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ABSTRACT

Plasma relaxation in the presence of an initially braided magnetic field can lead to self-organization into relaxed states that retain non-trivial
magnetic structure. These relaxed states may be in conflict with the linear force-free fields predicted by the classical Taylor theory, and
remain to be fully understood. Here, we study how the individual field line helicities evolve during such a relaxation, and show that they
provide new insights into the relaxation process. The line helicities are computed for numerical resistive-magnetohydrodynamic simulations
of a relaxing braided magnetic field with line-tied boundary conditions, where the relaxed state is known to be non-Taylor. First, our compu-
tations confirm recent analytical predictions that line helicity will be predominantly redistributed within the domain, rather than annihilated.
Second, we show that self-organization into a relaxed state with two discrete flux tubes may be predicted from the initial line helicity distribu-
tion. Third, for this set of line-tied simulations we observe that the sub-structure within each of the final tubes is a state of uniform line
helicity. This uniformization of line helicity is consistent with Taylor theory applied to each tube individually. However, it is striking that the
line helicity becomes significantly more uniform than the force-free parameter.

VC 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0059756

I. INTRODUCTION

Magnetic fields in plasmas spontaneously self-organize into lower
energy states, for example, powering disruptions in laboratory plasma
and fusion devices,1,2 or stellar flares.3,4 Understanding the resulting
states produced by these dynamical relaxation events is crucial to
understanding energy release in these systems. This is a challenging
problem because the relaxation process is typically turbulent.

The most influential theory of this process, known as Taylor
relaxation, proposes that the plasma minimizes energy while conserv-
ing its global magnetic helicity.5,6 Helicity is an important invariant in
magnetohydrodynamics (MHD); physically, it quantifies the average
linking between magnetic field line curves in three-dimensional (3D)
space.7 Classic Taylor relaxation treats the global magnetic helicity as
the only topological constraint on self-organization of the plasma, and
hence predicts that the resulting magnetic field B is a linear force-free
field obeying r� B ¼ k0B, where k0 is a constant.

1,2,5,8 The underly-
ing assumption that the total magnetic helicity is more highly con-
served than energy is an example of selective decay in turbulent fluids
and plasmas.9

Taylor’s theory successfully reproduces major features of the mag-
netic field in a reversed field pinch, which it was developed to explain,
and it has given important insights into other experimental plasma
physics phenomena such as current limitation and symmetry break-
ing.2 It has also been applied to astrophysical plasmas such as magne-
tized jets,10 interplanetary magnetic clouds,11,12 and solar flares.3,4,13

However, the theory is less successful in unbounded configurations
and tokamaks.14,15 Indeed, since the Taylor state is force-free, with
rp ¼ 0 in the absence of gravity, it cannot (in its classic form) explain
any self-organized field that magnetically confines plasma. Recently,
3D MHD simulations with ever-increasing Lundquist numbers have
made it possible to probe turbulent relaxation in detail, at low cost, and
for precisely known initial conditions and parameters. These numerical
experiments have found more counterexamples where the end states
are not linear force-free fields.16–20 It therefore appears more certain
than ever before that other constraints, in addition to the global helic-
ity, can be important for plasma self-organization.

Previous efforts to generalize Taylor relaxation have considered
additional global constraints on the magnetic topology, such as the
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topological degree of the field line mapping,18,19 measures of higher
order linking,21–23 and helicity integrals weighted by powers of the
helical flux function.24 Alternative relaxation models have also been
developed where the constraints are not purely due to the initial mag-
netic topology,25,26 as well as models where flows occur in the relaxed
state.27 In this paper, we take a novel approach by examining the dis-
tribution of individual field line helicities28,29 in a turbulent MHD
relaxation in a straight geometry. In his original paper, Taylor5 noted
that a helicity integrand exists for every magnetic field line. He also
conjectured that during reconnection, “the effect of the topological
changes is merely to redistribute the integrand among the field lines
involved,” and so proposed that the “final state of relaxation, therefore,
will now be the state of minimum energy subject only to the single
[global] invariant.”

In the forty-seven years since Taylor’s original paper, the under-
standing of field line helicities has advanced significantly,28–31 and it
has recently been found that they do not evolve arbitrarily during
reconnection but instead obey an evolution equation derived by
Russell et al.32 These authors considered how the field line helicities
would evolve during localized reconnection in a complex, 3Dmagnetic
field, such as would arise during turbulent evolution of a highly con-
ducting plasma. They derived an evolution equation for the field line
helicity (to be discussed in Sec. III below). This includes both a resis-
tive dissipation term and a “work-like” term, both of which involve
field line integrated quantities. The authors showed that a sufficiently
complex field line mapping produces a scale separation between the
two terms, with the work-like term expected to dominate.
Furthermore, the work-like term is expected to conserve the overall
field line helicity to leading order, acting primarily to redistribute
rather than destroy it. At the time, these analytic predictions were vali-
dated using kinematic examples. In principle, such laws governing the
time evolution of line helicities could lead to a conflict with the basic
Taylor assumption that global helicity is the only dynamically relevant
invariant. Our aim in this paper is therefore to explore how the field
line helicity evolves in full 3D MHD simulations of magnetic
relaxation.

