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Abstract

Plenty of crucial information about our universe is encoded in the cosmic large-scale structure (LSS). However,
extractions of this information are usually hindered by the nonlinearities of the LSS, which can be largely
alleviated by various techniques known as reconstruction. In realistic applications, the efficiencies of these methods
are always degraded by many limiting factors, a quite important one being the shot noise induced by the finite
number density of biased matter tracers (i.e., luminous galaxies or dark matter halos) in observations. In this work,
we explore the gains of biased tracer reconstruction achieved from halo mass information, which can suppress the
shot-noise component and dramatically improves the cross-correlation between tracer field and dark matter. To this
end, we first closely study the clustering biases and the stochasticity properties of halo fields with various number
densities under different weighting schemes, i.e., the uniform, mass, and optimal weightings. Then, we apply the
biased tracer reconstruction method to these different weighted halo fields and investigate how linear bias and
observational mass scatter affect the reconstruction performance. Our results demonstrate that halo masses are
critical information for significantly improving the performance of biased tracer reconstruction, indicating great
application potential for substantially promoting the precision of cosmological measurements (especially for
baryon acoustic oscillations) in ambitious ongoing and future galaxy surveys.

Unified Astronomy Thesaurus concepts: Cosmology (343); Large-scale structure of the universe (902); Baryon
acoustic oscillations (138)

1. Introduction

By measuring galaxy distribution in the universe, ambitious
ongoing and future galaxy surveys (e.g., 4MOST, de Jong et al.
2016; PFS, Takada et al. 2014; DESI, Levi et al. 2013; LSST,
LSST Science Collaboration et al. 2009; WFIRST, Doré et al.
2018; and Euclid, Laureijs et al. 2011, etc.) will map the
cosmic large-scale structure (LSS) with high precision, which
can further improve the accuracy of cosmological parameter
inferences and greatly deepen the understanding of our
universe. However, the LSS has nonlinearly evolved to become
highly non-Gaussian in the late universe, which leads to the
observed signatures deviating from the theoretical predictions
by linear theory (i.e., nonlinear effects), makes statistical
information leak into higher-order statistics, and especially
blurs some critical information encoded in the LSS of the early
universe (e.g., baryon acoustic oscillations (BAOs), primordial
non-Gaussianities, etc.). These defects can induce undesired
systematics in the analysis of observables and thus limit the
constraining power of cosmic probes on cosmological para-
meters and various promising candidates of new physics
(e.g., dark energy models, modified gravity theories, inflation
models, etc.).

To reduce nonlinearities in two-point statistics, Gaussianization
methods (e.g., Weinberg 1992; Neyrinck et al. 2009) to some
degree can increase information content and alleviate mode
coupling (Neyrinck et al. 2011) by Gaussianizing the one-point
probability function of the density field. Actually, a large part of
the nonlinearities are caused by large-scale bulk flows (Eisenstein
et al. 2007b), which can move galaxies on average by
approximately 10 h−1 Mpc from their initial locations (Park &
Kim 2010; Burden et al. 2014). Thus, these local transformation
methods cannot genuinely convert the matter distribution back to
its earlier stage with basically no improvement in the correlation

between the final nonlinear field and its initial condition (Harnois-
Déraps et al. 2013b). Several different strategies have been
proposed to tackle this problem, including forward modeling (e.g.,
Jasche & Wandelt 2013; Kitaura 2013; Wang et al. 2013; Seljak
et al. 2017; Feng et al. 2018; Modi et al. 2018, 2019; Jasche &
Lavaux 2019, etc.), backward reconstruction (hereafter recon-
struction, e.g., Frisch et al. 2002; Brenier et al. 2003; Eisenstein
et al. 2007a; Tassev & Zaldarriaga 2012; Burden et al. 2015;
Schmittfull et al. 2015, 2017; Obuljen et al. 2017; Zhu et al. 2017;
Hada & Eisenstein 2018; Shi et al. 2018; Sarpa et al. 2019, etc.),
and machine learning (e.g., Mao et al. 2020), which can reproduce
the initial density field at different levels.
In particular, reconstruction techniques can directly reverse bulk

motions by estimating the displacement field based on the
observed data and have been commonly applied in BAO
measurements and also have inspired many other cosmological
applications (e.g., redshift space distortions (RSDs), Zhu et al.
2018; Wang et al. 2020a; velocity reconstruction, Yu & Zhu 2019,
etc.). Based on the Zel’dovich approximation, Eisenstein et al.
(2007a) proposed a standard reconstruction algorithm to improve
BAO measurement accuracy. This technique has been tested with
simulated data (e.g., Seo et al. 2008, 2010; Mehta et al. 2011;
Burden et al. 2014; Achitouv & Blake 2015) and been theoretically
studied (e.g., Noh et al. 2009; Padmanabhan et al. 2009;
White 2015; Seo et al. 2016; Hikage et al. 2017, 2020; Chen
et al. 2019), and has also been extensively applied to observation
data analysis (e.g., Padmanabhan et al. 2012; Xu et al. 2012, 2013;
Anderson et al. 2014; Kazin et al. 2014; Ross et al. 2015; Beutler
et al. 2016, 2017; Hinton et al. 2017). In recent years, several
improved new reconstruction algorithms (e.g., the isobaric
reconstruction technique, Zhu et al. 2017; the iterative reconstruc-
tion technique, Schmittfull et al. 2017; Hada & Eisenstein 2018;
the multigrid relaxation method, Shi et al. 2018; the extended
fast action minimization method, Sarpa et al. 2019; and the fast
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semidiscrete optimal transport algorithm, Lévy et al. 2020) were
proposed and tested not only on matter field (e.g., Pan et al. 2017;
Wang et al. 2017) but also on more realistic halo/galaxy fields
(e.g., Yu et al. 2017b; Birkin et al. 2019; Hada & Eisenstein 2019;
Wang & Pen 2019; Sarpa et al. 2021), showing that they can
substantially bring back the initial information and recover the
linear BAO signal.

The observed halos/galaxies are discrete and biased tracers
of the underlying dark matter field. When applied to a biased
tracer field, these reconstruction techniques will be largely
limited by additional complications (e.g., halo/galaxy bias and
shot noise, etc.), which can physically or numerically affect the
reconstruction process, leading to a worse estimation of the
displacement field compared to the case of the matter field, and
then consequently induce larger errors in the recovery of the
initial matter field and degrade their powers in cosmological
applications especially for the reconstruction of BAO wiggles
(Yu et al. 2017b; Ding et al. 2018; Birkin et al. 2019; Wang &
Pen 2019). Thus, in observations, these practical issues should
be addressed or taken into account to further improve the
reconstruction performance.

Recently, the effects of linear bias on BAO isobaric
reconstruction were theoretically investigated and modeled
(Wang & Pen 2019). Also, Birkin et al. (2019) developed a
biased tracer reconstruction technique by extending the method
proposed in Shi et al. (2018) to include a bias scheme up to the
quadratic order. Based on mass conservation, this method
transforms the reconstruction problem into solving a Monge–
Ampère-type equation, which can be numerically solved by the
multigrid relaxation method. It was demonstrated that this
biased tracer reconstruction method can help further substan-
tially improve the recovery of initial density and linear BAO
wiggles from the biased tracer field, by performing debiasing in
the process of reconstruction.

With major progress in biased tracer reconstruction, the
difficulties caused by halo/galaxy bias have been alleviated
now, while the shot noise (due to the limited number density of
tracers) is still a significant limiting factor in realistic scenarios. To
mitigate this critical problem, additional information should in
principle be taken into account in constructing the tracer field. The
most natural idea could be the considerations of halo masses or
galaxy luminosities (or stellar masses), which can be directly
measured or indirectly inferred in observations (e.g., Vale &
Ostriker 2004; Yang et al. 2005; Zheng et al. 2005; Xu et al. 2018;
Wechsler & Tinker 2018 and references therein). Interestingly,
Seljak et al. (2009) found that weighting halos by their masses can
indeed suppress the halo field’s shot-noise component and can
tighten the correlation between the halo field and underlying dark
matter (i.e., reducing the stochasticity), dramatically improving
upon the commonly used uniform weighting scheme (i.e.,
weighting the halos/galaxies uniformly). Afterward, Hamaus
et al. (2010) developed an optimal mass-dependent halo-weighting
technique. Compared to the previous mass weighting, this optimal
weighting scheme can further suppress shot noise and minimize
the stochasticity, which was also confirmed by Cai et al. (2011) by
using a different methodology. Then, these findings triggered
several specific applications (e.g., constraints on primordial non-
Gaussianity, Hamaus et al. 2011, and growth rate of structure
formation, Hamaus et al. 2012, etc.) and many other cosmological
investigations (e.g., Baldauf et al. 2013; Jennings et al. 2015;
Smith & Marian 2016; Ginzburg et al. 2017; Schmittfull et al.
2019, etc.).

Motivated by such progress, in this work we aim to extend the
study of Birkin et al. (2019) with the goal of further improving the
bias tracer reconstruction performance by including information
on halo masses. The biased tracer reconstruction method adopted
in this work uses mass conservation to relate the density fields in
Lagrangian and Eulerian spaces. Naturally, we expect great
improvement in the recovery of the initial matter field when the
method is performed on a halo field with more information on the
underlying matter distribution, which can be obtained from the
information on halo masses. To corroborate this idea, in our work,
we systematically perform careful analyses of various halo fields
under different halo-weighting schemes, i.e., the uniform, mass,
and optimal weightings (the latter two weightings are both related
to halo masses). Our results suggest that halo masses undoubtedly
are important information for highly improving the performance
of biased tracer reconstruction, thus demonstrating enormous
application potential for significantly improving the power of
extracting cosmological information from ambitious current and
future galaxy surveys.
This paper is organized as follows. We review briefly the

biased tracer reconstruction method in Section 2. In Section 3,
we introduce in detail the data used in this work. Section 4
formulates the definitions of halo-clustering bias and halo
stochasticity. The results of our investigations are presented in
Section 5. Finally, in Section 6, we summarize our work, give
discussions, and draw our conclusion.

