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A B S T R A C T 

A fundamental prediction of the cold dark matter (CDM) model of structure formation is the existence of a vast population of dark 

matter haloes extending to subsolar masses. By contrast, other dark matter models, such as a warm thermal relic (WDM), predict 
a cutoff in the mass function at a mass which, for popular models, lies approximately between 10 

7 and 10 

10 M �. We use mock 

observations to demonstrate the viability of a forward modelling approach to extract information about low-mass dark haloes 
lying along the line of sight to g alaxy–g alaxy strong lenses. This can be used to constrain the mass of a thermal relic dark matter 
particle, m DM 

. With 50 strong lenses at Hubble Space Telescope resolution and a maximum pixel signal-to-noise ratio of ∼50, 
the expected median 2 σ constraint for a CDM-like model (with a halo mass cutoff at 10 

7 M �) is m DM 

> 4 . 10 keV (50 per cent 
chance of constraining m DM 

to be better than 4.10 keV). If, ho we ver, the dark matter is a warm particle of m DM 

= 2 . 2 keV , our 
‘approximate Bayesian computation’ method would result in a median estimate of m DM 

between 1.43 and 3.21 keV. Our method 

can be extended to the large samples of strong lenses that will be observed by future telescopes and could potentially rule out the 
standard CDM model of cosmogony. To aid future survey design, we quantify how these constraints will depend on data quality 

(spatial resolution and integration time) as well as on the lensing geometry (source and lens redshifts). 
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 I N T RO D U C T I O N  

onstraining the identity and mass of the dark matter particle is one of
he most challenging goals in physics today. Astrophysics can play a

ajor role in this endea v our. Cosmological N -body simulations have
ho wn ho w dark matter haloes form from initial density fluctuations
n the Universe (Frenk et al. 1985 ). The halo mass function (i.e. the
bundance as a function of mass) and internal density profiles are
etermined by the power spectrum of initial fluctuations, which itself
epends on the nature of the dark matter particle. 
In the case of cold dark matter (CDM), the halo mass function

xtends as a power law to very low masses (about Earth mass
or a 100-GeV particle) (Wang et al. 2020 ). This is perhaps the
ost fundamental prediction of the standard model of cosmology,
 CDM. By contrast, if the dark matter is ‘warm’ (WDM), the thermal

elocities of the particles at early times damp small-mass fluctuations
eading to a cutoff in the halo mass function at a scale that depends
n the inverse of the particle mass; for particles of keV mass, this is a
ew times 10 8 M �. Thus, a measurement of the small-mass end of the
alo mass function would set strong constraints on the properties of
he dark matter particle, including its mass, and could, in principle,
ule out some of the main current candidates, including CDM. 

Ho we ver, measuring the properties of dark matter haloes is not
ri vial. In suf ficiently massi ve haloes, gas can flo w to the centre
 E-mail: qiuhan.he@durham.ac.uk 
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nd give birth to a luminous galaxy, thus, in principle, enabling
irect number counts. The observed clustering of luminous galaxies
rovided the first astrophysical constraints on the mass of dark matter
articles, ruling out light particle candidates called ‘hot dark matter’,
uch as light neutrinos, as the predominant form of dark matter
Frenk, White & Davis 1983 ; White, Frenk & Davis 1983 ; see Frenk
 White 2012 for a re vie w). Ho we ver, these observ ations are unable

o constrain WDM particles, which would require measurements of
aloes with masses less than ∼10 10 M �, that are too small to have
ade a luminous galaxy (Efstathiou 1992 ; Thoul & Weinberg 1996 ;
enson et al. 2002 ; Sawala et al. 2016 ; Benitez-Llambay & Frenk
020 ). Furthermore, baryonic physics can have a significant effect
n dark haloes in this mass range (particularly for those living within
 galaxy) adding further complexity to the task. Strong gravitational
ensing is an observable that can, in principle, be used to detect dark
aloes and constrain the dark matter particle mass. Other observables
nclude the statistics of the Lyman- α forest (Viel et al. 2013 ; Ir ̌si ̌c
t al. 2017 ; Garzilli et al. 2019 ), features in stellar cluster tidal debris
n the Milky Way (Bonaca et al. 2019 ) and populations of Milky

ay satellites (Lo v ell et al. 2016 ; Schneider 2016 ; Lo v ell et al.
017 ; Nadler et al. 2021 ; Newton et al. 2021 ). 
Strong gravitational lensing is the phenomenon whereby light rays

rom a distant galaxy are deflected by a foreground object, resulting
n the formation of large luminous arcs or multiple distinct galaxy
mages. In principle, any object that happens to lie near the light rays
oming from the background source galaxy will leave an imprint
n the image, such that small perturbations (or lack thereof) to the
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1 In strong lensing, as viewed from the image plane, not only is the distant 
light warped by foreground objects, like a luminous source galaxy deflected 
by a lens, but also the mass on distant planes is warped by near planes, and 
thus we see some arc-like low-mass dark matter haloes in these convergence 
maps even though they are all spherical. 
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ensed source light can be used to infer the presence (or absence) of
ow-mass dark matter haloes. Depending on the source size and the 
ind of data available, two broad types of analysis are possible. 
If the source is an extremely compact object, like a quasar, when

ensed, one will observe multiple point sources. Low-mass ‘invisible’ 
ark matter haloes along the line of sight induce anomalies in the
ux ratios among multiple images, and by analysing those anomalies 
ne can constrain the dark matter particle mass (Mao & Schneider 
998 ; Metcalf & Madau 2001 ; Dalal & Kochanek 2002 ; Amara
t al. 2006 ; Xu et al. 2012 ; Nierenberg et al. 2014 ; Xu et al. 2015 ;
ierenberg et al. 2017 ; Gilman et al. 2019 ; Hsueh et al. 2020 ;
ilman et al. 2020a ). Ho we ver, because of the limited amount of

nformation contained in the fluxes and positions of multiple images 
f a point-like source, there are degeneracies between the smooth 
odel assumed for the lens and the inferred number of low-mass

erturbing haloes. 
If the source is extended (e.g. an ordinary galaxy), it appears after

ensing as multiple arcs or a complete Einstein ring. Sufficiently 
assive dark matter haloes along the line of sight perturb local 

egions of the arc in a way that is measurable using techniques
uch as the pixelized potential correction method (Vegetti et al. 
012 , 2014 , 2018 ; Ritondale et al. 2019 ). By combining results
or individual haloes in many systems, one can draw conclusions 
egarding the halo mass function (e.g. Vegetti & Koopmans 2009 ; Li
t al. 2016 ). Ho we v er, this e xplicit subhalo modelling has demanding
equirements on image quality and resolution and so far only a few
alo detections have been reported with masses below 10 10 M �
Vegetti et al. 2010 , 2012 ; Hezaveh et al. 2016 ). 

The detection of individual haloes or subhaloes requires their mass 
nd position to be such that they produce an observable perturbation 
o the lensed image of the source. The resolution and signal to noise
f the data thus define the ‘sensitivity’ to halo detection. Haloes of
ass ∼10 8 M � are detectable with Keck AO data (Vegetti et al.

012 ) while haloes as light as 10 6 M � are detectable with radio
ata (McKean et al. 2015 ). Recent studies have proposed that lower
asses may be accessible by instead extracting, statistically, the 

umulative perturbation of all intervening haloes on strong lensing 
rcs, even though none of these haloes could be detected individually 
Brewer, Huijser & Lewis 2016 ). 

Most studies have focused on determining a theoretical relation 
etween the power spectrum of the convergence field and that of
he image residuals after fitting a smooth ‘macro model’ to the lens
alaxy mass distribution (Chatterjee & Koopmans 2018 ; D ́ıaz Rivero 
t al. 2018 ; Cyr-Racine, Keeton & Moustakas 2019 ). There is one
xample using real data, in which Bayer et al. ( 2018 ) analysed
mage residuals of the system SDSS J0252 + 0039, obtaining a 
etection of power much higher than the prediction of the CDM
odel. There remain a number of questions as to what assumptions

re appropriate for this technique. For example, to simplify the 
heoretical calculations, a random Gaussian field is often assumed 
or the convergence, potentially omitting multiplane lensing effects 
McCully et al. 2014 ; Schneider 2014 ). Indeed, recent studies have
hown that the expected signal in a � CDM universe is dominated
y line-of-sight haloes at different redshifts to the lens galaxy as
pposed to subhaloes within the lens galaxy itself (Li et al. 2016 ,
017 ; Despali et al. 2018 ; C ¸ a ̆gan S ¸eng ̈ul et al. 2020 ). Here, we will
ocus on how the line-of-sight low-mass dark matter haloes contribute 
o perturbations on lensing images. 

To form a visual impression of how the line-of-sight low-mass 
ark haloes perturb the images, in Fig. 1 we show the ef fecti ve
onv ergence, as deriv ed from the deflection angles (upper panels; 
ilman et al. 2019 ; C ¸ a ̆gan S ¸eng ̈ul et al. 2020 ), and the corresponding
 2
esiduals obtained by fitting the smooth lensing model to the image
lower panels). As may be seen from the effective convergence 
ap, even though all low-mass dark matter haloes are modelled as

pherical profiles, some are heavily stretched into arc-like features 
ue to multiplane lensing effects, 1 which are difficult to compute 
nalytically. Comparing the left two columns, the ‘warm’ case in the
iddle and the ‘cold’ case in the left have very similar residuals,

articularly the large patches, even though the warm case has far
e wer lo w-mass dark matter haloes. This suggests that the residuals
re dominated by massive dark matter haloes and to distinguish 
etween different dark matter models, we need to identify the small
atches. The system shown in the third column has a higher redshift
ource and thus many more low-mass dark matter haloes along the
ine of sight, which results in larger and more complicated residuals.