Our first objective is to test the prediction of Russell et al.32 that
field line helicity is redistributed rather than destroyed during turbu-
lent relaxation. However, because we select a configuration known to
relax to a force-free field that is not the linear force-free Taylor state,33

we are also able to investigate whether the field line helicities shed fur-
ther light on what determines the relaxed state. This paper is organized
as follows. The numerical simulations are described in Sec. II, which
includes a summary of our three main observations about magnetic
relaxation and field line helicity (Sec. IID). Each of these three obser-
vations is then discussed in more detail in a separate section: Sec. III
investigates the extent to which field line helicity is redistributed rather
than destroyed; Sec. IV examines the overall topology of the final state
and its relation to the topology of the initial line helicity distribution;
and Sec. V considers the finer sub-structure of the relaxed state.
Conclusions are given in Sec. VI.

II. NUMERICAL SIMULATIONS

MHD turbulent relaxation can be simulated by solving the resis-
tive MHD equations with low dissipation and a braided initial mag-
netic field. The choice of a braided field is motivated by the significant

turbulence that these fields generate, an important prerequisite for
Taylor relaxation.

A. Resistive-MHD equations and parameters

We used the Lare3d Lagrangian-remap code34 to solve the
resistive-magnetohydrodynamic (MHD) equations in a Cartesian
domain ½�8; 8� � ½�8; 8� � ½�24; 24�. The code solves the non-
dimensionalized equations

@q
@t
¼ �r � ðqvÞ; (1)

q
Dv
Dt
¼ j� B�rpþr � r; (2)

@B
@t
¼ r� ðv � BÞ � r � ðgjÞ; (3)

q
D�
Dt
¼ �pr � v þ gjjj2 þ � : r; (4)

p ¼ q�ðc� 1Þ; (5)

l0j ¼ r� B; (6)

where q is the mass density, v the plasma velocity, B the magnetic
field, j the current density, p the plasma pressure, r the stress tensor, �
the specific internal energy density, g the resistivity, � the strain tensor,
and c ¼ 5

3 the ratio of specific heats. The viscous term r � r includes
only a shock viscosity to prevent unphysical oscillations, but no back-
ground viscosity. The shock viscosity takes the tensor form given by
Bareford, Hood, and Browning,20 with the same dimensionless param-
eters �1 ¼ 0:1 and �2 ¼ 0:5. There is a corresponding heating term
� : r in the energy equation. The resistivity g is uniform with no
enhancement at current sheets. The non-dimensional time t is such
that one unit is the time taken for an Alfv�en wave when jBj ¼ q ¼ 1
to travel a unit distance.

Four different runs are illustrated in this paper, differing in
Lundquist number, S, as listed in Table I. Since the non-dimensional t
represents the Alfv�en time, the Lundquist number is simply given by
S ¼ g�1, in terms of the non-dimensional resistivity g.

B. Boundary and initial conditions

For the simulations described here, line-tied boundary conditions
were implemented by setting the plasma velocity v ¼ 0 on all six
boundaries, with zero normal-gradient conditions for B, q, and �.
Such conditions are relevant to coronal loops and laboratory experi-
ments such as the large plasma research device.35 Periodic boundary
conditions—as relevant to laboratory fusion devices—can also be con-
sidered, but we defer their discussion to a subsequent paper.

TABLE I. List of simulation runs.

Lundquist number (S) Diffusivity (g) Grid resolution

2500 4� 10�4 320� 320� 240
5000 2� 10�4 640� 640� 480
10 000 1� 10�4 640� 640� 480
20 000 5� 10�5 960� 960� 720
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The simulations were initialized with uniform q¼ 1 and
� ¼ 0:01. The initial magnetic field took the “braided” E3 form,17

which consists of six twists of magnetic flux superimposed on a uni-
form magnetic field, arranged in two offset columns. This field has a
global helicity of zero and its dynamics have been extensively investi-
gated in a long-term research program.36 Explicitly,

Bxðx; y; zÞ ¼ �
ffiffiffi
2
p X6

i¼1
kiy exp � n2i

4

� �
; (7)

Byðx; y; zÞ ¼
ffiffiffi
2
p X6

i¼1
kiðx � xiÞ exp � n2i

4

� �
; (8)

Bzðx; y; zÞ ¼ 1; (9)

where n2i ¼ 2ðx � xiÞ2 þ 2y2 þ ðz � ziÞ2; xi ¼ ki ¼ ð1;�1; 1;�1;
1;�1Þ; and zi ¼ ð�20;�12;�4; 4; 12; 20Þ.

The plasma beta of this initial condition is b � 0:01. There are
initially significant unbalanced j� B forces, so the dynamical evolu-
tion begins immediately. However, previous simulations18 found con-
sistent relaxed states whether or not the magnetic field was first
relaxed using an ideal Lagrangian code.

C. Overview of the evolution

Figure 1 provides an overview of the simulation, starting from
the initial condition [Fig. 1(a)]. In a brief starting phase, the initial
magnetic twists launch Alfv�en waves that interact non-linearly to gen-
erate MHD turbulence. Thereafter [Fig. 1(b)], the plasma and mag-
netic field evolve rapidly as magnetic field lines reconnect in the

turbulent braided region. The outcome [Fig. 1(c)] is a simpler lower
energy magnetic field consisting of a pair of oppositely twisted flux
tubes. These two flux tubes co-exist stably, and running the simulation
for longer produces only a gradual resistive diffusion of the magnetic
field with no further simplification of the overall topology.

