (equation 23) and Q (lower subpanels), (equation 24) as function of separation in Fourier (left-hand panels) and
configuration (right-hand panels) space at z = 0.74. Symbols with errorbars show the mean and standard deviation of the estimator measured from our 1000
GLAM catalogues. The black dashed line in each panel represents the fiducial linear theory value.

Figure 16. Evolution of the linear growth rate, f, as a function of redshift. Our estimations from R and Q are shown in the left- and right-hand panel in
configuration (red dots with errobars) and Fourier (blue dots with errorbars) space, respectively. The coloured symbols display measurements from different
surveys at different redshifts as specified in the legend. Solid curves show the prediction for �CDM (black), nDGP (orange), and f(R)-gravity (green shaded
region that represent wavenumbers 0.01 ≤ k/[ h Mpc−1] ≤ 0.1) models. The black errorbars over the �CDM prediction represent the DESI 14K forecast for
kmax = 0.1 h Mpc−1 (see table 2.3 of DESI Collaboration et al. 2016).

Table 1. Results for the best-fitting values of the linear-growth rate, f, at redshifts 0.60, 0.74, and 0.93 for our estimators R(k/s),
equation (23), and Q(k/s), equation (24).

Measurement Redshift Fiducial R(k) Q(k) R(s) Q(s)

f z = 0.60 0.786 0.778 ± 0.024 0.776 ± 0.067 0.803 ± 0.041 0.758 ± 0.036
f z = 0.74 0.823 0.822 ± 0.025 0.817 ± 0.066 0.839 ± 0.053 0.815 ± 0.039
f z = 0.93 0.861 0.847 ± 0.033 0.842 ± 0.071 0.838 ± 0.070 0.861 ± 0.061
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2336 C. Hernández-Aguayo et al.

cosmology (see Section 2.1). In our fiducial cosmology, the values
of DV(z) and rd are

Dfid
V (z = 0.60) = 2141.07 Mpc, (32)

Dfid
V (z = 0.74) = 2502.62 Mpc, (33)

Dfid
V (z = 0.93) = 2926.11 Mpc, (34)

rfid
d = 148.13 Mpc. (35)

The BAO scale can be extracted by fitting the monopole of
the power spectrum (or correlation function) to a template that
includes the dilation parameter. Therefore, the monopole of the power
spectrum is modelled as the product of a smooth component and the
BAO signal as (e.g. Anderson et al. 2014; Ross et al. 2015)

P0,fit(k) = Psm(k)Odamp(k/α), (36)

where Psm(k) is a smooth power spectrum, i.e. without any BAO
feature, and Odamp(k) represents the damped BAO signal (see below
for the definitions of these quantities).

The smooth power spectrum component is modelled as (Anderson
et al. 2014; Ross et al. 2015; Hernández-Aguayo et al. 2020)

Psm(k) = B2
pPnw(k) + A1k + A2 + A3

k
, (37)

where Pnw(k) is a smooth ‘de-wiggled’ template obtained using the
fitting formula of Eisenstein & Hu (1998), Bp is a large-scale bias
parameter, and A1, A2, and A3 are further free parameters.

The oscillatory component of the power spectrum is given by

Odamp(k) = 1 +
(

Plin(k)

Pnw(k)
− 1

)
e− 1

2 k2�2
nl , (38)

where �nl is a damping parameter.
The monopole of the redshift-space correlation function is given

by the model (Anderson et al. 2014; Ross et al. 2015)

ξ0,fit(s) = B2
s ξlin, damp(αs) + a1

s2
+ a2

s
+ a3, (39)

where ξlin, damp(s) is the Fourier transform of Pnw(k)Odamp(k), Bs is the
equivalent of Bp mentioned above, and a1, a2, and a3 are polynomial
free parameters.

To obtain the best-fitting α value, we use Bayesian statistics and
maximize the likelihood, L ∝ exp(−χ2/2) (where χ2 is defined by
equation 13) by fitting the measurements of the monopole of the
power spectrum on scales with k < 0.3 h Mpc−1 and on scales with
s > 40 h−1Mpc for the monopole of the correlation function. To find
the best-fitting α value and its confidence levels, we again use the
MCMC technique via the package EMCEE.