In this work, we investigate whether a forward modelling proce- 
ure built around the approximate Bayesian computation (ABC) 
tatistical inference method can extract meaningful information 
bout the properties of low-mass dark matter haloes perturbing strong 
ensing images. As opposed to determining a concise mathematical 
xpression, our forward modelling method relies on robust modelling 
f the perturbations on lensing images induced by small dark haloes,
hich can directly build up a relation between the models of interest

nd the observations without any further assumptions. The approach 
as first applied to strong lensing by Birrer, Amara & Refregier

 2017b ), who analysed the strongly lensed quasar RXJ1131-1231. 
ubsequently, Gilman et al. ( 2019 ) used this approach to study flux
atio anomalies of point-like sources with a full realization of dark
atter haloes including line-of-sight dark haloes. 
We apply the ABC framework to a simulated sample of 50 HST -

esolution strongly lensed extended sources, which is a comparable 
umber of lenses to the high-quality strong lensing SLACS sample 
Bolton et al. 2006 , but the details of our sample are different from
hose of SLACS). Each simulation contains a full cosmological 
ealization of small dark haloes whose redshift distribution requires 
nalysis using multiplane ray tracing. To apply the ABC method, we
imulate and refit each of these 50 lenses 20 000 times, producing a
otal of 1 million lens models. The scale of this analysis necessitates
n automated framework for lens modelling for which we use the
pen source software PyAutoLens. 2 Our aim is to determine whether 
he cumulative distortions due to the many dark matter haloes 
erturbing the light of the lensing arcs can be extracted to determine
he halo mass function and hence the dark matter particle mass. 

Our main goal is to demonstrate that this signal is present in
ST imaging of strong lenses and that it can, in principle, be

xtracted using modern lens modelling techniques, given realistic 
e vels of noise. Ho we ver, our study is based on idealized systems:
e make a number of simplifying assumptions for the structure of

he lens and source and neglect effects such as an imperfect point
pread function (PSF) model, correlated noise, or inadequate lens 
ight subtraction. These assumptions will need to be relaxed before 
ur methodology can reliably be applied to real data, including, for
xample, a non-parametric source model (e.g. Warren & Dye 2003 ),
dditional complexity in the lens model (Vegetti & Koopmans 2009 ;
ightingale et al. 2019 ), and a proper treatment of the PSF and of

orrelated noise. 
 ht tps://github.com/Jammy2211/PyAut oLens 
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Figure 1. Upper panels: the ef fecti v e conv ergence of low-mass perturbers. Lower panels: the corresponding best-fitting image residuals. The colour scale is in 
units of e − pix −1 s −1 . The parameters of the lens and source galaxies shown in the three columns are the same as those used in Fig. 4 , except for the source 
redshifts. The lensing systems in the left and middle columns have a source at z = 1, while that in the right column has a source at z = 2.5. The systems in both 
the left and right columns have a cutoff in the mass function at 10 7 M �, while the one in middle column has the cutoff at 10 9 M �. The inner and outer dashed 
circles in each panel have radii, 0.5 

′′ 
and 2.4 

′′ 
, respectively. 
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We first introduce the forward modelling procedure and lensing
odels in Section 2. In Section 3, we show tests of the accuracy of

his method, the dependency on different lensing and observational
ettings, and compare our method to other methods, discussing its
ossible future applications and shortcomings. Finally, we conclude
n Section 4. Throughout the paper, we adopt the cosmological
arameters given by WMAP9 (Hinshaw et al. 2013 ). 

 P RO C E D U R E  A N D  M O D E L S  

n this section, we first provide an overview of our forward modelling
rocedure. We then describe the parametric models we use for the
ass distributions of the main lens, dark matter haloes, and light

istributions of the source galaxies. We then describe how we fit our
imulated images with a combination of a smooth parametric lens
nd source model, and how the residuals of each are used within an
BC framework to place constraints on the mass function of dark
atter haloes. 

.1 The forward modelling scheme 

n Fig. 2 , we provide an o v erview of the forward modelling pro-
edure. Starting from an observed strong lensing image (which in
his paper is simulated), we begin by fitting it with parametric lens
nd source models, omitting substructure from the lens model. This
rocedure gives us best-fitting smooth lens mass and source light
odels, as well as a map of the best-fitting image residuals (the

bserved image minus the best-fitting model image). In this work,
NRAS 511, 3046–3062 (2022) 
best-fitting’ refers to the maximum likelihood model determined by
eans of a non-linear search. 
It is impossible to fit all the dark matter substructure in a similar

ay, because of its low mass and low signal to noise (Birrer et al.
017b ). Ho we ver, we can use the best-fitting source and macroscopic
ens model to simulate a set of images of this lens system, each
ncluding a random realization of dark matter substructure (we call
his set of images the ‘forward models’). We refit each forward model
n the same manner as we fitted the ‘observed’ image, providing
est-fitting image residuals for each forward model. We compare the
orward-modelled residuals with the observed residuals, as described
n detail in Section 2.2, and apply ABC inference to obtain a
onstraint on the cutoff in the halo mass function. 

.2 Lensing simulations 

he strong lens simulations used in this work represent the lensing
ystem with three components: the lens galaxy, the source galaxy,
nd the line-of-sight dark matter haloes. 

.2.1 Lens and source 

e simulate the smooth mass distribution of our lens galaxy as a
wo-dimensional singular isothermal ellipsoid (SIE) of the form, 

( x , y ) = 

σ 2 

2G 

1 √ 

x 2 q + y 2 /q 

= 

c 2 

8 πG 

D A ( 0 , z source ) 

D A ( z lens , z source ) D A ( 0 , z lens ) 

R E √ 

x 2 q + y 2 /q 
, (1) 

art/stac191_f1.eps
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Figure 2. An o v erview of the forward modelling procedure for one lensing 
system. The observed image is fitted with a parametric lens mass model 
and a parametric source light model, producing a best-fitting lens model, 
source model, and image residuals. We use this best-fitting model to generate 
N -simulated images, including random realizations of low-mass perturbing 
haloes in the lens model. The number of perturbers as a function of mass 
depends on the properties of the dark matter as encoded in the ‘half-mode 
mass’, M hf . The distribution of M hf o v er the N ‘forward models’ follows our 
prior on M hf . Each of the forward model images is fit in the same way as the 
observed image to produce N sets of image residuals. These forward model 
residuals are compared with the observed residuals, using ABC to constrain 
M hf . 
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here R E is the projected Einstein radius, which can be related 
o the velocity dispersion of the profile, σ , given the lens and
ource redshifts ( z lens and z source , respectively) and a cosmology. 
he quantity, D A ( z 1 , z 2 ), is the angular diameter distance between z 1 
nd z 2 ; q is the axial ratio. For simplicity, we do not add any external
hear to our mock observ ations. Ho we ver, we include an external
hear when modelling the lenses. 

For the source, we adopt the S ́ersic ( 1963 ) profile, 

 ( r) = I 
′ 
exp 

[ 

−b n 

(
r 

r e 

)1 /n 
] 

, (2) 

here I 
′ 

is the scale intensity, n is the Sersic index, and b n is a
unction of n defined such that r e is the half-light radius. Ho we ver,
he image residuals caused by perturbations to the lens model (in our
ase the perturbing haloes) are ef fecti vely a product of the deflection
ngles due to the perturbation and the gradient of the source surface
rightness (Vegetti & Koopmans 2009 ). The cuspy centre of the 
ersic profile creates an infinite surface brightness gradient that 
umerically causes infinite surface brightness differences. This can 
e o v ercome by o v ersampling the source light but at the e xpense of
ncreased computational run time. Instead, we use a Sersic profile 
ith a ‘core’ (Graham et al. 2003 ; Trujillo et al. 2004 ) to simulate

he background source. This has the form, 

 ( r) = I 
′ 
exp 

[ 

−b n 

(
r α + r αc 

r αe 

)1 / ( nα) 
] 

, (3) 
here r c is the ‘core radius’, which marks the transition radius from
he Sersic profile to constant surface brightness. When r c → 0, the
rofile reduces to the Sersic form. The parameter, α, quantifies how
uickly the profile transitions from a regular Sersic form to one with
 constant surface brightness core. To simplify both our simulation 
nd modelling processes, we fix α = 2 and r c = 0.01 ′ . With these
arameters fixed, the source model has the same three free parameters 
s the regular Sersic profile: r e , n , and I 

′ 
. 

