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p1` εq moments suffice to characterise the GFF*
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Abstract

We show that there is “no stable free field of index α P p1, 2q”, in the following sense. It
was proved in [4] that subject to a fourth moment assumption, any random generalised
function on a domain D of the plane, satisfying conformal invariance and a natural
domain Markov property, must be a constant multiple of the Gaussian free field. In
this article we show that the existence of p1` εq moments is sufficient for the same
conclusion. A key idea is a new way of exploring the field, where (instead of looking at
the more standard circle averages) we start from the boundary and discover averages
of the field with respect to a certain “hitting density” of Itô excursions.
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1 Introduction

The Gaussian free field (GFF) is a universal object believed (and in many cases
proved) to govern the fluctuation statistics of many natural random surface models
[10, 18, 17, 12, 6, 3, 2, 7, 16] (see, e.g., [1, 20] for an introduction and survey of some
recent developments). Although the GFF can be defined in any dimension, this article
is concerned with the planar continuum version, which satisfies two special properties;
namely, conformal invariance and a domain Markov property. The former roughly
entails that applying a conformal map to a GFF in any domain produces a GFF in the
image domain. The latter says, informally, that for any D1 Ă D Ă C, the conditional
law of the GFF on D restricted to D1, given its behaviour outside of D1, is that of the
harmonic extension of the GFF from BD1 to D1 plus an independent GFF in D1. However,
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p1` εq moments suffice to characterise the GFF

one major technical issue with defining the GFF is that it cannot be made sense of as a
random function. It is instead defined as a random generalised function, which in this
article we view as a stochastic process indexed by smooth, compactly supported test
functions. As a result, some preparation is required in order to rigorously formulate the
above properties.

We will now formally state our assumptions, which are essentially the same as in [4]
except for the moment condition and the Dirichlet1 boundary condition (we will comment
after the theorem on the necessity of this adaptation).

Assume that for every simply connected domain D Ă C, a stochastic process hD “
phDφ qφPC8c pDq indexed by test functions is given. Assume further that each hD is linear in
φ: that is, for any λ, µ P R and φ, φ1 P C8c pDq,

hDλφ`µφ1 “ λhDφ ` µh
D
φ1 almost surely.

We then write, with an abuse of notation,

phD, φq :“ hDφ for φ P C8c pDq.

We denote by ΓD the law of the stochastic process hD. Thus ΓD is a probability distribu-
tion on RC

8
c pDq equipped with the product topology. By Kolmogorov’s extension theorem

ΓD is characterised by its consistent finite-dimensional distributions: i.e., by the joint
law of phD, φ1q, . . . , phD, φkq for any k ě 1 and any φ1, . . . , φk P C8c pDq.

We finally recall that the H´1pDq norm of a function f P C8c pDq is given by

pf, fq´1 :“ pp´∆q´1{2f, p´∆q´1{2fq “ pf, p´∆´1qfq “

ĳ

DˆD

GDpx, yqfpxqfpyq dxdy (1.1)

where GD is the Green function with Dirichlet boundary conditions in D.
In the following, we write D “ tw P C : |w| ă 1u and for z P C, ε ą 0, we set Bzpεq :“

tw P C : |w´z| ă εu. When z lies in an open set U Ă C, we write dpz, BUq :“ infyPBU |y´z|.
Let D Ă C be a proper simply connected open domain, and let hD be a sample from

ΓD.

Assumptions 1.1. We make the following assumptions.

(i) (Moments) For every φ P C8c pDq and some ξ ą 1:

ErphD, φqs “ 0 and Er|phD, φq|ξs ă 8.

(ii) (Continuity and Dirichlet boundary conditions) If φn Ñ φ in C8c pDq, then
phD, φnq Ñ phD, φq in probability as n Ñ 8. Moreover, suppose that pφnqně1 is a
sequence of non-negative test functions in C8c pDq, such that dn :“ suptdpz, BDq :

z P Supportpφnqu Ñ 0 as n Ñ 8, and φn Ñ 0 in H´1pDq. Then we have that
phD, φnq Ñ 0 in probability and in L1 as nÑ8.

(iii) (Conformal invariance.) Let f : D Ñ D1 be a bijective conformal map. Then
ΓD “ ΓD

1

˝ f, where ΓD
1

˝ f is the law of the stochastic process phD
1

, |pf´1q1|2pφ ˝

f´1qqφPC8c pDq.

(iv) (Domain Markov property). Suppose D1 Ă D is a simply connected Jordan
domain. Then we can decompose hD “ hD

1

D ` ϕD
1

D , where:

• hD
1

D is independent of ϕD
1

D ;

1We use the terminology “Dirichlet” and “zero” boundary conditions for the same notion throughout
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• pϕD
1

D , φqφPC8c pDq is a stochastic process indexed by C8c pDq that is a.s. linear in
φ and such that when we restrict to C8c pD

1q,

pϕD
1

D , φqφPC8c pD1q

a.s. corresponds to integrating against a harmonic function in D1.
• pphD

1

D , φqqφPC8c pDq is a stochastic process indexed by C8c pDq, such that the

process phD
1

D , φqφPC8c pD1q has law ΓD
1

and phD
1

D , φq “ 0 a.s. for any φ with
Supportpφq Ă DzD1.

Observe that in light of (iii), the Dirichlet boundary condition (ii) holds in one
simply connected domain D if and only if it holds in all simply connected domains.
Indeed, suppose that it holds in D and let f : D Ñ D1 be a conformal map. Then
if pφnqn Ñ 0 P H´1pD1q, we have by conformal invariance of the Green function that
φ̃n :“ |f |2pφn˝fq converges to 0 in H´1pDq, and since phD

1

, φnq is equal in law to phD, φ̃nq,
that phD

1

, φnq Ñ 0 in probability and in L1 as nÑ8.
We now comment on the main changes with respect to the assumptions in [4]. As

already mentioned, the main change is the fact that we have replaced a moment of order
four in (i) with a moment of order ξ where ξ ą 1. Beyond this, we have slightly adapted
the Dirichlet boundary condition (assumption (ii)). Indeed, it may not even be apparent
to the reader at first sight why we call (ii) a Dirichlet boundary condition. Suppose φn is
a sequence of functions in C8c pDq, whose support converges to a subset of the boundary
BD, in the sense that dn Ñ 0 (where dn is defined in (ii)). If h is a Gaussian free field in
D (with Dirichlet boundary conditions), we may be tempted to believe that ph, φnq Ñ 0.
Unfortunately, without any additional assumption this is not necessarily the case, even
if }φn}1 is bounded (to see why, consider the uniform distribution in a ball of radius ε
at distance ε from the boundary). Instead, in order for ph, φnq to converge to zero we
need an extra condition which guarantees that the mass of φn is sufficiently “spread
out”. There are several different ways that such a condition could be formulated. In
[4] we assumed that for D “ D, ph, φnq Ñ 0 for sequences φn which are bounded in
L1 and rotationally symmetric. However, in the present article, we will need φn to be
asymptotically supported on a proper subset of the boundary (see the definition of pu
in (3.1)) and so rotational invariance of the support of φn is not sufficient. Instead we
assume that φn converges to 0 in H´1pDq. This turns out to be the most convenient
meaning of “sufficiently spread out” in the present setting.

Before stating our results, we recall the definition of a Gaussian free field (with
Dirichlet boundary conditions) on a domain D Ă C.

Definition 1.2. A mean zero Gaussian free field hGFF “ hDGFF with zero boundary
conditions is a stochastic process indexed by test functions phGFF, φqφPC8c pDq such that:

• hGFF is a centered Gaussian field; for any n ě 1 and any set of test functions
φ1, ¨ ¨ ¨ , φn P C

8
c pDq, pphGFF, φ1q, ¨ ¨ ¨ , phGFF, φnqq is a Gaussian random vector with

mean 0;

• for any two test functions φ1, φ2 P C8c pDq,

ErphGFF, φ1q, phGFF, φ2qs “

ż

D

GDpz, wqφ1pzqφ2pwqdzdw

where GD is the Green’s function with Dirichlet boundary conditions on D.

The main technical content of this paper is summarised by the following proposition,
whose most important aspect states that moments of order ξ as in Assumptions 1.1,

EJP 26 (2021), paper 44.
Page 3/25

https://www.imstat.org/ejp

https://doi.org/10.1214/20-EJP566
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


p1` εq moments suffice to characterise the GFF

together with domain Markov property and conformal invariance, imply a moment of
order 4.

Proposition 1.3. Assume that pΓDqD satisfies Assumptions 1.1. Then in fact:

(1) ErphD, φq4s ă 8 for every φ P C8c pDq;

(2) the bilinear form KD
2 on C8c pDq ˆ C

8
c pDq defined by

ErphD, φqphD, φ1qs “ KD
2 pφ, φ

1q, φ, φ1 P C8c pDq

is continuous; and

(3) the convergence in (ii) of Assumptions 1.1 also holds in L2.

As a direct consequence we obtain the following theorem, which is the main result of
this paper.

Theorem 1.4. Suppose the collection of laws tΓDuDĂC satisfy Assumptions 1.1 and let
hD be a sample from ΓD. Then there exists σ ě 0 such that hD “ σhDGFF in law, as
stochastic processes.

Proof. This is a direct consequence of Proposition 1.3 and [4, Theorem 1.6].

Proof idea: In order to explain the new ideas required for Theorem 1.4, it is helpful to
first recall the main steps in the proof of [4, Theorem 1.6].