2. The Biased Tracer Reconstruction Method

With the assumptions of mass conservation and uniform
initial matter distribution,3

( ) ( ) ¯ ( )r r r= »x x q q qd d d , 13 3 3

there is a unique mapping from the initial Lagrangian
coordinates q to the final Eulerian coordinates x before shell
crossing of structure formation (see Frisch et al. 2002; Brenier
et al. 2003 and references therein),
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where ( )¶
¶

det q

x

i

j is the Jacobian determinant of mapping from q

to x, ( )d xm is the dark matter overdensity (hereafter, we also
refer to it as the dark matter field), and the displacement
potential Θ is defined by q=∇xΘ(x). Actually, with the
nonlinear evolution of the LSS, shell crossing is inevitable on
small scales in the late universe, which makes the mapping no
longer unique and thus leads to meaningless reconstruction
results below the shell-crossing scale. Nevertheless, the
assumption of no shell crossing in the reconstruction process
is indeed valid on relatively larger scales, which guarantees that

3 Based on the same basic assumptions, the reconstruction problem can also
be treated as an optimized mass transportation problem which can be solved by
using the Monge–Ampère–Kantorovich (MAK) method (see Frisch et al. 2002;
Mohayaee et al. 2003; Brenier et al. 2003; Mohayaee et al. 2006; Mohayaee &
Sobolevskiĭ 2008). For a sample with N points, the fully discrete combinatorial
algorithms of MAK reconstruction have a complexity of N3, which thus
hampers their applications to big data samples in LSS study. Very recently,
Lévy et al. (2020) reported a new semidiscrete algorithm with an empirical
complexity of N Nlog , which makes it significantly more efficient than
previous combinatorial ones.
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the algorithm can work well to recover the large-scale initial
information (see Shi et al. 2018; Birkin et al. 2019). This is
particularly useful for its cosmological applications (e.g., BAO
and primordial non-Gaussianity measurements, etc.), because
the large-scale information is more cosmologically relevant.

By expanding [ ( )]Q xdet i
j , Equation (2) can be rewritten

as

( )

( ) ( )d

 Q - Q Q Q

+ Q Q Q = + x

1
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i
j

j
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i
j

j
k
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2 3 2

where the Einstein summation convention is used. Equation (3)
is a nonlinear elliptical partial differential equation (PDE),
which can be numerically solved. For the convenience of
numerical implementation, ∇i∇jΘ should be split into diagonal
and traceless parts by defining barred derivatives (see Shi et al.
2018 and Birkin et al. 2019 for more discussions),
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where d j
i is the Kronecker delta. Thus, Equation (3) is further

rewritten as
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which is called the reconstruction equation.
However, the dark matter field δm(x) is not actually

observable. In galaxy surveys, we measure the biased tracer
field, i.e., ( ) ( ) ¯d º -x xn n 1tracer tracer tracer , where ntracer(x) is
the tracer number density and n̄tracer is its mean value. The
connection between them can be described by a series of bias
parameters. Here, we only consider the bias parameters up to
second order, and their relation is expressed as

G( ) ( ) ( ) ( )d d d g= + +x x xb
b

2
, 6m mtracer 1

2 2
2 2

where b1, b2, γ2 are the linear, quadratic, and nonlocal bias
parameters, respectively, and the nonlocal bias termG2 is related to
the velocity potential Φv (see Chan et al. 2012; Birkin et al. 2019
for more details). Replacing δm(x)with δtracer(x) in Equation (5), we
then obtain a more general version of the reconstruction equation,
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If b1= 1 and γ2= b2= 0, Equation (7) will be reduced to
Equation (5). From now on, we call Equation (7) the biased
tracer reconstruction equation.

Following the methodology formulated in Shi et al. (2018)
and Birkin et al. (2019), Equation (7) can be iteratively
solved for Θ(x) and ∇xΘ(x) on discrete mesh cells by using
the multigrid Gauss–Seidel technique. The algorithm is

implemented by modifying the code ECOSMOG (Li et al.
2012, 2013), which is based on the publicly available N-body
code RAMSES (Teyssier 2002). Then, the displacement field is
given by Ψ(q)= x− q, where q(x)=∇xΘ(x). Based on the
linear Lagrangian perturbation theory (LPT), the reconstructed
density field is finally obtained by the negative divergence of
the displacement field with respect to q:

· ( ) ( )d = - Y q , 8qr

which indicates that only the curl-less “E-mode” component of
( )Y q is used for initial information recovery (Yu et al. 2017a).

Here, the divergence is implemented using the publicly
available DTFE4 (Delaunay Tessellation Field Estimator) code
(Schaap & van de Weygaert 2000; Cautun & van de Weygaert
2011a), which is based on Delaunay tessellation.

3. Data

3.1. N-body Simulation and Halo Samples

In this work, we adopt a cosmological N-body simulation
realized using the publicly available code CUBEP3M (Harnois-
Déraps et al. 2013a). This simulation is initialized at redshift
z= 127 and evolves 20483 cold dark matter (CDM) particles
with a mass resolution of 2.15× 109h−1Me in a periodic cubic
box of width 600h−1 Mpc. Here, a Particle–Mesh process with
40963 grids is used for gravitational force calculation. To
increase the force resolution below the mesh scale, a Particle–
Particle algorithm is also involved.

CUBEP3M’s own on-the-fly spherical overdensity (SO) halo
finder is employed to identify CDM halos, the masses of which
are resolved down to 2.15× 1010h−1Me with a minimum of 10
CDM particles per halo. We intend to investigate the dependence
of reconstruction performances on different halo number densities
(i.e., different shot-noise levels). To this end, three halo samples
with number densities of 2.77× 10−2 (h−1Mpc)−3, 2.77× 10−3

(h−1Mpc)−3, and 2.77× 10−4 (h−1Mpc)−3 are constructed by
discarding halos with masses below the mass cutoffs of

 ´ -M h M2.15 10min
10 1 ,  ´ -M h M1.84 10min

12 1 , and
 ´ -M h M2.10 10min

13 1 , respectively. The number densities
of our halo samples are roughly comparable to those of targets of
various galaxy surveys listed in Table 1. These halo samples were
also used in Yu et al. (2017b), where the isobaric reconstruction
method was adopted for nonlinear halo reconstruction without
considering halo mass and bias, etc. Note that throughout this
paper, subhalos are excluded from the analyses.

3.2. Different Weighted Halo Fields

If one halo sample is divided into N mass bins and halos in
the ith bin are assigned the same weight w(Mi), the weighted
halo field δw(x) in configuration space can be written as

( ) ( ) ( )
( )

( )d
d

=
S

S
x

xN w M

N w M
, 9w

i i i i

i i i

where Ni is the number of halos in the ith bin and the uniformly
weighted halo overdensity δi(x) of the ith bin is defined as

( ) ( )
¯

( )d º -x
xn

n
1, 10i

i

i

4 https://www.astro.rug.nl/~voronoi/DTFE/dtfe.html
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Table 1
Various Halo Samples Used in the Reconstruction Performance Tests

Redshift Mass Range [h−1Me] Number Density [( ) ]- -h Mpc1 3 Linear Bias Parameter The Galaxy Survey

z = 0 Mh ä [2.15 × 1010, 2.11 × 1015] ¯ = ´ -n 2.77 10h
2 bU = 0.68, bM = 1.52, bO = 1.10 LSST (LSST Science Collaboration et al. 2009); DESI BGS (DESI Collaboration et al. 2016)

z = 0 Mh ä [1.84 × 1012, 2.11 × 1015] ¯ = ´ -n 2.77 10h
3 bU = 0.94, bM = 1.75, bO = 1.35 DESI ELG; SPHEREx (Doré et al. 2014)

z = 0 Mh ä [2.10 × 1013, 2.11 × 1015] ¯ = ´ -n 2.77 10h
4 bU = 1.55, bM = 2.30, bO = 1.95 PFS (Takada et al. 2014); BOSS CMASS (Dawson et al. 2013); Euclid (Laureijs et al. 2011)

Note. Note that our analyses are based on the halo samples at z = 0, which is inconsistent with the redshifts of targets of these surveys. Because the primary goal of this work is to investigate the gains of bias tracer
reconstruction achieved from halo mass information, this inconsistency will not affect our conclusions.
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where ni(x) and n̄i are the local and mean halo number density
of the ith bin, respectively. We denote by w(Mi)= 1, Mi, b(Mi),
and Wopt(Mi) the uniform, mass, bias,5 and optimal weighting
schemes, respectively, for constructing the weighted halo field
δw(x), where Mi is the average mass of halos in the ith bin and
“optimal” can refer to the weighting scheme that minimizes the
stochasticity of δw(x) with respect to the underlying dark matter
(Hamaus et al. 2010; Cai et al. 2011). Hamaus et al. (2010)
states that the “optimal” weighting corresponds to a nontrivial
eigenvector of the stochasticity matrix,6 which yields the
lowest eigenvalue. The eigenvector can be well fitted by a
simple function with the form of w(M)=M+M0, where M0 is
a free parameter.

Actually, except for the uniform weighting, increasing the
number of halo bins can further suppress the halo stochasticity
(Hamaus et al. 2010). Thus, in practical applications, each halo
of mass M should be assigned a weight w(M) according to a
smooth weighting function, corresponding to the number of
bins approaching infinity (i.e., N→+∞ ). In our following
performance tests, the smooth uniform, mass, and optimal
weighting functions are adopted with the forms of w(M)= 1,
M, M+M0, respectively. Note that the last two weightings are
both dependent on the halo mass information and thus are also
collectively called mass-dependent weightings in this paper. In
Hamaus et al. (2010), the M0 was optimized iteratively by
minimizing the δw(x)ʼs shot-noise level, and they found the best
value of M0 depends on the cutoff mass Mmin and roughly
satisfies the relation of M M3 min within their tested domain.

However, the simulation used in this work has a higher mass
resolution and resolves halos with lower masses. The halo-finder
algorithm applied here (the SO method) is also different from
theirs (the friends-of-friends method). Considering these differ-
ences, the empirical relation M M30 min may not hold in our
cases, in particular for our halo sample with the highest number
density (i.e., 2.77× 10−2 (h−1Mpc)−3). Moreover, in our study,
we prefer to seek out the optimal halo weighting for maximizing
the performance of bias tracer reconstruction, which not only
depends on the δw(x) shot-noise level but also on the bias of δw(x)
with respect to dark matter. Given all that, in our work, the optimal
M0 is determined by maximizing the reconstruction performance
(rather than minimizing the shot-noise level of δw(x); e.g., Hamaus
et al. 2010). For the three halo samples with number densities in
descending order, we find the optimal M0 are approximately

 ´ -M h M70 1.5 10min
12 1 ,  ´ -M h M6 1.1 10min

13 1 , and
 ´ -M h M3 6.3 10min

13 1 , respectively.