.2.2 Low-mass dark matter haloes 

ow-mass dark matter haloes that can perturb lensing arcs can be
f two types: subhaloes within the main lens, or central haloes at
ifferent redshifts that happen to lie close to the path of light from
he source galaxy to the observer. We will refer to the latter as line-
f-sight haloes. 
The number and mass distribution of subhaloes within the lens 

re somewhat uncertain. Subhaloes are subject to tidal stripping and 
isruption; these effects are significantly enhanced in hydrodynamic 
imulations compared to dark matter-only simulations due to the 
resence of the dense stellar component at the centre of the main
ens (Garrison-Kimmel et al. 2017 ; Sawala et al. 2017 ; Richings
t al. 2021 ). The degree of disruption also depends on the details of
he galaxy formation model (Richings et al. 2020 ). In contrast, line-
f-sight haloes are not subject to these environmental effects and, in
he mass range of interest here, they are entirely ‘dark’, having never
ormed stars. 

Recent studies (Li et al. 2016 , 2017 ; Despali & Vegetti 2017 ;
 ¸ a ̆gan S ¸eng ̈ul et al. 2020 ) have shown that for the lens and source

edshifts typical of SLACS lenses (Bolton et al. 2006 ), the lensing
erturbations mainly arise from line-of-sight haloes. This is fortunate 
ecause the irrele v ance of uncertain baryon ef fects makes line-of-
ight haloes a particularly clean probe of a cutoff scale in the halo
ass function. In this work, we focus on these low-mass, line-of-

ight haloes whose mass function has the form given by Lo v ell et al.
 2014 ): 

 ( M 200 , z) ≡ d 2 N 

d M 200 d V 

( M 200 , z) 

= F CDM 

( M 200 , z) 

(
1 + 

M hf 

M 200 

)−1 . 3 

. (4) 

his is composed of two parts, the CDM mass function, F CDM 

( M 200 ,
), for which we use the form derived by Sheth et al. ( 2001 ), and
 cutoff parametrized by the ‘half-mode’ mass, M hf , a characteristic
ass corresponding to the mass scale at which the dark matter

ransfer function falls to half the CDM transfer function. The half-
ode mass can be related to the mass of the dark matter particle,
 DM 

, as, 

 hf = 10 10 
(m DM 

keV 

)−3 . 33 
M �h −1 , (5) 

here h is the Hubble parameter in units of 100 km/s/Mpc (Lo v ell
t al. 2014 ). From the perspective of strong lensing, M hf may be
egarded as an ef fecti ve ‘cutof f’ mass in the dark matter mass
unction, below which there are very few haloes. 

We draw low-mass dark haloes in a light-cone between the 
bserver and the source galaxy within an angular radius, r lc , chosen
s, 

 lc = 

{
5 . 0 ′′ ( z ≤ z lens ) 
5 . 0 ′′ − 2 . 0 ′′ × D A ( z lens , z ) D A ( 0 , z source ) 

D A ( 0 , z ) D A ( z lens , z source ) 
( z > z lens ) 

, (6) 
MNRAS 511, 3046–3062 (2022) 
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here D A is the angular-diameter distance and z lens and z source are the
edshifts of the lens and source galaxies, respectively. The angular
adius of the light-cone is fixed at 5.0 

′′ 
(this is ∼3 times the Einstein

adius, and including haloes at larger radii hardly affects our lensing
mages) in front of the main lens and gradually decreases behind
rom 5.0 

′′ 
to 3.0 

′′ 
at the source redshift, which ensures that all

erturbers that might influence the lensed image of the source are
ncluded. The light-cone is evenly divided into redshift bins, of width
z = 0.01, which balances the accuracy and computational cost of

he calculation (see Appendix A for details). Within each bin, we
ample from the halo mass function, assign density profiles from
he halo mass–concentration relation corresponding to that redshift,
nd place these perturbing haloes randomly on the central redshift
lane. Neglecting the clustering of the line-of-sight haloes is a good
pproximation if, o v er the angular e xtent of interest, the typical
ine-of-sight separation of pairs of haloes is much larger than their
orrelation length. This is expected to be true because (a) the intrinsic
lustering of low-mass haloes is weak (Kaiser 1984 ; Sheth & Tormen
999 ), and (b) the angular extent of interest is very narrow since it is
et by the width of the Einstein ring image. 

We generate low-mass haloes with M 200 between 10 6 M � and 10 10 

 � within the light-cone. Depending on the dark matter model, a
ignificant fraction of the mass in the Universe can exist as collapsed
bjects in this mass range. To solve correctly the strong lensing
quations (which have already assumed a background universe), we
dd ne gativ e mass sheets on to each plane to compensate for the
therwise ‘double-counted’ mass within perturbers in the light-cone
Petkova, Metcalf & Giocoli 2014 ; Birrer et al. 2017a ; Gilman et al.
019 ). For each plane, we include a mass sheet with constant ne gativ e
urface density equal to the expected density in low-mass haloes on
hat plane. This leads to a mass sheet with a surface density 

 ne gativ e = − 1 

A 

∫ 
F ( M 200 , z) M( M 200 , z, s) d M 200 d s d V , (7) 

here A is the physical area of the light-cone at the plane’s redshift,
 ( M 200 , z) is the mass function, and M ( M 200 , z, s ) is the total mass
f a dark halo on the plane, which can differ from M 200 due to
alo truncation. The ‘s’ denotes some other parameters of the dark
atter profile; in our case, as we discuss below, it represents the

concentration’ and ‘truncation radius’. 
Instead of modelling haloes as Navarro–Frenk–White (NFW)

rofiles (Navarro, Frenk & White 1996 , 1997 ), which have an infinite
otal mass (when integrating to infinite radius), we use a truncated
FW profile (Baltz, Marshall & Oguri 2009 ), 

( r ) = 

M 0 

4 πr ( r s + r ) 2 
· r 2 t 

r 2 t + r 2 
, (8) 

hich has an additional truncation term compared with the standard
FW form. Here, the scale mass, M 0 , and scale radius, r s , are a pair
f parameters that specify an NFW profile and r t is the truncation
adius. With the addition of the truncation term, ρ( r ) ∝ r −5 at large
adii, and the profile now has a finite mass given by 

 t = M 0 
τ 2 

( τ 2 + 1) 2 
[( τ 2 − 1) ln τ + τπ − ( τ 2 + 1)] , (9) 

here τ = r t / r s . We set the truncation radius to be the corresponding
FW r 100 , the radius within which the average density of an NFW
rofile is 100 times the critical density of the universe. With τ
xed to r 100 / r s , the tNFW profiles are determined by the same two
arameters as the NFW profile, M 200 and the concentration, c =
 200 / r s , which quantifies how centrally concentrated a halo is. Haloes
hat form earlier typically have higher concentrations (Navarro et al.
NRAS 511, 3046–3062 (2022) 
996 , 1997 ). Since the reduction in small-scale power in a WDM
odel leads to later formation time for low-mass haloes, these are

ess concentrated than their CDM counterparts (Lo v ell et al. 2012 ;
chneider et al. 2012 ; Macci ̀o et al. 2013 ; Bose et al. 2016 ; Ludlow
t al. 2016 ). 

When considering WDM models, we adopt the mass–
oncentration relation of Bose et al. ( 2016 ) 

( M 200 , z) = c CDM 

( M 200 , z) 

×
( 

(1 + z) 0 . 026 z−0 . 04 

(
1 + 60 

M hf 

M 200 

)−0 . 17 
) 

, (10) 

here c CDM 

( m , z) is the mass–concentration relation in the CDM
ase. For CDM, we use the mass–concentration relation of Ludlow
t al. ( 2016 ), which agrees with recent simulation results from
ang et al. ( 2020 ), who measured halo concentrations in � CDM

imulations o v er 20 orders of magnitude in halo mass. We use the
ublic package COLOSSUS (Diemer 2018a ) to compute the mass–
oncentration relation. The Ludlow et al. ( 2016 ) relation is for the
edian concentration at a given mass, but simulations predict scatter

n concentration at fixed mass, which is well described by a lognormal
istribution (Neto et al. 2007 ). As a result, we include lognormal
catter in the mass–concentration relation, with a standard deviation
f 0.15 dex, as shown by Wang et al. ( 2020 ). 
Multiplane ray tracing is necessary to calculate the effect of line-

f-sight haloes on flux ratio anomalies with sufficient precision
o match observations (Gilman et al. 2019 ). We use the publicly
vailable software package PYAUTOLENS (Nightingale & Dye 2015 ;
ightingale, Dye & Massey 2018 ; Nightingale et al. 2019 ; Nightin-
ale et al. 2021b ) to simulate lenses using the light and mass profiles
escribed abo v e. To define our fiducial lens sample, we simulate 50
nique lensing systems with different values for the lens SIE mass
odel (e.g. Einstein radius, axial ratio, etc.) and source core-Sersic

rofile. The input M hf is 10 7 M �. For all 50 systems, we assume lens
edshifts of 0.5 and source redshifts of 1. 

We produce observations representative of Hubble Space Tele-
cope imaging, with a pixel size of 0.05 arcsec, a Gaussian PSF with
 standard deviation of 0.05 arcsec, and background sk y lev el of
e −/pix/s. We set the exposure time to be 600 s. The source surface
rightness of each simulation is chosen such that the maximum
ignal-to-noise ratio (e.g. in the brightest pixel) has a value of
50. Table 1 summarizes the models and parameters for our mock

bservations, where closed brackets indicate the range of values from
hich each parameter is randomly dra wn. F or conv enience, we use
 T } fiducial to denote the set of true parameter values used for our
ducial tests and a superscript i to represent the parameters of the
 -th lensing system. Mock images of our 50 strong lensing systems
re shown in Fig. 3 . 