Sketch of proof of [4, Theorem 1.6]. The proof of Theorem 1.6 in [4] can be broken
into two distinct parts: (1) showing that the field is Gaussian (i.e., that hD is a Gaussian
process for each D) and (2) showing that it has the correct covariance structure. In fact,
once Gaussianity is known, proving (2) is rather straightforward. It boils down to the
fact that the Greens’ function is characterised by harmonicity away from the diagonal
and logarithmic blow-up along the diagonal – see [4].

Proving (1) is rather more challenging. The key step in [4] is to show that “circle
averages” around points are jointly Gaussian. That is, for any finite set of points, the
joint law of the circle averages is Gaussian. The circle average process of a Gaussian
free field hD around a point z P D is, roughly speaking, the process ph, φtqtě0, where φt
is uniform measure on the circle of radius e´t around z. More precision is required for
a rigorous definition, since the φt are not smooth test functions, but this can be dealt
with by approximating the φt appropriately. Once it is known that circle averages are
jointly Gaussian, it is easy to deduce (1), because the field can be approximated by circle
averages with small radii, and limits of Gaussians are Gaussian.

To address the question of showing Gaussianity of circle averages, let us consider the
case where D “ D is the unit disc, and we take averages around a single point: the origin.
It is well known and easy to see that for a GFF in D, the circle average process around
z “ 0 is a constant multiple of Brownian motion. For our given process hD, the domain
Markov property together with scale invariance (a special case of conformal invariance)
shows that the circle average process has independent and stationary increments.
However, one cannot immediately deduce that it is Brownian motion, which would of
course yield Gaussianity. More work is required to eliminate processes with jumps (e.g.
compound Poisson processes, symmetric stable processes etc.). In [4], a fourth moment
assumption on the field was used to apply Kolmogorov’s criterion, and thereby prove
that the circle average process possesses an almost surely continuous modification. This
modification must then be Brownian motion and, in particular, Gaussian. In fact, we can
generalise this argument to show that arbitrary linear combinations of circle averages
around multiple points must also be Gaussian, which completes the key step of the proof.
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Sketch of proof of Proposition 1.3. The major challenge in this article is to reach
the same conclusion without the fourth moment assumption. In contrast to the above
approach, we will simply aim to prove Gaussianity of single circle averages, rather
than linear combinations of averages around multiple points. Note that this does not
immediately imply joint Gaussianity of circle averages (for which significantly more work
would be needed). However, it is enough (with a little extra work) to prove existence of
fourth moments (Proposition 1.3) and given the result of [4], this concludes the proof of
Theorem 1.4.

To summarise: the main step of the proof in this article is to show existence of an a.s.
continuous modification of the circle average process around z “ 0 for hD (the given field
in the disk D) assuming only ξth moments of the field for some ξ ą 1. See Corollary 5.7
and Proposition 5.8. Achieving this is not merely a technical upgrade of the idea used in
[4]; a new input is required.

Namely, in (3.1) we introduce a certain sine-average process for the field hH, on
semi-circles in the upper half plane. Its value at a given semi-circle can be viewed as the
average of hH with respect to a hitting measure for half plane Itô excursions from 0.
As a result, one can easily construct a parametrisation (with respect to the semi-circle
radius), under which the resulting process satisfies:

• (one-dimensional) Brownian scaling; and crucially

• a certain “harness” property, as introduced by Hammersley in [11] (see also
[21, 22]).

The increments of this process are easily checked to be independent; however, there is
no reason a priori why they should be stationary. Nonetheless, we are able to formulate a
(new) characterisation of Brownian motion in terms of this harness property and use this
to show that the sine-average process must be a Brownian motion. This characterisation
is given in Proposition 4.1, and is an extension of a result proved in [21]. Crucially, our
extension does not require as many moments as [21]; in fact moments of any order ξ ą 0

suffice.
From this point, we use rotational invariance and the domain Markov property to

“average out” the semi-circle sine-averages of hH and relate them to circle averages of
hD. The consequence is existence of a continuous modification of the circle-average
process around 0 for hD. For this last step, one needs to precisely control the behaviour
of the harmonic part in a domain Markov decomposition of hD, which forms the main
technical part of the argument. This is where the assumption ξ ą 1 is used. Having done
this, the proof of Proposition 1.3 is concluded.

Remark 1.5. Consider a family of fields phDqD in simply connected domains D, that
assign values phD, φq to smooth test functions φ. Theorem 1.4 shows that conformal
invariance and the domain Markov property (in the sense of Assumptions 1.1) are incom-
patible with these phD, φqs having α-stable (rather than Gaussian) distributions, for any
value of the index α P p1, 2q. Comparing to the better understood one-dimensional situa-
tion, a (1d) α-stable process has different scaling properties to those of (1d) Brownian
motion. Since scaling is a special type of conformal mapping, this suggests that “natural
α-stable analogues” of the GFF cannot enjoy conformal invariance. Our Theorem can be
viewed as a rigourous justification of this informal heuristic when α P p1, 2q.

We mention here that some variants of higher dimensional stable fields have been
defined and studied before, see [14] and also [5] for a limiting construction. It will be
interesting to find a suitable characterisation theorem for such fields.

In view of the above remark, it is natural to wonder whether any moments assump-
tions are needed to characterize the GFF.
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Question 1.6. What are the minimal moment assumption necessary for Theorem 1.4 to
hold? Do moments of order ξ for any ξ ą 0 suffice?

Acknowledgements We thank Scott Sheffield and Juhan Aru for some inspiring discus-
sions. Part of this work was carried while all three authors visited Banff on the occasion
of the programme “Dimers, Ising Model, and their Interactions”. We would like to thank
the organisers as well as the team in BIRS for this opportunity and their hospitality.
Finally, we would like to thank the anonymous referees for many suggestions that helped
us to improve the presentation of the paper.

2 Some elementary results and estimates

2.1 Independent random variables

Lemma 2.1. Suppose that pX,Y q are real-valued random variables defined on the same
probability space, and that X and Y are independent. Then for any ξ ą 0,

Er|X ` Y |ξs ă 8 ñ Er|X|ξs ă 8 and Er|Y |ξs ă 8.

Proof. Fix some M such that Pp|Y | ďMq ě 1{2 and note that

|X{pX ` Y q|1t|Y |ďM,|X|ě2Mu ď 2

(it is less than 1 if X and Y have the same sign, and less than 2 otherwise). Then
Er|X|ξ1t|X|ď2Mus ď p2Mq

ξ and

E
“

|X|ξ1t|X|ě2Mu

‰

ď 2E

«

ˇ

ˇ

ˇ

ˇ

X

X ` Y

ˇ

ˇ

ˇ

ˇ

ξ

|X ` Y |
ξ
1t|Y |ďM,|X|ě2Mu

ff

ď 21`ξE
”

|X ` Y |
ξ
ı

ă 8.

Symmetrically, Er|Y |ξs ă 8.

Lemma 2.2 (Von Bahr–Esseen [19]). Let r ě 1.

(i) Suppose that X,Y are random variables with Er|X|rs ă 8,Er|Y |rs ă 8,ErY |Xs “ 0

a.s. Then Er|X ` Y |rs ě Er|X|rs.

(ii) Suppose in addition that r ď 2 and that pX1, ¨ ¨ ¨ , Xnq are independent, centred
random variables with Er|Xj |

rs ă 8 for 1 ď j ď n. Then Er|
řn
j“1Xj |

rs ď

2
řn
j“1Er|Xj |

rs.

2.2 Immediate consequences of the domain Markov property

Lemma 2.3. The assumption of zero boundary conditions implies that the domain
Markov decomposition from (iv) is unique.

Proof. This is very similar to the proof of [4, Lemma 1.4], but we include it since some
arguments are slightly different.

Suppose that we have two such decompositions:

hD “ hD
1

D ` ϕD
1

D “ h̃D
1

D ` ϕ̃D
1

D . (2.1)

Pick any z P D1 and let f : D1 Ñ D be a conformal map that sends z to 0. Further,
let pφnqně1 be a sequence of nonnegative radially symmetric, mass one functions in
C8c pDq, that are eventually supported outside any K Ť D. It is easy to check that φn Ñ 0

in H´1pDq as n Ñ 8, and if we set φ̃n :“ |f 1|2pφn ˝ fq for each n, then (as discussed
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below assumptions 1.1) φ̃n converges to 0 in H´1pD1q as well. Hence, the assumption of
Dirichlet boundary condition implies that phD

1

D ´ h̃D
1

D , φ̃nq Ñ 0 in probability as nÑ8. In
turn, by (2.1), this means that pϕD

1

D ´ ϕ̃D
1

D , φ̃nq Ñ 0 in probability.
However, since pϕD

1

D ´ ϕ̃D
1

D q restricted to D1 is a.s. equal to a harmonic function, and
since the φn’s are radially symmetric with mass one, we have that

pϕD
1

D ´ ϕ̃D
1

D , φ̃nq “ ppϕ
D1

D ´ ϕ̃D
1

D q ˝ f
´1, φnq “ pϕ

D1

D ´ ϕ̃D
1

D q ˝ f
´1p0q “ ϕD

1

D pzq ´ ϕ̃
D1

D pzq

for every n. This implies that for each fixed z P D1, ϕD
1

D pzq “ ϕ̃D
1

D pzq a.s. Applying this to a
countable dense subset of z P D1, together with the fact that phD, φq “ pϕD

1

D , φq “ pϕ̃D
1

D , φq

a.s. for any φ supported outside of D1, then implies that ϕD
1

D and ϕ̃D
1

D are a.s. equal as
stochastic processes indexed by C8c pDq.

