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Leveraging tourist trajectory data for effective destination planning and 

management: A new heuristic approach 

 

Abstract:  

Understanding tourist movements provides insights for destination planning, service design 

and marketing. The key challenge is to develop a tool that can capture the value in the tourist 

mobility data. This study presents a new heuristic approach that combines adaptive spatial 

clustering with frequent pattern mining to improve the performance and efficiency of trajectory 

data analytics. The aim is to fully leverage the semantic information in the tourist data and the 

duration that tourists stay at an attraction. Anonymous mobile positioning data from 741 

tourists to one of China’s leading destinations are used to illustrate the application of the new 

analytical approach. The results reveal a four-level destination spatial structure ranging from 

core to peripheral areas. The findings provide practical implications for facilitating intra-

destination cooperation and optimizing destination resource allocation and service design.   

 

Keywords: Tourist mobility; Frequent pattern mining; Time-space; Core-peripheral; Data 

mining; Intra-destination cooperation.  
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1. Introduction 

Tourist mobility in a destination is limited to two essential resources, i.e., space and time 

(Grinberger & Shoval, 2019). When organizing trips, tourists must allocate time for visiting 

attractions and the transport between different locations (Neutens, et al., 2011). An increase in 

time spent on one activity (e.g., transport) means less time for another activity (e.g., enjoying 

a rare exhibition in the museum). The spatio-temporal distribution of tourists reflects the 

composition of a network of attractions within a destination. The core-periphery model of 

attractions provides a systematic understanding of the geographical distribution of attractions 

in the destination (Prideaux, 2002). A primary attraction can attract more tourists than smaller 

ones and a cluster of attractions can attract more tourists who stay longer than isolated 

attractions (Lue, et al., 1993). The spatial structure of a destination is constantly shaped and 

reshaped by tourist movement. Mapping tourist movements provides an understanding of the 

structure of the destination and the interconnections among destinations (Park, et al., 2020).  

With the constraints of space and time, the patterns of tourist movement at a destination 

are determined by tourists’ decision making and the duration that tourists stay at an attraction 

reflects their preferences. Tourist decision making is influenced by various psychological, 

social, and cultural factors (Chen, et al., 2016; Dejbakhsh, et al., 2011; McCormack & 

Schwanen, 2011). The semantic information in tourist mobility data offers a richer 

understanding of tourists’ spatio-temporal experience (Shoval, et al., 2018). Such an 

understanding is valuable for destination planning, service design, and management.  

Much of the tourism mobility research has been devoted to advance the mining and 

processing of a large amount of spatio-temporal data. Earlier studies have explored various 

data sources, such as on-site surveys (Yang, et al., 2013), travel diaries (McKercher & Lau, 

2008). user-generated photos (Önder, et al., 2016) and officially published secondary data 

(Yang & Wong, 2012, 2013). In today’s digital era, mass data about tourist mobility can now 

be automatically captured for tourism research thanks to the advances in mobile tracking 

technologies in recent years (Shoval, et al., 2020; Shoval, et al., 2018). One of the key 

challenging questions for tourism mobility researchers is the analysis of a large amount of 

spatio-temporal data (Birenboim & Shoval, 2016). Such an analysis requires cross-disciplinary 

efforts to develop practical tools that are based on highly advanced and sophisticated 

algorithms (Grinberger & Shoval, 2019).  

Several studies have examined the mining of frequent trajectory patterns (Wang, et al., 

2013; Wang, et al., 2016), i.e., the discovery of frequent repetitive sequences from a large 

number of trajectory data (Zheng, 2015). Recently, Shoval, et al. (2018) used methods that 
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combine spatio-temporal data with tourist emotion data and semantic information to understand 

tourist experience in time and space. Shoval, et al. (2020) combined mobile tracking data with 

a traditional survey to understand tourist time-space activities. Despite the progress, two key 

information points have not been fully leveraged in the tourism research, namely, a) the 

semantic information of tourist data, and b) the duration that tourists stay at an attraction 

(Shoval, et al., 2020; Shoval, et al., 2018). As such, existing methods cannot be directly applied 

in the tourism field. Specifically, given the uneven distribution of tourists, it is difficult for the 

traditional clustering methods to mine the semantic information of tourism activit ies from the 

spatio-temporal frequent trajectory patterns in multidimensional spatial granularity. Recent 

studies have begun to consider the time factor; however, they are more about the time interval 

between locations than the duration at the locations, which has rich semantic information that 

has not been fully leveraged for effective destination planning and management. 

The primary goal of this study is to address the above gaps by adopting an advanced data 

mining and analytical approach that integrates adaptive spatial clustering with frequent pattern 

mining. This study contributes to the tourist mobility literature by offering a new approach to 

fully utilize the spatio-temporal information contained in the tourist trajectory data. This new 

approach helps to improve the performance of spatial clustering and the efficiency of frequent 

pattern mining by (a) designing an adaptive spatial clustering approach based on DBSCAN for 

the tourism contexts; (b) proposing BrowseRank to fully capture the spatio-temporal 

characteristics of tourist movements, especially the time tourists stay at each attraction, and (c) 

using the Depth-First-Search (DFS) strategy to guarantee better trajectory integrity and higher 

efficiency. Particularly, our proposed approach significantly advances trajectory data analytics 

by exploiting both the semantic and the time information contained in the tourist mobility data, 

which have not yet been adequately explored in the extant literature. Furthermore, this study 

provides practical implications for destination planning and management to improve tourist 

experience and enhance destination competitiveness. Specifically, the findings derived from 

our proposed approach will equip destination planners with greater insights into tourist 

movement patterns, and help them to optimize the layout of service facilities and the 

connections between tourist attractions. 

