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Plasma relaxation in the presence of an initially braided magnetic field can lead

to self-organization into relaxed states that retain non-trivial magnetic structure.

These relaxed states may be in conflict with the linear force-free fields predicted by

the classical Taylor theory, and remain to be fully understood. Here, we study how

the individual field line helicities evolve during such a relaxation, and show that they

provide new insights into the relaxation process. The line helicities are computed

for numerical resistive-magnetohydrodynamic simulations of a relaxing braided mag-

netic field with line-tied boundary conditions, where the relaxed state is known to be

non-Taylor. Firstly, our computations confirm recent analytical predictions that line

helicity will be predominantly redistributed within the domain, rather than annihi-

lated. Secondly, we show that self-organization into a relaxed state with two discrete

flux tubes may be predicted from the initial line helicity distribution. Thirdly, for

this set of line-tied simulations we observe that the sub-structure within each of the

final tubes is a state of uniform line helicity. This uniformization of line helicity

is consistent with Taylor theory applied to each tube individually. However, it is

striking that the line helicity becomes significantly more uniform than the force-free

parameter.
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I. INTRODUCTION

Magnetic fields in plasmas spontaneously self-organize into lower-energy states, for ex-

ample powering disruptions in laboratory plasma and fusion devices1,2, or stellar flares3,4.

Understanding the resulting states produced by these dynamical relaxation events is crucial

to understanding energy release in these systems. This is a challenging problem because the

relaxation process is typically turbulent.

The most influential theory of this process, known as Taylor relaxation, proposes that

the plasma minimizes energy while conserving its global magnetic helicity5,6. Helicity is an

important invariant in magnetohydrodynamics (MHD); physically, it quantifies the average

linking between magnetic field line curves in 3-dimensional (3D) space7. Classic Taylor

relaxation treats the global magnetic helicity as the only topological constraint on self-

organization of the plasma, and hence predicts that the resulting magnetic field B is a

linear force-free field obeying ∇ × B = λ0B where λ0 is a constant1,2,5,8. The underlying

assumption that the total magnetic helicity is more highly conserved than energy, is an

example of selective decay in turbulent fluids and plasmas9.

Taylor’s theory successfully reproduces major features of the magnetic field in a reversed

field pinch, which it was developed to explain, and it has given important insights into other

experimental plasma physics phenomena such as current limitation and symmetry breaking2.

It has also been applied to astrophysical plasmas such as magnetized jets10, interplanetary

magnetic clouds11,12 and solar flares3,4,13. However, the theory is less successful in unbounded

configurations and tokamaks14,15. Indeed, since the Taylor state is force-free, with ∇p = 0

in the absence of gravity, it cannot (in its classic form) explain any self-organized field

that magnetically confines plasma. Recently, 3D MHD simulations with ever-increasing

Lundquist numbers have made it possible to probe turbulent relaxation in detail, at low cost,

and for precisely known initial conditions and parameters. These numerical experiments

have found more counterexamples where the end states are not linear force-free fields16–20.

It therefore appears more certain than ever before that other constraints, in addition to the

global helicity, can be important for plasma self organization.

Previous efforts to generalize Taylor relaxation have considered additional global con-

straints on the magnetic topology, such as the topological degree of the field line mapping18,19,

measures of higher-order linking21–23, and helicity integrals weighted by powers of the he-
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lical flux function24. Alternative relaxation models have also been developed where the

constraints are not purely due to the initial magnetic topology25,26, as well as models where

flows occur in the relaxed state27. In this paper, we take a novel approach by examining the

distribution of individual field line helicities28,29 in a turbulent MHD relaxation in a straight

geometry. In his original paper, Taylor5 noted that a helicity integrand exists for every

magnetic field line. He also conjectured that during reconnection “the effect of the topo-

logical changes is merely to redistribute the integrand among the field lines involved,” and

so proposed that the “final state of relaxation, therefore, will now be the state of minimum

energy subject only to the single [global] invariant.”

In the forty-seven years since Taylor’s original paper, understanding of field line helicities

has advanced significantly28–31, and it has recently been found that they do not evolve

arbitrarily during reconnection but instead obey an evolution equation derived by Russell

et al.32. These authors considered how the field line helicities would evolve during localized

reconnection in a complex, 3D magnetic field, such as would arise during turbulent evolution

of a highly conducting plasma. They derived an evolution equation for the field line helicity

(to be discussed in Section III below). This includes both a resistive dissipation term and a

“work-like” term, both of which involve field line integrated quantities. The authors showed

that a sufficiently complex field line mapping produces a scale separation between the two

terms, with the work-like term expected to dominate. Furthermore, the work-like term

is expected to conserve the overall field line helicity to leading order, acting primarily to

redistribute rather than destroy it. At the time, these analytic predictions were validated

using kinematic examples. In principle, such laws governing the time evolution of line

helicities could lead to a conflict with the basic Taylor assumption that global helicity is the

only dynamically relevant invariant. Our aim in this paper is therefore to explore how the

field line helicity evolves in full 3D MHD simulations of magnetic relaxation.