Now, suppose that D2 Ă D1 Ă D and hD is a sample from ΓD. Applying the domain
Markov property to hD in D1 and D2 respectively, we can write hD “ hD

1

D `ϕD
1

D and hD “
hD

2

D ` ϕD
2

D . We can further decompose hD
1

D “ hD
2

D1 ` ϕ
D2

D1 by applying the domain Markov
property to hD

1

D in D2.

Lemma 2.4. As stochastic processes indexed by C8c pDq, we have that hD
2

D “ hD
2

D1 and
ϕD

2

D “ ϕD
1

D ` ϕD
2

D1 a.s. (where the latter is an independent decomposition).

Proof. This follows by writing hD “ hD
2

D ` ϕD
2

D and hD “ hD
1

D ` ϕD
1

D “ hD
2

D1 ` ϕ
D2

D1 ` ϕ
D1

D

and applying Lemma 2.3.

Lemma 2.5. Suppose D is simply connected and that D1 Ă D is a simply connected
Jordan domain. Then if hD “ hD

1

D ` ϕD
1

D is the domain Markov decomposition of hD in
D1 and f : D Ñ fpDq is conformal, with fpD1q Ă fpDq a Jordan domain and hfpDq “

h
fpD1q
fpDq ` ϕ

fpD1q
fpDq , we have that

ϕD
1

D “ ϕ
fpD1q
fpDq ˝ f in law

as harmonic functions in D1.

Proof. For φ P C8c pD
1q let us denote φf pzq “ |pf´1q1|2φ ˝ f´1pzq, so that φf P C8c pfpD

1qq.
Then by conformal invariance (assumptions 1.1(iii)) it follows that

phD, φq
pdq
“ phfpDq, φf q and phD

1

, φq
pdq
“ phfpD

1
q, φf q.

By uniqueness of the domain Markov decomposition (Lemma 2.3), it then follows that

pϕD
1

D , φq
pdq
“ pϕ

fpD1q
fpDq , φ

f q

and since ϕ is harmonic, this is exactly the statement that

ż

D1
ϕD

1

D pzqφpzqdz
pdq
“

ż

fpD1q

ϕ
fpD1q
fpDq pzqφ

f pzqdz “

ż

D1
ϕ
fpD1q
fpDq pfpwqqφpwqdw,

where the last equality is just the change of variables formula. Since this holds for all
φ P C8c pD

1q, this completes the proof.

2.3 A priori moment bounds

We are going to give some bounds on the moments of harmonic functions arising from
the domain Markov property. Note that if z P D1 Ă D and ϕD

1

D is such a function, then by
harmonicity we can write ϕD

1

D pzq “ pϕ
D1

D , φq “ phD, φq´ phD
1

D , φq for some properly chosen
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φ P C8c pD
1q Ă C8c pDq (e.g., take φ to be a spherically symmetric bump function which

integrates to 1). Therefore
Er|ϕD

1

D pzq|
ps ă 8

for all 0 ď p ď ξ. Moreover, if D2 Ă D1, then by Lemma 2.4 and Lemma 2.2(i), we have

Er|ϕD
1

D pzq|
ps ď Er|ϕD

2

D pzq|ps (2.2)

for all p P r1, ξs. (Note that EpϕD
2

D1 pzq|ϕ
D1

D pzqq “ 0, since ϕD
2

D1 and ϕD
1

D are independent and
EpϕD

2

D1 pzqq “ Epph
D, φq ´ phD

1

D , φqq “ 0 by assumption. Thus we are justified in applying
Lemma 2.2(i).)

Lemma 2.6. Suppose that D1 Ă D and that z P D1. Then there exists a universal
constant C (i.e., not depending on z,D,D1) such that for all p P r0, ξ ^ 2s

Er|ϕD
1

D pzq|
ps ď C

ˆ

log

ˆ

dpz, BDq

dpz, BD1q

˙

_ 1

˙

Proof. Let r :“ dpz, BD1q{2 and R :“ dpz, BDq{2. By Jensen’s inequality we need only
consider the case p “ ξ. In this case, since ξ ą 1 and Bzprq Ă D1, we may further assume
by (2.2) that D1 “ Bzprq.

Now we iteratively apply Lemma 2.4. Let Bk “ Bzp2
krq for k P N0, and let N :“

supkPN0
Bk Ă D so that N ď logpR{rq{ logp2q. Then we may write

ϕD
1

D pzq “ ϕBND pzq `
N´1
ÿ

k“0

ϕkpzq

where the ϕkpzq are independent and, by conformal invariance, each distributed as

ϕ
D{2
D p0q. Therefore by Lemma 2.2(ii), it follows that

Er|ϕD
1

D pzq|
ξs ď 2pEr|ϕBND pzq|ξs `NEr|ϕ

D{2
D p0q|ξsq.

Now Er|ϕD{2D p0q|ξs is bounded by some universal constant. Moreover, so is Er|ϕBND pzq|ξs: if
f : D Ñ Dmaps z to 0, then fpBN q Ą p1{32qD by the Koebe quarter theorem, and it there-

fore follows from conformal invariance and (2.2) that Er|ϕBND pzq|ξs ď Er|ϕ
p1{32qD
D p0q|ξs).

This completes the proof.

3 Sine-averages and harmonic functions

In the following we will denote the upper unit semi disc DXH by D`. For r ą 0, we
denote by rD` the scaled semi disc tz P H : |z| ă ru, and for compactness, write

Du :“
1
?
u
D`; for u ą 0.

For u ą 0, we define pu to be the measure that integrates against φ P CcpCq as

pφ, puq “ pupφq :“
?
u

ż π

0

sinpθqφ

ˆ

eiθ
?
u

˙

dθ. (3.1)

Note that pu is supported on the circle of radius ru “ 1{
?
u and that its total mass is

2{ru “ 2
?
u.

The motivation for defining these measures comes from the fact that hpreiθq “ 1
r sinpθq

is harmonic in the upper half plane with zero boundary conditions (except at the origin).
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In fact, h can be interpreted as the hitting density on a circle of radius r, for an Itô
excursion in the upper half plane starting from zero. While our proofs can be written
without referring to this interpretation, it may be useful for the intuition nonetheless, so
we will now explain how to state this more precisely.

We start by recalling some background about such excursions (see Chapter 5.2 in
[15] for further details). Let Piε denote the law of Brownian motion starting from iε,
killed when it leaves the upper half plane H. By definition, the Itô excursion measure
from zero is the (infinite) measure N obtained as the vague limit

N :“ lim
εÑ0

1

ε
Piε

which is supported on continuous trajectories ω starting from zero, such that ωptq P H for
t P p0, ζq where ζ “ ζpωq is the lifetime of the excursion, and such that ωptq “ ωpζq P R

for any t ě ζ. A “sample” from N will later be called a half plane excursion. More
generally, the corresponding excursion measure can be defined on any simply connected
domain D from an analytic boundary point z P BD (meaning that there is a conformal
map f : D Ñ H mapping z to 0 that extends analytically to a neighbourhood of z on BD)
and we then denote it by Nz,D. These measures are conformally covariant, in the sense
that for a conformal map f : D Ñ H as above, the image of Nz,D under f is given by
|f 1pzq|N0,H [15, p126].

Note that even though N has infinite mass we can easily make sense of conditional
laws N p¨|Eq when N pEq P p0,8q, thus resulting in probability measures. We record the
following lemma.

Lemma 3.1. The total mass of half plane excursions reaching BprDq XH is 4{pπrq. In
fact, the mass of excursions leaving rDXH through the arc preia, reibq is precisely

2

πr

ż b

a

sinpθqdθ

for any 0 ď a ď b ď π.

Proof. Note that when D “ H and z “ 8, the measure N8,HpXpζHq P ra, bsq “ pb´ aq{π
on R, is nothing but Lebesgue measure (here ζD denotes the first time that the excursion
X leaves the domain D, i.e., its lifetime). This is easy to check, as starting from a
point ir (with r ą 0) the hitting distribution of R by a Brownian motion has the Cauchy
distribution scaled by r, which tends to π´1 times Lebesgue measure on R as r Ñ8.

For r ą 0, consider the conformal maps

fpzq “ z `
r2

z
“ rp

r

z
`
z

r
q,

that map HzprDq to H and satisfy fp8q “ 8 with |f 1p8q| “ 1. Note that fpreiθq “
2r cospθq. In particular f sends the semicircle of radius r to the interval r´2r, 2rs, of
length 4r. Hence if τr is the first hitting time of this circle, we have

N8,Hpτr ă ζq “ 4r{π.

The first claim of the lemma follows from this after applying the inversion map z ÞÑ ´1{z

(which sends 8 to 0, leaves H invariant, and transforms rD into p1{rqD). The second
claim follows easily after noting that the derivative in θ of fpreiθq is ´2r sinpθq.

Remark 3.2. For later reference, it may be useful to note that half plane excursions
enjoy the following Markov property: conditionally upon hitting the circle of radius r,
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the law of an excursion after this time is simply that of Brownian motion killed upon
leaving H.

Combined with the domain Markov property and scale invariance of our fields, the
upshot is that when we “integrate hH against h on the semi-circle of radius 1{

?
u around

0” - equivalently “test hH against pu” - and view this as a process in u, it will satisfy both
Brownian scaling and a certain Markovian property (note that u “ 0 corresponds to
testing hH near the point at 8). As a consequence, we may deduce that the process is
Brownian motion – see Section 4. However, the reader may recall from the introduction
that we really want circle averages, say for hD, to be Brownian motions. Since these
processes are easily shown to have independent and stationary increments, this would
be immediate if we knew that they satisfied Brownian scaling. Unfortunately, this seems
very hard to deduce directly from assumptions 1.1. So, we introduce the measures pu
(and associated sine-averages for hH, see below) instead, and will later relate them to
circle averages in Section 5. We remark that alternative measures to pu, for example
correctly defined variants in cones, could play the same role. The current set-up has
been chosen as it seems to be the neatest.

