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Abstract: Pattern oriented modelling (POM) is an approach to calibration or validation that assesses a model
using multiple weak patterns. We extend the concept of POM, using dominance to objectively identify the best
parameter candidates. The TELL ME agent-basedmodel is used to demonstrate the approach. This model sim-
ulates personal decisions to adopt protective behaviour during an influenza epidemic. Themodel fit is assessed
by the size and timing ofmaximumbehaviour adoption, aswell as themore usual criterion ofminimisingmean
squared error between actual and estimated behaviour. The rigorous approach to calibration supported ex-
plicit trading o� between these criteria, and ultimately demonstrated that there were significant flaws in the
model structure.

Keywords:Multi-CriteriaDecisionMaking, Calibration, Pattern-OrientedModelling, Dominance, BehaviourMod-
elling

Introduction

1.1 Agent-Based Models (ABMs) simulate "unique and autonomous entities that usually interact with each other
and their environment locally" (Railsback & Grimm 2012, p. 10). Such models are therefore designed at the
micro-scale, with rules to guide the actions of the simulated individuals based on their specific characteristics
and situation. In contrast, much of the interesting behaviour of the model occurs at the macro-level.

1.2 This scale mismatch complicates model calibration. Parameters for thosemicro-scale rules may be unmeasur-
able, but the aggregated e�ect of the decisions is routinely collected in data about the operation of the system
being modelled. With a large number of parameters, it may be relatively easy to obtain an apparently good fit
overall that is nevertheless hiding structural invalidity or other problems. Oneway tomake the calibrationmore
robust is by assessing model output against multiple criteria selected for their diversity, referred to as pattern-
orientedmodelling (Wiegand et al. 2004; Railsback & Grimm 2012). Doing so, however, introduces the problem
of defining an overall ‘best fit’ since di�erent sets of parameter values may generate model output that meet
di�erent criteria.

1.3 Oneapproach is to establish anoverall objective function that combines eachof the criteria in someway. For ex-
ample, the criteria could beweighted and themodel calibrated to best fit the weighted combination. However,
this approach introduces an arbitrary function to combine the criteria (such as additional parameters in the
form of criteria weights), typically with only limited knowledge of what is being traded away. Another method
uses stakeholder or other experts to assess the reasonableness of the model’s behaviour (Moss 2007).

1.4 Categorical calibration or filtering (Wiegand et al. 2004; Railsback & Grimm 2012) uses acceptance thresholds
for each criterion and retains all parameter sets thatmeet all the thresholds for further consideration. However,
this is ine�icient. If any threshold is set too high, a parameter set could be rejected that is an excellent fit on
all other criteria. On the other hand, setting a lower threshold passes toomany potential solutions to be easily
compared.
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Figure 1: Definition of dominance (two dimensions). Point D is dominated by point A because point A is better
against all criteria thanpointD. That is, regardlessof the relative importanceof the twocriteria, point A is always
preferred over point D. Similarly, point E is dominated by both point B and point C. But point E is not dominated
bypoint A; if criterion 2wasmuchmore important than criterion 1, itmaybeappropriate to select E for the small
improvement in criterion 2 at the expense of the loss in criterion 1. The shaded area indicates the parameter
space that is dominated by any of the three points A, B or C. The Pareto e�icient front is the set of points that are
not dominated by any other, in this case any points on the dashed line specified by the points A, B and C. Along
this line, improvements in one dimension can only be achieved at the expense of at least one other criterion;
for example,moving fromA to B improves criterion 2 butworsens criterion 1. Withmore dimensions, the Pareto
front is given by a piecewise hyperplane, but is also the set of points that appear on the front of any pair of
dimensions, regardless of whether they are dominated in other pairs of dimensions.

1.5 This paper instead presents the dominance approach, which does not arbitrarily prioritise criteria or set sub-
jective thresholds. Instead, dominance is used to identify all the parameter sets that are on the Pareto e�icient
frontier. These are the parameter sets that are objectively best, where an improvement in one criterion can
only be made by reducing the fit for another criterion (see Figure 1). While this approach is well established in
operations research for multi-criteria decisionmaking or optimisation (Müssel et al. 2012), it is less well known
in social simulation (with some exceptions, such as Schmitt et al. 2015).