The time evolution of various integrated quantities is shown in
Fig. 2. All simulations show a clear relaxation in terms of magnetic,
kinetic, and internal energies [Figs. 2(a)–2(c), respectively]. The oscilla-
tions visible in the energies are ideal in origin and their frequency is
independent of S. Their period (of the order ten time units) is consis-
tent with the Alfv�en travel time between the initial flux rings. However,
the non-ideal evolution enabling the relaxation to take place has an
overall timescale that takes longer for larger S. Figure 3 shows that the
relaxation time scales approximately as S0:5 to S0:6. For this reason, we
ran the simulations with larger S for longer. Notice in Fig. 2(d) that the
net viscous heating increases with S, commensurate with the higher
kinetic energy, whereas the net Ohmic heating decreases with S.

D. Observed behavior of field line helicity

We have analyzed the evolution of field line helicity in the
numerical simulations. Without magnetic reconnection, not only
would the total magnetic helicity be conserved, but so would the field
line helicity,

AðLÞ ¼
ð
L
A � dl; (10)

of every individual magnetic field line L. Here, A is a vector potential
such that B ¼ r� A. Physically, AðLÞ measures the winding of

FIG. 1. Magnetic field lines for S ¼ 10 000, (a) in the initial braided field, (b) during turbulent relaxation, and (c) after the dynamic phase. The field lines are traced from fixed
locations with y¼ 0 on the z¼ –24 boundary, and their intersections with z¼ 24 change substantially as the magnetic field simplifies into a pair of oppositely twisted flux tubes.
Field lines are colored by field line helicity, A, and shown in planar projection.
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magnetic flux around the field line of interest,29,31 so its ideal invari-
ance follows from field line conservation (Alfv�en’s theorem), together
with fixing n� A at the boundaries. This fixing is possible because the
line-tying leaves Bn stationary on all six boundaries.32,37 We set

n� A ¼ n� Aref where Aref ¼ � 1
2 y;

1
2 x; 0

� �
is a vector potential for

the current-free reference field Bref ¼ ez that satisfies Bref
n ¼ Bn on all

six boundaries. Strictly speaking, our initial condition (7)–(9) does not
precisely satisfy this condition on the side boundaries, but the domain

FIG. 2. Time evolution of integrated quantities: (a) magnetic energy relative to the potential field B ¼ ez ; (b) kinetic energy; (c) excess internal energy; (d) cumulative heating
rates; and (e) unsigned helicity, �H .
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is sufficiently large that the maximum error in Bn is of the order 10�10,
much smaller than the truncation errors in our numerical calculations.
Our method for computingA is described in Appendix A.

In our resistive relaxation, the distribution of A can change due
to reconnection.32 In fact, Yeates & Hornig30 proved it will necessarily
do so if there is any change in the field line connectivity between the
two end boundaries. This is the redistribution of helicity invoked by
Taylor.5 Since A provides a complete description of the magnetic field
connectivity, it is a natural tool for studying the evolution of the mag-
netic field structure.

To compute A, we first computed appropriate vector potentials,
A, for a sequence of simulated snapshots of B, using the method
described in Appendix A. For each snapshot, we traced magnetic field
lines from a regular grid of 1024� 1024 starting points in the region
f�4 � x � 4;�4 � y � 4g on the lower boundary z¼ – 24, using a
second-order Runge–Kutta method with adaptive step-size. We focus
on this smaller region where the reconnection takes place because A
remains unchanged outside. We then integrated A � B=jBj along each
field line with the composite trapezium rule. Trilinear interpolation
was used for both A and B.

Figure 4 shows the evolution ofA, which, we stress, changes only
by magnetic reconnection. The times in this figure are chosen to be
approximately equivalent between runs, in terms of the progress of the
topological evolution. This is most conveniently measured by the
unsigned helicity,

�H ¼
ð4
�4

ð4
�4
jABzj dxdy; (11)

which follows a similar path in all simulations, as shown in Fig. 2(e).
We make three main observations:

1. There is no wholesale annihilation of line helicity, despite the
fact that annihilation would be consistent with conservation of

the global helicity, which is equal to zero. In fact, the mean value
of jAj in the region f�4 � x � 4;�4 � y � 4g increases
by approximately 20%. This is shown by the evolution of �H in
Fig. 2(e). The absence of annihilation accords with the expecta-
tion from Russell et al.32 that the leading order evolution of line
helicity in a highly conducting fluid will be redistribution rather
than dissipation. This will be discussed further in Sec. III.

2. In the final state, the positive and negative line helicity are orga-
nized into two distinct regions, with the exception of some sur-
viving remnants of the mixed structure on the outside of the
relaxation region (toward the top in Fig. 4). This topological
organization of the relaxed state will be discussed in Sec. IV.

3. Within each of the final positive and negative regions, the line
helicity is very uniform. This was not anticipated by Russell
et al.,32 and will be discussed in Sec. V.

III. DOMINANCE OF REDISTRIBUTION

We have seen that wholesale annihilation of A does not take
place during the simulation, as evidenced by the fact that the overall
unsigned helicity �H does not decrease [Fig. 2(e)]. But we have also
seen, in Fig. 4, that theA pattern evolves significantly during the relax-
ation, so there must nevertheless be significant local changes in A. To
quantify the level of these local changes, Fig. 5 compares the net rate of
change of jAj, as measured by d�H=dt, with the integrated local rates
of change j@A=@tj. The latter are at least four times higher than the
rate of change of �H , so that the majority of local changes inA are can-
celed out globally. This accords with the dominance of pairwise
increases and decreases predicted by Russell et al.32 These authors pro-
posed that the dominance of redistribution ofA over its dissipation in
a highly conducting plasma may be explained by the evolution equa-
tion for A. Next, we compute the terms in this equation to illustrate
that this basic explanation holds in our simulations.