Fig. 17 displays the BAO feature in Fourier (left-hand panel) and
configuration space (right-hand panel) at z = 0.74 (similar trends
were found at z = 0.60 and 0.93). The BAO feature was isolated by
dividing the best-fitting model and measurements of the monopole
of the power spectrum by the smooth component of the best-fitting
model. In the case of the monopole of the correlation function, we
subtract the smooth component of the best-fitting model to the best-
fitting model and measurements. We can see a clear BAO signal in
both cases.

Our estimates of the dilation parameter are shown in Fig. 18
together with isotropic BAO measurements from the 6dFGRS at
z = 0.11 (Beutler et al. 2011), the SDSS MGC at z = 0.15 (Ross
et al. 2015), BOSS DR12 at z = [0.38, 0.61] (Alam et al. 2017),
WiggleZ at z = [0.44, 0.6, 0.73] (Blake et al. 2011b), eBOSS DR16
LRGs at z = 0.698 (Bautista et al. 2021; Gil-Marı́n et al. 2020),

eBOSS DR14 LRGs at z = 0.72 (Bautista et al. 2018) and eBOSS
DR14 QSO sample at z = 1.52 (Ata et al. 2018). The black errorbars
are from the DESI forecast (see table 2.3 of DESI Collaboration et al.
2016).

Using the fiducial values of Dfid
V , equations (32)−(34), we convert

our best-fitting α values into distance measurements via equation (30)

DV(z = 0.60) =
{

2140 ± 28 (rd/r
fid
d ) Mpc P0(k),

2145 ± 27 (rd/r
fid
d ) Mpc ξ0(s),

(40)

DV(z = 0.74) =
{

2505 ± 31 (rd/r
fid
d ) Mpc P0(k),

2508 ± 33 (rd/r
fid
d ) Mpc ξ0(s),

(41)

DV(z = 0.93) =
{

2927 ± 38 (rd/r
fid
d ) Mpc P0(k),

2926 ± 40 (rd/r
fid
d ) Mpc ξ0(s).

(42)

We find good agreement between our estimates and the fiducial
values of DV(z). The agreement is well within the 1σ level. In our
case, the monopole of the correlation function gives slightly better
constraints than the power spectrum. In general, we can estimate the
isotropic BAO distance to better than 1.3 per cent in both spaces.
Note that we did not scale our errorbars by the DESI volume.

6 SU M M A RY A N D C O N C L U S I O N S

We have presented predictions for the properties and clustering of
LRGs selected using colour–magnitude cuts in the r, z, W1 bands
that are similar to those that will be applied in the DESI LRG survey
(DESI Collaboration et al. 2016). The predictions were made using
the GALFORM semi-analytic model of galaxy formation run on the
PMILL N-body simulation (Baugh et al. 2019) and a suite of low-
resolution, larger volume simulations run with the Parallel-PM N-
body code GLAM (Klypin & Prada 2018).

Our aim is to carry out a proof of concept study of our approach,
using a non-trivial galaxy selection, to illustrate the power of using a
physically motivated galaxy formation model. We made predictions
for the abundance of ‘DESI-like’ LRGs and explore how the target
selection cuts affect which galaxies are selected and how these
populate haloes and subhaloes. We find that a small but important
fraction of the most massive galaxies (those with stellar mass
log10(M∗/ h−1M�) > 11.15) are not selected as LRGs (see Fig. 4).
A similar trend is seen in the galaxy luminosity function, and is most
pronounced at shorter wavelengths: essentially all bright galaxies in
the W1-band luminosity function are LRGs, but only roughly half
of the galaxies in the bright end of the r-band luminosity function
are LRGs. This shows that applying the full photometric selection
is essential to reproduce LRGs in a galaxy formation model and
that using a proxy, such as stellar mass, to select LRGs is at best
an approximation. We explored the galaxy–(sub)halo connection of
LRGs through the HOD and the subhalo mass function. We find that
the shape of the HOD does not follow the canonical shape proposed
by Zheng et al. (2005); in particular, the occupation of central galaxies
does not reach unity for the most massive haloes (see Fig. 5), and
drops with increasing mass.