1.6 Themethod is described using a case study: calibrating the TELL MEmodel concerning protective behaviour in
response to an influenza epidemic. This paper first presents the model structure and the parameters required
to operationalise the links between attitude, behaviour and epidemic spread. The description focuses on the
necessary background tounderstand the calibrationprocess presented in the following sections. The approach
to setting parameter values is then described, with the results of that process and conclusions following.

Case Study Description: TELL MEModel

2.1 The European funded TELL ME project 1 concerned communication before, during and a�er an influenza pan-
demic. Ending in January 2015, it was intended to assist health agencies to develop communication plans that
encourage people to adopt appropriate behaviour to reduce influenza transmission. One project output was a
prototype ABM, to explore the potential of such models to assist communication planning. The agents in that
model represent peoplemaking decisions about protective behaviour (such as vaccination or hand hygiene) in
light of personal attitudes, norms and epidemic risk.

2.2 The core of the TELL ME model is individual agents making decisions about whether to adopt behaviour to
reduce their chance of becoming infected with influenza. Protective behaviour is adopted (or dropped) by an
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agent if the weighted average of attitude, subjective norms and perception of threat exceeds (or falls below)
some threshold.

2.3 Each agent is attached to a patch (a location defined by a grid) overlaid on a map of the country in which the
epidemic is being simulated. The epidemic ismathematicallymodelledby thepatches; there is no transmission
between individual agents. The infectivity at any patch is adjusted for the proportion of local agents who have
adopted protective behaviour and the e�icacy of that behaviour. In addition, the number of new infections
in nearby patches is a key input to each agent’s perception of threat. Thus, the agent protective behaviour
decisions and the transmission of the epidemic are mutually dependent.

2.4 The operationalisation of this model design is described briefly below. This description focuses on those el-
ements of the model that were calibrated using dominance. The behaviour of the agents is also a�ected by
communication plans, which are input to the model as sets of messages. The communication elements were
disabled for calibration purposes due to lack of data, and are therefore not described here. Themodel was im-
plemented in NetLogo (Wilensky 1999), with the full code, completemodel design (Badham&Gilbert 2015) and
other documentation available online.2

Epidemic transmission

2.5 The epidemic is modelled by updating counts for each disease state of the population at each patch. For in-
fluenza, a suitable epidemic model is the SEIR model, in which people conceptually start in the susceptible (S)
state, become exposed (E) but not yet infectious, then become infectious (I) and are eventually removed from
calculations (R) because they either recover and become immune or they die. The model represents this pro-
cess mathematically (Diekmann & Heesterbeek 2000), governed by transition rate parameters (β for S → E, λ
forE → I , and γ for I → R).

dS

dt
= −βSI

dE

dt
= βSI − λE

dI

dt
= λE − γI

dR

dt
= γI

(1)

2.6 In each patch or region (r), the value of the transition rate parameter from S to E (β) is reduced in accordance
with the behaviour decisions taken by individuals at that patch and the e�icacy(E) of the behaviour. The re-
duced infectivity rate (calculated with Equation 2) is used in the transmission equations (Equation 1), leading
to a lower local incidence. To support amix of behaviour (and hence di�erent reductions in infectivity between
patches), each patch is home to at least ten agents, with greater numbers in those patches that correspond to
high population density real world locations.

βr = β (1− PrE) (2)

2.7 To allow the epidemic to spread, a proportion of estimated new exposures for a region are actually created
in neighbouring patches to simulate travel. This requires two additional parameters, the proportion of new
infections created at other locations, and the split between neighbouring or longer distance patches.

Operationalising decisions about protective behavior

2.8 The agents’ behaviour decisions are based on three psychological models: the Theory of Planned Behavior
(Ajzen 1991), Health Belief Model (Rosenstock 1974), and Protection Motivation Theory (Maddux & Rogers 1983).
The key factors of attitude, norms and threat from these models were used as the inputs for agent behaviour.
The agent compares the weighted average of the three inputs to a threshold (Equation 3) for each type of be-
haviour (vaccination or other protective). If the value is higher, the agent adopts the non-vaccination behaviour
or seeks vaccination, and non-vaccination behaviour ceases once the value falls below the relevant threshold.
Vaccination cannot be dropped. Threat has the same value for both types of behaviour, but attitude, norms,
weights and thresholds may be di�erent.