.3 Analysis process 

ur analysis of each mock observation consists of two steps: smooth
odel fitting, followed by ABC inference. Below we describe the

etailed steps in this process and illustrate them for one system. 

.3.1 Smooth model fitting 

irst, we fit a simple lens model to the mock lensing image. This
onsists of a smooth parametric model plus an external shear for
he lens galaxy mass distribution (the macro model ) and a smooth
arametric model for the source. We adopt the same parametric
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Table 1. Fiducial model parameters. Closed brackets indicate the range 
from which values are randomly drawn. 

Parameter Range or value 

Lens Elliptical isothermal 
Centre (x, y) [ 

′′ 
] (0.0, 0.0) 

R E [ 
′′ 
] [1.2, 1.6] 

Axial ratio [0.6, 0.95] 
Position angle [ ◦] 30 
Redshift 0.5 

External shear 
Magnitude A 0 
Position angle [ ◦] 0 

Source Elliptical core-Sersic 
Centre ( x , y ) [ 

′′ 
] ([ −0.3, 0.3], [ −0.3, 0.3]) 

r e [ 
′′ 
] [0.1, 0.5] 

n [1.5, 2.5] 
I 
′ 

[e − pix −1 s −1 ] 7.4 
Axial ratio [0.5, 0.95] 
Position angle [ ◦] [10, 100] 
r c [ 

′′ 
] 0.01 

α 2.0 
γ 0.0 
Redshift 1.0 

Dark haloes Truncated NFW profile 
F CDM 

Sheth, Mo & Tormen ( 2001 ) 
c CDM 

Ludlow et al. ( 2016 ) 
σlog 10 c CDM 0.15 dex 
tNFW τ r 100 / r s 
M hf [M �] 10 7 

Image 
Pixel size [ 

′′ 
] 0.05 

PSF σ [ 
′′ 
] 0.05 

t exp [s] 600 
Background sky [e − pix −1 s −1 ] 1.0 
max S/N of pixels ∼50 
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orms we used when generating the simulated mock image, an SIE
ens mass model, and a core-Sersic source. 

We use PYAUTOLENS to fit the mock images and adopt PY-
ULTINEST with constant sampling efficiency mode switched on 

Feroz, Hobson & Bridges 2009a ; Buchner et al. 2014a ) for the
on-linear optimization. Table 2 shows the inferred parameters for 
his fit, alongside the true input values for the first mock image.
o distinguish between the true inputs and the best-fitting values, 
e label the latter as { F } fiducial , where a superscript, i , denotes the
est-fitting parameters for the i -th lensing system. This table shows
hat the inferred and input lens model is close but not in perfect
greement; this is due to the effects of the low-mass dark matter
aloes. We will show later that this small mismatch does not affect
ur calculation. 
In the upper and lower panels of Fig. 4 , we show the ‘observed’

mage and best-fitting residuals for one of our 50 mock observations. 
o develop intuition on how the low-mass perturbers affect the 

mage residuals, we further show the ‘ef fecti v e conv ergence’ (the
ivergence of deflection angles) of low-mass perturbers and the 
orresponding best-fitting residuals in Fig. 1 . We assume a very 
mall constant noise to show the residuals clearly. The three strong
ensing systems shown have the same lens and source galaxy as
n Fig. 4 , except that the source for the system of the right-hand
olumn is at z = 2.5. For a clear comparison, we make sure that
he three systems share the same realization of low-mass purturbers. 
o achieve this, instead of applying the mass function described 
y M hf in equation (4), we draw haloes from the mass function
f Sheth et al. ( 2001 ) but discard those with M 200 below a certain
alue. Furthermore, we assume no correlation between M hf and the 
ass–concentration relation. Please note that this change of low- 
ass perturber realization is implemented only for Fig. 1 ; in the

est of this paper, we use the mass function and mass–concentration
elation described by equations (4) and (10), respectively. 

In Fig. 1 , the systems in the left and right columns have a cutoff
n the mass function at 10 7 M �, while the system in the middle
olumn has a cutoff at 10 9 M �. As seen from the left two columns,
he system with a lower cutoff in the mass function has far more low-

ass perturbers and thus more subtle structure in the residuals. When
omparing the left and the right columns, we see that the number of
ow-mass perturbers increases significantly with the source redshift 
nd the ‘profiles’ of individual perturbers are more heavily distorted 
ecause of the multiplane lensing effect. Also, for a higher redshift
ource galaxy, the residuals are larger. 

.3.2 ABC inference through forward modelling 

pproximate Bayesian computation is a likelihood-free method 
uitable for problems where the likelihood is difficult to express 
nalytically, but model predictions are relatively easy to simulate. It 
as been widely applied in astrophysics, for example in studies of
arge-scale structure, planet surv e ys, and reionization (Akeret et al.
015 ; Hahn et al. 2017 ; Davies et al. 2018 ; Hsu, Ford & Terrien
020 ). Birrer et al. ( 2017b ), Gilman et al. ( 2019 ), Gilman et al.
 2020a ), Gilman et al. ( 2020b ), and Enzi et al. ( 2020 ) have also
sed ABC to constrain dark matter substructure using strong lensing 
ata. To begin, one defines a summary statistic that measures the
imilarity between the observational data and the simulations. In 
rinciple, any statistic (as long as it contains information of interest)
an be used as a measure of similarity, but different statistics may
ave different requirements on data quality, sampling efficiency, etc. 
 good statistic captures as much of the characteristic information 
f different models as possible: in our case, the lensing perturbations
rom low-mass dark matter haloes. Finding a proper summary 
tatistic is a challenging part of ABC and it is beyond the scope
f this work to investigate the many possible candidate summary 
tatistics. Instead, following Bayer et al. ( 2018 ), we use the power
pectrum of the best-fitting image residuals to construct a summary 
tatistic that we hope can extract information on the number of low-
ass dark matter haloes perturbing the lens. 
Based on the best-fitting source and macro model for the lens,

 F } 1 fiducial , we simulate images of this best-fitting source and lens
ombination with the addition of low-mass haloes along the line 
f sight. We uniformly sample log 10 M hf / M � between 7 and 10
corresponding to assuming a flat prior on log 10 M hf between 10 7 M �
nd 10 10 M �) and, for each sampled M hf value, we draw a random
ealization of low-mass dark matter haloes with the appropriate mass 
unction and mass–concentration relation. We do this for 20 000 
alues of M hf , producing a corresponding lensed image in each
ase and then fit each of these 20 000 images to obtain the best-
tting image residuals. We have confirmed that our results are 
onverged with 20 000 samples. Note that the forward-modelled 
mages are simulated from the known lens and source galaxies, so
hen performing the fitting, we add narrow priors centred on the
arameter values of the known best-fitting lens and source models 
o accelerate the fitting processes. Since our only goal is to find
MNRAS 511, 3046–3062 (2022) 
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Figure 3. Fiducial mock strong lensing images. A total of 49 mock images are shown, with the last of our set of 50 shown in the upper panel of Fig. 4 . The 
images are simulated with parameters randomly drawn according to Table 1 . 
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he maximum likelihood model, once our priors contain the correct
olution, the size of the priors does not affect our results. In Table 3 ,
e summarize the type and size of the priors we used for the fitting
rocesses. To make sure that the priors we take are broad enough to
nd the maximum likelihood model, we fit 4000 different realizations
ith both the listed priors and the five times larger priors and then

ompare the maximum likelihoods obtained. Here, ‘five times larger
riors’ means that for the priors listed in Table 3 , if it is a Gaussian
rior, then the sigma is taken five times larger than the value listed. In
ig. 5 , we show the histogram of the difference of the log maximum

ikelihood. As shown, the log maximum likelihood results of larger
nd smaller priors are very close with only ∼1.0 difference, which
NRAS 511, 3046–3062 (2022) 
erifies that the priors we take are broad enough to contain the
aximum likelihood model. 
Next, for the images of the best-fitting residuals, we set pixels

utside the annular region between 0.5 
′′ 

and 2.4 
′′ 

to be 0 and then
ourier transform the residual image and azimuthally average to
btain the one-dimensional (1D) power spectrum, P ( k ). In the upper
anel of Fig. 6 , we show power spectra for the forward-modelled
esiduals as black lines (for clarity, we plot only 100 of them); the
ed curve marks the power spectrum of the image residuals of the
riginal observation. Each line is composed of 15 P ( k i ) values with
he k i logarithmically spaced between ∼1.5 arcsec −1 and 85 arcsec −1 

 ∼2 π / (4.2 arcsec) to 2 π / (0.07 arcsec)]. 

art/stac191_f2.eps
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Table 2. The true input and best-fitting parameters for the first lensing 
system. The errors listed in this table are 3- σ limits. Notice that we fit a 
system with additional low-mass perturbers, and thus the inconsistency of 
the best-fitting parameters and the true values is e xpected. P arameters fix ed 
during fitting are not shown here. 