Our first objective is to test the prediction of Russell et al.32 that field line helicity is

redistributed rather than destroyed during turbulent relaxation. However, because we select

a configuration known to relax to a force-free field that is not the linear force-free Taylor

state33, we are also able to investigate whether the field line helicities shed further light

on what determines the relaxed state. The paper is organized as follows. The numerical

simulations are described in Section II, which includes a summary of our three main obser-

vations about magnetic relaxation and field line helicity (Section II D). Each of these three
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observations is then discussed in more detail in a separate section: Section III investigates

the extent to which field line helicity is redistributed rather than destroyed; Section IV ex-

amines the overall topology of the final state and its relation to the topology of the initial

line helicity distribution; and Section V considers the finer sub-structure of the relaxed state.

Conclusions are given in Section VI.

II. NUMERICAL SIMULATIONS

MHD turbulent relaxation can be simulated by solving the resistive MHD equations with

low dissipation and a braided initial magnetic field. The choice of a braided field is motivated

by the significant turbulence that these fields generate, an important prerequisite for Taylor

relaxation.

A. Resistive-MHD equations and parameters

We used the Lare3d Lagrangian-remap code34 to solve the resistive-magnetohydrodynamic

(MHD) equations in a Cartesian domain [−8, 8] × [−8, 8] × [−24, 24]. The code solves the

non-dimensionalized equations

∂ρ

∂t
= −∇ · (ρv), (1)

ρ
Dv

Dt
= j×B−∇p+∇ · σ, (2)

∂B

∂t
= ∇× (v ×B)−∇× (ηj), (3)

ρ
Dε

Dt
= −p∇ · v + η|j|2 + ε : σ, (4)

p = ρε(γ − 1), (5)

µ0j = ∇×B, (6)

where ρ is the mass density, v the plasma velocity, B the magnetic field, j the current den-

sity, p the plasma pressure, σ the stress tensor, ε the specific internal energy density, η the

resistivity, ε the strain tensor and γ = 5
3

the ratio of specific heats. The viscous term ∇ · σ
includes only a shock viscosity to prevent unphysical oscillations, but no background viscos-

ity. The shock viscosity takes the tensor form given by Bareford, Hood, and Browning 20 ,

with the same dimensionless parameters ν1 = 0.1 and ν2 = 0.5. There is a corresponding
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TABLE I. List of simulation runs.

Lundquist number [S] Diffusivity [η] Grid resolution

2500 4× 10−4 320× 320× 240

5000 2× 10−4 640× 640× 480

10000 1× 10−4 640× 640× 480

20000 5× 10−5 960× 960× 720

heating term ε : σ in the energy equation. The resistivity η is uniform with no enhancement

at current sheets. The non-dimensional time t is such that one unit is the time taken for an

Alfvén wave when |B| = ρ = 1 to travel a unit distance.

Four different runs are illustrated in this paper, differing in Lundquist number, S, as

listed in Table I. Since the non-dimensional t represents the Alfvén time, the Lundquist

number is simply given by S = η−1, in terms of the non-dimensional resistivity η.

B. Boundary and initial conditions

For the simulations described here, line-tied boundary conditions were implemented by

setting the plasma velocity v = 0 on all six boundaries, with zero normal-gradient conditions

for B, ρ, and ε. Such conditions are relevant to coronal loops and laboratory experiments

such as the large plasma research device35. Periodic boundary conditions – as relevant

to laboratory fusion devices – can also be considered, but we defer their discussion to a

subsequent paper.

The simulations were initialized with uniform ρ = 1 and ε = 0.01. The initial magnetic

field took the “braided” E3 form17, which consists of six twists of magnetic flux superim-

posed on a uniform magnetic field, arranged in two offset columns. This field has a global

helicity of zero and its dynamics have been extensively investigated in a long-term research
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programme36. Explicitly,

Bx(x, y, z) = −
√

2
6∑

i=1

kiy exp

(
−ξ

2
i

4

)
, (7)

By(x, y, z) =
√

2
6∑

i=1

ki(x− xi) exp

(
−ξ

2
i

4

)
, (8)

Bz(x, y, z) = 1, (9)

where ξ2i = 2(x − xi)
2 + 2y2 + (z − zi)

2 and xi = ki = (1,−1, 1,−1, 1,−1) and zi =

(−20,−12,−4, 4, 12, 20).

The plasma beta of this initial condition is β ≈ 0.01. There are initially significant

unbalanced j×B forces, so the dynamical evolution begins immediately. However, previous

simulations18 found consistent relaxed states whether or not the magnetic field was first

relaxed using an ideal Lagrangian code.