ωAA+ ωNN + (1− ωA − ωN )Tt ≥ B adopt behavior
ωAA+ ωNN + (1− ωA − ωN )Tt < B abandon behavior

(3)
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2.9 Attitude is operationalised as a value in the range [0,1], initially selected from a distribution that reflects the
broad attitude range of the population. Subjective norms describe how a person believes family, friends and
other personally significant people expect them to behave and the extent to which they feel compelled to con-
form. The norm is operationalised as the proportion of nearby agents who have adopted the behaviour.

2.10 Perceived threat (Tt) reflects both susceptibility and severity (Equation 4). Following the method of Durham &
Casman (2012), susceptibility is modelled with a discounted (δ) cumulative incidence time series. This means
that perceived susceptibility will increase as the epidemic spreads but recent new cases (ct) will impact more
strongly than older cases. In contrast to the cited paper, only nearby cases are included in the time series for
the TELL ME model, so perceived susceptibility will be higher for the simulated individuals that are close to
the new cases than for those further away. Severity is included as a simple ‘worry’ multiplier (W ), and can be
interpreted as subjective severity relative to some reference epidemic.

2.11
st = δst−1 + ct−1

Tt = Wst
(4)

Calibration Process

3.1 From themodel structure discussion, it is clear that there aremanyparameters to bedetermined. Somemaybe
estimated directly frommeasurable values in the real world, such as population counts. Ideally, unmeasurable
values should be calibrated to optimise somemeasure of goodness of fit betweenmodel results and real world
data.

3.2 The first phase simplified themodel to reduce the number of parameters influencing results. This was done by
excluding the communication component and fixing protective behaviour to have no e�ect. Other values were
fixed at values drawn from literature, specifically those that a�ected the distribution of attitudes and the trans-
mission of the epidemic. The exclusion of some components and setting of other parameters to fixed estimates
can be interpreted as reduction in the dimensions of the parameter space, reducing the scope of the calibration
task.

3.3 The second phase calibrated the parameters that are central to themodel results; those that govern the agents’
decisions to adopt or drop protective behaviour as an epidemic progresses (weights in Equation 3 and discount
in Equation 4). This phase is where dominance was used, to assess parameter sets against three criteria: size
and timing of maximum behaviour adoption, as well as the more usual criterion of minimising mean squared
error between actual and estimated behaviour.

3.4 Themodel parameters are summarised in Table 1, together with how theywere used in the calibration process.
While the TELL MEmodel included both vaccination and non-vaccination behaviour, only the latter is reported
here because the process was identical. Non-vaccination behaviour was calibrated with various datasets col-
lected during the 2009 H1N1 epidemic in Hong Kong. The calibration process is described in more detail in the
remainder of this section.

Dimension reduction: protective behaviour

3.5 Attitude distribution was based on a study of behaviour during the 2009 H1N1 epidemic in Hong Kong (Cowling
et al. 2010), which included four questions about hand hygiene: covering mouth when coughing or sneezing,
washing hands, using liquid soap, and avoiding directly touching common objects such as door knobs. A trian-
gular distribution over the interval [0,1] with mode of 0.75 was used to allocate attitude scores in the model as
an approximation to these data.

3.6 The e�icacy of protective behaviour (E) was set to zero (ine�ective) during calibration. That is, agents respond
to the changing epidemic situation in their decisionprocesses, but donot influence that epidemic. This ensures
simulationsusing the same randomseedswill generatean identical epidemic regardlessofbehaviouradoption,
allowing simulated behaviour to respond to the relevant incidence levels.