A. Line helicity evolution equation

Russell et al.32 showed that the line helicity of a field line L
evolves according to

dAðLÞ
dt

¼ w � A�W½ �x1x0 ; (12)

where x0 and x1 are the end points of L, andw is any field line velocity
into which L is frozen. The last term represents the voltage drop along
the field line,

W½ �x1x0¼
ð
L
gj � dl: (13)

Since Bz > 0 everywhere, W is global and single-valued. There is no
additional scalar potential (i.e., gauge) term in Eq. (12) because its con-
tributions mutually cancel due to a combination of (i) our gauge
restriction fixing n� A on the end boundaries and (ii) the line-tied
boundary condition that both v and n� j vanish on these boundaries.

To compare with the simulations shown in Fig. 4, it is beneficial
to choose w in Eq. (12) so that the left-hand side represents the change
inA at a fixed position on the z¼ – 24 boundary, i.e., so that field lines
are identified over time by fixed end points x0 on this boundary. As
discussed by Russell et al.,32 this corresponds to

FIG. 3. Dependence of the relaxation time on Lundquist number, S, as measured
by the evolution of �H [Eq. (11)]. The two points t220 and tmax for each simulation run
indicate respectively the first snapshot where �H > 220—representing approxi-
mately half of its overall change—and the snapshot with maximum �H . The dotted
and dashed lines are least squares fits giving the indicated scalings.
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w ¼ ez � ðrWþ v � B� gjÞ
Bz

; (14)

with the choice that W ¼ 0 on the z¼�24 boundary. It follows that
w ¼ 0 on this boundary, so that field lines are traced from fixed end
points there. But on the far boundary at z¼ 24, we then have

ez �rW 6¼ 0 so the opposite end points move due to reconnection.
With this w, Eq. (12) reduces to

@Aðx0Þ
@t

¼ ðw � AÞðx1Þ �Wðx1Þ; (15)

where x0 is fixed but the opposite end point x1 moves in time.

FIG. 4. Colormaps of A for the simulation runs with different S, in the initial configuration [(a), (d), (g), and (j)], at time t ¼ t220 during the turbulent dynamics [(b), (e), (h),
and (k)] and at the end of this phase at time t ¼ tmax [(c), (f), (i), and (l)]. The field line helicity is plotted on the z¼ – 24 cross section, with the red/blue color scale capped at
A ¼ 612 in all cases. The times t220 and tmax are chosen according to �H as in Fig. 3.
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B. Numerical verification

To compute the terms on the right-hand side of Eq. (15) from
the simulations, we first integrate gj along field lines to calculate W on
the z¼ 24 boundary, using a similar field line integration method to
that used for calculatingA. Then, since Bz¼ 1, Eq. (14) gives

wðx1Þ ¼ �
@Wðx1Þ
@y1

ex þ
@Wðx1Þ
@x1

ey; (16)

andAðx1Þ ¼ Aref ðx1Þ. The derivatives are computed numerically with
central differencing using field line startpoints spaced by 10�3.

In Fig. 6, we check that Eq. (15) holds in our numerical simula-
tions. The figure shows one-dimensional cuts through two of the runs
(S¼ 2500 and S ¼ 10 000). The times are chosen shortly before the
end of the dynamical relaxation phase in each case—between the mid-
dle and right columns of Fig. 4. Panels (c) and (d) and (e) and (f) in
this figure show the left- and right-hand sides of Eq. (15), as computed
numerically. We see good agreement despite the sharp peaks in
the field line integrated quantity ðw � AÞðx1Þ. Resolving the terms in

FIG. 5. Scatterplot comparing the rate of change of unsigned helicity �H to the inte-
grated unsigned changes of A. Each dot corresponds to a time snapshot as shown
in Fig. 2(e). The time derivatives were computed using two 1024� 1024 maps of
A taken at short intervals Dt � 0:1, and the integrals were taken over the region
�4 � x � 4;�4 � y � 4. Dashed lines indicate slope 61 and the dotted line
indicates slope 0.25.

FIG. 6. Terms in the evolution equations for A, in a radial cut at x0 ¼ 0 on the z¼�24 boundary. Left column shows t¼ 100 for S¼ 2500 run, while right column shows
t¼ 150 for S ¼ 10 000. Panels (a) and (b) show A, and (c) and (d) show @A=@t computed using forward differences with dt ¼ 0:013 (for S¼ 2500) and dt ¼ 0:006 (for
S ¼ 10 000). Panels (e) and (f) show the recovered right-hand side of (15), while (g)–(j) show the two constituent terms.

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 28, 082904 (2021); doi: 10.1063/5.0059756 28, 082904-7

VC Author(s) 2021

https://scitation.org/journal/php


Eq. (15) becomes progressively more difficult for larger S, since
increasing the Lundquist number supports steeper gradients in the
field line mapping, which in turn produces steeper gradients in field
line integrated quantities such as A and W, and hence also in w. The
difference in steepness between the two runs is evident in the middle
column of Fig. 4, and is clear in Figs. 6(a) and 6(b).