C. Overview of the evolution

Figure 1 provides an overview of the simulation, starting from the initial condition

(Fig. 1a). In a brief starting phase, the initial magnetic twists launch Alfvén waves that

interact non-linearly to generate MHD turbulence. Thereafter (Fig. 1b), the plasma and

magnetic field evolve rapidly as magnetic field lines reconnect in the turbulent braided re-

gion. The outcome (Fig. 1c) is a simpler lower-energy magnetic field consisting of a pair of

oppositely twisted flux tubes. These two flux tubes co-exist stably, and running the sim-

ulation for longer produces only a gradual resistive diffusion of the magnetic field with no

further simplification of the overall topology.

The time evolution of various integrated quantities is shown in Figure 2. All simulations

show a clear relaxation in terms of magnetic, kinetic and internal energies (Figs. 2a-c,

respectively). The oscillations visible in the energies are ideal in origin and their frequency

is independent of S. Their period (of the order 10 time units) is consistent with the Alfvén

travel time between the initial flux rings. However, the non-ideal evolution which enables the

relaxation to take place has an overall timescale which takes longer for larger S. Figure 3

shows that the relaxation time scales approximately as S0.5 to S0.6. For this reason, we

ran the simulations with larger S for longer. Notice in Figure 2(d) that the net viscous
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FIG. 1. Magnetic field lines for S = 10 000, (a) in the initial braided field, (b) during the turbulent

relaxation, and (c) after the dynamic phase. The field lines are traced from fixed locations with

y = 0 on the z = −24 boundary, and their intersections with z = 24 change substantially as the

magnetic field simplifies into a pair of oppositely-twisted flux tubes. Field lines are colored by field

line helicity, A, and shown in planar projection.

heating increases with S, commensurate with the higher kinetic energy, whereas the net

ohmic heating decreases with S.

D. Observed behavior of field line helicity

We have analyzed the evolution of field line helicity in the numerical simulations. Without

magnetic reconnection, not only would the total magnetic helicity be conserved, but so would

the field line helicity,

A(L) =

∫

L

A · dl, (10)

of every individual magnetic field line L. Here A is a vector potential such that B = ∇×A.

Physically, A(L) measures the winding of magnetic flux around the field line of interest29,31,

so its ideal invariance follows from field line conservation (Alfvén’s theorem), together with

fixing n × A at the boundaries. This fixing is possible because the line-tying leaves Bn
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FIG. 2. Time evolution of integrated quantities: (a) magnetic energy relative to the potential

field B = ez; (b) kinetic energy; (c) excess internal energy; (d) cumulative heating rates, and (e)

unsigned helicity, H.

stationary on all six boundaries32,37. We set n ×A = n ×Aref where Aref =
(
−1

2
y, 1

2
x, 0
)

is a vector potential for the current-free reference field Bref = ez that satisfies Bref
n = Bn on

all six boundaries. Strictly speaking, our initial condition (7)-(9) does not precisely satisfy

this condition on the side boundaries, but the domain is sufficiently large that the maximum

error in Bn is of the order 10−10, much smaller than the truncation errors in our numerical
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FIG. 3. Dependence of the relaxation time on Lundquist number, S, as measured by the evolution

of H (equation (11)). The two points t220 and tmax for each simulation run indicate respectively

the first snapshot where H > 220 – representing approximately half of its overall change – and the

snapshot with maximum H. The dotted and dashed lines are least squares fits giving the indicated

scalings.

calculations. Our method for computing A is described in Appendix A.

In our resistive relaxation, the distribution of A can change due to reconnection32. In

fact, Yeates & Hornig30 proved it will necessarily do so if there is any change in the field line

connectivity between the two end boundaries. This is the redistribution of helicity invoked

by Taylor5. Since A provides a complete description of the magnetic field connectivity, it is

a natural tool for studying the evolution of the magnetic field structure.

To compute A, we first computed appropriate vector potentials, A, for a sequence of

simulated snapshots of B, using the method described in Appendix A. For each snapshot,

we traced magnetic field lines from a regular grid of 1024 × 1024 starting points in the

region {−4 ≤ x ≤ 4,−4 ≤ y ≤ 4} on the lower boundary z = −24, using a second-

order Runge-Kutta method with adaptive step-size. We focus on this smaller region where

the reconnection takes place because A remains unchanged outside. We then integrated

A · B/|B| along each field line with the composite trapezium rule. Trilinear interpolation

was used for both A and B.
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FIG. 4. Colormaps of A for the simulation runs with different S, in the initial configuration (a, d,

g, j), at time t = t220 during the turbulent dynamics (b, e, h, k) and at the end of this phase at

time t = tmax (c, f, i, l). The field-line helicity is plotted on the z = −24 cross-section, with the

red/blue color scale capped at A = ±12 in all cases. The times t220 and tmax are chosen according

to H as in Fig. 3.