3.3. The Mass Assignment Method

Yu et al. (2017b) opted for the DTFE mass assignment
(Cautun & van de Weygaert 2011b) to generate halo fields to

avoid the instability of the isobaric reconstruction algorithm
due to the sparseness of the halo samples. However, the DTFE
scheme can induce excessive smoothing of the low-density
regions of the halo field through a special window function of
Delaunay tessellation, which inevitably erases some spatial
distribution information of halos, thus weakening the recon-
struction performance (Yu et al. 2017b; Birkin et al. 2019).
This halo sparseness issue can be tackled well by the biased
tracer reconstruction technique as demonstrated in Birkin et al.
(2019). They found that the traditional cloud-in-cell (CIC) and
triangular-shaped-cloud mass assignments can achieve similar
reconstruction performance and present great improvements
over the DTFE method. Given that the CIC method is more
commonly used, in our work, the matter/halo fields are
constructed via CIC interpolation of particles/halos onto
cubical meshes with 5123 grids (see Figure 1), where the grid
cell size (∼1.2h−1Mpc) is sufficient for the convergence of the
biased tracer reconstruction performance (Birkin et al. 2019).

4. Bias and Stochasticity

Forming in density peak regions, halos are merely biased and
stochastic tracers of the underlying dark matter field. In Fourier
space, the relation between halo overdensity δh(k) and dark
matter overdensity δm(k) can be expressed as

( ) ( ) ( ) ( ) ( )d d e= +k k kb k , 11h m

where the bias is defined as

( ) ( ) ( )
∣ ( )∣

( )d d
d

=
á ñ
á ñ

k k

k
b k , 12h m

m
2

*

and the stochastic term ε(k) is assumed to be uncorrelated with
the dark matter field (i.e., ( ) ( )e dá ñ =k k 0m * ). Note that
b(k)δm(k) is completely correlated with the dark matter field.
Hence, the measured halo spectrum ˆ ( )P khh can be decomposed
into two terms:

ˆ ( ) ( ) ( ) ( )s= +P k P k k 13hh hh
2

with

( ) ( ) ( ) ( )=P k b k P k , 14hh mm
2

where σ2(k)= 〈|ε(k)|2〉 is the stochastic noise and Pmm(k)=
〈|δm(k)|

2〉 is the dark matter spectrum. This decomposition
makes the stochastic noise σ2(k) contain all sources of
stochasticity between halos and dark matter (Seljak et al.
2009). For a uniformly weighted halo field, the stochastic noise
σ2(k) is usually modeled as the Poisson shot noise, which is
given by the inverse of the halo number density n̄1 h. If each
halo is weighted by wi, the expected shot noise is generalized to
be

( )
( )

( )s =
S
S

=

=

k
V w

w
, 15exp

i
N

i

i
N

i

2 1
2

1
2

where V is the volume of the simulation box and N is the
number of halos.
Halo stochasticity can lead to a lack of coherence between

the halo field and dark matter field, and thus is usually

5 Various previous works (e.g., Seljak et al. 2009; Hamaus et al. 2010; Cai
et al. 2011) found that bias weighting only can lead to marginal or even
basically no improvements relative to the uniform weighting for suppressing
halo stochasticity, which is also confirmed in our check. This is because bias
weighting is close to uniform weighting, which makes the implementation of
local mass and momentum conservation inefficient for LSS evolution (Seljak
et al. 2009). Therefore, investigations on the gains of bias tracer reconstruction
achieved from the bias weighting scheme are omitted in this paper.
6 In Hamaus et al. (2010), multiple mass bins with an equal number
of halos are used for the derivation. The stochasticity matrix is defined as

( ( ) ( ) ( ))( ( ) ( ) ( ))d d d dº á - - ñk k k kC b k b kij i i m j j m * in Fourier space, where the

bias of the ith halo bin is determined by ( )
( ) ( )
∣ ( )∣

d d
d

=
á ñ
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b ki
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described by the cross-correlation coefficient:

⎜ ⎟
⎛
⎝

⎞
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( ) ( )
ˆ ( ) ( )

( )
( ) ( )

( )s
º = +

-

r k
P k

P k P k

k

b k P k
1 , 16hm

hm

hh mm mm

2

2

1 2

where phm(k) is the cross-power spectrum of the two fields.
Here, we utilized Equations (13) and (14) to derive the right-
hand side of Equation (16), which explicitly indicates that the
existence of stochastic noise σ2(k) will make rhm(k) deviate
from unity, and the extent of the deviation also depends on the
bias b(k). If there is no stochasticity (i.e., rhm(k)= 1), it means
that the spatial distribution of dark matter can be derived from
that of halos once the bias b(k) is known (Bonoli & Pen 2009).
In particular, Equation (16) can be further rewritten as
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2

which is called the inverse signal-to-noise ratio (hereafter N/S
ratio) of the halo spectrum and is also used to describe the halo
stochasticity7 (see Hamaus et al. 2010).

5. Results

5.1. The Halo-clustering Bias

The halo-clustering bias is scale dependent, especially on
small scales. A significant scale dependence of the bias can be
treated as a sign of non-negligible deviations from zero for the
higher-order bias parameters in Equation (6). Nevertheless, on
large scales (k 0.1hMpc−1), it is expected to be a constant,
which corresponds to the linear bias parameter in Equation (6).

Figure 1. The two-dimensional slices of the dark matter field (top-left) and different weighted halo fields with the halo number density of ( )´ - - -h2.77 10 Mpc2 1 3

before reconstruction, at z = 0. These fields are constructed by the CIC method. Each slice shows the same ( )´ -h600 600 Mpc1 2 region with a 5.86 h−1Mpc thickness
of the simulation box.

7 Other statistical descriptions of halo stochasticity also can be found in the
literature, e.g., ( ) ( ( ))º -S k r k2 1 hm (Seljak & Warren 2004; Bonoli &

Pen 2009) and ( ) ( )º -E k r k1 hm
2 (Cai et al. 2011). Nevertheless, they all

depend only on the cross-correlation coefficient between halos and dark matter,
including Equation (17).
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This constant offset in the large-scale clustering amplitude
relative to dark matter can be corrected to reconstruct the dark
matter power spectrum (Sheth & Tormen 1999), while due to
the scale dependence of the bias and other uncertainties, the
small-scale galaxy/halo-clustering information is usually
discarded. Moreover, the more massive halos should be more
biased, because they have relevant higher clustering.

In Figure 2, we plot the biases of the different weighted halo
fields by using Equation (12). For the uniform weighting case,
we see that with the increase of halo number density, the bias
on small scales (i.e., k 0.1hMpc−1) becomes more scale
dependent. We checked that this is a combined result of various
bias behaviors of halo populations with different masses8,
which is also applicable to other weighting cases.

In our study, we take the average of the bias on scales
0.025h Mpc−1 k 0.099hMpc−1 (corresponding to the
shaded regions in Figure 2) to serve as the linear bias
parameter (see Table 1). It is worth noting that for the two halo
samples with higher halo number densities, the optimal
weighting makes their biases more scale independent relative
to the other two weighting schemes. This may provide a more

reliable way to determine dark matter spectrum directly from
the optimally weighted halo spectrum by only using the linear
bias model, which thus helps to extract precise information
from LSS surveys (e.g., the primordial non-Gaussianity,
signatures of massive neutrinos, etc.) and to minimize the
systematic shifts in the BAO position relative to the dark matter
(see Angulo et al. 2008; Smith et al. 2008; Zhang 2008). In
addition, for this study, bias being more scale independent also
helps to adequately maximize the performance of bias tracer
reconstruction by only considering the linear bias parameter of
Equation (6) (i.e., setting higher-order bias parameters to zero).

5.2. The Stochastic Noises of Different Weighted Halo Fields

In Figure 3, we show the expected shot noises of different
weighted halo fields (i.e., the solid lines), obtained by using
Equation (15). And, if halos are randomly distributed in space,
for any weighting scheme, the corresponding bias should be
zero (as the corresponding random halo field has no correlation
with the dark matter field, i.e., ( ) ( )d dá ñ =k k 0h m * ; see
Equation (12)), thus, the corresponding halo power spectrum
is completely contributed by the stochastic noise (see
Equations (13) and (14)). Here, we call this noise the simulated
shot noise, which should in principle be equal to its Poisson
expectation. Indeed, as shown in Figure 3, the simulated shot
noises (i.e., the asterisk points) are well matched with their
expectations, which could serve as a nicety test of our
numerical implementations.

Figure 2. The clustering biases of different weighted halo fields. From left to right, the three panels correspond to different halo samples with number densities
of 2.77× 10−2, 2.77× 10−3, and ( )´ - - -h2.77 10 Mpc4 1 3, respectively (the same below). The yellow, blue, and red curves correspond to the uniform, mass, and optimal
weighting schemes (the same below). The shaded regions indicate the scales of 0.025 h Mpc−1  k 0.099 hMpc−1 for calculating the linear bias parameters.

Figure 3. Various shot noises under different weighting schemes. The asterisks, dashed lines, and solid lines correspond to the simulated, measured, and expected shot
noises, respectively.

8 To check this, we also measured the biases of different halo mass bins.
Specifically, we split our largest sample into 10 mass bins with equal
logarithmic mass intervals, given that halo abundances drop sharply with the
increase in mass. Indeed, we find that the biases of different halo populations
have different trends on small scales, i.e., it tends to rise for high-mass halos
and tends to fall for low-mass halos.
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Actually, due to halo exclusion9 and clustering, which
violate the Poisson assumption of placing point particles
randomly in space, the halo stochastic noise turns out to be
non-Poissonian (see Baldauf et al. 2013; Ginzburg et al. 2017;
Paech et al. 2017; and references therein). Here, we also call
the halo stochastic noise as the measured shot noise, which is
obtained by using Equation (13). The halo exclusion and
nonlinear clustering can lead to the measured shot noise being
sub- and super-Poissonian, respectively. And, the amplitudes of
these deviations from the Poisson expectation also depend on
the bias parameters and mass ranges (Baldauf et al. 2013).
Specifically, with larger exclusion scales and higher linear bias
parameter, the high-mass halos are most affected by the
exclusion effect, while the nonlinear clustering effect is most
important for low-mass halos, where the value of the second-
order bias parameter is nonzero and the exclusion effect is
small (see Baldauf et al. 2013; Paech et al. 2017 for more
detailed discussions). As shown in Figure 3, for the uniform
weighting case, the non-Poissonian behaviors of the measured
shot noises are actually caused by the two competing effects.