2. Literature review 

2.1. Theoretical foundations   

The theoretical foundations of tourist mobility can be found in time geography, core-

peripheral model, cumulative attraction, gravity theory and consumer behavior theories.  
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2.1.1. Time geography 

Space and time are two inseparable features of tourist movement or mobility because 

every activity includes spatial and time dimensions (Grinberger & Shoval, 2019). Time 

geography provides a valuable theoretical foundation for understanding tourist time-space 

behaviors (Ellegård & Svedin, 2012). Visiting an attraction or traveling between the hotel and 

the attraction are considered as spatial behaviors, and when organizing these behaviors one 

must consider the time to be spent in each attraction and the time for travel between attractions 

(Neutens, et al., 2011). Hence, time and space are involved in every activity (Neutens, et al., 

2011). Tourist spatio-temporal resources are limited by numerous constraints, such as the 

length of holiday, opening hours of attraction, individual differences in holiday budget, 

knowledge of the destination, personal preferences, decision-making styles, cultural 

background, and many others (Long & Nelson, 2013). With spatio-temporal constraints, the 

pattern of tourist movement is determined by tourists’ conscious decision making to maximize 

the utilities (Chen, et al., 2016; Yang, et al., 2013).  

2.1.2. The core-periphery model 

The core-periphery model is a concept that originated in economic geography (Krugman, 

1991; Weaver, et al., 2021), which suggests that in a region, there are certain core areas and 

several periphery areas. Major social, political and economic activities are concentrated in the 

core areas, while the periphery areas play a supporting role and are normally dependent on the 

core. Core areas are generally located in the urban center, and the periphery ones are usually in 

the suburban and rural areas (Chancellor, et al., 2011). In the tourism context, the core areas 

are those that have a concentration of popular attractions, and the periphery areas are those 

receiving very few visitors. Traditionally location and distance are used to demarcate the core 

and the periphery (Prideaux, 2002). However, rapid improvement in transportation 

infrastructure may create a “time-space compression” effect (Yin, et al., 2019), which may 

change a destination’s core-periphery structure.    

2.1.3. Cumulative attraction   

The idea of cumulative attraction suggests that a cluster of attractions or destinations can 

attract more tourists who stay longer than a single attraction site or destination that does not 

closely connect to a cluster (Lue, et al., 1993). This is because tourists usually prefer to visit 

several attractions or destinations when having a pleasure trip (Hwang, et al., 2006; Lue, et al., 

1993). Visiting attractions or destinations that are closely interconnected saves time, effort, 
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costs, and other resources. Therefore, combining a popular primary attraction with several less 

popular ones to form a cluster of attractions offers efficiency and a satisfactory experience for 

the tourists, thus enhancing the competitiveness of the destination as a whole (Lue, et al., 1993). 

2.1.4. Gravity theory  

Tourism attractions may scatter in various places around the destination (Buhalis, 2000; 

Edwards, et al., 2008). Some are large, primary attractions, while others are small, secondary 

ones. According to gravity theory, large, primary attractions have a greater gravitational pull of 

visitors than secondary ones. A cluster of primary attractions combined with several secondary 

attractions can enhance the competitiveness of the whole destination. Moreover, a destination 

that has multi-functionality and attraction diversity is likely to attract a large number of tourists 

who have various motivations and interests (Edwards, et al., 2008). Similarly, clustering a 

primary destination with several secondary destinations can enhance the competitiveness of the 

whole region (Lue, et al., 1993). 

2.1.5. Factors influencing the tourist trajectory patterns 

Consumer behavior theories provide useful insights into how the patterns of tourist 

movement are determined by tourists’ intentional behaviors within the limit of time and space. 

According to random utility theory, tourists attempt to maximize the utilities when making 

travel decisions. They choose to visit and spend time at those attractions that have the greatest 

utility (Yang, et al., 2013). They use cognitive representations of the destination to aid their 

decision making (Grinberger & Shoval, 2019). However, tourists are not entirely rational 

decision-makers because their rationality is bounded, given the limitations of information, time, 

and cognitive capabilities (Chen, et al., 2016). The cognitive representation depends on various 

factors such as individual characteristics, familiarity with the destination, pre-travel preparation, 

and the use of navigation aid (McKercher, et al., 2012).  

Tourist cognitive representations are usually biased or distorted, leading to a gap between 

tourists’ original intentions and the resulting actions. Moreover, many tourist behaviors are 

guided by intuition or emotions rather than rationality. Furthermore, social factors such as 

power relations within a travel group may influence travel decision making and shape spatio-

temporal patterns (McCormack & Schwanen, 2011). Finally, tourist cultural background plays 

a crucial role in tourist choices of transport mode, activities, attractions, and the type of 

accommodation, which consequently influence the movement patterns at the destination 

(Dejbakhsh, et al., 2011). 
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2.2. Mining and analyzing tourist trajectory patterns 

Data captured from GPS-based tracking or social media in their raw form are not useful 

unless properly processed (Shoval & Ahas, 2016). Researchers have used the Sequence 

Alignment Method (SAM) to identify patterns of tourist behavior from a large dataset of tourist 

trajectories and cluster groups of tourists (Delafontaine, et al., 2012; Lee & Joh, 2010; Shoval, 

et al., 2015). SAM uses dynamic programming algorithms to seek optimal alignments through 

similarity or distance measures (Wilson, 2008). The method was first developed in biology and 

later has been applied in geography for analyzing individuals' mobility and identifying the 

trajectory patterns (Stehle & Peuquet, 2015; Wilson, 1998). In geography, researchers have 

adopted SAM to identify the various spatio-temporal patterns of tourist movement (Stehle & 