{ T } 1 fiducial { F } 1 fiducial 

Lens Elliptical isothermal 
Centre (x, y ) [ 

′′ 
] (0.0, 0.0) ( −0.001 + 0 . 002 

−0 . 002 , −0.001 + 0 . 003 
−0 . 003 ) 

R E [ 
′′ 
] 1.342 1.342 + 0 . 002 

−0 . 003 

Axial ratio 0.618 0.617 + 0 . 005 
−0 . 005 

Position angle [ ◦] 30.0 30.0 + 0 . 4 −0 . 4 

External shear 
Magnitude 0 0.002 + 0 . 002 

−0 . 002 

Position angle [ ◦] 0 159 + 37 
−41 

Source Elliptical core-Sersic 
Centre ( x , y ) [ 

′′ 
] ( −0.072, 0.259) (0 . 071 + 0 . 001 

−0 . 001 , 0 . 253 + 0 . 001 
−0 . 001 ) 

r e [ 
′′ 
] 0.244 0 . 240 + 0 . 005 

−0 . 004 

n 1.85 1 . 81 + 0 . 05 
−0 . 05 

I 
′ 

[e − pix −1 s −1 ] 7.4 7 . 3 + 0 . 2 −0 . 2 

Axial ratio 0.85 0 . 85 + 0 . 01 
−0 . 01 

Position angle [ ◦] 41 40 + 2 −2 

Figure 4. Upper panel: the mock image of the first system. Lower panel: the 
corresponding residuals after fitting a smooth macro model. 

Table 3. Priors used in fitting processes. G( a , b ) represents a Gaussian prior 
centring on a with standard deviation b . U( a , b ) represents a uniform prior 
between a and b . The ‘input’ here refers to the corresponding input value 
used when simulating the mock image. 

Prior 

Lens Elliptical isothermal 
Centre ( x , y ) [ 

′′ 
] G (input, 0.01) 

R E [ 
′′ 
] G (input, 0.008) 

Axial ratio G (input, 0.03) 
Position angle [ ◦] G (input, 2.0) 

External shear 
Magnitude G (0.0, 0.05) 
Position angle [ ◦] U(0.0, 180.0) 

Source Elliptical core-Sersic 
Centre ( x , y ) [ 

′′ 
] G (input, 0.01) 

r e [ 
′′ 
] G (input, 0.015 × input) 

n G (input, 0.1) 
I 

′ 
[e − pix −1 s −1 ] G (input, 0.16 × input) 

Axial ratio G (input, 0.02) 
Position angle [ ◦] G (input, 2.0) 

Figure 5. Histogram of the differences between the log maximum likelihood 
obtained with the priors listed in Table 3 and that obtained with five times 
larger priors. 
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Although we have converted the images into power spectra, we 
annot simply use the 1D ‘power spectrum’ as our statistic. The
eason is that each power spectrum is composed of 15 different
alues and for ABC to converge at a point in a 15-dimensional space,
 very small acceptance rate must be set, which, in turn, requires
ar more forward models. To further reduce the ‘dimensionality’ of 
he statistic, following Fearnhead & Prangle ( 2012 ), we generate a
ummary statistic from a linear combination of the logarithm of the
ower spectrum values at different k , 

og 10 
̂ M hf = 

15 ∑ 

i= 1 

βi log 10 

[
P ( k i ) / arcsec 2 

]+ β0 . (11) 

We use log 10 
̂ M hf as the summary statistic for the ABC inference. 

he coefficients { β i } (including β0 ) are obtained by minimizing the
ifferences between the input log 10 M hf values used in the forward
odels and their corresponding log 10 

̂ M hf . Specifically, we find the 
MNRAS 511, 3046–3062 (2022) 
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Figure 6. Upper panel : the power spectrum computed from the best-fitting 
image residuals. The red line is the power spectrum of the mock observation. 
Black lines are for 100 forward models. Middle panel : the summary statistic, 
log 10 

̂ M hf , computed from the power spectra. The black points are log 10 M hf 

for the forward models. The horizontal dashed red line marks the value for the 
mock observation and points 1 per cent closest to it are marked in blue. Lower 
panel: The posterior distribution of M hf , formed by collecting together the 
M hf of the blue points, is shown in the middle panel. The vertical dashed red 
line marks the true input of M hf . The black dashed curve is a kernel density 
estimate corresponding to the histogram. 
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alues of { β i } that minimize, 

20000 ∑ 

j= 1 

∥∥∥log 10 
̂ M 

( j ) 
hf − log 10 M 

( j ) 
hf 

∥∥∥2 
, (12) 

here log 10 
̂ M 

( j ) 
hf is computed from the j -th forward-modelled power

pectrum and M 

( j ) 
hf is the corresponding input half-mode mass. Since

he forward-modelled power spectrum is systematically different for
NRAS 511, 3046–3062 (2022) 
ifferent macro lensing configurations, we optimize { β i } separately
or each of our 50 lensing systems. In the middle panel of Fig. 6 ,
e plot the value of log 10 

̂ M hf for each forward-modelled simulation
s a black point. The horizontal dashed red line marks the value of
og 10 

̂ M hf given by the mock observation. 
We accept the forward-modelled simulations with the 1 per cent

f log 10 
̂ M hf values closest to the observed log 10 M hf (equation 11),

hich are shown as blue points in the middle panel of Fig. 6 . The
et of M hf values associated with those blue points is then a sample
rawn from the posterior distribution of M hf (following the ABC
ethod); their density can be used to estimate the posterior density

f M hf . 
In the lower panel of Fig. 6 , we plot the posterior density for

og 10 M hf , where the vertical dashed red line shows the true input,
 hf = 10 7 M �. It is clear that with just one system and the data quality

f our fiducial setup, we are not able to derive a tight constraint on
 hf . While impro v ed data quality might impro v e this somewhat, a

ingle lens system will al w ays be limited by the stochastic nature
f the distribution of the low-mass dark matter haloes we are trying
o detect. Just because a particular value of M hf allows perturbers
f a given mass, this does not mean that there will happen to be
ne in a location where it produces detectable image residuals. As
uch, tight constraints will rely on combining results from multiple
ystems. 

 RESULTS  A N D  DI SCUSSI ON  

n this section, we will first show that the forward modelling
rocedure described abo v e can correctly reco v er the input value
f M hf when combining results from multiple lenses. Then we will
xplore how the precision of the constraints depends upon the lensing
onfiguration and image quality of the lenses in an observed sample.
e will then compare the strength of our method with the method

ased on quasar flux ratio anomalies. 

.1 Tests of the accuracy of the method 

y repeating the procedure described abo v e for each observed
ystem, we can obtain a constraint from our mock observations of
0 lensing systems. Just as for a real set of 50 observed systems, the
osterior probability density for M hf will not necessarily peak at the
rue value. To assess whether our method is biased, we create 500 sets
f 50 observed lenses. Running the full procedure described abo v e
00 times, each time for 50 different lenses, would be prohibitively
 xpensiv e because of the very large number of forward models this
ould require. We therefore use the same set of 50 macro lens and

ource model parameters ( { T } fiducial ) for each of our 500 sets, only
hanging the realizations of low-mass dark matter haloes between
he sets of 50 observed images. This allows us to reuse the same
orward models for each of our 500 sets. 

In principle, we should generate a new set of forward models for
ach of the 500 sets (together 25 000 lenses) because the particular
ealization of the dark matter haloes affects the best-fitting macro
odel, which is the model used to generate the forward model

mages. We will see later that even though there is a slight mismatch
n best-fitting models for different realizations, we can still correctly
eco v er the true M hf . Similarly, to examine how the method behaves
ith different input (true) values for M hf , we further simulate 500

ets of 50 observations with M hf = 10 8 and 10 9 M � and apply ABC
nference to them, all using the same forward models previously
imulated. 

art/stac191_f6.eps
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Figure 7. Tests on the fiducial setting. The left column shows the constraints on M hf (adopting a flat prior on log M hf ) and the right columns the constraints 
on 1/ m DM 

(adopting a flat prior on 1/ m DM 

). From top to bottom, panels correspond to true M hf values of 10 7 , 10 8 , and 10 9 M �, marked by the black vertical 
dashed lines. Blue dashed curves are individual constraints for each set of 50 lensing systems (for clarity, we plot only 50 out of 500 here). The red curve is the 
average constraint from the 500 sets. In the right column, we use the mean posteriors to place 2 σ (95 per cent) credible interval limits (upper limits on 1/ m DM 

for the top two panels and both upper and lower limits for the bottom one). The hatched regions are where M hf < 10 7 M �, which is outside the range probed by 
our forward models. 
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Note that some care needs to be taken when combining results
rom multiple ABC calculations. This is because ABC produces 
n estimate of the posterior distribution, rather than the likelihood. 
ombining multiple measurements in a traditional Bayesian analysis 

with a calculable likelihood function) is a case of multiplying the 
ikelihoods of the different measurements together to get a total 
ikelihood and then multiplying this by the prior in order to find
something proportional to) the posterior distribution. In this work, 
e use a flat prior on log 10 M hf , and thus the posterior density (per
nit log 10 M hf ) we obtain is proportional to the likelihood. This means
hat the posterior densities per unit log 10 M hf for individual systems
such as the blue histograms in the lower panel of Fig. 6 ) can be
ultiplied together to produce something proportional to the joint 

ikelihood, which can then be multiplied by a prior (once) to get the
osterior. 
Before multiplying individual constraints, to reduce the noise and 

btain a smooth likelihood, we apply a kernel density estimation 
ethod to the distribution of log 10 M hf with a kernel width of
.3 de x. We hav e tested smaller kernel sizes, but the constraints
uickly become noisy without significant impro v ement. To correct 
or boundary effects, we choose the ‘renormalization’ correction for 
ur kernel density estimations. 3 As an example, the kernel density 
stimation for the fiducial result is shown as the black dashed curve
n the lower panel of Fig. 6 . 