Figure 4 shows the evolution of A, which, we stress, changes only by magnetic reconnec-

tion. The times in this figure are chosen to be approximately equivalent between runs, in

terms of the progress of the topological evolution. This is most conveniently measured by
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the unsigned helicity,

H =

∫ 4

−4

∫ 4

−4
|ABz| dxdy, (11)

which follows a similar path in all simulations, as shown in Fig. 2(e). We make three main

observations:

1. There is no wholesale annihilation of line helicity, despite the fact that annihilation

would be consistent with conservation of the global helicity, which is equal to zero.

In fact, the mean value of |A| in the region {−4 ≤ x ≤ 4,−4 ≤ y ≤ 4} increases by

approximately 20%. This is shown by the evolution of H in Fig. 2(e). The absence of

annihilation accords with the expectation from Russell et al. 32 that the leading order

evolution of line helicity in a highly-conducting fluid will be redistribution rather than

dissipation. This will be discussed further in Section III.

2. In the final state, the positive and negative line helicity are organized into two distinct

regions, with the exception of some surviving remnants of the mixed structure on

the outside of the relaxation region (toward the top in Figure 4). This topological

organization of the relaxed state will be discussed in Section IV.

3. Within each of the final positive and negative regions, the line helicity is very uniform.

This was not anticipated by Russell et al. 32 , and will be discussed in Section V.

III. DOMINANCE OF REDISTRIBUTION

We have seen that wholesale annihilation of A does not take place during the simulation,

as evidenced by the fact that the overall unsigned helicity H does not decrease (Figure 2e).

But we have also seen, in Figure 4, that the A pattern evolves significantly during the

relaxation, so there must nevertheless be significant local changes in A. To quantify the

level of these local changes, Figure 5 compares the net rate of change of |A|, as measured

by dH/dt, with the integrated local rates of change |∂A/∂t|. The latter are at least four

times higher than the rate of change of H, so that the majority of local changes in A are

cancelled out globally. This accords with the dominance of pairwise increases and decreases

predicted by Russell et al. 32 . These authors proposed that the dominance of redistribution

of A over its dissipation in a highly-conducting plasma may be explained by the evolution
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FIG. 5. Scatterplot comparing the rate of change of unsigned helicity H to the integrated unsigned

changes of A. Each dot corresponds to a time snapshot as shown in Fig. 2(e). The time derivatives

were computed using two 1024×1024 maps of A taken at short intervals ∆t ∼ 0.1, and the integrals

were taken over the region −4 ≤ x ≤ 4, −4 ≤ y ≤ 4. Dashed lines indicate slope ±1 and the dotted

line indicates slope 0.25.

equation for A. Next, we compute the terms in this equation to illustrate that this basic

explanation holds in our simulations.

A. Line helicity evolution equation

Russell et al. 32 showed that the line helicity of a field line L evolves according to

dA(L)

dt
=
[
w ·A−Ψ

]x1

x0

, (12)

where x0 and x1 are the endpoints of L, and w is any field line velocity into which L is

frozen. The last term represents the voltage drop along the field line,
[
Ψ
]x1

x0

=

∫

L

ηj · dl. (13)

Since Bz > 0 everywhere, Ψ is global and single-valued. There is no additional scalar

potential (i.e. gauge) term in Equation (12) because its contributions mutually cancel due

to a combination of (i) our gauge restriction fixing n ×A on the end boundaries, and (ii)

the line-tied boundary condition that both v and n× j vanish on these boundaries.
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To compare with the simulations shown in Figure 4, it is beneficial to choose w in

Equation (12) so that the left-hand side represents the change in A at a fixed position on

the z = −24 boundary. In other words, so that field lines are identified over time by fixed

endpoints x0 on this boundary. As discussed by Russell et al. 32 , this corresponds to

w =
ez ×

(
∇Ψ + v ×B− ηj

)

Bz

, (14)

with the choice that Ψ = 0 on the z = −24 boundary. It follows that w = 0 on this

boundary, so that field lines are traced from fixed endpoints there. But on the far boundary

at z = 24, we then have ez ×∇Ψ 6= 0 so the opposite end-points move due to reconnection.

With this w, Equation (12) reduces to

∂A(x0)

∂t
= (w ·A)(x1)−Ψ(x1), (15)

where x0 is fixed but the opposite end-point x1 moves in time.

B. Numerical verification

To compute the terms on the right-hand side of Equation (15) from the simulations, we

first integrate ηj along field lines to calculate Ψ on the z = 24 boundary, using a similar field

line integration method to that used for calculating A. Then, since Bz = 1, Equation (14)

gives

w(x1) = −∂Ψ(x1)

∂y1
ex +

∂Ψ(x1)

∂x1
ey, (16)

and A(x1) = Aref(x1). The derivatives are computed numerically with central differencing

using field line startpoints spaced by 10−3.