Dimension reduction: epidemic transmission

3.7 Several parameters that influence epidemic spread were estimated from data. These are the various transition
rates between epidemic states, the structure of the population in which the epidemic is occurring, and the
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Symbol Description Value

A0 Base attitudes Fixed distribution
Pr Population by region GIS data
R0 Basic reproduction ratio (gives β) Fixed at 1.5
1/λ Latency periodE → I Fixed at 2
1/γ Recovery period I → R Fixed at 6

Population traveling Fixed at 0.30
Long distance traveling Fixed at 0.85

W Severity relative to H1N1 Fixed at 1
δ Incidence discount To be calibrated
ωA Attitude weight (x2) To be calibrated
ωN Norms weight (x2) To be calibrated
B behavior threshold (x2) To be calibrated
E behavior e�icacy (x2) Fixed at 0

Meaning of ‘nearby’ Fixed at 3 patches

Note: Parameters associated with the e�ect of communication
are not listed as communication was removed from the calibra-
tion process.

Table 1: TELL MEmodel parameter settings for calibration.

mobility of that population. The multiplier in Equation 4 was set atW = 1, establishing H1N1 as the reference
epidemic.

3.8 The basic reproductive ratio (denotedR0) is related to the parameters in Equation 1 withR0 = β/γ (Diekmann
& Heesterbeek 2000). R0 for the 2009 H1N1 epidemic was estimated as 1.1-1.4 (European Centre for Disease
Prevention and Control 2010). Calibration experiments were run with R0 = 1.5 (the lowest value for which
an epidemic could be reliably initiated), latency period of 2 days (European Centre for Disease Prevention and
Control 2010), and infectious period of 6 days (Fielding et al. 2014).

3.9 The population at each patch was calculated from population densities taken from GIS datasets of projected
populationdensity for 2015 (obtained fromPopulationDensityGrid Future collectionheldbyCenter for Interna-
tional Earth Science Information Network - CIESIN - Columbia University & Centro Internacional de Agricultura
Tropical - CIAT 2013). These densities were adjusted to match the raster resolution to the NetLogo patch size
and then total population normalised to the forecast national population for 2015 (UnitedNations, Department
of Economic and Social A�airs, Population Division 2013).

3.10 As epidemic processes (Equation 1) occur independently within each patch, the model explicitly allocates a
proportion of the new infections created by a patch to other patches to represent spreading of the epidemic
due to travel. The proportion of new infections allocated to other patches was set at 0.3, with 0.85 allocated to
immediate neighbours and 0.15 allocated randomly to patches weighted by population counts. These values
provide a qualitatively reasonable pattern of epidemic spread.

Dominance analysis of behaviour parameters

3.11 Fourparametersaredirectly involved inagentadoptionofprotectivebehaviour: weights forattitudeandnorms,
the discount applied for the cumulative incidence, and the threshold score for adoption (ωA, ωN , δ, and B in
Equations 3 and 4). Briefly, multiple simulations were run while systematically varying these parameters to
generate a behaviour adoption curve. That curve was assessed against empirical data on three criteria, and
dominance analysis was used to identify the best fit candidates.

3.12 Broadly, the empirical behaviour data has an initial population proportion of approximately 65%, which rises
to 70% and then falls below the starting level. This rise and fall was considered the key qualitative feature of
the data and two aspects were included: timing and size of the bump. The three criteria to select the best fit
parameter sets were:

• mean squared error between prediction and actual over all points in the data series (MSE);

• thedi�erence invaluesbetween themaximumpredictedadoptionproportionandmaximumactual adop-
tion proportion (∆Max); and
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Parameter Range

Attitude weight (ωA) 0.2 by 0.05 to 0.7
Norms weight (ωN ) 0.1 by 0.05 to 0.5
Incidence discount (δ) 0.02 by 0.02 to 0.2
Behaviour threshold (B) 0.2 by 0.05 to 0.7

Table 2: Parameter values tested in the calibration process.

• the number of ticks (days) between the timing of themaximumpredicted adoption andmaximumactual
adoption (∆When).

3.13 Experimentsanddominanceanalysiswereperformedwith theSandtableModel Foundry (Sandtable2015). This
proprietary systemwas used tomanage several aspects of the simulation in a single pass: sampling the param-
eter space, submitting the simulations in a distributed computing environment via theNetLogo API, comparing
the result to the specified criteria, and calculating the dominance fronts. As each run takes severalminutes, the
sampling and distributed computing environment made it feasible to comprehensively explore the parameter
space in a reasonable time and the within-system dominance calculation simplified analysis.3

3.14 Simulations were run with parameter values selected from the ranges at Table 2, chosen so as to require a
contribution by attitude (ωA ≥ 0.2) to support heterogeneity of behaviour between agents on a single patch.
Parameter combinations were excluded if they did not include contributions by all three influencing factors of
attitude, norms (ωN ≥ 0.1), and threat (ωA + ωN ≤ 0.9). The parameter space was sampled using the Latin
Hypercubemethod, with 813 combinations selected.