The left column of Fig. 7 shows our test results for three different
ases with true input M hf of 10 7 M �, 10 8 M �, and 10 9 M � from top to
ottom, respectively. Each blue line is a constraint from 50 systems
for clarity, we show only 50 blue lines in the plots). Any one set of
0 observations will not necessarily have a posterior that peaks at the
rue value, so in order to assess whether our results are systematically
MNRAS 511, 3046–3062 (2022) 
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Figure 8. Histograms of 2 σ (95 per cent) upper or both upper and lower limits on 1/ m DM 

. From left to right, the input half-mode mass is M hf = 10 7 , 10 8 , and 
10 9 M �, with the corresponding DM particle masses written in the rele v ant panel. The limits are upper limits on 1/ m DM 

(i.e. a lower limit on the DM particle 
mass), except for the case of M hf = 10 9 M � where both histograms of upper (solid line) and lower (dashed line) limits on 1/ m DM 

are shown. The black dashed 
lines mark the true inputs. The vertical blue lines mark the medians of the histograms and corresponding median values are also listed. 
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iased – as opposed to just subject to random error – we plot a mean
osterior distribution from the 500 sets of 50 observations. These are
he red lines in Fig. 7 ; they peak close to the input values of M hf ,
uggesting that our method is unbiased. Using these mean posteriors,
e compute the ratio of the posterior between the peak value and the
alues at M hf = 10 7 M � and M hf = 10 9 M �. With an input value of
 hf = 10 7 M �, the reco v ered constraint shows that the model with
 hf = 10 9 M � is disfa v oured with a posterior density of ∼327 times

maller than that of the peak. In a WDM universe (e.g. with M hf =
0 9 M �), M hf = 10 7 M � would be ruled out, with a mean posterior
ensity of ∼242 times smaller than at the peak. 
In the right column of Fig. 7 , we show our posterior distribution

n terms of 1/ m DM 

, which is the way in which constraints on the
M particle mass from the Lyman- α forest are typically expressed

Ir ̌si ̌c et al. 2017 ). Note that the 1/ m DM 

posteriors are not simply
he M hf posteriors transformed to a new parametrization. Instead, we
ransform the likelihood as a function of M hf to the likelihood as a
unction of 1/ m DM 

following equation (5) and then adopt a flat prior
n 1/ m DM 

(as done in Lyman- α studies). This is different from a flat
rior on log 10 M hf and so the posteriors are not actually the same in
he two columns of Fig. 7 . 

Depending on the ‘behaviour’ of the red curves, we place either a
 σ (95 per cent) upper or lower limit on 1/ m DM 

. For the cases with
rue M hf = 10 7 and 10 8 M �, we place an upper limit, while for the
ase with M hf = 10 9 M �, we place both lower and upper limits.
hese limits are shown as vertical dashed red lines in the figure.
e can see that with 50 fiducial-like lensing systems, at 2 σ level,

ne can rule out particle candidates with m DM 

less than 3.38 keV
nd 2.44 keV in universes with true m DM 

= 8.86 and 4.44 keV,
espectively, or rule out particles with m DM 

> 3.77 keV and m DM 

<

.21 keV in a universe with true m DM 

= 2.22 keV. We view the 2 σ
imits in the first two panels as conserv ati ve because we do not assign
ny posterior mass to the shaded regions in our computation. If we
ad simply assumed that the posterior density in the shaded region
as the same as at ∼0.12 keV 

−1 , the upper limits would have been
ighter. 

Note that the constraints discussed abo v e are average results.
bservations of any 50 specific lensing systems would yield a

onstraint like one of the blue dashed lines in the figures, which
ight be tighter or looser than the average constraint. To demonstrate

ctual constraint, one would expect to get with 50 observations;
 o  

NRAS 511, 3046–3062 (2022) 
n Fig. 8, we show the histograms of 2 σ limits from the 500
ifferent realizations of a set of lensing observations (for true m DM 

=
.86, 4.44 keV, we compute lower 2 σ limits, and for true m DM 

=
.22 keV, we compute lower and upper 2 σ limits). As shown by the
istograms, when true m DM 

= 8.86 keV, the median 2 σ constraint
e would get is 1/ m DM 

< 0.24 keV, and thus m DM 

> 4.10 keV.
n other words, there is 50 per cent chance to constrain m DM 

better
han 4.10 keV with 50 lenses of similar settings. If true m DM 

=
.44 keV, the median 2 σ constraint is m DM 

> 3.01 keV. If true
 DM 

= 2.22 keV, the median constraint obtained is 1.43 keV < m DM 

<

.21 keV. 

.2 Dependency on the lensing configuration 

aving shown that with a large number of lensing systems the
orward modelling procedure can correctly reco v er the true M hf 

albeit with fairly broad posteriors), we now explore how the
onstraints change when the properties of the lenses and sources
re varied. In particular, we vary the lens and source redshifts, the
mage S/N (signal-to-noise) ratio, and the image resolution. 

To show clearly how the constraints depend upon a specific
arameter, we change only one parameter value at a time. For
 xample, to inv estigate how the result changes for a higher redshift
ource, we change only the source redshift and leave the image
esolution, Einstein radius, surface brightness, etc., unchanged from
he { T } fiducial values. Notice that the parameters listed in Table 1 are
bservational rather than intrinsic physical quantities, so by fixing a
arameter, we refer to fixing a particular observational quantity. For
xample, keeping the source surface brightness unchanged from a
edshift of 1–2.5 means that the source galaxy at z = 2.5 is actually
ntrinsically brighter because of cosmological dimming. The reason
or changing quantities in this way is that we want to focus on how the
esults change from an observational perspective and thus provide a
asic idea of what type of lensing configuration has most constraining
ower, which may help inform future observational designs. 
In total, we have carried out five additional tests: placing the lens

t a lower redshift of 0.2, denoted as { T } lz = 0.2 ; placing the source at
 higher redshift of 2.5, denoted as { T } sz = 2.5 ; doubling the exposure
ime, denoted as { T } exp = 1200 ; lowering the resolution, with pixel
ize of 0.1 

′′ 
and PSF σ of 0.08 

′′ 
, similar to the expected resolution

f images from the Euclid Space Telescope (Collett 2015 ), denoted
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s { T } Euclid ; and assuming a similar resolution to that of the China
pace Station Telescope (CSST), with pixel size of 0.075 

′′ 
and PSF

of 0.08 
′′ 
, denoted { T } CSST . To first focus on the changes caused

y different settings, without being affected by set-of-observations 
o set-of-observations noise, we compare the mean posteriors from 

00 sets of 50 observed systems (i.e. the equi v alents of the red lines
n Fig. 7 ). 

In the left column of Fig. 9, we plot the expected M hf posteriors
or different lensing configuration using different colours. Blue, 
reen, red, cyan, orange, and purple correspond to the settings, 
 T } fiducial , { T } lz = 0.2 , { T } sz = 2.5 , { T } exp = 1200 , { T } Euclid , and { T } CSST ,
especti vely. Dif ferent ro ws sho w results assuming dif ferent true
nputs of M hf , which are marked as vertical dashed black lines. As in
ig. 7 , we plot 1/ m DM 

posteriors in the right column and place upper
in the top two panels) or both lower and upper (in the bottom panel)
 σ limits on 1/ m DM 

, which are marked as vertical dashed lines. The
ed, green, and blue curves show how the results vary with the lens
nd source redshifts. 

Increasing either the source or lens redshift impro v es the con-
traints because (at fixed Einstein radius) the volume in which 
ow-mass dark matter haloes are projected close to the observed 
instein ring increases as either redshift is increased. The comparison 
etween the cyan and blue curves shows that increasing the S/N ratio
exposure time) results in a better constraint. Also, better angular res-
lution gives better constraints when comparing the fiducial setting 
blue curve) and the Euclid /CSST resolution setting (orange/purple 
urves), but the improvement is not significant. Although a worse 
onstraint is obtained with lower image resolution, we see that even 
ith lower angular resolution, we can distinguish between models 
ith M hf of 10 7 M � and 10 8 M �. The advantage of Euclid and
SST will be sample sizes that are vastly larger than 50. Note that

uture Euclid /CSST observations will likely be different from the 
ample we simulate here: they will have, for example, different 
ens/source redshift distributions, data quality, and Einstein radii. 
hose differences can potentially make our predictions here different 

rom future real observations. 
Similarly, we use average constraints abo v e to demonstrate the 

esult dependency on lensing configurations, while for the constraints 
rom individual sets of 50 strong lensing systems with different 
ensing configurations, we refer the 2 σ limit histograms in Fig. 10 .
olours of the histograms follow the meaning of Fig. 9 . The vertical
ashed line marks the true input and the left regions below our
est range are plotted in shadow. For each setting, we list the
edians of 2 σ constraints in corresponding colours. As shown, the 

ependency reflected from the histograms is the same as that from
he average constraints in Fig. 9 . Among all the settings, the setting
ith a higher redshift source gives the best constraint, where when 

rue m DM 

= 8.86 keV, the median 2 σ constraint one could get is
 DM 

> 5.20 keV. 
To summarize, the tests shown here agree with the expectation 

hat lensing systems with longer exposure times, higher resolution, 
nd more low-mass dark matter haloes (higher source redshifts and 
 larger area around the Einstein arcs) give tighter constraints. 