Peuquet, 2015), for example, similar modes of transportation (Crawford, et al., 2018), 

movement habits (Dharmowijoyo, et al., 2017; Millward, et al., 2019) and social change 

(Delmelle, 2016). SAM is generally applied to the tourism field to classify the sequence of 

tourists' movements and extract the common features of each pattern. For example, Shoval and 

Isaacson (2007) summarise tourist movement behaviors into three groups based on the GPS 

track data of 305 tourists; and Shoval, et al. (2015) propose five typical spatial movement 

patterns based on the similarity of trajectories of 139 tourists.  

Another stream of research has focused on mining the frequent trajectory pattern. Cao, et 

al. (2005) define frequent patterns as the spatial regions around frequent line segments. They 

first divide original sequences into sequence segments and then adopt a line simplification 

technique named Douglas-Peucker algorithm to transform the sequence segments into directed 

line segments. Finally, they group segments considering similar shapes and closeness in space. 

Wang, et al. (2016) characterize original trajectories with the corners in a road network for 

mining the frequent trajectory patterns. Several studies have tried to divide the space into grids, 

characterize trajectories with the sequences of grids, and then mine the frequent trajectory 

patterns (Tsoukatos & Gunopulos, 2001; Wang, et al., 2013). However, gridding spatial 

partition may cause strict spatial constraints or the sharp boundary problem, and thus fails to 

identify meaningful trajectory patterns (Han, et al., 2010). 

Recent studies use clustering-based methods to solve this problem. Researchers first 

cluster all location points in the spatio-temporal trajectory database into regions of interest 

(ROIs), characterize trajectories with ROIs, then mine frequent trajectory patterns (Zheng, 

2015). Kalnis, et al. (2005) consider patterns in the form of moving regions within time 

intervals from a clustering-based perspective. Giannotti, et al. (2007) propose a frequent 

sequence mining method, in which the trajectory sequence is first transformed into a sequence 
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of ROIs in the data preprocessing phase. In the modeling phase, individual GPS data is 

preprocessed into a usable data format and inputted to the mining phase wherein separate 

strategies are applied to discover frequent trajectory patterns. Kang and Yong (2010) adopt a 

prefix-projection approach to uncover meaningful spatio-temporal regions. Huang, et al. (2016) 

first derive the ROIs using DBSCAN clustering algorithm and then identify ordered sequences 

of these spatial regions using an Apriori-like algorithm. 

Both SAM and frequent pattern mining take into account the influence of the sequence of 

activities to identify behavioral patterns from a large dataset of tourist trajectories. However, 

there are fundamental differences between the two methods. SAM is based on two types of 

analysis: clustering the similarities in tourist mobility sequences and detecting the movement 

patterns from the sequence data (Wilson, 1998). SAM focuses on the commonalities of the 

whole sequences of tourists to obtain the characteristics of the complete movement routes. It 

does not quantify the intensity of the associations between attractions. In contrast, frequent 

pattern mining extracts the high-frequency tourist movement and identifies the connections 

between attractions and their combination patterns. It contains the patterns among two, three, 

or four attractions, in a more microscopic perspective. Nevertheless, the weight of the time 

dimension has rarely been considered in either SAM or the frequent pattern (Shoval & Isaacson, 

2007). This is to be addressed in the current study. 

3. Methodology 

3.1. Data collection  

We obtained access to users’ mobile positioning data in Xiamen, through one of the largest 

telecommunication companies in China. Xiamen is a typical littoral city located on the 

southeast coast of China, which is a well-developed, urban destination (Fig. 1). In 2019, over 

100 million tourists visited Xiamen, increasing by 12.5% in 2018 and the total tourism revenue 

of Xiamen was 165.59 billion yuan. Xiamen has charming and abundant tourism resources, 

including coastal scenery, historical culture and gastronomy. Especially, the Gulangsu, which 

is located in the southwest of Xiamen, is on China's list of National Scenic Spots and is also 

listed as a world heritage site by UNESCO, with its ancient relics and varied architecture. 

Hence, Xiamen is an appropriate case with important practical value. The city can be divided 

into two parts: one is the southern island area and Kulangsu, in which most attractions are 

located; another is the mainland area. The two parts are mainly connected by several sea-

crossing bridges and undersea tunnels.  

Compared with other data sources, the mobile phone positioning data have advantages of 
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wide coverage, large sample size and non-disturbed collection (Ratti, et al., 2006; Zhao, et al., 

2018). Our data was passively collected without the direct participation of tourists, generating 

massive and continuous tracking data. The data was very detailed, including the specific 

latitude and longitude of each location and some demographic information, such as age and 

gender. The data was strictly desensitized and anonymized, which cannot correspond to any 

individual. According to the registration area and frequent activity area of mobile phone users, 

the operators can distinguish whether the users are local residents or tourists (Ahas, et al., 2008). 

Based on this, we screened 1,996 tourists who visited Xiamen during the Spring Festival 

holiday (7 days) in 2017, and their spatio-temporal trajectories in Xiamen were obtained. The 

data was collected from mobile phone stations at the 30-minute interval and the individual level. 