Two other features are visible in Fig. 6. First, it clearly shows the
uniformization of A within the negative region, which is visible as a
flat plateau at this relatively advanced stage of the relaxation. We
believe that this uniformization arises from the dynamics and cannot
be predicted purely from the evolution equation (15); it will be dis-
cussed in Sec. V. Second, it is clear that the significant changes in A
arise from the w � A term, rather than from W. Thus, our simulations
support the dominance of the work term over the voltage drop, as pre-
dicted by Russell et al.32 The difference arises simply because wðx1Þ
depends on derivatives of the field line integrated quantity W, through
Eq. (16), and these derivatives are typically large owing to the short
length scales.

It is interesting to note that the spikes in @A=@t correlate with
locations where A has a high spatial gradient. These typically arise
from locations where the field line mapping has large gradients,
because A is a field line integrated quantity. Both w and W are typi-
cally large at these locations, indicating that the corresponding field
lines are reconnecting.

IV. GLOBAL TOPOLOGY

It is evident from Fig. 4 that the distribution of A relaxes into
two largely separated regions of opposite sign. In fact, we will show
here that the impossibility of further simplification follows mathemati-
cally from the initialA pattern, together with the localization (in x and
y) of the resistive dynamics. By localization, we mean that there is an
outer boundary region where @A=@t remains small throughout the

evolution because it is almost ideal there. This means that W � 0 so
the right-hand side of (15) is small.

To see how the evolution of A is constrained, we note first that
within these simulations it is a smooth function of x0 (albeit with steep
gradients), which evolves continuously in time. Therefore, its contours
evolve continuously in time, except possibly at critical points where
rA ¼ 0. Moreover, these critical points cannot arbitrarily appear or
disappear, but must do so in limited ways—typically pairwise—so as
to preserve their net Poincar�e index. This is þ1 for an extremum
(maximum or minimum) and �1 for a saddle. The only way that the
overall net Poincar�e index can change is through movement of critical
points in or out of the region. In our case, this is prevented by the
invariance of A in the surrounding boundary region. So the net
Poincar�e index is invariant.

The net Poincar�e index of the A pattern in our simulations has
the value 2. Figure 7 illustrates this topological structure at t¼ 0. At
this initial time, A may be computed analytically (see Appendix B),
allowing us to rigorously identify the 42 individual critical points in
the complex pattern. These critical points are 22 extrema and 20 sad-
dles, and the difference yields the net Poincar�e index of 2. In fact, it is
not necessary to identify individual critical points in order to compute
the net Poincar�e index: this may be determined purely from the num-
ber of rotations of the rA vector around a single circuit of the outer
“boundary region” [e.g., the dashed curve in Fig. 7(b)]. Here, there are
two positive rotations of rA, confirming the net value 2. It is clear
from Fig. 4 that this remains the case throughout the numerical simu-
lations, although the total number of critical points changes, decreas-
ing overall as theA pattern simplifies.

The consequence of this invariant overall Poincar�e index of 2 is
that the relaxed state must contain at least 2 extrema. One of these is a
maximum and one a minimum, thus explaining the persistence of two
separate regions of oppositely signed A. This topological structure is

FIG. 7. The topology of rA at t¼ 0. Panel (a) shows the distribution of A (red positive, blue negative), while panel (b) is shaded according to the orientation of rA.
Specifically, (I) @A=@x > 0; @A=@y > 0; (II) @A=@x < 0; @A=@y > 0; (III) @A=@x < 0; @A=@y < 0; and (IV) @A=@x > 0; @A=@y < 0. Critical points are denoted
by circles (extrema) and crosses (saddles), computed as described in Appendix B. The sequence of two full counterclockwise rotations of rA as the dashed curve is traced
counterclockwise indicates that the net Poincar�e index is 2.
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not predicted by the standard Taylor theory, since conservation of
total helicity alone would not prevent relaxation to a uniform straight
magnetic field.

A topological explanation for the persistence of two tubes in these
simulations was already given by Yeates, Hornig, and Wilmot-Smith18

(see also Yeates et al.19). However, that work considered the topologi-
cal degree of the field line mapping from one end boundary to the
other, rather than the A pattern. The two are related to some extent,
since A contains all of the information about the field line mapping.30

But fixed points of the field line mapping are not, in general, critical
points ofA, and vice versa; in this case, there are 22 fixed points in the
initial configuration compared to 42 critical points of A. Admittedly,
the net topological degree of the mapping is 2, matching the overall
Poincar�e index ofrA, but we have no reason to believe that this holds
for all braided magnetic fields.

We remark that the existence of a surrounding ideal region
imposes stronger constraints than merely the preservation of the net
Poincar�e index. For example, in Fig. 4 it is clear that there is a peripheral
region where a vestige of the initial mixed pattern ofA survives, because
those field lines have undergone insufficient reconnection. Nevertheless,
the Poincar�e index of the initial distribution of A suffices to predict the
principal topological feature of two regions with oppositeA.

V. UNIFORMIZATION

After the relaxation, the distributions of A within each of the
positive and negative regions are remarkably uniform, as we saw in
Figs. 6(a) and 6(b). As a further illustration, Fig. 8 shows histograms of
the unsigned jAj distributions seen in Fig. 4. Each run shows the clear
formation of a localized peak in the relaxed-state histogram at jAj
� 9:5 [Fig. 8(c)]. After this time, which is approximately the end of
the dynamical phase, the peak value is gradually reduced (like �H ) by
Ohmic diffusion, at a rate dependent on S but slower than the dynami-
cal relaxation. The topological constraint in Sec. IV does not explain
this uniform distribution of A within the final flux tubes. Rather, it
must arise from the physical dynamics.