In Figure 6, we check that Equation (15) holds in our numerical simulations. The figure

shows one-dimensional cuts through two of the runs (S = 2500 and S = 10 000). The times

are chosen shortly before the end of the dynamical relaxation phase in each case – between

the middle and right columns of Figure 4. Panels (c/d) and (e/f) in this figure show the left-

and right-hand sides of Equation (15), as computed numerically. We see good agreement

despite the sharp peaks in the field-line integrated quantity (w · A)(x1). Resolving the

terms in Equation (15) becomes progressively more difficult for larger S, since increasing

the Lundquist number supports steeper gradients in the field line mapping, which in turn

produces steeper gradients in field line integrated quantities such as A and Ψ, and hence
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FIG. 6. Terms in the evolution equations for A, in a radial cut at x0 = 0 on the z = −24 boundary.

Left column shows t = 100 for S = 2500 run, while right column shows t = 150 for S = 10 000.

Panels (a/b) show A, and (c/d) show ∂A/∂t computed using forward differences with dt = 0.013

(for S = 2500) and dt = 0.006 (for S = 10 000). Panels (e/f) show the recovered right-hand side

of (15), while (g-j) show the two constituent terms.

also in w. The difference in steepness between the two runs is evident in the middle column

of Figure 4, and is clear in Figure 6(a/b).

Two other features are visible in Figure 6. Firstly, it clearly shows the uniformization of A
within the negative region, which is visible as a flat plateau at this relatively advanced stage

of the relaxation. We believe that this uniformization arises from the dynamics and cannot

be predicted purely from the evolution equation (15); it will be discussed in Section V.

Secondly, it is clear that the significant changes in A are arising from the w ·A term, rather

than from Ψ. Thus our simulations support the dominance of the work term over the voltage
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drop, as predicted by Russell et al. 32 . The difference arises simply because w(x1) depends

on derivatives of the field line integrated quantity Ψ, through Equation (16), and these

derivatives are typically large owing to the short lengthscales.

It is interesting to note that the spikes in ∂A/∂t correlate with locations where A has a

high spatial gradient. These typically arise from locations where the field line mapping has

large gradients, because A is a field-line integrated quantity. Both w and Ψ are typically

large at these locations, indicating that the corresponding field lines are reconnecting.

IV. GLOBAL TOPOLOGY

It is evident from Figure 4 that the distribution of A relaxes into two largely separated

regions of opposite sign. In fact, we will show here that the impossibility of further simplifi-

cation follows mathematically from the initial A pattern, together with the localization (in

x and y) of the resistive dynamics. By localization, we mean that there is an outer boundary

region where ∂A/∂t remains small throughout the evolution because it is almost ideal there.

This means that Ψ ≈ 0 so the right-hand side of (15) is small.

To see how the evolution of A is constrained, we note first that within these simulations

it is a smooth function of x0 (albeit with steep gradients), that evolves continuously in time.

Therefore its contours evolve continuously in time, except possibly at critical points where

∇A = 0. Moreover, these critical points cannot arbitrarily appear or disappear, but must

do so in limited ways – typically pairwise – so as to preserve their net Poincaré index. This

is +1 for an extremum (maximum or minimum) and -1 for a saddle. The only way that the

overall net Poincaré index can change is through movement of critical points in or out of the

region. In our case, this is prevented by the invariance of A in the surrounding boundary

region. So the net Poincaré index is invariant.

The net Poincaré index of the A pattern in our simulations has the value 2. Figure 7

illustrates this topological structure at t = 0. At this initial time, A may be computed

analytically (see Appendix B), allowing us to rigorously identify the 42 individual critical

points in the complex pattern. These critical points are 22 extrema and 20 saddles, and the

difference yields the net Poincaré index of 2. In fact, it is not necessary to identify individual

critical points in order to compute the net Poincaré index: this may be determined purely

from the number of rotations of the∇A vector around a single circuit of the outer “boundary
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∂A/∂y > 0; (II) ∂A/∂x < 0, ∂A/∂y > 0; (III) ∂A/∂x < 0, ∂A/∂y < 0; and (IV) ∂A/∂x > 0,

∂A/∂y < 0. Critical points are denoted by circles (extrema) and crosses (saddles), computed as

described in Appendix B. The sequence of two full counterclockwise rotations of ∇A as the dashed

curve is traced counterclockwise indicates that the net Poincaré index is two.

region” (e.g., the dashed curve in Figure 7b). Here there are two positive rotations of ∇A,

confirming the net value 2. It is clear from Figure 4 that this remains the case throughout

the numerical simulations, although the total number of critical points changes, decreasing

overall as the A pattern simplifies.

The consequence of this invariant overall Poincaré index of 2 is that the relaxed state

must contain at least 2 extrema. One of these is a maximum and one a minimum, thus

explaining the persistence of two separate regions of oppositely signed A. This topological

structure is not predicted by the standard Taylor theory, since conservation of total helicity

alone would not prevent relaxation to a uniform straight magnetic field.