The station densities in space, which are usually higher in urban areas, affect the spatial 

granularity of the dataset. Therefore, our data has a high resolution of spatio-temporal 

granularity and rich information. Through data cleaning and filtering, we excluded trajectories 

with poor quality, such as trajectories with data missing due to signal problems, or trajectories 

with sparse location points, which could be from passengers who had a short stopover in 

Xiamen. Finally, 741 trajectories were selected for the study. Each of them contains more than 

20 location points. The distribution of trajectory points of all tourists is shown in Fig. 2. 

 
Fig. 1 Xiamen Map 
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Fig. 2 The distribution of trajectory points of all tourists 

 

3.2. Data analysis 

The data analysis consists of two main stages: adaptive spatial clustering based on 

DBSCAN and frequent pattern mining based on BrowseRank and Markov model. In the first 

stage, we cluster all location points in the spatio-temporal trajectory database into clusters 

based on the adaptive DBSCAN. Compared with the traditional spatial clustering methods, the 

adaptive DBSCAN has the advantages of clustering efficiency, noise processing ability, and 

shape adaptability. It can mine the semantic information of tourism activities in 

multidimensional spatial granularity. Moreover, the convex hull algorithm is adopted in this 

stage to deal with the sharp boundary problem encountered by most spatial clustering 

algorithms. 

In the second stage, we first characterize the trajectories with the sequences of clusters, 

then mine the frequent trajectory patterns based on BrowseRank. Compared with the existing 

methods, the BrowseRank can fully take the duration time into consideration when extracting 

frequent patterns, which better reflect the tourists’ attraction preference and characteristic of 

movements. The detailed description of the two stages is presented in the following subsections. 



 

11 

Start

S1: Adaptive spatial 
clustering  

BrowseRank

DBSCAN

S2: Frequent patterns 
mining 

Transition probability 
matrix calculation

Transition matrix 
construction

Analog path 
generation

End

Trajectory 
transformation

Convex Hull 
Calculation

 
Fig. 3 Methodological framework 

3.2.1. Adaptive spatial clustering 

We design an adaptive spatial clustering algorithm based on DBSCAN by introducing an 

adaptive parameter (). DBSCAN has the advantages of clustering efficiency, noise processing 

ability, and shape adaptability (Park, et al., 2020). In this algorithm, regions with sufficient 

density are divided into clusters, and clusters of arbitrary shapes can be found in noisy spatial 

databases. However, the clustering performance of DBSCAN is often poor in the scene of 

uneven distribution of location points because selecting the algorithm parameters (eps and 

minPts) suitable for all clusters is very difficult. It is common that tourists are unevenly 

distributed in time and space (Riganti & Nijkamp, 2008), therefore, an adaptive parameter is 

required. The adaptive parameter () helps us to mitigate the effects of the differences in 

population density distribution, by judging the number of times DBSCAN used in different 

areas. 

Besides, since two parameters, distance measurement (eps) and the minimum size of a 

cluster (minPts), are significantly affect the clustering performance of DBSCAN, Dunn 

Validity Index (DVI) (Dunn, 1974) is applied to choose the appropriate parameter values. The 
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index is an effective method to evaluate the validity of clustering algorithms, and it quantifies 

not only the degree of compactness of clusters but also the degree of separation between 

individual clusters (Fahad, et al., 2014; Liu, et al., 2013). DVI is widely applicable, not limited 

to a specific destination or the amount of data. The index is determined by the ratio of the 

shortest distance between any two clusters and the maximum distance within any cluster. The 

higher the DVI value, the closer the clustering results are in the same cluster, and the different 

clusters are far away from each other. In other words, the higher the DVI value, the better the 

clustering result. Once the value of DVI is determined, we can decide the corresponding 

combination of the two parameters. This way of determining DBSCAN parameters is a data-

driven approach, which is an adaptive and self-learning mechanism that can effectively avoid 

the subjectivity in choosing the right parameters, thus improving the performance of DBSCAN. 

Therefore, we chose the most suitable parameters (minPts and eps) for DBSCAN through DVI, 

to overcome the shortcomings of the DBSCAN and make the results more reasonable. The 

detailed algorithm process is as follows and we illustrate the process with a schematic figure 

(Fig. 4). 

(b): Trajectory points

(c):First-level DBSCAN (d):Second-level DBSCAN 

(e): Cluster boundaries (f): Adaptive spatial clustering result 

Step 1:DVI for appropriate 

parameters setting (eps and minPts) Step 2:BrowseRank 
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Fig. 4 The process of adaptive spatial clustering 

Given the set of points (ρ) and adaptive parameter (), the output of this algorithm is the 

set of clusters (Ԑn) and the BrowseRank value (β) of the clusters contained in Ԑn (β(Ԑn)). First, 

the points in ρ based on DBSCAN are clustered, and the set of clusters (Ԑn) is obtained, where 
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ϴ is set to be the number of clusters contained in Ԑn. The original trajectories are transformed 

into characteristic trajectories based on Ԑn. The DVI is used for the parameter determination of 

DBSCAN. In Fig. 4(c), the first-level DBSCAN makes 7 clusters. 

Second, the β of each cluster in Ԑn(β(Ԑn)) is calculated using BrowseRank algorithm. 