A. Taylor theory

Taylor1,5 invoked Woltjer’s earlier argument8 that the minimum-
energy state under the constraint of conserved magnetic helicity would
be a linear force-free field where j ¼ k0B for some constant k0. In our
case, since there is no net helicity, the global Taylor state would be the
uniform field B ¼ ez . We have already seen how conservation of the
net Poincar�e index of the vector field rA prevents this uniform field
from being reached during the dynamical relaxation. However, we can
still ask whether Taylor relaxation is operating separately within the
positive and negative helicity regions.

If we compute the profile of k ¼ j � B=jBj2 within each flux tube,
we do find some tendency for flattening. This is shown in Figs. 9 and
10. The flatter k profile is most evident at the end of the dynamical
phase [Fig. 10(c)] as compared to the initial profile [Fig. 10(a)], although
there are still quite significant variations. These variations are even more
significant when k is averaged along magnetic field lines rather than
averaged in the z direction, as seen by comparing Figs. 9(f) and 9(i), or
equivalently by comparing the hkiz and hkiFL curves in Fig. 10(c).
Whichever averaging is used for k, it is striking that the relaxed-state k
profile is much less uniform than that of A. This is evident by

comparing Fig. 10(c) with Fig. 10(f), which shows the relaxed-stateA in
the same y¼ 0 cut. Next, we propose a possible explanation.

B. Relation between uniformization and Taylor theory

Although k does not become completely uniform in our simula-
tions, its tendency toward uniformity nevertheless hints at a possible
explanation for the uniformization of A. First, since Bz � 1 in our

field, and jBzj 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
x þ B2

y

q
, we have k � jz . Figures 10(a)–10(c)

show that this holds to good approximation in our simulations.
Indeed, applyingWoltjer’s variational argument (minimization of mag-
netic energy subject to fixed magnetic helicity) to magnetic fields of the
restricted form B ¼ r� ðAðr;/; tÞezÞ þ ez yields jz ¼ constant. A
flux tube that is invariant in z and has uniform jz must indeed have
uniform A. To see this, write B ¼ r� ðAðr;/; tÞezÞ þ ez , so that
jz ¼ �r2A. The vector potential A must therefore satisfy the Poisson
problem

r2A ¼ �k0; AðR;/Þ ¼ 0; (17)

where k0 is the uniform value of jz and R is the radius of the flux tube.
The unique solution must be the (regular) axisymmetric one,

FIG. 8. Histograms of jAj on a 1024� 1024 grid covering the region
f�4 < x < 4;�4 < y < 4g, at times (a) t¼ 0, (b) t ¼ t220, and (c) t ¼ tmax.
The times are chosen as in Figs. 3 and 4, according to the evolution of �H . Note
that area (vertical axis) is equivalent to magnetic flux, since Bz 
 1 on z ¼ 624.
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A ¼ k0ðR2 � r2Þ=4, which gives the uniform twist magnetic field
B ¼ ðk0r=2Þe/ þ ez . This indeed has uniform line helicity,

Aðr;/Þ
Lz

¼ A � B
Bz
¼ r

2
B/ðrÞ þ AðrÞ ¼ k0R2

4
: (18)

For the values k0 � 0:25 and A � 9:5 obtained in our experiment
with Lz¼ 48, Eq. (18) would predict R � 1:8, which is only a little
over the actual radius of each flux tube.

In the simulations, it is notable thatA shows a markedly stronger
uniformity than k, as we saw in Fig. 9. This difference is natural

FIG. 9. The force-free parameter, k ¼ j � B=B2, in the S ¼ 20 000 run. Panels (a)–(c) show slices at y¼ 0, while (d)–(f) show means over z and (g)–(i) show means along
magnetic field lines (on the z¼�24 boundary).
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because k is effectively a second derivative of A, whereas A is an inte-
gral of A. An alternative perspective is to observe that k is a locally
defined quantity, while A can be interpreted as a non-local average
over many nearby field lines [cf. Ref. 38]. To illustrate the difference,
we consider a simple analytical magnetic field model in Fig. 11, which
shows k andA for the magnetic field

B ¼ B0 þ B0: (19)

This combines an axisymmetric, uniformly twisted background

B0 ¼
k0r
2

erf
r � R
0:1

� �
e/ þ ez; (20)

with fluctuations having the form of 100 local “twists,”

B0 ¼
X100
i¼1

bi exp �ðx � xiÞ2 þ ðy � yiÞ2

ð0:2Þ2
� ðz � ziÞ2

62

 !

� �ðy � yiÞex þ ðx � xiÞey
� �

; (21)

with randomly chosen strengths bi 2 ½�1; 1� and locations
xi; yi 2 ½�R=2;R=2�; zi 2 ½�12; 12�. This field is chosen to mimic the
relaxed state in the numerical simulations, which has jz approximately
constant within a tube, but with significant fluctuations about the
mean. Consistent with the simulations, we set k0 ¼ 0:25 and R¼ 1.8.
The distribution of A in Figs. 11(c) and 11(f) has been computed
numerically using the same method as for the simulations.