We compared the HOD and the subhalo mass functions of galaxies
selected by their stellar mass with those measured for the LRGs (see
Fig. 6). By doing this exercise, we reaffirm that the DESI-LRG cuts
affect the selection of subhaloes that are populated by LRGs. Mass
alone is not enough to determine if a subhalo hosts an LRG. By
comparing the clustering of these galaxy samples (Fig. 7), we found
a difference that ranges from 10 per cent at z = 0.6−0.74 to up
to 150 per cent at z = 0.93. Hence, we conclude that using galaxy
stellar mass as a proxy for selecting LRGs could change the expected
clustering signal.
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Properties and clustering of DESI-like LRGs 2337

Figure 17. BAO signals in the monopole of the power spectrum (left-hand panel) and correlation function (right-hand panel) at z = 0.74. Blue dots with error
bars come from the measurements from our GLAM-LRG catalogues. The solid lines show the predictions from the best-fitting BAO models. In order to highlight
the BAO features, we have divided the P(k) measurements and the best-fitting model by the no-wiggle power spectrum of the best-fitting model. In configuration
space, we have also subtracted the smooth component of the best-fitting model.

Figure 18. Isotropic BAO measurements as a function of redshift. Our
estimates from the monopole of the power spectrum are shown by the red
dots with errorbars while the blue dots with errobars represent the best-fitting
values from the monopole of the correlation function. Note that we did not
rescale our errorbars by the DESI survey volume.
We show the measurements from different galaxy surveys as labelled. The
black errorbars show the DESI 14K forecast presented in DESI Collaboration
et al. (2016).

To prepare for the clustering measurements of DESI, we ran
1000 GLAM simulations. When comparing the halo statistics between
the GLAM simulation ensemble and the PMILL high-resolution run,
we found good agreement between the halo mass functions, but

differences of ∼ 10 per cent in the halo clustering (see Fig. 1).
This difference can be attributed to the different halo finder used
in the PMILL and GLAM simulations. Despite the difference in halo
clustering, the galaxy clustering statistics measured from the GLAM-
LRG catalogues are in good agreement with that in the PMILL-
GALFORM LRG sample in both configuration and Fourier space. To
populate the GLAM halo catalogues with DESI-like LRGs, we used
the tabulated HODs obtained from GALFORM. We also found a good
agreement between our clustering measurements in real-space with
those reported by Kitanidis et al. (2019) and Zhou et al. (2020a) (see
upper panels of Figs 8 and 9).

We extended the analysis of covariance and correlation matrices
of GLAM simulations started by Klypin & Prada (2018) to galaxies
and correlation functions (see Figs 10–14). We found that the galaxy
correlation matrix shows a different and more complex pattern than
its dark-matter counterpart.

We presented predictions for the large-scale clustering of DESI-
like LRGs in configuration and Fourier space, by extracting the linear
growth rate from the linear Kaiser RSD model and the BAO scale
from the isotropic dilation parameter. In a follow-up project, we plan
to extend this study to non-linear models of RSDs and an anisotropic
analysis of the BAO scale, including the impact of the light-cone
survey geometry and observational systematic.

Using our GLAM-LRG catalogues, we estimated the growth of
structure from the ratio of the monopole in redshift space to the
real-space power spectrum with a precision of ∼ 3 − 4 per cent, and
we can measure the BAO scale with a 1.3 per cent precision in both
configuration and Fourier space. Nevertheless, if we want to compare
the precision of our measurements with those expected from DESI
(table 2.3 of DESI Collaboration et al. 2016), our error estimations
should take into account the contribution from the expected volume
covered by DESI (see Section 5.2 for details). However, the amplitude
of the statistical errors estimated from our best-fitting search on the
linear growth rate and BAO scale are consistent with the forecast
presented by DESI Collaboration et al. (2016).
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2338 C. Hernández-Aguayo et al.