For the mass and optimal weighting cases, the amplitudes of
the measured shot noises are significantly below the Poissonian
predictions (see Figure 3), which have been demonstrated in
Seljak et al. (2009) and Hamaus et al. (2010). This phenomen-
ology indicates that mass-dependent weightings can bring some
extra information to considerably suppress the shot-noise
component. We argue that this information should originate from

the environment dependence of halos to meet the requirements of
local mass and momentum conservation (Seljak et al. 2009),
considering that the masses of halos have tight relations with the
halo local environments (e.g., the local halo number density
within some distance; Haas et al. 2012; Zhao et al. 2015). We can
erase this information by shuffling the masses and positions of
halos separately and randomly recombining them. After this
procedure, the measured shot noises of the shuffled halos therefore
have similar non-Poisson behaviors to the uniform weighting
case, where these noises are dubbed the shuffled shot noise in this
paper (see Appendix A).

5.3. The Correlation between Halos and Dark Matter

In Figure 4, we present the cross-correlation coefficients
between different weighted halo fields and dark matter field,
which describe the similarities with the dark matter field. In
addition, we also show the N/S ratios of different weighted
halo power spectra (see Equation (17)) in Figure 4, which helps
amplify the differences at large scales where the cross-
correlation coefficients are very close to unity. Benefiting from
suppression of shot noise and boosting of clustering bias (see
Figure 2 and Equation (16)), the mass and optimally weighted
halo fields have markedly stronger correlations with the dark
matter field (see Seljak et al. 2009; Hamaus et al. 2010), which
means that these weighted halo fields retain more information
of the dark matter distribution.
Generally, all above presented results suggest that mass-

dependent weightings could be useful to improve the precision
of cosmological parameter estimation and to reduce undesirable
systematics of BAO measurements by using biased tracers. In

Figure 4. Top: the cross-correlation coefficients between different weighted halo fields and dark matter field, rhm(k). Bottom: the N/S ratios of different weighted halo

power spectra, defined as
( )

( )

- r k

r k

1 hm

hm

2

2 (see Equation (17)). The N/S ratios can be used to amplify the differences at large scales where the rhm are very close to unity.

9 Halo exclusion refers to the fact that two halos cannot be too close to each
other arbitrarily, corresponding to the halo two-point correlation function ξhh(r)
approaching −1 at the halo separation r less than the average diameter of halos.
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particular, mass-dependent weightings could potentially lead to
dramatic improvements in the efficiency of the biased tracer
reconstruction, which we will investigate in the following sections.

5.4. Direct Reconstruction without Preprocessing Bias

To quantify the initial information successfully recovered by the
reconstruction algorithm (or called as reconstruction performance),
we calculate the cross-correlation coefficients between the
simulation’s initial condition and the different weighted halo fields
before and after reconstruction, i.e., ( ) ( )

( ) ( )
ºr kXI

P k

P k P k
XI

XX II
, where

“X” and “I” stand for the field pre- or post-reconstruction and the
initial condition respectively (see Figure 5). As reference, the
results for the dark matter field case are also shown. Compared to
the underlying dark matter, the discrete and biased tracers suffer
from various additional complications (e.g., the sparseness and bias
etc.), which will undoubtedly degrade the reconstruction perfor-
mance in practical applications. Therefore, in the following tests,
the cross-correlation coefficient between the reconstructed dark
matter field and the initial condition could serve as an upper bound
on the initial information, which can be recovered from a halo field.

We first investigate the consequences of direct reconstruction
without any preprocessing of clustering bias (i.e., setting b1= 1
and γ2= b2= 0 respectively), which can help us understand the
bias effects on the reconstruction performance. The results are
presented in Figure 5, where the upper and bottom panels
respectively show the power spectra and the cross-correlation
coefficients with the initial condition for different fields pre- and
post-reconstruction. Additionally, in the top panels, the power
spectrum of the initial condition is also plotted as a reference.

We see that the process of reconstruction mainly modifies the
power spectra on relatively small scales (i.e., k> 0.1hMpc−1) and
the power spectra pre- and post-reconstruction have similar shapes
on sufficiently large scales (also see Yu et al. 2017b). In general,
the reconstruction improves the correlation coefficients depending
on the considered halo number density (see Yu et al. 2017b; Birkin
et al. 2019). We find that the reconstruction performances for
different weighting schemes obey rUI(k)< rMI(k)< rOI(k) (“U,”
“M,” and “O” denote uniform, mass, and optimal weighting
respectively) on very large scales, while the relationship among
them becomes uncertain on relatively small scales, which should be
attributed to the wrong assumption of bias parameters (see Birkin
et al. 2019; Wang & Pen 2019). In particular, for the optimal
weighting, we show an excellent result for the halo sample with the
highest number density, as the corresponding bias is quite close to
unity and also very scale independent (see Figure 2 and Table 1).

5.5. Reconstruction Considering Linear Bias

The bias between tracers and underlying dark matter is an
important limiting factor for the efficiency of reconstruction.
Inappropriate treatment of bias in reconstruction will lead to
errors in the estimation of the displacement field and thus
significantly degrade the recovery of the initial matter
distribution (Wang & Pen 2019). Birkin et al. (2019) found
that the performance of biased tracer reconstruction is most
sensitive to the linear bias parameter and is only marginally
affected by higher-order bias parameters in their tests. The
main purpose of this work is to validate the improvements in
the performance of biased tracer reconstruction by considering
halo mass information. In view of the quasi-scale-independent

Figure 5. Top: the power spectra of different fields. The dashed lines and solid lines correspond to the fields before and after reconstruction, respectively. The green
curves are for the dark matter field (the same below). For reference, we also plot the power spectrum of the initial condition, which is presented by the dotted blue line.
Bottom: the cross-correlation coefficients with the initial condition for different fields pre- and post-reconstruction. The cross-correlation coefficient between the
reconstructed dark matter field and initial condition (solid green line) is used to serve as an upper bound of the performance of biased tracer reconstruction. Note that
here we perform the biased tracer reconstruction directly without preprocessing halo-clustering bias.
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features of the biases under mass-dependent weightings
(mostly for the scenarios of higher halo number densities, see
Figure 2), we will only consider b1 (i.e., setting γ2= b2= 0) in
the reconstruction procedure for our performance tests.

Before proceeding to test the performance quantitatively, we
first show a visual comparison of different fields after reconstruc-
tion. The two-dimensional slices of projected overdensities are
presented in Figure 6, where for the reconstructed halo fields we
only show the case of ¯ = ´ -n 2.77 10h

2 (h−1Mpc)−3 to quote
our results.10 We see that the reconstructed halo field under
uniform weighting seems to be somewhat noisy, while for the
other two mass-dependent weighting cases, the reconstructed
halo fields are relatively smoother, which could be treated as a
benefit brought by the information of halo masses. Visually, we
find that the reconstruction results for the dark matter and the
optimally weighted halos are quite similar (see Figure 6),
showing the great potential of optimal weighting to highly
improve the efficiency of biased tracer reconstruction.

The quantitative results are presented in Figure 7. We also plot
( ) ( ( ))º -S k r k2 1XI XI to amplify the differences at large

scales, where rXI(k) is very close to unity. We find that linear
debiasing can largely improve the performance for the mass and
optimal weighting cases, while it is a little complicated in the
uniform weighting case. Specifically, for the uniform weighting
case, the bias tends to be more scale dependent (i.e., the bias
changes more significantly with increase in k) on small scales
with the increase in halo number density (see the yellow curves
in Figure 2). For the scenarios with higher halo number
densities, this implies that a simple linear debiasing is
inadequate, and more sophisticated nonlinear debiasing schemes
are needed to fully maximize the performance. Therefore, for the
¯ = ´ -n 2.77 10h

2 and 2.77× 10−3 (h−1Mpc)−3 cases, the
rUI(k) drop more steeply with the increase of k on small scales,
compared to the direct reconstruction (see the solid yellow lines
in the bottom panels of Figure 5 and middle panels of Figure 7).
Nevertheless, under uniform weighting, linear debiasing

indeed boosts rUI(k) on relatively large scales (k< 0.3hMpc−1)

Figure 6. The two-dimensional slices of the dark matter field (top-left) and different weighted halo fields with the halo number density of ( )´ - - -h2.77 10 Mpc2 1 3

after reconstruction. Each slice shows the same region (with the same projection depth) as the corresponding slice in Figure 1. Note that the linear biases are corrected
in the halo cases.

10 Other halo number density cases can be found in Appendix B.
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for ¯ = ´ -n 2.77 10h
2 (h−1Mpc)−3, while for 2.77× 10−3

(h−1Mpc)−3, rUI(k) basically has no improvements on scales of
k< 0.2hMpc−1 after debiasing b1, which should be due to the
fact that b1 is close to unity (here b1= 0.94; see Figure 2 and
Table 1). And, for the massive halo sample with the lowest
number density, we find that linear debiasing is quite important
to improve the performance because the bias deviates from
unity and is also very scale independent (see Figure 2). These
results suggest the importance of linear debiasing in recon-
struction-related cosmological studies, where large-scale infor-
mation is more concerned. For example, the power spectrum
from a typical galaxy survey basically contains BAO signals
extending to the scale of k= 0.3∼ 0.4hMpc−1, signals on
scales smaller than which are not detectable due to the poor
signal-to-noise ratio, thus the recovery of information larger
than this scale is enough to restore the BAO signals.