BrowseRank is an alternative to PageRank from Google that evaluates the popularity of a page 

(for details see Liu, et al., 2008). Inspired by the application of BrowseRank in the field of web 

searching and ranking, we innovatively apply it to the tourism field by considering elements of 

the tourism scenes. In this study, the β of each cluster is calculated according to the number of 

visits to this cluster, the number of transitions from other clusters to this cluster, and the 

duration of time spent in the cluster. The larger the β of the cluster, the more popular the cluster 

is. Since the mobile positioning data is at 30-min intervals unchangeably, the number of points 

that appear in the cluster can be used to refer to the duration time of the tourist in the cluster, 

and the duration time of each cluster is obtained. By adding BrowseRank to the algorithm 

design, several crucial features of tourist spatio-temporal behaviors are fully considered, 

including the duration time in each cluster for the temporal dimension, the sequence and 

direction of tourist movement among clusters for the spatial dimension. Our final clustering 

results are closely in line with tourists' actual preferences. In contrast, prior tourism research 

has rarely considered the important value of temporal dimension in spatial clustering.  

Third, we compare each β of the cluster with the adaptive parameter (). When the 

cluster’s β exceeds the adaptive parameter (), it means the cluster is where tourists gather 

highly. For the purpose of generating greater management insights, these places need to be 

further refined. Therefore, our adaptive DBSCAN is applied again to achieve finer clusters, 

and the clustering results and β of each cluster are derived. In Fig. 4(d), since the β of the 

clusters 4

1  and 6

1  exceed the adaptive parameter (), a second-level DBSCAN makes them 

to 4

2 , 5

2 , 6

2  and 8

2 , 9

2  respectively. 

After clustering the spatial points, the convex hull algorithm proposed by Graham (1972) 

is employed to handle the boundary of the clusters (Fig. 4(e)). The term of the convex hull is 

the smallest polygon that covers all the points in the given set (Barber, et al., 1996), and in this 

study, a cluster can be regarded as a point set (for the details of the convex hull algorithm, 

please see Barber, et al., 1996). Finally, 10 clusters with clear geographical boundaries are 

made (Fig. 4(f)). 

3.2.2. Frequent pattern mining 

In the stage of adaptive spatial clustering, the set of clusters Ԑn, the β of clusters in Ԑn 

(β(Ԑn)), and the set of characteristic trajectories (Ґ) are obtained. In this stage, the transition 
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matrix is first constructed according to Ґ. If a visit to the cluster i

n  is followed by j

n  in the 

өth characteristic trajectory, then we set 0–1 discrete variable ijx  to 1, and 0 otherwise. Thus, 

the transition frequency from i

n   to j

n   can be calculated according to Eq. (1), where λ 

denotes the number of characteristic trajectories. Correspondingly, the transition probability 

from i

n  to j

n  can be calculated based on Eq. (2). After that, the transition probability matrix 

(PM) is generated, as shown in Eq. (3). 
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We take into account both the duration time of tourist stay and spatial displacement by 

proposing the process of analog path generation. Specifically, we search the frequent trajectory 

patterns whose path strength (as shown in Eq. (4)) exceeds a predetermined frequent pattern 

threshold (ξ). In this step, we take DFS (depth first search) as the search algorithm. When the 

path strength is higher than the threshold (ξ), a further search is carried out to obtain a longer 

path; otherwise, the search process stops. That is, the goal of DFS in this study is to find the 

path with the greatest depth value. Suppose that a path 1 2{ , , , }n n nP    , then the strength of 

this path ( ( )p ) can be calculated according to Eq. (4), where i

n  denotes the β of i

n , and 

  1i i PM   denotes the transition probability from i

n   to 1i

n
  . In this manner, with β, the 

index reflecting the duration time in clusters, incorporated into the calculation formula of path 

strength, our approach overcomes the drawbacks of most frequent pattern mining methods that 

do not take into account the temporal dimension and enhances the practical value of the results. 
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4. Results 

4.1. Sample profile 

The profiles of the 741 sample tourists are presented in Table 1. The typical length of stay 

was between three and four nights. Male tourists far outnumbered female tourists, and the 

majority were 36–45 years old. There were only two minors, and the reason could be most 

juveniles do not have their own mobile phones. This is an inherent bias of mobile positioning 

data. Moreover, the vast majority of tourists came from economically well-developed Eastern 

China.  

Table 1 Sample description 
Days of stay 1 2 3 4 5 6 7 Total 

Gender 
Male 2 86 126 110 61 84 8 477 
Female 2 45 71 73 30 39 4 264 
Age 
17 or below 0 0 0 1 1 0 0 2 
18–35 1 36 29 39 17 46 7 175 
36–45 0 35 68 53 40 28 1 225 
46–55 1 27 49 45 14 24 2 162 
56 or above 2 33 51 45 19 25 2 177 
Length of access 
12 months or below 0 11 17 8 3 15 3 57 
13–60 months 1 38 28 38 14 53 4 176 
61–120 months 1 16 35 17 14 11 0 94 
121–180 months 1 20 41 26 20 24 3 135 
181–240 months 1 45 74 89 39 18 2 268 
241 months or above 0 1 2 5 1 2 0 11 
Origin 
North China 1 21 46 35 27 49 2 181 
East China 2 98 143 142 55 64 9 513 
South Central China 1 12 8 6 9 10 1 47 

 

4.2. Adaptive spatial clustering 

First, the adaptive spatial clustering method based on DBSCAN is applied to cluster all 

the points. We determined the approximate parameter range for this study, based on a review 

of the relevant literature (Ester, et al., 1996), and traversed more than 80 parameter 

combinations within that range. For each combination of parameters, we obtained its clustering 

result. Each clustering result corresponds to a DVI value. In the first level, the maximum DVI 

(Ԑ1) is obtained when minPts = 4 and eps = 0.014. The first-level DBSCAN clustering set (Ԑ1) 

can be found (Fig. 5(left)). Nine clusters are contained in this set. However, the β of 1

1  and 

2

1  exceed the adaptive parameter , which means these two clusters are the areas with a high 

concentration of tourists. If we do not take a more nuanced division, the whole inland area will 

be grouped into one cluster ( 1

1 ) (Fig. 5(left)), which is opposed to the real situation and not 
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conducive to the targeted management. Therefore, we then further cluster these two clusters in 

the same way and achieve the second-level DBSCAN clustering set (Ԑ2), which includes 30 

clusters (Fig. 5(right)). The β of each cluster in Ԑ2 is less than . With Ԑ2 as the output of this 

stage, we further handle the clusters in Ԑ2 using the convex hull algorithm (Fig. 6).  