We conclude that the colour–magnitude cuts have a big impact
on the properties and clustering of LRGs, showing that LRGs are
different than stellar mass selected galaxies. But more importantly,
the analysis presented in this paper provided accurate estimates on
the galaxy clustering expected by DESI-LRGs thanks to our GLAM-
HOD pipeline. The GLAM-LRG galaxy catalogues are made public
at the Skies & Universes site.3 Moreover, our pipeline can be easily
adapted to the specifications of other next generation surveys such as
Euclid, the Vera Rubin Observatory (formerly the LSST), PFS, and
4MOST.
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Jiménez E., Contreras S., Padilla N., Zehavi I., Baugh C. M., Gonzalez-Perez

V., 2019, MNRAS, 490, 3532
Kaiser N., 1987, MNRAS, 227, 1
Kitanidis E. et al., 2020 , MNRAS, 496, 2262
Klypin A., Holtzman J., 1997, preprint (arXiv:astro-ph/9712217)
Klypin A., Prada F., 2018, MNRAS, 478, 4602

MNRAS 503, 2318–2339 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/503/2/2318/6136269 by U
niversity of D

urham
 user on 14 July 2021

file:www.dirac.ac.uk
file:www.skiesanduniverses.org
http://www.skiesanduniverses.org/Products/MockCatalogues/GLAMDESILRG/
http://dx.doi.org/10.1051/0004-6361/201321591
http://dx.doi.org/10.1088/0067-0049/219/1/12
http://dx.doi.org/10.1093/mnras/stx721
http://dx.doi.org/10.1111/j.1365-2966.2007.11530.x
http://dx.doi.org/10.1111/j.1365-2966.2008.13179.x
http://dx.doi.org/10.1093/mnras/stu523
http://dx.doi.org/10.1093/mnras/stx2630
http://dx.doi.org/10.1103/PhysRevD.92.123516
http://dx.doi.org/10.1103/PhysRevD.94.084022
http://dx.doi.org/10.1088/0034-4885/69/12/R02
http://dx.doi.org/10.1111/j.1365-2966.2004.08553.x
http://dx.doi.org/10.1093/mnras/sty3427
http://dx.doi.org/10.1093/mnras/sty1971
http://dx.doi.org/10.3847/1538-4357/aacea5
http://dx.doi.org/10.1093/mnras/staa2800
http://www.skiesanduniverses.org
http://dx.doi.org/10.1016/j.newast.2011.07.004
http://dx.doi.org/10.1086/367794
http://dx.doi.org/10.1086/426336
http://dx.doi.org/10.1111/j.1365-2966.2011.19250.x
http://dx.doi.org/10.1111/j.1365-2966.2012.21136.x
http://dx.doi.org/10.1111/j.1365-2966.2007.11925.x
http://dx.doi.org/10.1111/j.1365-2966.2011.18903.x
http://dx.doi.org/10.1111/j.1365-2966.2011.19592.x
http://dx.doi.org/10.1093/mnras/stt1791
http://dx.doi.org/10.1093/mnras/stz507
http://dx.doi.org/10.1111/j.1365-2966.2006.10519.x
http://dx.doi.org/10.1086/589538
http://dx.doi.org/10.1086/305262
http://dx.doi.org/10.1111/j.1365-2966.2008.14281.x
http://dx.doi.org/10.1111/j.1365-2966.2009.14782.x
http://dx.doi.org/10.1093/mnras/stv1315
http://dx.doi.org/10.1093/mnras/sty2964
http://dx.doi.org/10.1093/mnras/267.3.785
http://dx.doi.org/10.1046/j.1365-8711.2000.03879.x
http://dx.doi.org/10.1093/mnras/stt629
http://dx.doi.org/10.1093/mnras/stv1438
http://dx.doi.org/10.1093/mnras/stw1069
http://dx.doi.org/10.1111/j.1365-2966.2011.19425.x
http://dx.doi.org/10.1088/0004-6256/145/1/10
http://dx.doi.org/10.3847/0004-6256/151/2/44
http://arxiv.org/abs/1611.00036
http://dx.doi.org/10.3847/1538-3881/ab089d
http://dx.doi.org/10.1016/S0370-2693(00)00669-9
http://dx.doi.org/10.1086/305424
http://dx.doi.org/10.1086/426500
http://dx.doi.org/10.1086/466512
http://dx.doi.org/10.1086/174036
http://dx.doi.org/10.1086/670067
http://dx.doi.org/10.1093/mnras/staa2455
http://dx.doi.org/10.1093/mnras/stt2410
http://dx.doi.org/10.1093/mnras/stx2807
http://dx.doi.org/10.1086/186264
http://dx.doi.org/10.3847/1538-3881/aadae0
http://dx.doi.org/10.1046/j.1365-2966.2003.07063.x
http://dx.doi.org/10.1093/mnras/stz516
http://dx.doi.org/10.1093/mnras/staa973
http://dx.doi.org/10.1093/mnras/stu2693
http://dx.doi.org/10.1086/345846
http://dx.doi.org/10.1103/PhysRevD.76.064004
http://dx.doi.org/10.1093/mnras/stz3602
http://dx.doi.org/10.1111/j.1365-2966.2010.16259.x
http://dx.doi.org/10.1093/mnras/stt1154
http://dx.doi.org/10.1093/mnras/stu390
http://dx.doi.org/10.1093/mnras/stz2790
http://dx.doi.org/10.1093/mnras/227.1.1
http://dx.doi.org/10.1093/mnras/staa1621
http://arxiv.org/abs/astro-ph/9712217
http://dx.doi.org/10.1093/mnras/sty1340