.3 Model assumptions and limitations 

ur method makes a number of simplifying assumptions that we 
ow summarize and describe in more detail. 
By simulating low-mass dark matter haloes with the mass function 

f equation (4), we neglect lensing perturbations from subhaloes 
ithin the lens galaxy. This is a good approximation since, as
i et al. ( 2017 ) have shown, for realistic lensing configurations
he signal is dominated by line-of-sight haloes, rather than by 
ubhaloes in the lens. In any case, this assumption makes our
esults conserv ati ve, as including subhaloes would boost the lensing
erturbations, increasing the signal we can extract from the lens 
odel residuals. On the other hand, there are uncertainties regarding 

ubhaloes that do not affect line-of-sight haloes, for example, the 
xtent of tidal disruption (Despali et al. 2018 ; Richings et al. 2020 );
arginalizing o v er these uncertainties w ould weak en the constraint

n M hf . 
We neglect any uncertainties on the amplitude and shape of the

CDM) halo mass function. The amplitude is fixed by the value of the
osmological parameter, σ 8 , which is known to better than 1 per cent
rom cosmic microwave background data (Planck Collaboration 
I 2020 ). The shape is known very precisely from cosmological

imulations (Wang et al. 2020 ). There is, ho we v er, some de generac y
etween the amplitude of the halo mass function and the half-mode
ass. Some lensing studies, such as that of Gilman et al. ( 2019 )

ased on flux ratio anomalies, have included the amplitude of the
ass function as a free parameter to be fit at the same time as the

ubhalo mass function. 
In this work, we have assumed an SIE lens mass model, whereas in

tudies of real lenses a power-law mass model with external shear is
idely used (e.g. Dye et al. 2014 ; Vegetti et al. 2014 ). This gives the
ass model more freedom to fit the residuals, reducing the signal left
 v er from substructures. Ev en then, the mass model may provide only
n approximate fit to the lens and result in residuals not associated
ith subhaloes, at which point even more complex mass profiles 

Nightingale et al. 2019 ) or a potential corrections-based approach 
ay be required (Vegetti & Koopmans 2009 ). We assume a core-
ersic model for the source light, whereas studies using real data
ften use a non-parametric approach that reconstructs a source’s 
rregular morphology (see Warren & Dye 2003 ; Suyu et al. 2006 ).
ilman, Birrer & Treu ( 2020c ) sho w ho w such an approach may

bsorb part of the residual signal of the low-mass perturbers, reducing
he available information on the halo mass function. PyAutoLens has 
ll the necessary functionality to test these assumptions and this will
e the topic of future work. 
Our method implicitly attributes all image residuals to the presence 

f perturbing dark matter haloes when, in reality, there could be other
ources of mismatch between a true lens and source model and the
est-fitting macro model. In the idealized setup used here, we have
hown that this allows us to obtain a correct measurement of the
nput half-mode mass. In reality, other sources of perturbations will 
ontribute to the power spectrum of the image residuals, including a
eficient model for the smooth component of the lens, an inaccurate
escription of the telescope PSF, and artefacts or correlated noises 
ntroduced by the data reduction process. Not taking these effects 
nto account may bias our inference of the subhalo mass function.
urrently, the impact of any indi vidual ef fect is unclear and further

nvestigation is required, noting that all effects that impact the signal
an, in principle, be included in our forward modelling procedure 
nd marginalized o v er. 

On a positive note, our use of the power spectrum to define a
ummary statistic to extract the signal from the residuals is likely
o be suboptimal. A more carefully crafted summary statistic or a
achine learning-based approach (see Brehmer et al. 2019 ; Diaz 
ivero & Dvorkin 2020 ) can potentially impro v e the signal that can
e extracted from a lens system and thus provide better constraints on
 hf than shown here. It could also make the estimation less sensitive

o systematic sources of residuals as shown by Birrer et al. ( 2017b )
nd so increase the constraining power of the forward modelling 
ethod. 
MNRAS 511, 3046–3062 (2022) 
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Figure 9. Average constraints from 50 lensing systems with different settings. As in Fig. 7 , the left-hand panels show the constraints on M hf and the right-hand 
panels the constraints on 1/ m DM 

. Blue, green, red, cyan, orange, and purple lines correspond to the results of settings, { T } fiducial , { T } lz = 0.2 , { T } sz = 2.5 , 
{ T } exp = 1200 , { T } Euclid , and { T } CSST , respectiv ely. The v ertical dashed black lines mark the true input values and the colour lines the corresponding 2 σ upper 
limits (top 2 panels) or both upper and lower limits (bottom panel) on 1/ m DM 
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.4 Comparison with flux ratio anomalies 

 theoretical investigation of the constraining power of flux ratio
nomalies was performed by Gilman et al. ( 2019 ), who subsequently
pplied their method to real observations, placing constraints on both
he dark matter mass function and the mass–concentration relation
Gilman et al. 2020a , b ). It is interesting to compare our approach
ith that of Gilman et al. ( 2019 ). Note, ho we ver, that, as we just
iscussed, these authors treat the amplitude and slope of the halo
ass function as free parameters, whereas our tests assume a halo
ass function with only one free parameter, M hf . In our tests, for
 universe with true M hf = 10 7 M �, our fiducial calculation gives
n upper 2 σ constraint (average constraint shown in Fig. 7 ), M hf =
0 8.25 M �, which is slightly smaller than the upper constraints quoted
y Gilman et al., M hf = 10 8.34 M �, for a 2 per cent uncertainty on flux
easurements (see fig. 8 of Gilman et al. 2019 ). Given the different

ssumptions in the two studies, this comparison serves to show that
he constraints that they provide are roughly comparable. 
b

NRAS 511, 3046–3062 (2022) 
When considering the relative performance of our method and
hose based on flux ratio anomalies, it is pertinent to consider the

ass scales to which each method is sensitive. The ‘coldest’ case in
ur tests assumes M hf = 10 7 M � and our signal is heavily influenced
y the lensing effects of larger perturbers with M 200 ∼ 10 7 −8 M �.
he small detection area of flux ratio anomalies results in a lack
f sensitivity to subhaloes with these relatively high masses (as
hese subhaloes are rare), but the ‘point-like’ sources (with highly
ariable surface brightness o v er a small re gion) pro vide sensitivity
own to dark matter haloes with M 200 ∼ 10 6 M �, a scale that is
ot accessible with our approach. Ho we ver, another problem faced
y flux ratio anomalies is that the sparsity of information means
hat the de generac y between anomalies caused by substructure and
y a complex smooth halo is not easily broken, which can bias the
nference on the abundance of substructures (Xu et al. 2015 ; Hsueh
t al. 2018 ). The two approaches are therefore complementary and,
ogether, can provide constraints on the halo mass function over a
road range of masses. 
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Figure 10. Histograms of 2 σ (95 per cent upper) limits (solid lines) and lower limits (dashed lines, only in the rightmost panel) on 1/ m DM 

. Blue, green, red, 
cyan, orange, and purple histograms correspond to the results of settings, { T } fiducial , { T } lz = 0.2 , { T } sz = 2.5 , { T } exp = 1200 , { T } Euclid , and { T } CSST , respectively. 
The vertical black dashed lines mark the true input m DM 

in each panel. The medians of the histograms are also listed in corresponding colours in the panels. 
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 C O N C L U S I O N S  

he existence of a large population of dark matter haloes of all
asses down to subsolar values is a fundamental prediction of the 
DM model that distinguishes it from other currently popular models 

uch as WDM in which the halo mass function is truncated below
 mass ∼10 8 M �. Detecting the predicted population is a key test
f the standard cosmological model, which would be ruled out if it
ould conclusively be shown that low-mass haloes are absent or that 
hey are present in lower numbers than predicted. 