Now, in order to make sense of “testing hH against pu” we need to first approximate
pu by some smooth test functions. For δ P p0, π{2q we let pδu be defined in the same way
as pu, but replacing sinpθq in the integral above with sinpθqχδpθq, where χδ : r0, πs Ñ r0, 1s

is smooth, equal to 1 in rδ, π ´ δs, and equal to 0 in r0, δ{2s Y rπ ´ δ{2, πs. Finally, for
η : r0, 1s Ñ r0, 1s a smooth bump function with

ş1

0
ηpyq dy “ 1, we define ηδp¨q :“ 1

δ ηp
¨
δ q

and denote by pδ,inu , pδ,outu the measures that integrate against φ P CcpCq as

pφ, pδ,inu q :“

ż δ

0

pφ, pδup1`xqq η
δpxq dx ; ppδ,outu , φq :“

ż δ

0

pφ, pδup1´xqq η
δpxq dx.

Thus pδ,inu , pδ,outu are smooth “fattenings” of the measure pu to the inside and outside of
the arc Bp 1?

u
D`q respectively, that are also “cut off” away from the real line (so as to

have compact support in H). The reason for these definitions is the following:

Remark 3.3. We have that for some pδ,in{outu P C8c pCq (note the abuse of notation pδ,in{outu

for both measure and density here):

ppδ,in{outu , φq “

ż

C

pδ,in{outu pzqφpzq dz.

We remark that it is possible to write down an explicit expression for pδ,in{outu pzq, but we
do not need it.

The upshot is that we can define

phD, pδ,in{outu q

(where pδ,in{outu refers to the smooth density) for any D such that Supportpp
δ,in{out
u q Ť D

(e.g., D “ D` or D “ H).

Lemma 3.4. (a) Suppose that u ą 0 and ϕ is a harmonic function in Du, that can be
extended continuously to a function on Du Y p´

1?
u
, 1?

u
q that is equal to zero on

p´ 1?
u
, 1?

u
q. Then pϕ, prqrPpu,8q is constant.

(b) Suppose that u ą 0 and ϕ is a harmonic function in HzDu that can be extended
continuously to 0 on p´8,´ 1?

u
q Y p 1?

u
,8q. Then pϕ, psqsPp0,uq is a linear function of s.
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(c) Suppose that 0 ă s ă r ă 8 and ϕ is a harmonic function in DszDr that can be
extended continuously to 0 on p´ 1?

s
,´ 1?

r
q Y p 1?

r
, 1?

s
q. Then pϕ, puquPps,rq is a linear

function of u.

Remark 3.5. We observe that (a) is easily seen from the perspective of Itô excursions. By
Lemma 3.1, we can represent pϕ, prq for any r ą u by π

2N0,HpϕpXτp1{
?
rq^ζqqwhere τp1{?rq

is the first hitting time of the semicircle of radius p1{
?
rq centred at 0. For s ě r, since ϕ

is assumed to be 0 on p´1{
?
u, 1{

?
uq, we can apply the Markov property, Remark 3.2,

of the excursion X at τp1{?sq ^ ζ. This gives pϕ, prq “
?
s
şπ

0
sinpθqE eiθ?

s

rϕpBτBDr qs dθ for

B a complex Brownian motion. By harmonicity of ϕ, this quantity is equal to pϕ, psq as
required.

Actually, it can be seen from the argument above that the constant value of pϕ, prq
for r ą u, is equal to π{2 times the normal derivative, directed into H, of ϕ at the origin.
Indeed, we saw that for any such r,

pϕ, prq “
π

2
N0,HpϕpXτp1{

?
rq^ζqq “

π

2
lim
εÑ0

ε´1EiεpϕpBτp1{?rq^ζqq “
π

2
lim
εÑ0

ε´1ϕpiεq,

where the second equality is by definition of N0,H and the third is by harmonicity of ϕ.

Since it is simpler for (b) and (c), the full proof of Lemma 3.4 below is of a more
deterministic nature.

Proof. Write ϕpreiθq “ ϕpr, θq and fpuq “ pϕ, puq “
?
u
şπ

0
sinpθqϕp1{

?
u, θq dθ. We will

show that f2 ” 0 on ps, rq, which implies (c). This in turn implies (b), by taking s to 0.
Take any u P ps, rq. Let us first remark, in order to justify differentiation under the

integral and integration by parts in what follows, that ϕ is in fact very regular in open
neighbourhoods of ˘p1{

?
uq inside DszDr. Indeed since ϕ extends continuously to 0 on

neighbourhoods of ˘p1{
?
uq in R, it can be extended by Schwarz reflection to a harmonic

function in open balls B˘1{
?
upεq Ă C for some ε. See, for example, [13, §7.5.2]. In

particular Bϕ
Bθ remains bounded in neighbourhoods of ˘1{

?
u. Now we compute

d2

du2
p
?
uϕp1{

?
u, θqq “

1

4u5{2

ˆ

B2

Br2
ϕp1{

?
u, θq `

?
u
B

Br
ϕp1{

?
u, θq ´ uϕp1{

?
u, θq

˙

“ ´
1

4u3{2

ˆ

B2

Bθ2
ϕp1{

?
u, θq ` ϕp1{

?
u, θq

˙

,

using harmonicity of ϕ for the final identity. Differentiating under the integral in the
expression for fpuq, and apply integration by parts twice with respect to θ, we see that
f2puq “ 0.

Proposition 3.6. Let hH be a sample from ΓH. Then for any u P p0,8q the limits

lim
δÓ0
phH, pδ,inu q and lim

δÓ0
phH, pδ,outu q (3.2)

exist in probability and in L1, and are equal a.s. We define this limiting quantity to be the
p1{
?
uq-sine average of hH, and denote it (with a slight abuse of notation) by phH, puq.

Recall the notation hH “ hDH ` ϕ
D
H for the domain Markov decomposition of hH in D Ă H.

We also have that with probability one:

phH, puq “ pϕ
Du
H , prq for all r ą u and phH, puq “

u

s
pϕ
HzDu
H , psq for all s ă u. (3.3)
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Remark 3.7. This directly implies that for any finite collection u1, ¨ ¨ ¨ , un P p0,8q, the
limits in (3.2) hold jointly in probability, and (3.3) holds jointly almost surely. In particular,
this defines a consistent family of finite dimensional marginals, from which we may define
the stochastic process

phH, puquPp0,8q.

Before we begin the proof of Proposition 3.6, we need the following lemma. It says
(albeit in a more specific setting) that if we apply the domain Markov property to our
field in a subdomain that shares a section of boundary with the original domain, then the
harmonic function can be extended continuously to 0 on the common section of boundary.
This should seem very intuitive, but the proof is a little trickier than one might guess
(see for example Fatou’s theorem [9] for the kind of conditions that guarantee existence
of non-tangential limits for harmonic functions at the boundary).

Lemma 3.8. Suppose that hH “ hD
`

H ` ϕD
`

H is the domain Markov decomposition of hH

in D`. Then ϕD
`

H can almost surely be extended continuously to 0 on p´1, 1q.

Proof. We first show that for any y P p´1, 1q:

ϕD
`

H py ` iδq Ñ 0 in distribution (so also in probability) as δ Ñ 0. (3.4)

Without loss of generality, the other cases being very similar, let us assume that y “ 0.
Observe that by Lemma 2.5 and harmonicity we have that

ϕD
`

H piδq
pdq
“ ϕ

p1{δqD`

H piq “ pϕ
p1{δqD`

H , ψq,

where ψ P C8c pCq is non-negative with
ş

C
ψ “ 1, supported in Bip1{2q and rotationally

symmetric about i. Moreover, by definition of the domain Markov decomposition and
conformal invariance, we have that

phH, ψq
pdq
“ php1{δqD

`

, ψq ` pϕ
p1{δqD`

H , ψq with hp1{δqD
`

, ϕ
p1{δqD`

H independent.

On the other hand, it is easy to see by conformal invariance of h that php1{δqD
`

, ψq

converges in distribution to phH, ψq as δ Ñ 0. This implies that

pϕ
p1{δqD`

H , ψq Ñ 0

in distribution and probability as δ Ñ 0, by standard arguments (for example, considering
characteristic functions).

This completes the proof of (3.4). We immediately observe that the sequence in (3.4)
is uniformly integrable by Lemma 2.6, and so (3.4) can be strengthened to say that

Er|ϕD
`

H py ` iδq|s Ñ 0 as δ Ñ 0 (3.5)

With (3.5) in hand, let us now take I “ ra, bs Ă p´1, 1q arbitrary: we will show that ϕD
`

H

can almost surely be continuously extended to 0 on I. We denote ϕ “ ϕD
`

H from now on,
and fix J such that I Ă J Ĺ r´1, 1s.