 
Fig. 5 Two processes of clustering 

 
Fig. 6 Final clustering performance with 30 clusters 

Table 2 displays the clusters and the primary tourist attractions involved in the 

corresponding clusters. In the areas outside the island, a cluster may contain a large area 

because there are few visitors; while on the island, areas with dense tourists can be grouped 

into finer clusters. Especially in the southwestern of the island, several popular areas are in the 
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close vicinity, such as 4

2  (Hulishan Fortress), 8

2  (Baicheng Beach), and 9

2  (South Putuo 

Temple). Our method enables the boundaries of these areas to be clearly displayed. 

Table 2 Primary attractions in the 30 clusters (partially listed) 
Cluster Primary attraction  

1

2  Kulangsu 
2

2  Zhongshan Street 
3

2  Xiamen Bridge 
4

2  Hulishan Fortress 
5

2  Zeng Cuo An 

… … 

4.3. Frequent pattern mining 

According to the results of adaptive spatial clustering, the 741 trajectories can be 

transformed into characteristic trajectories, and then the transition matrix is constructed. We 

then mine the frequent patterns according to Section 3.2. The number of frequent patterns 

depends heavily on the frequent pattern threshold (ξ). For example, when ξ=1E-04, 60 frequent 

patterns can be mined: 1 8

2 2     8 1

2 2     9 1

2 2   , …., 22 23

2 2   , in which traditionally 

prevalent routes are included as well as routes that have not been noticed before. 

 

Fig. 7 Frequent patterns with length-2 sequences 

Based on the 60 frequent patterns, Fig. 7(left) is drawn to show the directional frequent 

routes between clusters, in which a clear majority flows concentrate in the southwest area of 

the island. Among the clusters on the inland, only 23

2  has a tight link with the island. In Fig. 

7(right), the number next to the node indicates the proportion of the route passing through the 
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node in all routes, the arrow lines delineate the direction of tourist movement and the number 

demonstrates the route intensity, reflecting the tourist volume. Furthermore, the main incoming 

clusters of the flows are 1

2  and 2

2 . 1

2  (Kulangsu) is a uniquely appealing attraction as the 

World Heritage Site, and 2

2   (Zhongshan Road) is a well-known commercial block, with 

tourist pedestrian streets, shopping malls, and a large number of hotels and homestays around. 

These two areas have a strong appeal to all other areas, regardless of distance. 

According to the result of our method, most of the sequences occur in a confined 

geographic area. Among all the attractions, popular areas of Xiamen are geographically 

concentrated (i.e., 1

2 , 2

2 , and 9

2 ). We can infer that the tourist distribution in Xiamen is 

greatly uneven. Massive tourists gather in these adjacent attractions, and only a minority of 

tourists visit other areas, indicating the existence of core-peripheral (Prideaux, 2002) or 

primary-secondary attractions in Xiamen (Park, et al., 2020). 

5. Discussion 

This study proposes an innovative method for mining and analyzing tourist mobile big 

data, generates great insights for understanding tourist movement patterns, and offers practical 

implications for intra-destination cooperation and optimize destination resource allocation.  

5.1. Understanding tourist movement pattern 

The study reveals several classic travel itineraries or movement patterns, including “ 1

2  

(Kulangsu) – 2

2  (Zhongshan Street)”, “ 9

2  (South Putuo Temple) – 2

2  (Zhongshan Street)”, 

and so on. Furthermore, several travel itineraries that are not widely recognized are also found, 

like “ 1

2  (Kulangsu) – 23

2  (Lingling International Circus City)” and “ 2

2  (Zhongshan Street) 

– 23

2  (Lingling International Circus City)”, and others. Understanding the tourist movement 

patterns is of great significance for destination planning, transport network and other service 

design and development (Lew & McKercher, 2006). In this study, we have generated insights 

both on the hierarchy of clusters and frequent patterns. 

5.1.1. Understanding tourist movement structure 

The tourist movement structure of Xiamen can be classified into four levels from the core 

to the peripheral areas: center zone, sub-center zone, sub-edge zone, and edge zone (Fig. 8). 

The closer to the core, the more tourists. In this study, the tourist movement structure was 

divided in a way that combined the results of spatial clustering with the results of frequent 

patterns. This approach is different from the traditional way of determining the hierarchy by 

focusing only on the number of tourists to attractions. Through the two-level spatial clustering, 
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30 clusters were derived to represent the distribution of tourists. Then, in the intensity of 1E-

03, we counted the proportion of frequent patterns contained in each cluster separately to 

determine the level of traffic, and divide the tourist movement structure accordingly. 

First, the center zone is composed of 1

2   and 2

2  . Nearly one-fifth of the frequent 

patterns pass the two clusters ( 1

2 , 18%; 2

2 , 22%), which are far more than other clusters. The 

two clusters have connections with lots of attractions and tourists diffuse to the surrounding 

areas and other more distant places from there. They can serve as a tourism distribution center, 

providing tourists with information consultation and selling tourism products. Except for these 

two clusters, the proportion of other areas in the frequent patterns is below 10%, so we use 5% 

as the boundary to divide the second and third hierarchy. 