On the whole, as expected, the performance indeed obeys
rUI(k)< rMI(k)< rOI(k) after linear debiasing in the procedure
of reconstruction, consistent with the conjecture in the former
sections. This due to fact that halo fields under the mass-dependent

weighting schemes reserve more information of dark matter
distribution and have lower shot noises. On the other hand, the
validity of this reconstruction algorithm is based on the assumption
of mass conservation in LSS evolution (see Equation (1)), and
mass-dependent weightings can be treated as suitable implementa-
tions of the idea to enforce the local mass and momentum
conservation, which reasonably improve the efficiency of the
algorithm. This conclusion should also apply to the isobaric
reconstruction (Zhu et al. 2017) and other improved algorithms
(Schmittfull et al. 2017; Hada & Eisenstein 2018; Lévy et al.
2020), which also use mass conservation to relate the density fields
in Lagrangian and Eulerian spaces. In particular, the optimal
weighting has much greater advantages to improve the reconstruc-
tion performance relative to the usually used uniform weighting
scheme, and can even work perfectly for the halo sample with the
highest number density. This should make optimal weighting quite
interesting for ongoing and future galaxy surveys (e.g., DESI and
LSST) to measure the BAO characteristic scale and other
cosmological observables, which suffer from the nonlinearities
of LSS.

Figure 7. Top: the power spectra of different reconstructed fields (solid lines). For comparison, we also plot the power spectra of the pre-reconstructed dark matter
field (dashed green line) and initial condition (dotted blue line). Middle: the cross-correlation coefficients with initial condition for different fields pre- and post-
reconstruction, rXI(k). Bottom: the SXI(k). The SXI(k) is defined as ( ) ( ( ))º -S k r k2 1XI XI , which can help amplify the differences at large scales where the rXI are
too close to unity. Here, we consider the linear clustering bias to perform the biased tracer reconstruction.
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5.6. The Effects of Mass Scatters on Reconstruction
Performances

The key information required to achieve these gains are the
halo masses, which, however, are not directly observable in
reality. Nevertheless, in principle, they are achievable via
relations between observables (e.g., galaxy luminosity, Vale &
Ostriker 2004; X-ray luminosity, galaxy richness, weak lensing
shear, velocity dispersion, or the thermal Sunyaev–Zeldovich
(SZ) effect, Allen et al. 2011, etc.) and halo masses. A better
understanding of these relations should be essential and critical
to minimize the inaccuracies of inferred masses and maximize
the gains of biased tracer reconstruction.

The SZ effect and X-ray properties yield very tight correlations
with the halo masses with a scatter of about 0.1 dex, whereas
these observables can only be used to probe the masses of massive
systems (e.g., galaxy clusters), while the optical estimators can be
used to infer relatively lower halo masses with a scatter of about
0.18 dex (see Henden et al. 2019; Bradshaw et al. 2020 and
references therein). Alternatively, galaxy grouping methods (Yang
et al. 2005), which group galaxies residing in the same halo,
provide a direct way of studying the galaxy–halo connection to
estimate halo masses. These techniques can reliably estimate halo
mass over a wide range of masses, even for a poor system
including isolated galaxy in a small halo. By using a halo-based
group finder, Yang et al. (2007) demonstrated that more than 90%
of true halos can be successfully identified in mock catalogs, and

the scatter between estimated and true halo masses is about 0.3
dex. This group finder was also improved for applications in low-
redshift galaxy surveys, showing a lower mass scatter of about 0.2
dex (Lim et al. 2017). Recently, Wang et al. (2020b) developed a
machine-learning-based group finder, which was applied to high-
redshift incomplete spectroscopic data, estimating halo masses
with scatters smaller than 0.25 dex.
In order to mimic the observational uncertainties on the

estimated halo masses, we artificially add two constant mass
scatters (i.e., 0.1 dex and 0.3 dex for optimistic and pessimistic
scenarios respectively) to our halo samples, and then repeat the
analyses for all halo number density cases shown in Figures 8 and
9. For the two mass-dependent weightings, we find that the effects
of a scatter of 0.1 dex on the reconstruction performances are
basically negligible and a scatter of 0.3 dex can result in noticeable
degradation of the performances. For the scatter of 0.3 dex, the
benefits from mass weighting are completely lost, while the
benefits from optimal weighting still remain substantial in the
higher number density cases, which again demonstrates the
interests of optimal weighing in the applications of ongoing and
future galaxy surveys. Here, note that the optimal weighting adopts
the sameM0 (see Section 3.2) as before. We also see that the biases
are hardly affected by the mass uncertainties (see Figure 8), which
indicates that the performance degradations are purely caused by
the boosts of shot noises induced by the mass scatters (see Seljak
et al. 2009).

Figure 8. The clustering biases of the mass and optimally weighted halo fields with various halo mass scatters. The dashed lines and dotted lines correspond to the
mass scatters of 0.1 dex and 0.3 dex, respectively (the same below). For comparison, the clustering biases of mass and optimally weighted halo fields without mass
scatters (solid lines) are also presented.

Figure 9. The cross-correlation coefficients with the initial condition for the reconstructed mass and optimally weighted halo fields with various halo mass scatters. For
comparison, we also plot the cross-correlation coefficients with the initial condition for various reconstructed halo fields without mass scatters (solid lines).
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6. Summary and Conclusion

In realistic scenarios, the efficiency of reconstruction is
prone to be hampered by various complications (e.g., galaxy
bias, shot noise, RSDs, survey boundary, etc.). In principle, the
problem could be alleviated by considering extra information
(e.g., the radial velocities for reducing boundary effects, Zhu
et al. 2020; and the local environments for sharpening the BAO
peak, Achitouv & Blake 2015; Blake et al. 2019 etc.).

The biased tracer reconstruction method (Birkin et al. 2019)
adopted in this work uses mass conservation to relate the
density fields in Lagrangian and Eulerian spaces. When the
method is applied to a realistic tracer field, the reconstruction
performance will be degraded by the loss of information on the
underlying total matter. The basic idea for improving the
reconstruction performance should be to apply reconstruction
to a tracer field with more matter distribution information,
which can be achieved from some weighting schemes. Our
work corroborated this idea by using halo-mass-dependent
weighting schemes because halo masses are natural informa-
tion to enforce the local mass and momentum conservation.

For our study, we performed careful analyses on three halo
samples with various number densities corresponding to
different targets in various galaxy surveys. The halo fields
are created under different halo-weighting schemes, i.e.,
uniform, mass, and optimal weightings (because the mass
and optimal weightings are both dependent on the information
of halo masses, we collectively call them mass-dependent
weightings). We summarize our work and discuss it as follows:

1. Before our performance tests, we first investigated the
clustering biases and stochasticity properties of different
weighted halo fields, demonstrating how mass information
suppresses the shot-noise component and tightens the cross-
correlation between the halo field and the dark matter. We
argue that the information for suppressing the halo fields’
shot noise should originate from the environmental depend-
ence of halo mass (see Section 5.2 and Appendix A). For
our halo samples with ¯ ( )= ´ - - -n h2.77 10 Mpch

2 1 3 and
¯ ( )= ´ - - -n h2.77 10 Mpch

3 1 3, we find that halo-clustering
biases are more scale independent under mass-dependent
weightings, compared with the uniform weighting case. This
finding is interesting because bias being more scale
independent will help to adequately maximize the perfor-
mance of the bias tracer reconstruction by only performing
linear debiasing in the process of reconstruction and to
minimize the systematic shifts in the BAO position relative
to the dark matter. For this reason, we only considered the
clustering bias up to linear order in our performance tests.

2. For performance tests, we then performed the biased
tracer reconstruction method on the different weighted
halo fields. We investigated and discussed in detail how
linear debiasing improves the reconstruction perfor-
mance. After linear debiasing, we both visually and
quantitatively compared the qualities of the reconstructed
initial matter fields, which are obtained under different
weighting schemes. We showed that the reconstruction
performance can be substantially enhanced when the
reconstruction method is applied to the mass and
optimally weighted halo fields, compared to the uniform
weighting scenario. As the halo number density
increases, the gains achieved from mass information
can be more significant. In particular, we showed a

compelling result that the reconstruction performance
from the optimally weighted halo field with
¯ ( )= ´ - - -n h2.77 10 Mpch

2 1 3 can almost be comparable
to that from the dark matter field, which implies that the
initial information can be greatly recovered from the
dense data (e.g., the DESI Bright Galaxy Survey (BGS)
sample; DESI Collaboration et al. 2016). Nevertheless,
the reconstruction performance also depends on the
accuracy of the inferred halo masses in the observations,
thus the impacts of realistic halo mass scatters on our
results were also investigated in this work. A better
understanding of the relation between observables and
underlying halos in the galaxy–halo connection and
observable-mass relation studies (see Wechsler & Tinker
2018; Bradshaw et al. 2020 and references therein)
should be essential and critical to decreasing the mass
scatters and consequently to maximizing the gains of
biased tracer reconstruction.

Based on our findings, we can safely conclude that the halo
masses are critical information for highly improving the
performance of biased tracer reconstruction. We note that this
conclusion should also hold true for other reconstruction
methods, as the effectiveness of almost all reconstruction
methods relies on the information of the total matter
distribution.
Our work is particularly relevant to the context of recovering

the BAO signal, the characteristic scale of which is renowned
as a standard ruler to measure the expansion history of the
universe and are therefore of critical importance for future
BAO measurements. We leave the quantification of the gains of
BAO reconstruction benefiting from the halo mass information
to future investigations. Moreover, because various other
cosmological measurements (e.g., RSDs, Hamaus et al. 2012;
primordial non-Gaussianities, Darwish et al. 2020; and even
neutrino signatures, Liu et al. 2020) are also usually limited by
strong data nonlinearities, we expect our work to be quite
useful for significantly improving the scientific returns of
current and future galaxy surveys.
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Appendix A
Shuffled Shot Noises

In this appendix, we present shuffled shot noises under mass-
dependent weightings, which are mentioned in Section 5.2. The
results are shown in Figure A1.
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Appendix B
Different Weighted Halo Fields before and after

Reconstruction

In this appendix, we present the two-dimensional slices
of different weighted halo fields with number densities of
2.77× 10−3 and ( )´ - - -h2.77 10 Mpc4 1 3 before and after
reconstruction. The results are shown in Figure B2 and
Figure B3.

Figure A1. Shuffled shot noises under mass and optimal weighting schemes (dotted lines). For comparison, the expected shot noises under mass and optimal
weighting schemes (solid lines) are also presented.