3.15 Ten simulations were run for each parameter combination. Preliminary testing with 30 repetitions indicated
that simulations using the same parameters could generate epidemics that di�er substantially on when they
‘take o�’, but they had similar shapes once started, and hence similar behaviour adoption curves (not specif-
ically shown, but visible in Figure 5). Ten of the seeds were retained for use with the calibration simulations.
These random seeds generated epidemics with known peaks regardless of the behaviour parameter combina-
tion as the generated epidemic was not a�ected by protective behaviour (since e�icacy is set to 0).

3.16 The behaviour curves from the 10 simulations were centred on the timestep of the epidemic peak and aver-
aged. The average curve was compared to the (centred) 13 data points of the Hong Kong handwashing dataset
(Cowling et al. 2010, supplementary information) for calculation of the three fit criteria.

3.17 Parallel plot analysiswas used as an exploratory tool. This is an interactive technique using parallel coordinates
(Inselberg 1997; Chang 2015) to simultaneously show the full set of model parameters and the criteria metrics.
That is, simulation runs can be filtered with specific values or ranges of one or more of the input parameters or
di�erence from criteria.

3.18 Dominance analysis was used to identify the best fit candidate parameter sets. This technique assigns each
parameter set to a dominance front (using the algorithm of Deb et al. 2002). Front 0 is the Pareto e�icient fron-
tier, where any improvement in the fit for one criterion would decrease the fit against at least one of the other
criteria (Figure 1). Front 1 would be the Pareto e�icient frontier if all the front 0 parameter sets were removed
from the comparison, and so on for higher front values until all parameter sets are allocated a front number.

Results

4.1 The parameter sets that are not dominated are those on the Pareto e�icient frontier (front 0). These are de-
scribed at Table 3 with their performance against the three criteria. By definition, for all other parameter sets,
there is at least one on the frontier that is a better fit on at least one criterion and at least as good a fit on all
others. Thus, these are the objectively best candidates.

4.2 The choice between these for the best fit overall is subjective, trading performance in one criterion against
performance in the others and also adding other factors not captured in the criteria. Two methods were used
to assist with that choice, quantitative distance from best fit criteria and qualitative fit of behaviour curves.

4.3 The fit for all testedparameter sets is displayedat Figure 2,with thenon-dominated (front 0) candidatesmarked
in red and labelled with the set number from Table 3. Each appears in the lower le� corner of at least one of
the sub-figures. From (a) and (b), a small error in the timing of the maximum adoption cannot be combined
with a small error in either of the other properties. Focussing only on those other properties (sub-figure (d), the
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Parameter values Criteria
Set ωA ωN δ B MSE ∆Max ∆When

1 0.70 0.20 0.18 0.50 0.00 0.09 78
2 0.70 0.20 0.10 0.50 0.00 0.08 78
3 0.65 0.10 0.20 0.40 0.00 0.05 71
4 0.60 0.20 0.06 0.45 0.00 0.05 84
5 0.55 0.10 0.10 0.35 0.00 0.01 76
6 0.35 0.10 0.18 0.25 0.01 0.01 73
7 0.65 0.10 0.00 0.50 0.07 0.01 206
8 0.55 0.10 0.18 0.25 0.08 0.19 69
9 0.70 0.20 0.14 0.30 0.12 0.26 62
10 0.55 0.35 0.16 0.40 0.13 0.27 61
11 0.20 0.30 0.04 0.20 0.19 0.29 36
12 0.30 0.35 0.00 0.30 0.19 0.29 19
13 0.25 0.30 0.10 0.25 0.23 0.29 9
14 0.25 0.50 0.14 0.25 0.29 0.29 33
15 0.25 0.25 0.02 0.35 0.34 0.01 104

Table 3: Best fit parameter sets and their assessment.