A topological explanation for the persistence of two tubes in these simulations was already

given by Yeates, Hornig, and Wilmot-Smith 18 (see also Yeates, Russell, and Hornig 19).

However, that work considered the topological degree of the field line mapping from one end

boundary to the other, rather than the A pattern. The two are related to some extent, since

A contains all of the information about the field line mapping30. But fixed points of the field
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line mapping are not, in general, critical points of A, and vice versa; in this case there are

22 fixed points in the initial configuration compared to 42 critical points of A. Admittedly,

the net topological degree of the mapping is 2, matching the overall Poincaré index of ∇A,

but we have no reason to believe that this holds for all braided magnetic fields.

We remark that the existence of a surrounding ideal region imposes stronger constraints

than merely the preservation of the net Poincaré index. For example, in Figure 4 it is clear

that there is a peripheral region where a vestige of the initial mixed pattern of A survives,

because those field lines have undergone insufficient reconnection. Nevertheless, the Poincaré

index of the initial distribution of A suffices to predict the principal topological feature of

two regions with opposite A.

V. UNIFORMIZATION

After the relaxation, the distributions of A within each of the positive and negative

regions are remarkably uniform, as we saw in Figure 6(a/b). As a further illustration,

Figure 8 shows histograms of the unsigned |A| distributions seen in Figure 4. Each run

shows the clear formation of a localized peak in the relaxed-state histogram at |A| ≈ 9.5

(Figure 8c). After this time, which is approximately the end of the dynamical phase, the

peak value is gradually reduced (like H) by ohmic diffusion, at a rate dependent on S but

slower than the dynamical relaxation. The topological constraint in Section IV does not

explain this uniform distribution of A within the final flux tubes. Rather, it must arise from

the physical dynamics.

A. Taylor theory

Taylor 1,5 invoked Woltjer’s earlier argument8 that the minimum-energy state under the

constraint of conserved magnetic helicity would be a linear force-free field where j = λ0B

for some constant λ0. In our case, since there is no net helicity, the global Taylor state

would be the uniform field B = ez. We have already seen how conservation of the net

Poincaré index of the vector field ∇A prevents this uniform field from being reached during

the dynamical relaxation. However, we can still ask whether Taylor relaxation is operating

separately within the positive and negative helicity regions.
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FIG. 8. Histograms of |A| on a 1024× 1024 grid covering the region {−4 < x < 4,−4 < y < 4}, at

times (a) t = 0, (b) t = t220, and (c) t = tmax. The times are chosen as in Figs. 3 and 4, according

to the evolution of H. Note that area (vertical axis) is equivalent to magnetic flux, since Bz ≡ 1

on z = ±24.

If we compute the profile of λ = j · B/|B|2 within each flux tube, we do find some

tendency for flattening. This is shown in Figures 9 and 10. The flatter λ profile is most

evident at the end of the dynamical phase (Figure 10c) as compared to the initial profile

(Figure 10a), although there are still quite significant variations. These variations are even

more significant when λ is averaged along magnetic field lines rather than averaged in the z

direction, as seen by comparing Figures 9(f) and 9(i), or equivalently by comparing the 〈λ〉z
and 〈λ〉FL curves in Figure 10(c). Whichever averaging is used for λ, it is striking that the

relaxed-state λ profile is much less uniform than that of A. This is evident by comparing
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z = −24 boundary).

Figure 10(c) with Figure 10(f), which shows the relaxed-state A in the same y = 0 cut.

Next, we propose a possible explanation.
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along magnetic field lines (〈λ〉FL, seeded at y = 0 on z = −24). Also shown are means in z of jz

and jy. For comparison, panels (d-f) show A at y = 0 (seeded on the z = −24 boundary).

B. Relation between uniformization and Taylor theory

Although λ does not become completely uniform in our simulations, its tendency toward

uniformity nevertheless hints at a possible explanation for the uniformization of A. Firstly,

since Bz ≈ 1 in our field, and |Bz| �
√
B2
x +B2

y , we have λ ≈ jz. Figures 10(a-c) show that

this holds to good approximation in our simulations. Indeed, applying Woltjer’s variational

argument (minimization of magnetic energy subject to fixed magnetic helicity) to magnetic

fields of the restricted form B = ∇ ×
(
A(r, φ, t)ez

)
+ ez yields jz = constant. A flux tube

that is invariant in z and has uniform jz must indeed have uniform A. To see this, write

B = ∇ ×
(
A(r, φ, t)ez

)
+ ez, so that jz = −∇2A. The vector potential A must therefore

satisfy the Poisson problem

∇2A = −λ0, A(R, φ) = 0, (17)

where λ0 is the uniform value of jz and R is the radius of the flux tube. The unique solution

must be the (regular) axisymmetric one, A = λ0(R
2 − r2)/4, which gives the uniform twist
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FIG. 11. The simple magnetic field model to illustrate how A is inherently more uniform than λ

in the relaxed state. Panel (a) shows λ = j ·B/B2 in the plane y = 0, while panel (b) shows field

line averages of λ (in the z = −24 plane). Panel (c) shows line helicity also in the z = −24 plane,

while panel (d) shows a z-average of λ. One-dimensional cuts at y = 0 are shown in (e) and (f).