Figure B2. The two-dimensional slices of different weighted halo fields before (upper panels) and after (bottom panels) reconstruction. The halo fields are produced
by the halo sample with number density of ( )´ - - -h2.77 10 Mpc3 1 3. Each slice shows the same region (with the same projection depth) as the corresponding slice in
Figures 1 and 6

14

The Astrophysical Journal Supplement Series, 254:4 (16pp), 2021 May Liu, Yu, & Li



ORCID iDs

Yu Liu https://orcid.org/0000-0002-9734-906X
Yu Yu https://orcid.org/0000-0002-9359-7170
Baojiu Li https://orcid.org/0000-0002-1098-9188

References

Achitouv, I., & Blake, C. 2015, PhRvD, 92, 083523
Allen, S. W., Evrard, A. E., & Mantz, A. B. 2011, ARA&A, 49, 409
Anderson, L., Aubourg, É., Bailey, S., et al. 2014, MNRAS, 441, 24
Angulo, R. E., Baugh, C. M., Frenk, C. S., & Lacey, C. G. 2008, MNRAS,

383, 755
Baldauf, T., Seljak, U., Smith, R. E., Hamaus, N., & Desjacques, V. 2013,

PhRvD, 88, 083507
Beutler, F., Blake, C., Koda, J., et al. 2016, MNRAS, 455, 3230
Beutler, F., Seo, H.-J., Ross, A. J., et al. 2017, MNRAS, 464, 3409
Birkin, J., Li, B., Cautun, M., & Shi, Y. 2019, MNRAS, 483, 5267
Blake, C., Achitouv, I., Burden, A., & Rasera, Y. 2019, MNRAS, 482, 578
Bonoli, S., & Pen, U. L. 2009, MNRAS, 396, 1610
Bradshaw, C., Leauthaud, A., Hearin, A., Huang, S., & Behroozi, P. 2020,

MNRAS, 493, 337
Brenier, Y., Frisch, U., Hénon, M., et al. 2003, MNRAS, 346, 501
Burden, A., Percival, W. J., & Howlett, C. 2015, MNRAS, 453, 456
Burden, A., Percival, W. J., Manera, M., et al. 2014, MNRAS, 445, 3152
Cai, Y.-C., Bernstein, G., & Sheth, R. K. 2011, MNRAS, 412, 995
Cautun, M. C., & van de Weygaert, R. 2011a, The DTFE Public Software: the

Delaunay Tessellation Field Estimator Code v1.1.1, Astrophysics Source
Code Library, ascl:1105.003

Cautun, M. C., & van de Weygaert, R. 2011b, arXiv:1105.0370
Chan, K. C., Scoccimarro, R., & Sheth, R. K. 2012, PhRvD, 85, 083509
Chen, S.-F., Vlah, Z., & White, M. 2019, JCAP, 2019, 017
Darwish, O., Foreman, S., Abidi, M. M., et al. 2020, arXiv:2007.08472
Dawson, K. S., Schlegel, D. J., Ahn, C. P., et al. 2013, AJ, 145, 10

de Jong, R. S., Barden, S. C., Bellido-Tirado, O., et al. 2016, Proc. SPIE, 9908,
99081O

DESI Collaboration, Aghamousa, A., Aguilar, J., et al. 2016, arXiv:1611.
00036

Ding, Z., Seo, H.-J., Vlah, Z., et al. 2018, MNRAS, 479, 1021
Doré, O., Bock, J., Ashby, M., et al. 2014, arXiv:1412.4872
Doré, O., Hirata, C., Wang, Y., et al. 2018, arXiv:1804.03628
Eisenstein, D. J., Seo, H.-J., Sirko, E., & Spergel, D. N. 2007a, ApJ, 664, 675
Eisenstein, D. J., Seo, H.-J., & White, M. 2007b, ApJ, 664, 660
Feng, Y., Seljak, U., & Zaldarriaga, M. 2018, JCAP, 2018, 043
Frisch, U., Matarrese, S., Mohayaee, R., & Sobolevski, A. 2002, Natur,

417, 260
Ginzburg, D., Desjacques, V., & Chan, K. C. 2017, PhRvD, 96, 083528
Haas, M. R., Schaye, J., & Jeeson-Daniel, A. 2012, MNRAS, 419, 2133
Hada, R., & Eisenstein, D. J. 2018, MNRAS, 478, 1866
Hada, R., & Eisenstein, D. J. 2019, MNRAS, 482, 5685
Hamaus, N., Seljak, U., & Desjacques, V. 2011, PhRvD, 84, 083509
Hamaus, N., Seljak, U., & Desjacques, V. 2012, PhRvD, 86, 103513
Hamaus, N., Seljak, U., Desjacques, V., Smith, R. E., & Baldauf, T. 2010,

PhRvD, 82, 043515
Harnois-Déraps, J., Pen, U.-L., Iliev, I. T., et al. 2013a, MNRAS, 436, 540
Harnois-Déraps, J., Yu, H.-R., Zhang, T.-J., & Pen, U.-L. 2013b, MNRAS,

436, 759
Henden, N. A., Puchwein, E., & Sijacki, D. 2019, MNRAS, 489, 2439
Hikage, C., Koyama, K., & Heavens, A. 2017, PhRvD, 96, 043513
Hikage, C., Koyama, K., & Takahashi, R. 2020, PhRvD, 101, 043510
Hinton, S. R., Kazin, E., Davis, T. M., et al. 2017, MNRAS, 464, 4807
Jasche, J., & Lavaux, G. 2019, A&A, 625, A64
Jasche, J., & Wandelt, B. D. 2013, MNRAS, 432, 894
Jennings, E., Baugh, C. M., & Hatt, D. 2015, MNRAS, 446, 793
Kazin, E. A., Koda, J., Blake, C., et al. 2014, MNRAS, 441, 3524
Kitaura, F. S. 2013, MNRAS, 429, L84
Laureijs, R., Amiaux, J., Arduini, S., et al. 2011, arXiv:1110.3193
Levi, M., Bebek, C., Beers, T., et al. 2013, arXiv:1308.0847
Lévy, B., Mohayaee, R., & von Hausegger, S. 2020, arXiv:2012.09074
Li, B., Barreira, A., Baugh, C. M., et al. 2013, JCAP, 2013, 012

Figure B3. Same as Figure B2, but for the halo sample with number density of ( )´ - - -h2.77 10 Mpc4 1 3.

15

The Astrophysical Journal Supplement Series, 254:4 (16pp), 2021 May Liu, Yu, & Li

https://orcid.org/0000-0002-9734-906X
https://orcid.org/0000-0002-9734-906X
https://orcid.org/0000-0002-9734-906X
https://orcid.org/0000-0002-9734-906X
https://orcid.org/0000-0002-9734-906X
https://orcid.org/0000-0002-9734-906X
https://orcid.org/0000-0002-9734-906X
https://orcid.org/0000-0002-9734-906X
https://orcid.org/0000-0002-9359-7170
https://orcid.org/0000-0002-9359-7170
https://orcid.org/0000-0002-9359-7170
https://orcid.org/0000-0002-9359-7170
https://orcid.org/0000-0002-9359-7170
https://orcid.org/0000-0002-9359-7170
https://orcid.org/0000-0002-9359-7170
https://orcid.org/0000-0002-9359-7170
https://orcid.org/0000-0002-1098-9188
https://orcid.org/0000-0002-1098-9188
https://orcid.org/0000-0002-1098-9188
https://orcid.org/0000-0002-1098-9188
https://orcid.org/0000-0002-1098-9188
https://orcid.org/0000-0002-1098-9188
https://orcid.org/0000-0002-1098-9188
https://orcid.org/0000-0002-1098-9188
https://doi.org/10.1103/PhysRevD.92.083523
https://ui.adsabs.harvard.edu/abs/2015PhRvD..92h3523A/abstract
https://doi.org/10.1146/annurev-astro-081710-102514
https://ui.adsabs.harvard.edu/abs/2011ARA&A..49..409A/abstract
https://doi.org/10.1093/mnras/stu523
https://ui.adsabs.harvard.edu/abs/2014MNRAS.441...24A/abstract
https://doi.org/10.1111/j.1365-2966.2007.12587.x
https://ui.adsabs.harvard.edu/abs/2008MNRAS.383..755A/abstract
https://ui.adsabs.harvard.edu/abs/2008MNRAS.383..755A/abstract
https://doi.org/10.1103/PhysRevD.88.083507
https://ui.adsabs.harvard.edu/abs/2013PhRvD..88h3507B/abstract
https://doi.org/10.1093/mnras/stv1943
https://ui.adsabs.harvard.edu/abs/2016MNRAS.455.3230B/abstract
https://doi.org/10.1093/mnras/stw2373
https://ui.adsabs.harvard.edu/abs/2017MNRAS.464.3409B/abstract
https://doi.org/10.1093/mnras/sty3365
https://ui.adsabs.harvard.edu/abs/2019MNRAS.483.5267B/abstract
https://doi.org/10.1093/mnras/sty2713
https://ui.adsabs.harvard.edu/abs/2019MNRAS.482..578B/abstract
https://doi.org/10.1111/j.1365-2966.2009.14829.x
https://ui.adsabs.harvard.edu/abs/2009MNRAS.396.1610B/abstract
https://doi.org/10.1093/mnras/staa081
https://ui.adsabs.harvard.edu/abs/2020MNRAS.493..337B/abstract
https://doi.org/10.1046/j.1365-2966.2003.07106.x
https://ui.adsabs.harvard.edu/abs/2003MNRAS.346..501B/abstract
https://doi.org/10.1093/mnras/stv1581
https://ui.adsabs.harvard.edu/abs/2015MNRAS.453..456B/abstract
https://doi.org/10.1093/mnras/stu1965
https://ui.adsabs.harvard.edu/abs/2014MNRAS.445.3152B/abstract
https://doi.org/10.1111/j.1365-2966.2010.17969.x
https://ui.adsabs.harvard.edu/abs/2011MNRAS.412..995C/abstract
https://ascl.net/1105.003
http://arxiv.org/abs/1105.0370
https://doi.org/10.1103/PhysRevD.85.083509
https://ui.adsabs.harvard.edu/abs/2012PhRvD..85h3509C/abstract
https://doi.org/10.1088/1475-7516/2019/09/017
https://ui.adsabs.harvard.edu/abs/2019JCAP...09..017C/abstract
http://arxiv.org/abs/2007.08472
https://doi.org/10.1088/0004-6256/145/1/10
https://ui.adsabs.harvard.edu/abs/2013AJ....145...10D/abstract
https://doi.org/10.1117/12.2232832
https://ui.adsabs.harvard.edu/abs/2016SPIE.9908E..1OD/abstract
https://ui.adsabs.harvard.edu/abs/2016SPIE.9908E..1OD/abstract
http://arxiv.org/abs/1611.00036
http://arxiv.org/abs/1611.00036
https://doi.org/10.1093/mnras/sty1413
https://ui.adsabs.harvard.edu/abs/2018MNRAS.479.1021D/abstract
http://arxiv.org/abs/1412.4872
http://arxiv.org/abs/1804.03628
https://doi.org/10.1086/518712
https://ui.adsabs.harvard.edu/abs/2007ApJ...664..675E/abstract
https://doi.org/10.1086/518755
https://ui.adsabs.harvard.edu/abs/2007ApJ...664..660E/abstract
https://doi.org/10.1088/1475-7516/2018/07/043
https://doi.org/10.1038/417260a
https://ui.adsabs.harvard.edu/abs/2002Natur.417..260F/abstract
https://ui.adsabs.harvard.edu/abs/2002Natur.417..260F/abstract
https://doi.org/10.1103/PhysRevD.96.083528
https://ui.adsabs.harvard.edu/abs/2017PhRvD..96h3528G/abstract
https://doi.org/10.1111/j.1365-2966.2011.19863.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.419.2133H/abstract
https://doi.org/10.1093/mnras/sty1203
https://ui.adsabs.harvard.edu/abs/2018MNRAS.478.1866H/abstract
https://doi.org/10.1093/mnras/sty3137
https://ui.adsabs.harvard.edu/abs/2019MNRAS.482.5685H/abstract
https://doi.org/10.1103/PhysRevD.84.083509
https://ui.adsabs.harvard.edu/abs/2011PhRvD..84h3509H/abstract
https://doi.org/10.1103/PhysRevD.86.103513
https://ui.adsabs.harvard.edu/abs/2012PhRvD..86j3513H/abstract
https://doi.org/10.1103/PhysRevD.82.043515
https://ui.adsabs.harvard.edu/abs/2010PhRvD..82d3515H/abstract
https://doi.org/10.1093/mnras/stt1591
https://ui.adsabs.harvard.edu/abs/2013MNRAS.436..540H/abstract
https://doi.org/10.1093/mnras/stt1611
https://ui.adsabs.harvard.edu/abs/2013MNRAS.436..759H/abstract
https://ui.adsabs.harvard.edu/abs/2013MNRAS.436..759H/abstract
https://doi.org/10.1093/mnras/stz2301
https://ui.adsabs.harvard.edu/abs/2019MNRAS.489.2439H/abstract
https://doi.org/10.1103/PhysRevD.96.043513
https://ui.adsabs.harvard.edu/abs/2017PhRvD..96d3513H/abstract
https://doi.org/10.1103/PhysRevD.101.043510
https://ui.adsabs.harvard.edu/abs/2020PhRvD.101d3510H/abstract
https://doi.org/10.1093/mnras/stw2725
https://ui.adsabs.harvard.edu/abs/2017MNRAS.464.4807H/abstract
https://doi.org/10.1051/0004-6361/201833710
https://ui.adsabs.harvard.edu/abs/2019A&A...625A..64J/abstract
https://doi.org/10.1093/mnras/stt449
https://ui.adsabs.harvard.edu/abs/2013MNRAS.432..894J/abstract
https://doi.org/10.1093/mnras/stu2043
https://ui.adsabs.harvard.edu/abs/2015MNRAS.446..793J/abstract
https://doi.org/10.1093/mnras/stu778
https://ui.adsabs.harvard.edu/abs/2014MNRAS.441.3524K/abstract
https://doi.org/10.1093/mnrasl/sls029
https://ui.adsabs.harvard.edu/abs/2013MNRAS.429L..84K/abstract
http://arxiv.org/abs/1110.3193
http://arxiv.org/abs/1308.0847
http://arxiv.org/abs/2012.09074
https://doi.org/10.1088/1475-7516/2013/11/012
https://ui.adsabs.harvard.edu/abs/2013JCAP...11..012L/abstract