First, observe that by dominated convergence and Lemma 2.6, (3.5) implies that
Er

ş

J
|ϕpy ` iδq| dys Ñ 0 as δ Ñ 0 and hence that for some sequence δk Ñ 0, ak :“

ş

J
|ϕpy ` iδkq| dy converges to 0 almost surely. We also have by Lemma 2.6 that if SJ is

the semicircle centered on J , then M :“
ş

SJ
|ϕpzq| dz is almost surely finite. Finally, by

harmonicity of ϕ, and by dominating the exit density from H` iδ for Brownian motion
started from z with =pzq ě 2δ by a Cauchy density, we know that there exists some
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constant C (deterministic, depending on I, J) such for any z P D` that is sufficiently close
to I, |ϕpzq| ďMP pzq ` C=pzq´1ak for all k large enough, where P pzq is the probability
that a Brownian motion started from z hits SJ before J . Taking k Ñ 0 gives that
|ϕpzq| ďMP pzq a.s. for all such z, and so ϕ can almost surely be continuously extended
to 0 on I.

Now we can use Lemma 3.4 to prove Proposition 3.6.

Proof of Proposition 3.6. Observe that for any u ą 0, ϕDu
H can a.s. be extended contin-

uously to 0 on p´1{
?
u, 1{

?
uq by scaling and Lemma 3.8. Hence by Lemma 3.4, on an

event of probability one,
pϕDu
H , prq “: c (3.6)

is constant for all r ą u. This implies (since ηδ has mass one and by definition of pδ,inu )
that with probability one,

pϕDu
H , pδ,inu q ´ c “

ż δ

0

´

ϕDu
H , pδup1`xqq ´ pϕ

Du
H , pup1`xqq

¯

ηδpxq dx

for all δ small enough. Noting by Lemma 2.6 that the right-hand side goes to 0 in L1 as
δ Ñ 0, we can deduce that

pϕDu
H , pδ,inu q Ñ c in probability and in L1

as δ Ñ 0.
Therefore, to show that the first limit in (3.2) exists in probability and in L1, and is

equal to c almost surely, we need only show that

lim
δÓ0
phH ´ ϕDu

H , pδ,inu q “ lim
δÓ0
phDuH , pδ,inu q “ 0

in probability and in L1. However, this follows by applying the zero boundary condition
assumption to the field hDuH .

An almost identical line of reasoning using part (b) of Lemma 3.4 implies that the
second limit in (3.2) exists a.s. and is equal to the constant value of the second expression
in (3.3). Observe that

pϕ
HzDu
H , psq Ñ 0

in probability and in L1 as s Ñ 0 (for example, by bounding its first moment using
Lemma 2.6).

Thus all that remains is to show that the two limits in (3.2) (or equivalently in (3.3))
coincide a.s. For this, we will prove that

c
paq
“ lim

δÓ0
pϕ

Du´δ
H , puq

pbq
“ lim

δÓ0
pϕ

Du´δ
H , p

?
u
u´δ´1,out

u q
pcq
“ lim

δÓ0
phH, p

?
u
u´δ´1,out

u q, (3.7)

where all limits are in probability. From this we may conclude, since we already showed
that the first limit in (3.2) was a.s. equal to c, and the right hand side above is equal to
the second limit in (3.2) (which we also know exists in probability.)

We will now prove the equalities (a), (b) and (c) from eq. (3.7) in turn. For (a), note
that by Lemma 3.4 and scale invariance,

pϕ
Du´δ
H , pδ,inu q ´ pϕ

Du´δ
H , puq

pdq
“ pϕD

`

H , fδq, (3.8)

where fδ are a sequence of uniformly bounded smooth functions supported in vanishing
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neighbourhoods of t˘1u. The difference (3.8) therefore converges to 0 in probability as
δ Ñ 0. Moreover, by Lemma 2.4, we have

pϕ
Du´δ
H , pδ,inu q ´ pϕDu

H , pδ,inu q
a.s.
“ pϕDu

Du´δ
, pδ,inu q

pdq
“ phDu´δ , pδ,inu q ´ phDuDu´δ , p

δ,in
u q.

Both terms on the right-hand side also converge to 0 in probability as δ Ñ 0 by scaling
again, and the Dirichlet boundary condition assumption. Putting these facts together
gives (a).

Equality (b) follows by a very similar distributional equality to (3.8), again using
Lemma 3.4. Finally (c) holds, since

pϕ
Du´δ
H , p

?
u
u´δ´1,out

u q ´ phH, p

?
u
u´δ´1,out

u q “ ´ph
Du´δ
H , p

?
u
u´δ´1,out

u q

almost surely and the right hand side (again by scaling) can be seen to converge to 0 in
probability as δ Ó 0.

4 A characterisation of Brownian motion

Proposition 4.1. Suppose that pY puqquPp0,8q is a centred stochastic process. For u ą 0,
write F`u :“ σpYs : s ě uq, F´u :“ σpYs : s ď uq, and for 0 ă s ă r let Fs,r be the σ-algebra
generated by F´s and F`r . Suppose that:

(i) pY puqquPp0,8q is stochastically continuous, i.e., for any u0 P p0,8q, Yu Ñ Yu0
in

probability as uÑ u0;

(ii) for some ξ ą 0, Er|Y puq|ξs ă 8 for all u P p0,8q;

(iii) Y satisfies Brownian scaling, that is, pY pcuqquą0 has the same law as p
?
cY puqquą0

for any c ą 0;

(iv) for any u ą 0, pY psq ´ Y puqqsěu is independent of F´u ;

(v) for any 0 ă s ă r pY puq ´ pu´sr´sY prq `
r´u
r´sY psqqquPps,rq is independent of Fs,r.

Then there exists a modification of Y that is equal to σB in law for some σ ě 0, where B
is a standard one-dimensional Brownian motion.

Observe that for this characterisation we only require ξ ą 0, we will comment later
on why we need existence of p1 ` εq moments for the main result of this paper. Also
observe that by scaling, for any process Y as in the statement of the proposition, Y pδq is
equal in distribution to

?
δY p1q for every δ, and so tends to 0 in probability as δ Ñ 0.

This proposition is very close to the main result of [21], which is essentially the same
but requires square-integrability of the process Y . Indeed, we will prove the proposition
by showing square-integrability and then appealing to [21].

We also remark that there is a similar characterisation of Brownian motion in [4,
Theorem 1.9]; the major difference being item pviq. In [4] we assumed that the process
in pviq has the law of a scaled version of the original process. This is stronger than the
statement here, which assumes nothing about the law. On the other hand, only finiteness
of logarithmic moments was assumed in [4], which is (slightly) weaker than the moment
assumption piiq above.

For some motivation, let us first see the important corollary of this characterisation for
the purposes of the present article. The proof of Proposition 4.1 will follow immediately
after.
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Corollary 4.2. Let hH be a sample from ΓH, and define the process Y via

Y puq :“ phH, puq for u ě 0,

where the right hand side is as defined in Proposition 3.6 and Remark 3.7. Then Y

satisfies the conditions of Proposition 4.1, and hence has a modification with the law of
σ times a Brownian motion for some σ ě 0.

Remark 4.3. We note that this result actually holds even if we only have ξ ą 0 in
Assumption 1.1, (i). This suggests that the answer to Question 1.6 is positive.

Proof. Since Y puq is the L1 limit of phH, pδ,inu q as δ Ñ 0, and phH, pδ,inu q is centred for
every δ and u, it follows that Y is a centred process. So, it suffices to prove the conditions
(i)-(vi) of Proposition 4.1.

(i) Equality (a) from (3.7) in the proof of Proposition 3.6, plus Lemma 3.4, tells us that

phH, p1q ´ ph
H, p1´δq Ñ 0

in probability as δ Ñ 0. Moreover by scale invariance (see (iii) below) we have
that |phH, psq´ phH, ptq| is equal in distribution to

?
s_ t |phH, p1q´ ph

H, pps^tq{ps_tqq|.
This gives the stochastic continuity.

(ii) This holds with ξ “ 1 since Y puq is defined as a limit in L1 for all u.

(iii) (Scale invariance) We assume without loss of generality that c ą 1. First, we claim
that

pz ÞÑ ϕDcu
H pzq, z P Dcuquě0 and pz ÞÑ ϕDu

H p
?
czq, z P Dcuquě0 (4.1)

have the same law as processes (of harmonic functions) in u, in the sense that the
finite dimensional marginals of both sides have the same laws.

The statement for one dimensional marginals is a special case of Lemma 2.5. For
the higher dimensional marginals, since the argument with n points is very similar,
we will just show equality in law for the joint distribution at two points u ă u1. For
this, we use uniqueness of the domain Markov decomposition to write

pϕDcu
H , ϕ

Dcu1
H q

pdq
“ pϕDcu

H , ϕDcu
H ` ϕ

Dcu1
Dcu

q and pϕDu
H , ϕ

Du1
H q

pdq
“ pϕDu

H , ϕDu
H ` ϕ

Du1
Du
q

where ϕ
Dcu1
Dcu

is independent of ϕDcu
H and ϕ

Du1
Du

is independent of ϕDu
H . Using this

independence, and Lemma 2.5 again, we obtain (4.1).

Now we complete the proof of scale invariance as follows. Fix u ą 0. By definition
of the measures pu,

phH, pcuq
(3.3)
“ pϕDcu

H , p2cuq

“
?

2cu

ż π

0

sinpθqϕDcu
H p

eiθ
?

2cu
q dθ

“
?
c
?

2u

ż π

0

sinpθqϕDu
H p
?
c
eiθ
?

2cu
q dθ

“
?
cpϕDu

H , p2uq

(3.3)
“

?
cphH, puq

where we used eq. (4.1) in the third equality. Applying the same string of equalities
for finite dimensional marginals, we get the result.
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(iv) Fix u ě 0 and observe that since Y psq “ limδÓ0ph
H, pδ,outs q “ limδÓ0pϕ

Du
H , pδ,outs q for

s ď u, F´u is independent of hDuH . This means that when we write (see Lemma 2.4)

ϕDr
H “ ϕDu

H ` ϕDr
Du

; r ě u,

we have that ϕDr
Du

is independent of F´u . Then since

Y prq
(3.3)
“ pϕDr

H , p2rq “ pϕ
Du
H , p2rq ` pϕ

Dr
Du
, p2rq

(3.3)
“ Y puq ` pϕDr

Du
, p2rq,

we reach the desired conclusion.