We observe that, within our model flux tube, k shows signifi-
cantly more fluctuations thanA, even after k has been averaged either
in z [Fig. 11(d)] or along magnetic field lines [Fig. 11(b)]. The non-
local nature of A means that the fluctuations B0 tend to make equal

positive and negative contributions to A. But because k does not have
this inherent averaging, it does not see this cancelation and maintains
a significant signature from the fluctuations.

VI. CONCLUSION

The numerical MHD simulations and analytical model in this
paper have shown that the field line helicityA can add to understand-
ing of the processes of dynamical relaxation and self-organization in
highly conducting plasmas. Using direct numerical simulations, we
have confirmed our earlier theoretical prediction that A is efficiently
redistributed between field lines rather than destroyed.32 Even though
our simulations are limited to relatively modest Lundquist number
ranges, this phenomenon is clearly observed for all Lundquist numbers
tested so far. Thus we suggest that the classic theory of Taylor relaxa-
tion could be refined by adding this “quasi-conservation” of field line
helicity—i.e., allowing it to be redistributed/exchanged between field
lines but not destroyed. This remains consistent with Taylor’s assumed
conservation of the global helicity (because the global helicity is the
weighted sum of all the individual line helicities), but it can impose
additional constraints on the relaxation and therefore alter the relaxed
state.

We have shown how one such constraint—the net Poincar�e
index of the rA pattern—can explain why our final state comprises
two oppositely twisted magnetic flux tubes, rather than a global linear
force-free magnetic field. Chen et al.39 have recently shown that this
overall topology can be predicted by a “variational” model that looks
for the simplest possible rearrangement of the initialA distribution on
the plane, neglecting the true turbulent dynamics altogether.

When we examine the relaxed state produced by 3D resistive
MHD in finer detail, we do not find the same sub-structure within the

FIG. 10. Comparison of the force-free parameter, k, and field line helicity, A in the S ¼ 20 000 run, at the same times as Fig. 9. Panels (a)–(c) show means of k both in z
(hkiz , for y¼ 0) and along magnetic field lines (hkiFL, seeded at y¼ 0 on z¼�24). Also shown are means in z of jz and jy. For comparison, panels (d)–(f) show A at y¼ 0
(seeded on the z¼�24 boundary).
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two flux tubes that is predicted by the pure A-rearrangement model
considered by Chen et al.39 Our simulations with increasing
Lundquist number suggest that this is not purely due to resistive decay.
Rather, there is an overall 20% increase in absolute helicity (�H ) that
appears to be independent of Lundquist number. This arises from the
process of disentanglement, whereby magnetic field lines that start
with portions of oppositely signed integrand, A � B, tend to reconnect
and form field lines with only a single sign of A � B along their length.
A similar increase in unsigned helicity has been observed in vortex
reconnection.40 Intriguingly, we found this increase to be part of a
“uniformization” ofA within each of the positive and negative regions.
We have suggested that this arises from a Taylor-relaxation like ten-
dency toward constant k. The fact that line helicity is much more uni-
form than k reflects the former’s more robust nature as a non-local
quantity. This robustness could be useful in studying realistic turbulent
plasmas. But it remains to be seen whether this uniformization of line
helicity is a general behavior found in other configurations. In particu-
lar, the generality of our conclusions is limited here because the uni-
form-k and uniform-A states are consistent with one another owing
to the relatively modest amount of magnetic helicity in our system.
One can see that the two may differ in general, by considering
Lundquist force-free fields with differing twist (see Appendix C).

Finally, the simulations in this paper considered only line-tied
boundary conditions. A forthcoming paper will apply similar analysis
to configurations with periodic boundary conditions (topologically
toroidal). Preliminary indications suggest that the same self-
organization into opposite-helicity tubes occurs, but the definition of

line helicity needs some additional care in the periodic case because
there is no physical boundary delineating the end points of individual
magnetic field lines.
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APPENDIX A: VECTOR POTENTIAL COMPUTATION

Here, we describe our method for computing a vector potential
A whose tangential components match the reference vector poten-
tial Aref ¼ � 1

2 y;
1
2 x; 0

� �
on the boundaries. This reference vector

potential curls to give the reference potential field Bref ¼ ð0; 0; 1Þ,
whose normal component, Bref

n , matches that of our original field,
Bn, on all six boundaries. Our computation of A proceeds as
follows:

1. Compute a vector potential A0 for the difference B� Bref using
the formulas

A0xðx; y; zÞ ¼ �
ðy
�8
ðBzðx; s; zÞ � Bref

z ðx; s; zÞÞ ds; (A1)

A0yðx; y; zÞ ¼ 0; (A2)

FIG. 11. The simple magnetic field model to illustrate how A is inherently more uniform than k in the relaxed state. Panel (a) shows k ¼ j � B=B2 in the plane y¼ 0, while
panel (b) shows field line averages of k (in the z¼ –24 plane). Panel (c) shows line helicity also in the z¼ – 24 plane, while panel (d) shows a z-average of k. One-
dimensional cuts at y¼ 0 are shown in (e) and (f).
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A0zðx; y; zÞ ¼
ðy
�8
ðBxðx; s; zÞ � Bref

x ðx; s; zÞÞ ds: (A3)

2. Change gauge to A00 ¼ A0 þ rv such that n� A00 ¼ 0 on all six
boundaries. In fact, the tangential components of A0 already van-
ish on all boundaries except for y¼ 8. It suffices to take

vðx; y; zÞ ¼ � y þ 8
16

ðx
�8

A0xðs; 8; zÞ ds; (A4)

in which case

A00xðx; y; zÞ ¼ A0xðx; y; zÞ �
y þ 8
16

A0xðx; 8; zÞ; (A5)

A00y ðx; y; zÞ ¼ �
1
16

ðx
�8

Ax
0ðs; 8; zÞ ds; (A6)

A00z ðx; y; zÞ ¼ A0zðx; y; zÞ �
y þ 8
16

A0zðx; 8; zÞ: (A7)

3. Finally, set A ¼ A00 þ Aref .

Since it uses only one-dimensional line integrals, this method is
computationally very efficient.