Second, the sub-center zone contains other clusters on primary flows (see the flows in Fig. 

7). On one hand, these areas maintain close connections with the center zone; on the other hand, 

they also radiate tourists to other areas and are important starting and ending areas. In this zone, 

tourist service facilities can be deployed to meet the needs of tourists for staying, resting and 

shopping.  

Third, the sub-edge zone includes clusters on other flows (also in Fig. 7). Taking in tourists 

from the upper two grades, this zone also plays an important role in the regional development 

of tourism.  

Finally, the edge zone consists of the rest clusters, where the frequent patterns do not pass 

through, meaning few tourists choose to visit these areas. Tourism facilities need to be 

improved and marketing needs to be strengthened in this zone. 

 
Fig. 8 Four hierarchies of tourist movement structure 
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5.1.2. Understanding the frequent pattern hierarchy 

Our study not only enables an understanding of the hierarchical structure for each cluster 

but also the hierarchy of frequent patterns in different intensity thresholds. When ξ=1E-03, 

there are 15 frequent patterns, which must be the most active and crowded routes for tourists 

(as shown in Fig. 9). The excessive concentration of tourist flows is not conducive to the 

enhancement of the tourist experience. Therefore, tourism managers can disperse the tourist 

flows to frequent patterns of the next intensity level, such as the 60 frequent patterns when 

ξ=1E-04. We notice that the official tourism website of Xiamen (www.visitxiamen.com) only 

provides the attraction list and does not have any route suggestions. According to the results of 

our study, the official tourism website can show the routes with different levels of crowding 

based on the intensity thresholds to facilitate individualized choices. For example, when ξ=1E-

03, there is one frequent pattern start from 6

2  (i.e., 6

2  to 2

2 ); when ξ=1E-04, two frequent 

patterns are added (i.e., 6

2  to 7

2 , 6

2  to 21

2 ). To avoid overcrowding, tourists could consider 

choosing the strategy of going to 7

2 , or 21

2 , and then 2

2  at the end. With the support of our 

study, tourists will have a variety of options. 

 
Fig. 9 The relationship between ξ and the number of frequent patterns 

5.2. Facilitating intra-destination cooperation 

Traditionally, individual attractions determine their partners based on the characteristics 

of tourism resources, the distance between attractions, or the power of administration, which 

are not the most effective approach. Frequent pattern mining of tourist trajectories, which 

provides an internal driving force of cooperation through mining the relationship among tourist 



 

21 

attractions. The destination marketing department can design appropriate travel packages 

through collaboration between attractions to form a cluster, which provides greater efficiency 

and more satisfying experiences for the tourists (Wu & Carson, 2008). On the one hand, our 

findings reveal fresh opportunities for linking attractions for cooperation to form a new cluster. 

For example, Kulangsu ( 1

2 ) and Hulishan Fortress ( 4

2 ) are often regarded as a combination 

with good cooperation potential not only because of their close distance and complementary 

resources, but also because they both have high popularity among visitors to Xiamen (Kulangsu 

is a National 5A Scenery Sites, while Hulishan Fortress is a 4A). However, the relationship 

between these two attractions is not supported by the results of frequent pattern mining in 

Section 4.3. On the contrary, Kulangsu ( 1

2  ) and Lingling International Circus City ( 23

2  ), 

which are often ignored in the past, have a strong potential for cooperation because “Kulangsu 

– Lingling International Circus City” and “Lingling International Circus City – Kulangsu” are 

both frequent patterns. The cooperation is beneficial as it provides convenience to the tourists 

and enhances the attractiveness of the whole entity (Hwang, et al., 2006; Li, et al., 2008; Lue, 

et al., 1993; Oppermann, 1995; Yang, et al., 2013). 

On the other hand, due to the complexity and dynamics of the destination, there was a lack 

of clear understanding of the connections between multiple attractions in the past (Caldeira & 

Kastenholz, 2018; Shao, et al., 2017). The frequent pattern mining has significant advantages 

over methods like social network analysis, which also investigates attraction links. The former 

is not limited to explore the relationship between two attractions and it can cover multi-

attraction patterns. Taking the frequent pattern 1

2  to 2

2  as an example, based on our results, 

we can extend it to three-attraction patterns like 1

2  - 2

2  - 7

2  , 1

2  - 2

2  - 21

2  , or four-attraction 

patterns 1

2  - 2

2  - 7

2  - 6

2  , 1

2  - 2

2  - 21

2  - 20

2  . By clarifying the complex relationships between 

these attractions, the attraction managers can know which attractions their tourists mainly come 

from and proactively seek to establish better partnerships with these preceding attractions. 

Besides, we also observe that some attractions have the advantage of synergistic development. 

For example, 22

2  , 23

2   and 26

2   are attractions that have both geographic proximity and 

frequent patterns with each other. By examining their resource attributes, we believe the three 

attractions are holistically well suited for collaborating on the popular parent-child tours or 

study tours, since 22

2  (Jimei School Village) helps children to feel the spirit of Tan Kah Kee 

(a famous, locally born, overseas Chinese philanthropist who funded the establishment of the 

school village and Xiamen University); 23

2   (Lingling International Circus City) has high 

quality circus shows that appeal to children; and 26

2  (The Ancient Courtyard Folk Culture 

Garden) demonstrates the cultural essence of Southern Fujian with rich regional features. 
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5.3. Optimizing destination tourism management 

The study results can be used to optimize destination resource allocation. Considering the 

duration tourists spend in every attraction, our method can accurately discern every cluster and 

optimize its boundary, helping obtain more comprehensive tourist distribution information. The 

results generated from our method can be used to improve and optimize the layout of service 

facilities in tourism destinations. The difficulties and inconveniences in tourist movement are 

evident if we compare the existing public transportation system with tourist frequent patterns. 