In this work, we have presented a method based on forward 
odelling applied to the analysis of resolved strong lensing arc data 

hat can constrain a cutoff in the dark matter halo mass function.
he key idea is to simulate a large number of strong lensing images

forward models) based on the best-fitting macro model, with the 
ddition of perturbations to the lens model from low-mass dark 
atter haloes (whose number depends on the assumed nature of 

he dark matter). These images can then be fit in the same manner
s the original observed image, and the best-fitting image residuals 
or the observed system can be compared with the best-fitting image 
esiduals for the forward models. This comparison is made by means 
f the power spectrum of the image residuals within the ABC
ramework and leads to a posterior distribution for the half-mode 
ass ( M hf ), which describes the cutoff in the halo mass function.
ur main results may be summarized as follows: 

(i) F or mock observ ed lenses constructed from parametric source 
ight profiles and lens mass models, we confirm that information 
n low-mass dark matter haloes can be extracted from the power 
pectrum of the best-fitting image residuals. As demonstrated in 
ig. 7 , with a large number of observed lenses, a forward modelling
rocedure can correctly reco v er the true input half-mode mass, M hf 

n average (the red curves). Ho we ver, the scatter in the constraint is
ignificant even though results for 50 systems have been combined 
ogether (blue curves), which may be attributed to the large intrinsic
catter in realizations of low-mass dark matter haloes. Taking the 
catter into accounts, we compute the histograms of 2 σ limits (see 
ig. 8 ) and find that, with 50 lensing systems, for our fiducial settings
see Table 1 ), if the true (thermal) m DM 

is 8.86 keV ( M hf = 10 7 M �),
he median 2 σ constraint on m DM 

is that m DM 

> 4.10 keV (or there
s 50 per cent chance that the m DM 

can be constrained better than
.10 keV at 2 σ lev el). Conv ersely, in a WDM univ erse where the true
thermal) m DM 

is 2.22 keV ( M hf = 10 9 M �), one could get a median
easure of m DM 

to be between 1.43 keV and 3.21 keV at 2 σ level. 
(ii) We have tested the dependency of the method on different 

ensing configurations and image quality settings. As shown in 
igs 9 an 10 , the dependency agrees with expectations: higher redshift 
ources and/or larger areas around the Einstein arcs, and better data
uality (longer exposure time and/or higher resolution) all result in a
ighter constraint. Among our tests, the one with sources placed at z =
.5 produced the strongest constraint: in a universe with true m DM 

=
.86 keV ( M hf = 10 7 M �), particles with mass less than 5.20 keV can
e ruled out at the 2 σ level (see medians of the histograms in Fig. 10 ).
lthough a slightly worse constraint is obtained from images with the

esolution of Euclid /CSST, 50 systems can still provide a constraint
n M hf , and with Euclid /CSST data we will have many more than 50
trong lenses. We defer a thorough test using mock strong lensing
amples similar to those expected from Euclid /CSST to future work.

Throughout this study, we have made several simplifying assump- 
ions, particularly in using parametric models for the lens mass dis-
ributions and the source light profiles. The effects of removing these
ssumptions will need to be investigated before we can safely apply
ur technique to real observations. We have shown that, in principle,
nformation on low-mass dark matter haloes can be statistically 
xtracted from the power spectrum of the image residuals. In the
ear future, we hope that using a more powerful summary statistic
ogether with more advanced lens modelling techniques (such as 
ixelized sources) can improve the power of this technique. With 
housands of new strong lensing observations expected from future 
pace telescopes, there is every prospect of pinning down the mass
f the dark matter particles using this forward modelling technique. 

OFTWARE  C I TAT I O N S  

his work uses the following software packages: 

(i) Astrop y (Astrop y Collaboration 2013 ; Price-Whelan et al. 
018 ) 
(ii) Colossus (Diemer 2018b ) 
(iii) corner.p y (Foreman-Mack ey 2016 ) 
(iv) hmf (Murray, Power & Robotham 2013 ) 
(v) MATPLOTLIB (Hunter 2007 ) 
(vi) numba (Lam, Pitrou & Seibert 2015 ) 
(vii) NUMPY (van der Walt, Colbert & Varoquaux 2011 ) 
MNRAS 511, 3046–3062 (2022) 
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(viii) PyAutoFit (Nightingale, Hayes & Griffiths 2021a ) 
(ix) PyAutoLens (Nightingale & Dye 2015 ; Nightingale et al.

021b ) 
(x) PyMulitNest (Feroz, Hobson & Bridges 2009b ; Buchner et al.

014b ) 
(xi) PyQt-Fit (Reuille 2015 ) 
(xii) pyquad (Kelly 2020 ) 
(xiii) PYTHON (Van Rossum & Drake 2009 ) 
(xiv) scikit-image (Van der Walt et al. 2014 ) 
(xv) scikit-learn (Pedregosa et al. 2011 ) 
(xvi) SCIPY (Virtanen et al. 2020 ) 
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PPENDI X  A :  DETERMI NI NG  MULTI PL ANE  

ESOLUTI ON  

e simulate the effect of line-of-sight haloes by dividing the light-
one from the observer to the source galaxy into a number of intervals
nd approximating low-mass dark matter haloes within a given 
edshift interval as lying on a single plane at the central redshift.
educing the redshift interval, �z, between two neighbouring planes 

increasing the number of multiplanes) will increase the accuracy of 
he approximation to the line-of-sight effects but will also increase the 
omputational cost. The smallest allowable �z should be determined 
y the accuracy one would like to achieve in the inference of M hf .
n practice, one needs to make sure that the ‘difference’ caused by
pproximating line-of-sight effects into multiplanes is smaller than 
he ‘difference’ caused by changing M hf by the amount one would
ike to distinguish. 
.0 . The unit of the colour bar is arcsecs. 
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igure A2. Histograms of the log 10 ratio of the mean amplitude of the
ifferences in deflection angles caused by changing �z and M hf . Blue, orange,
reen, and red colours shows results for �z = 0.005, 0.01, 0.02, and 0.05,
espectively. 

Fig. A1 shows an example of the amplitudes of the differences
n deflection angles when changing the values of �z and M hf . The
wo panels are computed from the same macro settings (a spherical
sothermal sphere model with R E of 1.5 

′′ 
at z = 0.5 and a source at

 = 1.0) and the same low-mass dark matter haloes (generated from
 distribution with M hf = 10 7 M �). To simplify the test, instead of
sing the mass function described in the main body of the paper,
e impose a ‘sharp cut’ on the mass function, such that no haloes

re drawn with M 200 smaller than M hf . Also, we assume that there is
o correlation between M hf and the mass–concentration relation to
ake sure that massive haloes are unchanged when changing M hf . 
The upper panel of Fig. A1 shows the amplitudes of the differences

n deflection angles when changing �z from 0.01 to 0.001 (a very
igh-resolution setting which we take as the ‘accurate’ result). The
ower panel shows the amplitudes of the differences in deflection
ngles when changing M hf from 10 7 M � to 10 7.1 M �. As seen
rom the figure, the patterns of the differences caused by changing
z and M hf are different. We use the mean amplitude of the

ifference in deflection angles within the annular region 1.0 
′′ 
–2.0 

′′ 

the region between the two dashed circles in the figure) to quantify
he ‘differences’. The mean difference caused by changing �z is
.47 × 10 −5 arcsec, which is smaller than the mean difference caused
y changing M hf by 0.1 dex, 2.42 × 10 −4 arcsec, suggesting that �z

f 0.01 would not affect the ability to distinguish between models
ith M hf = 10 7 M � and 10 7.1 M �. 
NRAS 511, 3046–3062 (2022) 
The results shown in Fig. A1 are for a special case, so we repeat the
ame procedure for 128 different realizations of low-mass dark matter
aloes. The orange histogram in Fig. A2 shows the distribution of the
og 10 ratio of the mean difference in amplitudes defined previously,
hat is the ratio of the mean difference in the deflection angles
etween models with M hf = 10 7 and M � = 10 7.1 divided by the mean
ifference in the deflection angles for the �z given in the legend.
s shown by the orange histogram, the ratios from all of the 128

ealizations are larger than one, indicating that the difference caused
y approximating line-of-sight effects using multiplanes separated
y 0.01 in redshift is smaller than the difference cause by changing
 hf by 0.1 dex. Also, we plot the histogram of ratios for other values

f �z. As may be seen, increasing �z increases the differences
aused by changing �z and, in some cases, the differences are larger
han those caused by changing M hf by 0.1 dex. To summarize, the
alue of �z we adopt for our tests, �z = 0.01, does not affect our
nference of M hf to an accuracy of 0.1 dex. 

PPENDI X  B:  T H E  DI STRI BU TI ON  O F  

O N S T R A I N T S  F RO M  SETS  O F  5 0  LENSES  

o obtain an indication of the constraints on the DM particle mass that
ne expects from 50 lensing systems, in Fig. 8 we plot histograms of
he upper, or both upper and lower, 2 σ limits on 1/ m DM 

for our fiducial
ens and source properties. Each histogram shows the distribution of
imits from 500 different realizations of a 50-lens sample, with upper
imits shown when the true input, M hf = 10 7, 8 M �, while both upper
solid lines) and lower (dashed lines) limits are shown when the true
nput, M hf = 10 9 M �. For M hf = 10 8 M �, the probability that the true
nput will be abo v e the 2 σ upper limit is ∼4 per cent, while for M hf =
0 9 M �, the true input is ruled out by the 2 σ limit ∼10 per cent of the
ime. 4 Additionally, in Fig. 10 we show histograms of upper, or both
pper and lower, 2 σ limits from lens samples with different lensing
onfigurations, corresponding to the different data quality and source
nd lens redshifts presented in Fig. 9 . 

 It may seem counterintuitive that the 2 σ limit rules out the true input with
 probability different from ∼5 per cent. However, here we are performing
wo different calculations: the 2 σ limits come from Bayesian inference with
 prior of 1/ m DM 

assumed to be uniform o v er a certain range, while the
ultiple tests are carried out only for a particular value of 1/ m DM 

. There is
hus a mismatch between the prior for the inference and the tests. In other
ords, if one repeatedly computed 2 σ limits for a true 1/ m DM 

uniformly
istributed o v er the range, one would expect to find that the 2 σ limits rule
ut the truth with a probability of ∼5 per cent. 
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