APPENDIX B: LINE HELICITY IN THE INITIAL
CONFIGURATION

The initial magnetic field given by Eqs. (7)–(9) was initially
devised by Wilmot–Smith, Hornig, and Pontin17 so as to have an
analytical expression for the field line mapping, in spite of that
mapping’s complexity. We take advantage of this to compute the
line helicity exactly for this configuration, shown in Fig. 7(a).

Recall that the magnetic field comprises six twists in a uniform
background field. For our choice of parameters, the twists essen-
tially do not overlap in the z direction, so that we may derive the
overall field line mapping by composing the mappings through
each individual twist [cf. Ref. 41]. The mapping through each twist
is given by ðXi�1;Yi�1Þ ! ðXi;YiÞ, where

ðXi;YiÞ ¼ ððXi�1 � xiÞ cos ni � Yi�1 sin ni þ xi;

ðXi�1 � xiÞ sin ni þ Yi�1 cos niÞ;
(B1)

ni ¼ 2ki
ffiffiffiffiffi
2p
p

exp �ðXi�1 � xiÞ2 þ Y2
i�1

2

� �
: (B2)

Here, we have taken the mapping from z¼ – 1 to z ¼ 1 to sim-
plify the expressions, with no practical effect on the results because
the twists are sufficiently spaced in z.

The appropriate vector potential for a single twist is

Aðx; y; zÞ ¼ � y
2
ex þ

x � xi
2

ey

þ
ffiffiffi
2
p

ki exp �ðx � xiÞ2 þ y2

2
� ðz � ziÞ2

4

� �
ez

þr xiy
2

� �
; (B3)

so that the contribution to the line helicity from this twist is

AiðXi�1;Yi�1Þ¼
ð1
�1

A �B
Bz

dz

¼ni
ðXi�1�xiÞ2þY2

i�1
2

þ1

� �
þxi

2
ðYi�Yi�1Þ: (B4)

The overall line helicity for the six-twist configuration is then

AðX0;Y0Þ ¼
X6
i¼1
AiðXi�1;Yi�1Þ; (B5)

which is readily evaluated numerically.
To compute the critical points of A in Fig. 7, zero contours of

@A=@x and @A=@y were traced in the z¼ 0 plane, rather than the
z¼�24 plane shown in Figs. 4 and 7. The critical points remain on
the same field lines and preserve their Poincar�e index under this
change of cross section. It has the advantage of reducing the sharp
gradients in A to facilitate accurate location of the critical points.
These were identified by intersections of the zero contours of
@A=@x and @A=@y (equivalently, points where regions I, II, III,
and IV all meet simultaneously in Fig. 7).

APPENDIX C: LINE HELICITY OF LUNDQUIST FIELDS

Our purpose here is to show that Lundquist constant-k fields
of the form

B ¼ B0ðJ1ðk0rÞe/ þ J0ðk0rÞezÞ (C1)

with small enough k0 have very uniform field line helicity,
A � constant. Suppose that this field is defined inside a cylinder
radius R. The appropriate vector potential in this case is

A ¼ 1
k0
ðB� J0ðk0RÞezÞ; (C2)

FIG. 12. Radial profiles of (a) B/ and Bz and (b) A, in four Lundquist fields with
increasing k0 in the same cylinder with radius R¼ 1.8.

Physics of Plasmas ARTICLE scitation.org/journal/php

Phys. Plasmas 28, 082904 (2021); doi: 10.1063/5.0059756 28, 082904-13

VC Author(s) 2021

https://scitation.org/journal/php


which satisfies Az¼ 0 on r¼R and has tangential components on
the boundary with no tangential divergence [cf. Ref. 37]. The line
helicity per unit length in z for r<R is therefore

AðrÞ ¼ B0

k0

J20 ðk0rÞ þ J21 ðk0rÞ
J0ðk0rÞ

� J0ðk0RÞ
 !

: (C3)

We can fix B0 by requiring magnetic pressure balance with a uni-
form field B ¼ ez outside the cylinder (r>R), which implies
B0 ¼ ½J20 ðk0RÞ þ J21 ðk0RÞ�

�1=2.
Figure 12(b) shows the resulting AðrÞ profiles for several

values of k0, with corresponding B/ and Bz profiles shown in
Fig. 12(a). For small k0, the flux function is almost independent of
r, including for the value k0 ¼ 0:25 corresponding to a tube with
comparable magnetic helicity to our numerical simulations. For
larger k0, however, A begins to show more significant radial varia-
tion in the outer part of the tube, so that such a tube would have
uniform k but not uniform A. (The maximum possible k0 before
there is a field reversal, BzðRÞ ¼ 0, is �1:34.)
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The data that support the findings of this study are available
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