magnetic field B = (λ0r/2)eφ + ez. This indeed has uniform line helicity,

A(r, φ)

Lz
=

A ·B
Bz

=
r

2
Bφ(r) + A(r) =

λ0R
2

4
. (18)

For the values λ0 ≈ 0.25 and A ≈ 9.5 obtained in our experiment with Lz = 48, Equa-

tion (18) would predict R ≈ 1.8, which is only a little over the actual radius of each flux

tube.

In the simulations, it is notable that A shows a markedly stronger uniformity than λ, as

we saw in Figure 9. This difference is natural because λ is effectively a second derivative of

A, whereas A is an integral of A. An alternative perspective is to observe that λ is a locally

defined quantity, while A can be interpreted as a non-local average over many nearby field

lines38. To illustrate the difference, we consider a simple analytical magnetic field model in

Figure 11, which shows λ and A for the magnetic field

B = B0 + B′. (19)
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This combines an axisymmetric, uniformly-twisted background

B0 =
λ0r

2
erf

(
r −R

0.1

)
eφ + ez, (20)

with fluctuations having the form of 100 local “twists”,

B′ =
100∑

i=1

bi exp

(
−(x− xi)2 + (y − yi)2

(0.2)2
− (z − zi)2

62

)
[−(y − yi)ex + (x− xi)ey] , (21)

with randomly chosen strengths bi ∈ [−1, 1] and locations xi, yi ∈ [−R/2, R/2], zi ∈
[−12, 12]. This field is chosen to mimic the relaxed state in the numerical simulations,

which has jz approximately constant within a tube, but with significant fluctuations about

the mean. Consistent with the simulations, we set λ0 = 0.25 and R = 1.8. The distribution

of A in Figure 11(c/f) has been computed numerically using the same method as for the

simulations.

We observe that, within our model flux tube, λ shows significantly more fluctuations

than A, even after λ has been averaged either in z (Figure 11d) or along magnetic field

lines (Figure 11b). The non-local nature of A means that the fluctuations B′ tend to make

equal positive and negative contributions to A. But because λ does not have this inherent

averaging, it does not see this cancellation and maintains a significant signature from the

fluctuations.

VI. CONCLUSION

The numerical MHD simulations and analytical model in this paper have shown that

the field line helicity A can add to understanding of the processes of dynamical relaxation

and self organization in highly-conducting plasmas. Using direct numerical simulations, we

have confirmed our earlier theoretical prediction that A is efficiently redistributed between

field lines rather than destroyed32. Even though our simulations are limited to relatively

modest Lundquist number ranges, this phenomenon is clearly observed for all Lundquist

numbers tested so far. Thus we suggest that the classic theory of Taylor relaxation could

be refined by adding this “quasi-conservation” of field line helicity – i.e., allowing it to

be redistributed/exchanged between field lines but not destroyed. This remains consistent

with Taylor’s assumed conservation of the global helicity (because the global helicity is the
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weighted sum of all the individual line helicities) but it can impose additional constraints

on the relaxation and therefore alter the relaxed state.

We have shown how one such constraint – the net Poincaré index of the ∇A pattern

– can explain why our final state comprises two oppositely-twisted magnetic flux tubes,

rather than a global linear force-free magnetic field. Chen et al.39 have recently shown

that this overall topology can be predicted by a “variational” model that looks for the

simplest possible rearrangement of the initial A distribution on the plane, neglecting the

true turbulent dynamics altogether.

When we examine the relaxed state produced by 3D resistive MHD in finer detail, we do

not find the same sub-structure within the two flux tubes that is predicted by the pure A-

rearrangement model considered by Chen et al.39. Our simulations with increasing Lundquist

number suggest that this is not purely due to resistive decay. Rather, there is an overall

20% increase in absolute helicity (H) that appears to be independent of Lundquist number.

This arises from the process of disentanglement, whereby magnetic field lines that start with

portions of oppositely-signed integrand, A · B, tend to reconnect and form field lines with

only a single sign of A · B along their length. A similar increase in unsigned helicity has

been observed in vortex reconnection40. Intriguingly, we found this increase to be part of a

“uniformization” of A within each of the positive and negative regions. We have suggested

that this arises from a Taylor-relaxation like tendency toward constant λ. The fact that line

helicity is much more uniform than λ reflects the former’s more robust nature as a non-local

quantity. This robustness could be useful in studying realistic turbulent plasmas. But it

remains to be seen whether this uniformization of line helicity is a general behavior found in

other configurations. In particular, the generality of our conclusions are limited here because

the uniform-λ and uniform-A states are consistent with one another owing to the relatively

modest amount of magnetic helicity in our system. One can see that the two may differ in

general by considering Lundquist force-free fields with differing twist (see Appendix C).