Fig. 10 (left) displays the bus route map of Xiamen, together with the 30 clusters obtained from 

this study. We further obtain the following information of each frequent pattern through the 

Amap, when ξ=1E-04: the bus ride time, the transfer time and the walking distance. We then 

evaluate the convenience of public transportation for each frequent pattern. We found several 

patterns are not much convenient and chose four patterns for further examination (Fig. 10 

(right)).  

Among the four patterns, two patterns ( 2

2  to 22

2 , 2

2  to 27

2 ) need to transfer midway, 

and some of the walking distances of the other two patterns ( 2

2  to 26

2 , 22

2  to 26

2 ) are too 

long, for instance, the distance from the starting point to the bus stop. Obviously, as the core 

area of the destination, public transportation from 2

2  to attractions outside the island is not 

convenient. This will hinder tourists from continuing to visit attractions outside the island. 

Accordingly, public transportation between the island and the mainland needs to be greatly 

optimized. Moreover, the important areas 22

2  and 26

2  are not effectively connected, thus the 

planning of tourist routes outside the island also needs to be improved. 

 

Fig. 10 Bus routes with 30 clusters (left) and four patterns with less convenient public 
transportation (right)  

Our results also uncover the uneven tourism development in the destination. Four 
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attractions outsides the island are included in the frequent patterns, but as far as we know, there 

are 16 national 3A and above attractions outside the island (China has five levels of rating for 

national tourist attractions, i.e, from 1A to 5A). This indicates that most of the tourist resources 

outside the island have not been effectively utilized. The destination planners should shift the 

development focus away from the mature attractions to these emerging attractions outside the 

island.  

6. Conclusions  

In today’s digital era, mass spatio-temporal trajectory data can be recorded accurately and 

retrieved conveniently, which presents great opportunities for tourism research (Shoval, et al., 

2020; Shoval, et al., 2018). This study attempts to advance the ways of leveraging such data to 

generate insights into tourist mobility. A two-stage heuristic approach involving adaptive 

DBSCAN, BrowseRank algorithm, convex hull algorithm, and DFS strategy is proposed to 

mine the frequent pattern of tourist trajectories. We illustrate the application of our proposed 

approach using mobile positioning data captured from real tourists and demonstrate the 

practical applications of the study findings.   

This study advances the data analytics used for tourism mobility research (East, et al., 

2017; McKercher, et al., 2015). Compared with the traditional two-stage algorithm (clustering 

first and then frequent pattern mining), our original contributions are: a) designing an adaptive 

spatial clustering approach based on DBSCAN to improve the performance of spatial clustering 

by introducing an adaptive parameter (). Our clustering method is designed to address the 

inadequacy of DBSCAN and adapted to the characteristics of tourism scenarios, where tourists 

are unevenly distributed in time and space; b) applying BrowseRank value (β) into two stages 

to fully capture the crucial spatio-temporal characteristics of tourist movements, including the 

sequence and direction of tourist movement among clusters for the spatial dimension, and the 

duration time in each cluster for the temporal dimension, which has rarely been considered in 

previous studies; and c) using the DFS strategy to improve performance and efficiency. 

This study offers several practical implications for improving destination planning and 

management. Combining the results of frequent pattern mining in this study with tourist 

behavior characteristics, a more thorough understanding of tourist movement patterns in the 

destination can be obtained. The study results can be used for effective collaboration among 

tourist attractions to enhance their competitiveness as a collective entity. Moreover, the study 

results can be used to optimize the layout of service facilities, offering destination managers a 

proactive management ability. These implications can greatly improve our understanding of 

the clusters of well-integrated tourism areas and their basic components, and the inter-
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connectedness of elements inside the clusters and between the clusters, and can be regarded as 

a great addition to the traditional study of tourist mobility. Especially, this study complements 

the traditional “core-periphery model” through the four hierarchies of tourist movement 

structure and provides insights into the multi-attraction pattern, which is prevalent in urban 

tourism today (Edwards, et al., 2008; Hunt & Crompton, 2008). 

This study is mainly based on the mobile positioning data of tourists during the Spring 

Festival. The data is not much large-scale and could be updated due to fast development in the 

studied destination. Future studies may test the effectiveness of the method by using more 

diverse and multi-source data. As tourist preferences and movement patterns are influenced by 

their social demographics, future clustering and frequent pattern mining studies may consider 

social-demographic variables in the modeling approach. Moreover, with larger-scale data at 

finer granularities, it will be meaningful to compare the behaviors of tourists at different periods 

of the day, such as morning, afternoon, and evening, and have a more in-depth insight into the 

movement patterns of tourists during a day. Given the significant influence of transport 

infrastructure on tourist mobility (Shoval, et al., 2020; Yang, et al., 2019), future studies may 

explore the impact of metros on the frequent pattern of tourists. Two metro lines in Xiamen 

were opened in December 2017 and December 2019 respectively. Both lines extend from the 

island to the mainland, greatly facilitating tourist access to attractions outside the island. 

Whether there will be new attractions entering the market, and what changes these new 

attractions will bring to the destination’s spatial structure deserve further research. 
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