relevant section of (c) expanded), parameter sets 5 and 6 achieve amuch closer maximum adoption compared
to sets 3 and 4, with only a small loss in the mean squared error. While the same analysis could have been
performed by examining Table 3 directly, the visualisation allows fast comparison, even with a larger number
of criteria.
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Figure 2: Average outcome over 10 simulations for each of 813 parameter sets. Subfigures (a), (b) and (c) display
the outcome against di�erent pairs of criteria, with subfigure (d) focussing on the best fit section of (c). Those
on the Pareto e�icient frontier are coloured red and numbered according to Table 3.
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4.4 These best fit candidates are also coloured red in the parallel coordinate analysis (see Figure 3). This revealed
that good fit parameter sets existed throughout the tested parameter space for the weights and discount, but
that the threshold shouldnot exceed0.5. Themainbenefit of this analysis, however, is interactive. For example,
it can provide a visualmethod of pattern-orientedmodelling filtering, by adjusting ranges on the criteria results
and displaying the parameter values of the simulations that survive.
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Figure 3: Interactive analysis of simulation experiments. The input parameter values appear in the le� section
of screen, and the fit against each criteria on the right. Simulation runs can be highlighted in groups (such as all
those on the Pareto e�icient frontier as displayed) or individually to explore the e�ect of di�erent combinations
of parameter values.

4.5 For the qualitative visualisation, fi�y simulations were run using the NetLogo BehaviorSpace tool (Wilensky
1999) for eachof the non-dominatedparameter sets. The average adoption curve is shown in Figure 4. Only sets
1 to 6 display the appropriate pattern of behaviour, with approximately two thirds of the population adopting
the behaviour before the start of the epidemic followed by an increase and then return to a similar level once
the epidemic has passed. An inspection of Table 3 shows that the mean squared error is similar for all six,
but parameter sets 5 and 6 also have a good match in the estimated maximum adoption level, supporting the
selection of either of these as the best fit.
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Figure 4: The average of 50 simulation runs for each of the non-dominated candidate parameter sets. The se-
lected best fit parameter set (set 6) is drawn in red. Empirical behavior values (extracted from Cowling et al.
2010, supplementary information) are shown with dots.

4.6 Ultimately, parameter set 6 was selected as the best fit and used as the TELL ME non-vaccination behaviour
default values. The individual runs for the model with these default parameter values are shown in Figure 5,
together with the average behaviour curve.
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Figure 5: 50 simulation runs for proportion adopting hand washing behaviour during the 2009 H1N1 epidemic
in Hong Kong, together with the average behaviour curve (and 95% confidence interval). Parameter values are:
0.35 for attitudeweight, 0.1 for normsweight, 0.55 for threat weight, 0.18 discount in cumulative incidence, and
0.25 for threshold. Empirical behaviour values (extracted fromCowling et al. 2010, supplementary information)
are shown with dots.

Discussion

5.1 This paper describes a detailed calibration process using the prototype TELL ME model as a case study. The
model is complicated, withmany components and parameters to reflect policy makers’ understanding of their
planning environment. It is also complex, with model behaviour shaped by two types of interactions. Per-
sonal decisions about protective behaviour a�ect epidemic progress, which influences perceptions of threat
and hence personal decisions. Behaviour decisions of agents are also directly influenced by the decisions of
nearby agents, through their perception of norms.

5.2 The calibration process first reduced the dimensions of the parameter space by setting epidemic parameters,
population density and attitude distribution to values drawn from the literature. Some other parameters were
set to values that removed their influence in the model (notably behaviour e�icacy and those associated with
communication).

5.3 This reduced the parameters required to calibrate the model to only four: attitude weight, norms weight, inci-
dence discount and adoption threshold. These parameters control the central process of themodel - adoption
of protective behaviour in response to an epidemic. With only limited empirical information about behaviour
throughout an epidemic, we used pattern-oriented modelling and attempted to calibrate against three weak
signals: timingof thebehaviourpeak (compared to theepidemicpeak),maximum level of protectivebehaviour,
andminimising the mean square di�erence between the simulation estimate andmeasured behaviour level.