Properties and clustering of DESI-like LRGs 2339

Klypin A., Yepes G., Gottlober S., Prada F., Hess S., 2016, MNRAS, 457,
4340

Lacey C. G. et al., 2016, MNRAS, 462, 3854
Lippich M. et al., 2019, MNRAS, 482, 1786
Manera M. et al., 2012, MNRAS, 428, 1036
Merson A., Wang Y., Benson A., Faisst A., Masters D., Kiessling A., Rhodes

J., 2018, MNRAS, 474, 177
Merson A., Smith A., Benson A., Wang Y., Baugh C. M., 2019, MNRAS,

486, 5737
Mitchell P. D., Lacey C. G., Baugh C. M., Cole S., 2016, MNRAS, 456, 1459
Navarro J. F., Frenk C. S., White S. D. M., 1996, ApJ, 462, 563
Navarro J. F., Frenk C. S., White S. D. M., 1997, ApJ, 490, 493
Okumura T. et al., 2016, Publ. Astron. Soc. Jap., 68, 38
Padmanabhan N., White M., Norberg P., Porciani C., 2009, MNRAS, 397,

1862
Peebles P. J. E., 1980, The Large-Scale Structure of the Universe. Princeton

University Press, USA
Percival W. J. et al., 2004, MNRAS, 353, 1201
Prakash A. et al., 2016, ApJS, 224, 34
Ross A. J., Samushia L., Howlett C., Percival W. J., Burden A., Manera M.,

2015, MNRAS, 449, 835
Samushia L., Percival W. J., Raccanelli A., 2012, MNRAS, 420, 2102
Sanchez A. G., Crocce M., Cabre A., Baugh C. M., Gaztanaga E., 2009,

MNRAS, 400, 1643

Simha V., Cole S., 2017, MNRAS, 472, 1392
Smith A., Cole S., Baugh C., Zheng Z., Angulo R., Norberg P., Zehavi I.,

2017, MNRAS, 470, 4646
Springel V., 2005, MNRAS, 364, 1105
Springel V., White S. D. M., Tormen G., Kauffmann G., 2001, MNRAS, 328,

726
Stoppacher D. et al., 2019, MNRAS, 486, 1316
Tegmark M. et al., 2006, Phys. Rev., D74, 123507
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