(v) Let us write Ar,s :“ DszDr. Reasoning as in the proof of (iv), we see that in the
decomposition

hH “ h
Ar,s
H ` ϕ

Ar,s
H ,

h
Ar,s
H is independent of Fs,r. Hence, we must argue that

pϕ
Ar,s
H , puq “

u´ s

r ´ s
Y prq `

r ´ u

r ´ s
Y psq for all u P ps, rq. (4.2)

Now, by Lemma 3.4 we know that the left hand side of (4.2) is a.s. a linear function
of u P ps, rq, so we just need to prove that its limit as u Ó s is equal to Y psq, and as
u Ò r is equal to Y prq.

Let us prove the first limit, the second one being very similar. For this, write

lim
uÓs
pϕ
Ar,s
H , puq “ lim

uÓs
pϕDs
H , puq ` lim

uÓs
pϕ
Ar,s
Ds

, puq “ Y psq ` lim
uÓs
pϕ
Ar,s
Ds

, puq

and observe that by assumptions 1.1 (iv),

ϕ
Ar,s
Ds

is harmonic in Ar,s and goes to zero on BpDsq Y p´
1
?
s
,´

1
?
r
q Y p

1
?
r
,

1
?
s
q.

This implies that |ϕ
Ar,s
Ds

| is uniformly bounded in a neighbourhood of BpDsq in Ds,

and hence, by dominated convergence, we deduce that limuÓspϕ
Ar,s
Ds

, puq “ 0.

Proof of Proposition 4.1. This almost follows from [21, Theorem 1], except for the square
integrability condition. So first, we will prove that

Er|Y puq|2s ă 8 @u P r0,8q. (4.3)

To do this, pick some n such that 2´n ď ξ, so that by assumption Er|Y puq|2
´n

s ă 8 for all
u. We will prove that for any m ě 0,

Er|Y puq|2
´m

s ă 8 @u P r0,8q ñ Er|Y puq|2
´m`1

s ă 8 @u P r0,8q, (4.4)

from which the result follows by induction, starting with m “ n.

So, let us take some m ě 0 and assume that the left hand side of (4.4) holds. Denote
η :“ 2´m and first observe that Er|Y p2q ´ Y p1q|ηs ă 8, since |x ` y|η ď |x|η ` |y|η.
By independence of pY p2q ´ Y p1qq and Y p1q (condition (iv) of Proposition 4.1), this
implies that Er|Y p1qpY p2q ´ Y p1qq|ηs ă 8. Now we apply condition (v) of Proposition 4.1.
Applying this with s “ δ, u “ 1, r “ 2 for any δ P p0, 1q tells us that we can write
Y p1q “ 1´δ

2´δY p2q `
1

2´δY pδq ` Zpδq, where pZpδqqδPp0,1q is independent of Y p2q. Sending
δ to 0 (and using, as noted before, that Y pδq Ñ 0 in probability as δ Ñ 0) implies that
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Y p1q “ Y p2q{2` Z, where Z is independent of Y p2q. Hence

Y p1qpY p2q ´ Y p1qq “ p
Y p2q

2
` Zqp

Y p2q

2
´ Zq “

Y p2q2

4
´ Z2

has a finite moment of order η. Applying Lemma 2.1, we obtain that |Y p2q|2 has a finite
moment of order η, and hence by scale invariance (condition (iii) of Proposition 4.1), that
Er|Y puq|2ηs ă 8 for all u P r0,8q. This completes the proof of the induction step, (4.4),
and therefore of (4.3).

From here, we can appeal to the characterisation in [21, Theorem 1] of stochastic
processes with linear conditional expectation and quadratic conditional variance. This
says that if Y is a process as in Proposition 4.1, that in addition

• is defined and stochastically continuous on r0,8q with Y p0q “ 0,

• has Y puq square integrable for every u,

• has ErY puqY psqs “ ErY pu^ sq2s “ σpu^ sq for some σ ě 0 and all u, s P r0,8q

then Y must be σ times a standard Brownian motion. Note that by the discussion
immediately after the statement of Proposition 4.1, we can extend Y to a stochastically
continuous process on r0,8q with Y p0q “ 0. We also get the third point above by
the assumption of Brownian scaling, plus the fact that the process is centred with
independent increments. Hence [21, Theorem 1] provides the result.

5 Gaussianity of circle averages

In this section we work with a sample hD from ΓD. For any ε ą 0 we can define the
circle average hεp0q at radius ε around 0 via

hDε p0q :“ ϕ
B0pεq
D p0q

as in [4]. Our next goal is to relate these circle averages to the sine averages from
Section 3. This will allow us to show (using Corollary 4.2) that the circle average process
possesses a modification that is continuous in ε, and will in turn imply that phDe´tp0qqtě0

(which has independent and stationary increments by conformal invariance and the
domain Markov property) is a Brownian motion. From this it will follow that hDε p0q is
Gaussian for any ε ą 0.

To begin, we will explain how the sine averages from Section 3 can make sense for
hD with some specific domains D ‰ H. Essentially, this is due to the domain Markov
property, which allows us to relate hD with hH in such a way that the sine average of
one is the sine average of the other plus the sine average of a harmonic function.

For example, let us start with D “ D`. By the domain Markov property, we can
decompose hH in the upper unit semi disc D` as the independent sum

hH “ hD
`

H ` ϕD
`

H ,

and we already know that:

• for any u ě 1, phH, pδ,inu q Ñ phH, puq in probability and in L1 as δ Ñ 0;

• for any u ą 1, pϕD
`

H , pδ,inu q Ñ pϕD
`

H , puq a.s. and in L1 as δ Ñ 0, where pϕD
`

H , puq is
a.s. constant in u ą 1;

• pϕD
`

H , pδ,in1 q converges to this constant value in probability and in L1 as δ Ñ 0 (using
(3.6) and the argument explained just after).
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For the first bullet point we have used Proposition 3.6, and for the second, Lemma 3.4
plus the fact that ϕD

`

H is almost surely harmonic in D` and can be extended continuously
to 0 on p´1, 1q (Lemma 3.8).

This implies that for each u ě 1,

lim
δÑ0

phD
`

H , pδ,inu q “: phD
`

, puq

exists in probability and in L1. Similarly, the joint limit

lim
δÑ0

pphD
`

H , pδ,inu1
q, . . . , phD

`

H , pδ,inun qq

exists in probability and in L1 for any pu1, ¨ ¨ ¨ , unq with each ui P r1,8q. Notice
that, by the above observations, the limit of such a vector must be equal in law to
pphH, pu1

q, . . . , phH, punqq plus the (random) vector ppϕD
`

H , pu1
q, . . . , pϕD

`

H , punqq, whose

components are almost surely all equal. Notice further that phD
`

H , pδ,in1 q Ñ 0 in L1

and in probability as δ Ó 0 (by the Dirichlet boundary condition assumption), so that
phD

`

, p1q “ 0.
Putting all this together with Corollary 4.2, we obtain the following:

Lemma 5.1. Let hD
`

be a sample from ΓD
`

. Then for any pu1, ¨ ¨ ¨ , unq with ui P r1,8q

for 1 ď i ď n, the limit

lim
δÓ0

´

phD
`

, pδ,inu1
q, . . . , phD

`

, pδ,inun q

¯

“

´

phD
`

, pu1q, . . . , ph
D` , punq

¯

exists in probability. Moreover, phD
`

, p1`tqtě0 has the same finite dimensional distri-
butions as some multiple (which is the same as that in Corollary 4.2) of Brownian
motion.

Next, we make sense of sine averages for hD. Again we can use the domain Markov
property, and decompose

hD “ hD
`

D ` ϕD
`

D . (5.1)

However, deducing something from this is not quite so simple, since ϕD
`

D does not

extend continuously to 0 on p´1, 1q. For example, since pϕD
`

D , puq should correspond to

integrating ϕD
`

D on a contour that does touch the real line, it is not immediately obvious
that this integral is well defined. We can manage this using that

(a) ϕD
`

D is not too badly behaved, and

(b) the density sinpθq converges to 0 as θ Ñ t0, πu.

For this some quantitative estimates are required, and we summarise them in the
following lemma:

Lemma 5.2. There exists a universal constant C P p0,8q, such that for all ε ą 0,

Er sup
wPD`;=pwqąε

|ϕD
`

D pwq|s ď Cε´1{ξ logp1{εq1{ξ; and (5.2)

Er sup
rPr0,1s,θPr0,πs;=preiθqąε

|
B

Br
ϕD

`

D preiθq|s ď Cε´1´1{ξ logp1{εq1{ξ, (5.3)

where ξ ą 1 is such that Er|phD, φq|ξs ă 8 for all D and φ P C8c pDq (assumptions 1.1(i)).