Li, B., Zhao, G.-B., Teyssier, R., & Koyama, K. 2012, JCAP, 2012, 051
Lim, S. H., Mo, H. J., Lu, Y., Wang, H., & Yang, X. 2017, MNRAS, 470, 2982
Liu, Y., Yu, Y., Yu, H.-R., & Zhang, P. 2020, PhRvD, 101, 063515
LSST Science Collaboration, Abell, P. A., Allison, J., et al. 2009,

arXiv:0912.0201
Mao, T.-X., Wang, J., Li, B., et al. 2020, arXiv:2002.10218
Mehta, K. T., Seo, H.-J., Eckel, J., et al. 2011, ApJ, 734, 94
Modi, C., Feng, Y., & Seljak, U. 2018, JCAP, 2018, 028
Modi, C., White, M., Slosar, A., & Castorina, E. 2019, JCAP, 2019, 023
Mohayaee, R., Frisch, U., Matarrese, S., & Sobolevskii, A. 2003, A&A,

406, 393
Mohayaee, R., Mathis, H., Colombi, S., & Silk, J. 2006, MNRAS, 365, 939
Mohayaee, R., & Sobolevskiĭ, A. 2008, PhyD, 237, 2145
Neyrinck, M. C., Szapudi, I., & Szalay, A. S. 2009, ApJL, 698, L90
Neyrinck, M. C., Szapudi, I., & Szalay, A. S. 2011, ApJ, 731, 116
Noh, Y., White, M., & Padmanabhan, N. 2009, PhRvD, 80, 123501
Obuljen, A., Villaescusa-Navarro, F., Castorina, E., & Viel, M. 2017, JCAP,

2017, 012
Padmanabhan, N., White, M., & Cohn, J. D. 2009, PhRvD, 79, 063523
Padmanabhan, N., Xu, X., Eisenstein, D. J., et al. 2012, MNRAS, 427, 2132
Paech, K., Hamaus, N., Hoyle, B., et al. 2017, MNRAS, 470, 2566
Pan, Q., Pen, U.-L., Inman, D., & Yu, H.-R. 2017, MNRAS, 469, 1968
Park, C., & Kim, Y.-R. 2010, ApJL, 715, L185
Ross, A. J., Samushia, L., Howlett, C., et al. 2015, MNRAS, 449, 835
Sarpa, E., Schimd, C., Branchini, E., & Matarrese, S. 2019, MNRAS,

484, 3818
Sarpa, E., Veropalumbo, A., Schimd, C., Branchini, E., & Matarrese, S. 2021,

MNRAS, 503, 540
Schaap, W. E., & van de Weygaert, R. 2000, A&A, 363, L29
Schmittfull, M., Baldauf, T., & Zaldarriaga, M. 2017, PhRvD, 96, 023505
Schmittfull, M., Feng, Y., Beutler, F., Sherwin, B., & Chu, M. Y. 2015,

PhRvD, 92, 123522
Schmittfull, M., Simonović, M., Assassi, V., & Zaldarriaga, M. 2019, PhRvD,

100, 043514
Seljak, U., Aslanyan, G., Feng, Y., & Modi, C. 2017, JCAP, 2017, 009
Seljak, U., Hamaus, N., & Desjacques, V. 2009, PhRvL, 103, 091303
Seljak, U., & Warren, M. S. 2004, MNRAS, 355, 129

Seo, H.-J., Beutler, F., Ross, A. J., & Saito, S. 2016, MNRAS, 460, 2453
Seo, H.-J., Eckel, J., Eisenstein, D. J., et al. 2010, ApJ, 720, 1650
Seo, H.-J., Siegel, E. R., Eisenstein, D. J., & White, M. 2008, ApJ, 686, 13
Sheth, R. K., & Tormen, G. 1999, MNRAS, 308, 119
Shi, Y., Cautun, M., & Li, B. 2018, PhRvD, 97, 023505
Smith, R. E., & Marian, L. 2016, MNRAS, 457, 2968
Smith, R. E., Scoccimarro, R., & Sheth, R. K. 2008, PhRvD, 77, 043525
Takada, M., Ellis, R. S., Chiba, M., et al. 2014, PASJ, 66, R1
Tassev, S., & Zaldarriaga, M. 2012, JCAP, 2012, 006
Teyssier, R. 2002, A&A, 385, 337
Vale, A., & Ostriker, J. P. 2004, MNRAS, 353, 189
Wang, H., Mo, H. J., Yang, X., & van den Bosch, F. C. 2013, ApJ, 772, 63
Wang, K., Mo, H. J., Li, C., Meng, J., & Chen, Y. 2020b, MNRAS, 499, 89
Wang, X., & Pen, U.-L. 2019, ApJ, 870, 116
Wang, X., Yu, H.-R., Zhu, H.-M., et al. 2017, ApJL, 841, L29
Wang, Y., Li, B., & Cautun, M. 2020a, MNRAS, 497, 3451
Wechsler, R. H., & Tinker, J. L. 2018, ARA&A, 56, 435
Weinberg, D. H. 1992, MNRAS, 254, 315
White, M. 2015, MNRAS, 450, 3822
Xu, H., Zheng, Z., Guo, H., et al. 2018, MNRAS, 481, 5470
Xu, X., Cuesta, A. J., Padmanabhan, N., Eisenstein, D. J., & McBride, C. K.

2013, MNRAS, 431, 2834
Xu, X., Padmanabhan, N., Eisenstein, D. J., Mehta, K. T., & Cuesta, A. J.