5.4 Having three assessment criteria opens the question as to how to compare the runs where they have di�erent
rankings across criteria. The standard approach is to set acceptance thresholds for each criterion
(Railsback&Grimm2012) and then select fromonly those that pass all. However, this is ine�icient: if thresholds
are set low enough to pass simulations that are generally excellent but are slightly less fit on one criterion, then
the thresholds also allow through any simulation that is slightly less fit on all criteria. Instead, we have used the
concept of dominance to identify the objectively best parameter sets; for any excluded simulation, there is at
least onemember of the dominant candidates that is better on at least one criterion and noworse on all others.
Additional criteria were used to choose between these objectively good candidates, determining what to give
up in order to achieve the best overall fit.

5.5 There is little similarity in the non-dominated parameter sets. Very di�erent parameters can achieve similar
outcomes (for example, sets 5 and 6), and parameter values in the best fit sets covered a broad range of values.
This reflects the interdependence between the parameters and emphasises the di�iculties in calibrating the
TELLMEmodel, it would not have beenpossible to identify these candidates by tuning parameters individually.

5.6 The rigorous calibration process was instrumental in detecting structural problems with the model. In partic-
ular, the prototype was unable to generate results with a behaviour peak earlier than the epidemic peak, in
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conflict with the empirical results for hand hygiene during the Hong Kong 2009 H1N1 epidemic. A reasonable
fit could have been achieved against a minimum mean squared error single criterion, but assessing against
multiple criteria highlighted the timing weakness.

5.7 Further consideration of the model rules makes it clear that this is a structural or theoretical gap rather than a
failure in calibration. As attitude, weights and the threshold are fixed, change in behaviour arises from changes
in the norms or perceived threat. The attitude weight is instrumental in setting the proportion adopted in the
absence of an epidemic, but plays no part in behaviour change as the attitudes of agents are constant. As
the epidemic nears an agent, incidence increases near the agent, which also increases perceived threat and
may trigger adoption. This may also trigger a cascade through the norms (proportion of visible agents who are
protecting themselves) component. However, the threat component of thebehaviour decision (Equation 3) can
only respond to an epidemic, not anticipate it, and the norms component can only accelerate adoption or delay
abandoning it. Therefore, regardless of parameter values, the simulation is unable to generate a pattern with a
behaviour curve peak before the epidemic peak.

Conclusion

6.1 Ultimately, the TELL ME ABM was unable to be calibrated adequately for policy assessment. That is, the best
fit parameter set was used as the model default values, but the simulation did not produce realistic model
behaviour. For the purposes of the TELL ME project, this outcome was disappointing but not unexpected. The
ABM was a prototype intended to identify the extent to which such a model could be developed for planning
purposes. The attempt highlighted both the limited empirical information about behaviour during an epidemic
and the absence of information about the e�ect of communication. Relevant behavioural informationmust be
collected if a full planning model is to be developed in the future.

6.2 In contrast, the use of dominance was successful in identifying candidate parameter sets that are objectively
best against several competing criteria. Selection between these candidates was then relatively simple as only
a limited number needed to be considered. Further, the rigorous process highlighted structural problems in
themodel as the desired timing of the behaviour peak could not be achieved while also achieving good perfor-
mance in other criteria.
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Notes

1This research has received funding from the European Research Council under the European Union’s Sev-
enth Framework Programme (FP/2007-2013), Grant Agreement number 278723. The full project title is TELLME:
Transparent communication in Epidemics: Learning Lessons from experience, delivering e�ective Messages,
providing Evidence, with details at http://tellmeproject.eu/.

2Themodel and supporting documentation are available from several online locations. The EU project site
links to the model code and users’ guide at http://www.tellmeproject.eu/node/392, together with re-
ports concerning the project. The model and users’ guide are also lodged with OpenABM at https://www.
openabm.org/model/4536/version/1. The model and users’ guide are also available from the CRESS web-
site at http://cress.soc.surrey.ac.uk/web/resources/models/tell-me-model, as is the working pa-
per with the detailed technical information. The calibration simulation dataset is available on request from the
first author.

3Similar functionality could be achievedwithin anopen source environment by combining tools: one for the
parameter space sampling and simulation management (such as OpenMOLE, MEME or the lhs and RNetLogo
packages in R), and another to analyse the results and calculate the dominance fronts (such as the tunePareto
package in R).
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