Proof. It is a standard fact (a consequence of, e.g., [8, §2.2, Theorem 7]) that for a
universal C 1 ą 0, for any function ϕ that is harmonic in Bzprq Ă C and for any v with
modulus 1, |Bvϕpzq| ď pC 1{rq supyPBzprq |ϕpyq|. Hence (5.3) follows from (5.2).
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To prove (5.2), let w P D` with =pwq ą ε be arbitrary, and denote by Dε the domain
D` X tz : =pzq ą ε{2u. Let aε “

a

1´ ε2{4, and for y P r´aε, aεs, let fwpyq be the density
at y ` iε{2 of the exit position from Dε for a Brownian motion started from w. Then by
harmonicity and the fact that ϕD

`

D extends continuously to 0 on BDε XBD (by Lemma 3.8,
conformal invariance and the domain Markov property) we have that

ϕD
`

D pwq “

ż aε

´aε

fwpyqϕ
D`

D py ` iε{2q dy.

This implies, using Hölder’s inequality, that

|ϕD
`

D pwq| ď

ˆ
ż aε

´aε

fwpyqdy

˙1{ξ˚ ˆż aε

´aε

fwpyq|ϕ
D`

D py ` iε{2q|ξ dy

˙1{ξ

where ξ˚ is such that 1{ξ ` 1{ξ˚ “ 1. Moreover, by domination with respect to a Cauchy
density, there exists a constant M not depending on ε ą 0, such that

0 ď fwpyq ďM{ε @y P r´1, 1s , w P D2ε.

Putting this together, along with the fact that
şaε
´aε

fwpyq dy ď 1, we obtain that

sup
wPD`;=pwqąε

|ϕD
`

D pwq|ξ ď
M

ε

ż aε

´aε

|ϕD
`

D py ` iε{2q|ξ dy.

To conclude, we observe that by Lemma 2.6

Er|ϕD
`

D py ` iε{2q|ξs ď C2 logp1{εq @y P r´aε, aεs,

with constant C2 not depending on ε ą 0, so that

Er sup
wPD`;=pwqąε

|ϕD
`

D pwq|s ď Er sup
wPD`;=pwqąε

|ϕD
`

D pwq|ξs1{ξ ď Cε´1{ξ logp1{εq1{ξ

for some universal constant C, as required.

This allows us to deduce the following:

Lemma 5.3. Let hD be a sample from ΓD and recall the decomposition (5.1). Then for
each pu1, ¨ ¨ ¨ , unq with ui P r1,8q for 1 ď i ď n the limit

lim
δÓ0

´

phD
`

D , pδ,inu1
q, . . . , phD

`

D , pδ,inun q

¯

“:
´

phD
`

D , pu1
q, . . . , phD

`

D , punq
¯

(5.4)

exists in probability, and the resulting finite dimensional distributions are those of a
multiple (which is the same as that in Corollary 4.2) of Brownian motion. Furthermore,
on an event of probability one,

´

pϕD
`

D , pδ,inu q

¯

uě1
has a pointwise (in u) limit

´

pϕD
`

D , puq
¯

uě1
as δ Ñ 0, (5.5)

and this limit is a continuous function. Finally, for any 1 ď v ă w ă 8, there exists
Mpv, wq such that,

Er sup
s,tPrv,ws

|pϕD
`

D , psq ´ pϕ
D`

D , ptq|

|s´ t|
s ďMpv, wq. (5.6)

Remark 5.4. In words, this tells us that the sine-average process of hD (defined by
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joint limits of phD, pδ,inu q as δ Ñ 0) makes sense and is a Brownian motion plus a nicely
behaved continuous function whose derivative is bounded in expectation, (5.6). The
role of this key lemma is to show that when we “average" the sine-average process
over rotations (as will soon be made precise) we obtain a process with a continuous
modification. The control given by (5.6) is important here to ensure that we retain
continuity after averaging, and it is for this that we need the existence of moments with
order strictly greater than 1 (we remark that we have also used it in several other places
for simplicity).

This is really the crux of the proof, since the resulting “averaged” process will actually
turn out to be the circle average process for hD around 0 (recall from the introduction
that establishing continuity of circle averages is the main step in our argument).

Proof. Since hD
`

D has the same law as hD
`

, the statement concerning the limit (5.4)
follows from Lemma 5.1. To show that (5.5) holds with probability one note that by
Markov’s inequality, for any ξ´1 ă a ă 1,

Pr sup
wPD`;=pwqąε

|ϕD
`

D pwq| ą ε´as ď Cεa´1{ξ logp1{εq1{ξ

Thus applying the Borel–Cantelli lemma (to the sequence εn “ 2´n) we conclude that
almost surely, for any ξ´1 ă a ă 1,

|ϕD
`

D pzq| ď =pzq´a

for all z P D` with =pzq sufficiently small. This implies (5.5) (since sinpargpzqq=pzq´a Ñ 0

as =pzq Ñ 0). Similarly, an application of the Borel–Cantelli lemma and (5.3) allows us to
deduce that for any 1` ξ´1 ă b ă 2, on an event of probability one,

|
B

Br
ϕD

`

D preiθq| ď =pzq´b

for all z P D` with =pzq sufficiently small. On this event, since
şπ

0
sinpθq1´b ă 8,

F puq :“ pϕD
`

D , puq is differentiable in u, and for some finite deterministic constants
tM 1pv, wqu1ăvăwă8,

|F 1prq| ďM 1pv, wq

ż π

0

sinpθq|
B

Br
ϕD

`

D peiθ{
?
rq| dθ for all r P rv, ws

From this and (5.3), (5.6) follows in a straightforward manner.

Now we will relate these quantities to circle averages, by averaging over rotations.
Let hD be a sample from ΓD and for α P r0, 2πq, let hD,α be the image of hD under an
anti-clockwise rotation by angle α. That is, phD,α, φqφPC8c pDq “ ph

D, φ ˝ fαqφPC8c pDq where
fα denotes the isometry z ÞÑ e´iαz.

Then by conformal (specifically, rotation) invariance,

hD,α
pdq
“ hD (5.7)

for each fixed α. Write hD
`

D,α ` ϕ
D`

D,α for the domain Markov decomposition of hD,α in D`.
Now let A be uniformly distributed on the interval r0, 2πs (independently from hD).

Then we have that:

• for each pu1, ¨ ¨ ¨ , unq with ui P r1,8q for 1 ď i ď n

lim
δÓ0

´

phD
`

D,A, p
δ,in
u1
q, . . . , phD

`

D,A, p
δ,in
un q

¯

“:
´

phD
`

D,A, pu1
q, ¨ ¨ ¨ , phD

`

D,A, punq
¯
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exists a.s. and for any s, t ě 1

Er|phD
`

D,A, psq ´ ph
D`

D,A, ptq|
4s ď c|s´ t|2 (5.8)

for some universal constant c (because for each angle α the process phD
`

D,α, psqs is a
fixed, i.e. not depending on α, multiple of Brownian motion);

• ppϕD
`

D,A, p
δ,in
u qquě1 has a pointwise limit ppϕD

`

D,A, puqquě1 with probability one as δ Ñ 0,
and for any 1 ă v ă w ă 8, there exists Mpv, wq such that,

Er sup
s,tPrv,ws

|pϕD
`

D,A, psq ´ pϕ
D`

D,A, ptq|

|s´ t|
s ďMpv, wq. (5.9)

This allows us to reach the following conclusion.

Lemma 5.5. For every u P r1,8q, the conditional expectation

ErphD,A, puq |h
Ds :“ ErphD

`

D,A, puq ` pϕ
D`

D,A, puq |h
Ds

is well defined. This defines a stochastic process in u which possesses an a.s. continuous
modification.

Proof. Since phD
`

D,A, puq and pϕD
`

D,A, puq are random variables in L1pP ˆ dAq (as can be
seen using (5.7), by first taking expectation over the field given A, and then over A) the
conditional expectations

ErphD
`

D,A, puq |h
Ds and ErpϕD

`

D,A, puq |h
Ds

are well defined for any fixed u. By (5.8), the fact that conditioning is a contraction in
L4, and Kolmogorov’s continuity criterion, the first of these two stochastic processes has
an a.s. continuous modification. To deal with the second process, observe that by (5.9)
and Jensen’s inequality, for any 1 ă v ă w ă 8, we have

E

«

sups,tPrv,ws

ˇ

ˇ

ˇ
ErpϕD

`

D,A,ptq |h
D
s´ErpϕD

`

D,A,psq |h
D
s

ˇ

ˇ

ˇ

|s´t|

ff

ď E

„

Ersups,tPrv,ws
|pϕD

`

D,A,ptq´pϕ
D`

D,A,psq|

|s´t| |hDs



ďMpv, wq.

Hence the process ErpϕD
`

D,A, puq |h
Ds in u has a modification which is a.s. continuous.

The connection to circle averages is the following. Recall that hDε p0q denotes the
radius ε circle average of hD around 0. Recall that this is defined to be equal to ϕεDD p0q if
hD has domain Markov decomposition hεDD ` ϕεDD in εD.

Lemma 5.6. For any u P r1,8q, ErphD,A, puq |hDs “
?
uhD1?

u

p0q a.s.