2012, MNRAS, 427, 2146
Yang, X., Mo, H. J., van den Bosch, F. C., et al. 2007, ApJ, 671, 153
Yang, X., Mo, H. J., van den Bosch, F. C., & Jing, Y. P. 2005, MNRAS,

356, 1293
Yu, H.-R., Pen, U.-L., & Zhu, H.-M. 2017a, PhRvD, 95, 043501
Yu, Y., & Zhu, H.-M. 2019, ApJ, 887, 265
Yu, Y., Zhu, H.-M., & Pen, U.-L. 2017b, ApJ, 847, 110
Zhang, P. 2008, arXiv:0802.2416
Zhao, C., Kitaura, F.-S., Chuang, C.-H., et al. 2015, MNRAS, 451, 4266
Zheng, Z., Berlind, A. A., Weinberg, D. H., et al. 2005, ApJ, 633, 791
Zhu, H.-M., White, M., Ferraro, S., & Schaan, E. 2020, MNRAS, 494, 4244
Zhu, H.-M., Yu, Y., & Pen, U.-L. 2018, PhRvD, 97, 043502
Zhu, H.-M., Yu, Y., Pen, U.-L., Chen, X., & Yu, H.-R. 2017, PhRvD, 96,

123502

16

The Astrophysical Journal Supplement Series, 254:4 (16pp), 2021 May Liu, Yu, & Li

https://doi.org/10.1088/1475-7516/2012/01/051
https://ui.adsabs.harvard.edu/abs/2012JCAP...01..051L/abstract
https://doi.org/10.1093/mnras/stx1462
https://ui.adsabs.harvard.edu/abs/2017MNRAS.470.2982L/abstract
https://doi.org/10.1103/PhysRevD.101.063515
https://ui.adsabs.harvard.edu/abs/2020PhRvD.101f3515L/abstract
http://arxiv.org/abs/0912.0201
http://arxiv.org/abs/2002.10218
https://doi.org/10.1088/0004-637X/734/2/94
https://ui.adsabs.harvard.edu/abs/2011ApJ...734...94M/abstract
https://doi.org/10.1088/1475-7516/2018/10/028
https://ui.adsabs.harvard.edu/abs/2018JCAP...10..028M/abstract
https://doi.org/10.1088/1475-7516/2019/11/023
https://ui.adsabs.harvard.edu/abs/2019JCAP...11..023M/abstract
https://doi.org/10.1051/0004-6361:20030719
https://ui.adsabs.harvard.edu/abs/2003A&A...406..393M/abstract
https://ui.adsabs.harvard.edu/abs/2003A&A...406..393M/abstract
https://doi.org/10.1111/j.1365-2966.2005.09774.x
https://ui.adsabs.harvard.edu/abs/2006MNRAS.365..939M/abstract
https://doi.org/10.1016/j.physd.2008.01.007
https://ui.adsabs.harvard.edu/abs/2008PhyD..237.2145M/abstract
https://doi.org/10.1088/0004-637X/698/2/L90
https://ui.adsabs.harvard.edu/abs/2009ApJ...698L..90N/abstract
https://doi.org/10.1088/0004-637X/731/2/116
https://ui.adsabs.harvard.edu/abs/2011ApJ...731..116N/abstract
https://doi.org/10.1103/PhysRevD.80.123501
https://ui.adsabs.harvard.edu/abs/2009PhRvD..80l3501N/abstract
https://doi.org/10.1088/1475-7516/2017/09/012
https://doi.org/10.1103/PhysRevD.79.063523
https://ui.adsabs.harvard.edu/abs/2009PhRvD..79f3523P/abstract
https://doi.org/10.1111/j.1365-2966.2012.21888.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.427.2132P/abstract
https://doi.org/10.1093/mnras/stx1354
https://ui.adsabs.harvard.edu/abs/2017MNRAS.470.2566P/abstract
https://doi.org/10.1093/mnras/stx774
https://ui.adsabs.harvard.edu/abs/2017MNRAS.469.1968P/abstract
https://doi.org/10.1088/2041-8205/715/2/L185
https://ui.adsabs.harvard.edu/abs/2010ApJ...715L.185P/abstract
https://doi.org/10.1093/mnras/stv154
https://ui.adsabs.harvard.edu/abs/2015MNRAS.449..835R/abstract
https://doi.org/10.1093/mnras/stz278
https://ui.adsabs.harvard.edu/abs/2019MNRAS.484.3818S/abstract
https://ui.adsabs.harvard.edu/abs/2019MNRAS.484.3818S/abstract
https://doi.org/10.1093/mnras/stab378
https://ui.adsabs.harvard.edu/abs/2021MNRAS.503..540S/abstract
https://ui.adsabs.harvard.edu/abs/2000A&A...363L..29S/abstract
https://doi.org/10.1103/PhysRevD.96.023505
https://ui.adsabs.harvard.edu/abs/2017PhRvD..96b3505S/abstract
https://doi.org/10.1103/PhysRevD.92.123522
https://ui.adsabs.harvard.edu/abs/2015PhRvD..92l3522S/abstract
https://doi.org/10.1103/PhysRevD.100.043514
https://ui.adsabs.harvard.edu/abs/2019PhRvD.100d3514S/abstract
https://ui.adsabs.harvard.edu/abs/2019PhRvD.100d3514S/abstract
https://doi.org/10.1088/1475-7516/2017/12/009
https://ui.adsabs.harvard.edu/abs/2017JCAP...12..009S/abstract
https://doi.org/10.1103/PhysRevLett.103.091303
https://ui.adsabs.harvard.edu/abs/2009PhRvL.103i1303S/abstract
https://doi.org/10.1111/j.1365-2966.2004.08297.x
https://ui.adsabs.harvard.edu/abs/2004MNRAS.355..129S/abstract
https://doi.org/10.1093/mnras/stw1138
https://ui.adsabs.harvard.edu/abs/2016MNRAS.460.2453S/abstract
https://doi.org/10.1088/0004-637X/720/2/1650
https://ui.adsabs.harvard.edu/abs/2010ApJ...720.1650S/abstract
https://doi.org/10.1086/589921
https://ui.adsabs.harvard.edu/abs/2008ApJ...686...13S/abstract
https://doi.org/10.1046/j.1365-8711.1999.02692.x
https://ui.adsabs.harvard.edu/abs/1999MNRAS.308..119S/abstract
https://doi.org/10.1103/PhysRevD.97.023505
https://ui.adsabs.harvard.edu/abs/2018PhRvD..97b3505S/abstract
https://doi.org/10.1093/mnras/stw044
https://ui.adsabs.harvard.edu/abs/2016MNRAS.457.2968S/abstract
https://doi.org/10.1103/PhysRevD.77.043525
https://ui.adsabs.harvard.edu/abs/2008PhRvD..77d3525S/abstract
https://doi.org/10.1093/pasj/pst019
https://ui.adsabs.harvard.edu/abs/2014PASJ...66R...1T/abstract
https://doi.org/10.1088/1475-7516/2012/10/006
https://ui.adsabs.harvard.edu/abs/2012JCAP...10..006T/abstract
https://doi.org/10.1051/0004-6361:20011817
https://ui.adsabs.harvard.edu/abs/2002A&A...385..337T/abstract
https://doi.org/10.1111/j.1365-2966.2004.08059.x
https://ui.adsabs.harvard.edu/abs/2004MNRAS.353..189V/abstract
https://doi.org/10.1088/0004-637X/772/1/63
https://ui.adsabs.harvard.edu/abs/2013ApJ...772...63W/abstract
https://doi.org/10.1093/mnras/staa2816
https://ui.adsabs.harvard.edu/abs/2020MNRAS.499...89W/abstract
https://doi.org/10.3847/1538-4357/aaf231
https://ui.adsabs.harvard.edu/abs/2019ApJ...870..116W/abstract
https://doi.org/10.3847/2041-8213/aa738c
https://ui.adsabs.harvard.edu/abs/2017ApJ...841L..29W/abstract
https://doi.org/10.1093/mnras/staa2136
https://ui.adsabs.harvard.edu/abs/2020MNRAS.497.3451W/abstract
https://doi.org/10.1146/annurev-astro-081817-051756
https://ui.adsabs.harvard.edu/abs/2018ARA&A..56..435W/abstract
https://doi.org/10.1093/mnras/254.2.315
https://ui.adsabs.harvard.edu/abs/1992MNRAS.254..315W/abstract
https://doi.org/10.1093/mnras/stv842
https://ui.adsabs.harvard.edu/abs/2015MNRAS.450.3822W/abstract
https://doi.org/10.1093/mnras/sty2615
https://ui.adsabs.harvard.edu/abs/2018MNRAS.481.5470X/abstract
https://doi.org/10.1093/mnras/stt379
https://ui.adsabs.harvard.edu/abs/2013MNRAS.431.2834X/abstract
https://doi.org/10.1111/j.1365-2966.2012.21573.x
https://ui.adsabs.harvard.edu/abs/2012MNRAS.427.2146X/abstract
https://doi.org/10.1086/522027
https://ui.adsabs.harvard.edu/abs/2007ApJ...671..153Y/abstract
https://doi.org/10.1111/j.1365-2966.2005.08560.x
https://ui.adsabs.harvard.edu/abs/2005MNRAS.356.1293Y/abstract
https://ui.adsabs.harvard.edu/abs/2005MNRAS.356.1293Y/abstract
https://doi.org/10.1103/PhysRevD.95.043501
https://ui.adsabs.harvard.edu/abs/2017PhRvD..95d3501Y/abstract
https://doi.org/10.3847/1538-4357/ab5580
https://ui.adsabs.harvard.edu/abs/2019ApJ...887..265Y/abstract
https://doi.org/10.3847/1538-4357/aa89e7
https://ui.adsabs.harvard.edu/abs/2017ApJ...847..110Y/abstract
http://arxiv.org/abs/0802.2416
https://doi.org/10.1093/mnras/stv1262
https://ui.adsabs.harvard.edu/abs/2015MNRAS.451.4266Z/abstract
https://doi.org/10.1086/466510
https://ui.adsabs.harvard.edu/abs/2005ApJ...633..791Z/abstract
https://doi.org/10.1093/mnras/staa1002
https://ui.adsabs.harvard.edu/abs/2020MNRAS.494.4244Z/abstract
https://doi.org/10.1103/PhysRevD.97.043502
https://ui.adsabs.harvard.edu/abs/2018PhRvD..97d3502Z/abstract
https://doi.org/10.1103/PhysRevD.96.123502
https://ui.adsabs.harvard.edu/abs/2017PhRvD..96l3502Z/abstract
https://ui.adsabs.harvard.edu/abs/2017PhRvD..96l3502Z/abstract

	1. Introduction
	2. The Biased Tracer Reconstruction Method
	3. Data
	3.1. N-body Simulation and Halo Samples
	3.2. Different Weighted Halo Fields
	3.3. The Mass Assignment Method

	4. Bias and Stochasticity
	5. Results
	5.1. The Halo-clustering Bias
	5.2. The Stochastic Noises of Different Weighted Halo Fields
	5.3. The Correlation between Halos and Dark Matter
	5.4. Direct Reconstruction without Preprocessing Bias
	5.5. Reconstruction Considering Linear Bias
	5.6. The Effects of Mass Scatters on Reconstruction Performances

	6. Summary and Conclusion
	Appendix AShuffled Shot Noises
	Appendix BDifferent Weighted Halo Fields before and after Reconstruction
	References