Proof. Fix u P r1,8q. Since phD,A, pδ,inu q Ñ phD,A, puq in probability and in L1 as δ Ñ 0,
we have that

ErphD,A, puq |h
Ds “ Erlim

δÓ0
phD,A, pδ,inu q |hDs “ lim

δÓ0
ErphD,A, pδ,inu q |hDs

where the rightmost limit holds in probability and in L1. By definition of A, the right
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hand side is equal to

lim
δÓ0

1

2π

ż 2π

0

phD,α, pδ,inu q dα “ lim
δÓ0

1

2π

ż 2π

0

phD, pδ,inu ˝ fαq dα

where fαpzq “ e´iαz is rotation by α. By linearity of hD this is equal to

lim
δÓ0
phD,

1

2π

ż 2π

0

pδ,inu ˝ fα dαq

“ lim
δÓ0
pϕ

1?
u
D

D ,
1

2π

ż 2π

0

pδ,inu ˝ fα dαq ` lim
δÓ0
ph

1?
u
D

D ,
1

2π

ż 2π

0

pδ,inu ˝ fα dαq,

where the second term above goes to 0 in probability as δ Ñ 0 by the Dirichlet boundary
condition assumption. Moreover, the function 1

2π

ş2π

0
pδ,inu ˝ fα dα is radially symmetric

with total mass tending to
?
u as δ Ñ 0. By harmonicity, it then follows that

lim
δÓ0
pϕ

1?
u
D

D ,
1

2π

ż 2π

0

pδ,inu ˝ fα dαq “
?
uϕ

1?
u
D

D p0q “
?
uhD1?

u

p0q

a.s., as required.

We emphasise that the process in Lemma 5.6 above is not Brownian motion, but
rather a time change of it. The corollary is the following:

Corollary 5.7. The process phDε p0qqεPp0,1s possesses a continuous modification.

Proposition 5.8. The process phDe´tp0qqtě0 has a modification whose law is that of
pσBtqtě0, where σ ě 0 and B is a standard one-dimensional Brownian motion.

Proof. By the assumptions of conformal invariance and the domain Markov property,
this process has independent increments, and it is also centred. By Corollary 5.7, it
possesses a continuous modification. Since any continuous centred Lévy process must
be a multiple of Brownian motion, this implies the result.

Corollary 5.9. For any D and z P D, let FDz be the conformal map from D Ñ D with
z ÞÑ 0 and pFDz q

1pzq P R`. Then the process

ĥDe´tpzq :“ ϕ
pFDz q

´1
pB0pe

´t
qq

D pzq (5.10)

defined for t ě 0, has a modification whose law is that of σ times a Brownian motion.

Proof. This follows from conformal invariance, assumptions 1.1(iii).

6 Conclusion of the proof

Proof of Proposition 1.3 (1). Without loss of generality we assume that D “ D. For z P D
and ε “ εpzq ă dpz, BDq “ dpz, BDq. Let

rzpεq :“ suptr P r0, 1s : pFDz q
´1pB0prqq Ă Bzpεqu. (6.1)

Also set hDε pzq “ ϕ
Bzpεq
D pzq and define ĥDrzpεqpzq via (5.10) and (6.1).

For δ ą 0, define ηδ to be a smooth radially symmetric function that approximates
uniform measure on the unit circle as δ Ñ 0. For concreteness, ηδ can be taken to be a
smooth radially symmetric function equal to 1 on the annulus tz : 1´ δ ď |z| ď 1´ δ{2u
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that is 0 outside a δ{10 neighbourhood of this annulus. We assume that each ηδ is
normalised to have total integral one. For ε P p0, 1q, further define

ηεδp¨q :“
1

ε2
ηδp
¨

ε
q

Take φ P C8c pDq. Recall that for Proposition 1.3(1) we need to show that phD, φq has
finite fourth moment. The idea is to show that

ż

D

ĥDrεpzqpzqφpzq dz Ñ phD, φq in probability as εÑ 0 (6.2)

and that
ˆ
ż

D

φpzqĥDrεpzqpzq dz

˙4

is uniformly integrable in ε (6.3)

This means that p
ş

D
φpzqĥDrεpzqpzqq

4 converges in L1 to pφ, hDq4, and in particular, that

pφ, hDq4 is integrable.

Proof of (6.2). We bound, for δ ą 0:

ˇ

ˇ

ˇ

ˇ

ż

ĥDrεpzqpzqφpzq dz ´ ph
D, φq

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ş

pĥDrεpzqpzq ´ h
D
ε pzqqφpzq dz

ˇ

ˇ

ˇ

`
ˇ

ˇ

ş

hDε pzqφpzq dz ´ ph
D, φ ˚ ηεδq

ˇ

ˇ (6.4)

`
ˇ

ˇphD, φ ˚ ηεδq ´ ph
D, φq

ˇ

ˇ (6.5)

We start by showing that the first term in (6.4) goes to 0 in probability as εÑ 0. For
this, observe that the conformal map FDz can be defined by FDz pwq “ pz ´ wq{p1 ´ z̄wq.
Hence for δ ă dpz, BDq we have that

|FDz pwq| ď
δ

1´ |z|2 ` δ
ñ |w ´ z| ď

δp1´ |z|2 ` |z||z ´ w|q

1´ |z|2 ` δ
ď δ

and so

rzpδq ě
δ

1´ |z|2 ` δ
.

On the other hand,

|y| “
|pFDz q

´1pyq ´ z|

|1´ z̄pFDz q
´1pyq|

ě
δ

1´ |z|2 ` δ
ñ |pFDz q

´1pyq ´ z| ě δ
1´ |z|2 ´ δ

1´ |z|2 ` δ
,

which therefore implies that pFDz q
´1pB0przpδqqq contains the ball of radius δp1´ 2δp1´

|z|2 ` δq´1q around z.

Thus, by conformal invariance and Lemma 2.4,

hDδ pzq ´ ĥ
D
rzpδq

pzq
pdq
“ ϕ

Dzδ
D p0q,

where for some fpδq tending to 0 as δ Ñ 0 and every z in the support of φ, Dz
δ Ă D

contains the ball of radius 1´ fpδq around 0. By (2.2), it then follows that

Er|hDδ pzq ´ h̃
D
rzpδq

pzq|s ď Er|ϕ
B0p1´fpδqq
D p0q|s “ Er|hDp1´fpδqqp0q|s,

and this tends to 0 as δ Ñ 0 by Proposition 5.8. By boundedness of φ, this proves that
the first term of (6.4) goes to 0 in probability as εÑ 0.

EJP 26 (2021), paper 44.
Page 23/25

https://www.imstat.org/ejp

https://doi.org/10.1214/20-EJP566
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


p1` εq moments suffice to characterise the GFF

We also have that the third term of (6.4) goes to 0 in probability as ε Ñ 0, for any
fixed δ. Indeed, φ ˚ ηεδ Ñ φ in C8c pDq as ε Ñ 0 because ηδ is a smooth approximation
to the identity for every δ: see, eg. [8, §5.3]. Thus by assumptions 1.1(i) (stochastic
continuity), phD, φ ˚ ηεδq Ñ phD, φq in probability as εÑ 0.

So to show (6.2) we are left to prove that the middle term of (6.4) goes to 0 in
probability as δ Ñ 0, uniformly in ε. That is, for any c ą 0 the probability that this
term is bigger than c goes to 0 as δ Ñ 0, uniformly in ε. To do this, we note that
φ ˚ ηεδpzq “

ş

φpwqηεδpw ´ zq dw and so by linearity of hD,

phD, φ ˚ ηεδq “

ż

w

phD, ηεδpw ´ ¨qqφpwq dw.

Moreover, by the Dirichlet boundary condition assumption and scale invariance, for
every w in the support of φ

phD, ηεδpw ´ ¨qq ´ h
D
δ pwq Ñ 0

in probability and in L1 as δ Ñ 0, uniformly in ε. Combined with the boundedness of φ,
this completes the proof.

Proof of (6.3). For this, we will show that
ş

D
φpzqĥDrεpzqpzq dz is uniformly bounded in

L6.

For pz1, ¨ ¨ ¨ , z6q in Supportpφq6, write R “ Rpz1, ¨ ¨ ¨ , z6q for the largest r such that
the balls Bziprq are all disjoint. Then for ε ă R, by the domain Markov property and
Lemma 2.4, we have that

Er

6
ź

i“1

ĥDrεpziqpziqs “ Er
6
ź

i“1

ĥDRpziqs.

By repeated application of Hölder’s inequality, the term on the right hand side above
is less than

ś6
i“1pErph

D
Rpziqq

6sq1{6, and since each hDRpziq is Gaussian with variance less
than some universal constant times logp1{Rq, this is less than a constant times | logpRq|3.
When R ă ε, we can similarly bound Er

ś6
i“1 ĥ

D
rεpziq

pziqs ď
ś6
i“1pErpĥ

D
rεpziq

pziqq
6sq1{6 ď

| logpεq|3 ď | logpRq|3. Thus by expansion we obtain that

Er

ˆ
ż

ĥDrεpzqpzqφpzq dz

˙6

s “ Cpφq

¨

˝1`

ĳ

D6

| logpRpz1, ¨ ¨ ¨ , z6qq|
3 dz

˛

‚ă 8

where Cpφq is a finite constant depending on φ but not ε. Since this bound is uniform in
ε, the proof is complete.

Proof of Proposition 1.3 (2)&(3). Suppose that φn is a sequence of functions in C8c pDq

converging to φ P C8c pDq. Then by the previous part of this proof,

ErphD, φnq
4s “ lim

εÑ0
Erp

ż

D

φnpzqĥ
D
rεpzq

pzq dzq4s

for each n, and this expectation is easily seen to be uniformly bounded in n (using
Hölder’s inequality and the fact that we know the marginal distributions of the ĥD’s;
as above). By the stochastic continuity assumption, we have that phD, φnq Ñ phD, φq in
probability as nÑ8. Putting this together with the uniform boundedness in L4, we can
deduce in particular that phD, φnq converges in L2 to phD, φq as nÑ8. This implies the
continuity of KD

2 by the Cauchy–Schwarz inequality.
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The same arguments can be used to show that phD, φnq is uniformly bounded in L4

when φn is as in assumptions 1.1(ii). This implies that the convergence of this assumption
also holds in L2.
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