Finally, the simulations in this paper considered only line-tied boundary conditions.

A forthcoming paper will apply similar analysis to configurations with periodic bound-

ary conditions (topologically toroidal). Preliminary indications suggest that the same self-

organization into opposite-helicity tubes occurs, but the definition of line helicity needs some

additional care in the periodic case because there is no physical boundary delineating the

end-points of individual magnetic field lines.
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Appendix A: Vector potential computation

Here we describe our method for computing a vector potential A whose tangential com-

ponents match the reference vector potential Aref = (−1
2
y, 1

2
x, 0) on the boundaries. This

reference vector potential curls to give the reference potential field Bref = (0, 0, 1), whose

normal component, Bref
n , matches that of our original field, Bn, on all six boundaries. Our

computation of A proceeds as follows:

1. Compute a vector potential A′ for the difference B−Bref using the formulae

A′x(x, y, z) = −
∫ y

−8

(
Bz(x, s, z)−Bref

z (x, s, z)
)

ds, (A1)

A′y(x, y, z) = 0, (A2)

A′z(x, y, z) =

∫ y

−8

(
Bx(x, s, z)−Bref

x (x, s, z)
)

ds. (A3)

2. Change gauge to A′′ = A′ +∇χ such that n×A′′ = 0 on all six boundaries. In fact,

the tangential components of A′ already vanish on all boundaries except for y = 8. It

suffices to take

χ(x, y, z) = −y + 8

16

∫ x

−8
A′x(s, 8, z) ds, (A4)
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in which case

A′′x(x, y, z) = A′x(x, y, z)− y + 8

16
A′x(x, 8, z), (A5)

A′′y(x, y, z) = − 1

16

∫ x

−8
A′x(s, 8, z) ds, (A6)

A′′z(x, y, z) = A′z(x, y, z)− y + 8

16
A′z(x, 8, z). (A7)

3. Finally set A = A′′ + Aref .

Since it uses only one-dimensional line integrals, this method is computationally very effi-

cient.

Appendix B: Line helicity in the initial configuration

The initial magnetic field given by Equations (7)–(9) was initially devised by Wilmot-

Smith, Hornig, and Pontin 17 so as to have an analytical expression for the field line mapping,

in spite of that mapping’s complexity. We take advantage of this to compute the line helicity

exactly for this configuration, shown in Figure 7(a).

Recall that the magnetic field comprises six twists in a uniform background field. For our

choice of parameters, the twists essentially do not overlap in the z direction, so that we may

derive the overall field line mapping by composing the mappings through each individual

twist41. The mapping through each twist is given by (Xi−1, Yi−1)→ (Xi, Yi) where

(Xi, Yi) =
(

(Xi−1 − xi) cos ξi − Yi−1 sin ξi + xi, (Xi−1 − xi) sin ξi + Yi−1 cos ξi

)
, (B1)

ξi = 2ki
√

2π exp

(
−(Xi−1 − xi)2 + Y 2

i−1
2

)
. (B2)

Here, we have taken the mapping from z = −∞ to z =∞ to simplify the expressions, with

no practical effect on the results because the twists are sufficiently spaced in z.

The appropriate vector potential for a single twist is

A(x, y, z) = −y
2
ex +

x− xi
2

ey +
√

2ki exp

(
−(x− xi)2 + y2

2
− (z − zi)2

4

)
ez +∇

(xiy
2

)
,

(B3)

so that the contribution to the line helicity from this twist is

Ai(Xi−1, Yi−1) =

∫ ∞

−∞

A ·B
Bz

dz = ξi

(
(Xi−1 − xi)2 + Y 2

i−1
2

+ 1

)
+
xi
2

(Yi − Yi−1). (B4)
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The overall line helicity for the six-twist configuration is then

A(X0, Y0) =
6∑

i=1

Ai(Xi−1, Yi−1), (B5)

which is readily evaluated numerically.

To compute the critical points of A in Figure 7, zero contours of ∂A/∂x and ∂A/∂y
were traced in the z = 0 plane, rather than the z = −24 plane shown in Figures 4 and 7.

The critical points remain on the same field lines and preserve their Poincaré index under

this change of cross section. It has the advantage of reducing the sharp gradients in A to

facilitate accurate location of the critical points. These were identified by intersections of

the zero contours of ∂A/∂x and ∂A/∂y (equivalently, points where regions I, II, III and IV

all meet simultaneously in Figure 7).

Appendix C: Line helicity of Lundquist fields

Our purpose here is to show that Lundquist constant-λ fields of the form

B = B0

(
J1(λ0r)eφ + J0(λ0r)ez

)
(C1)

with small enough λ0 have very uniform field line helicity, A ≈ constant. Suppose that this

field is defined inside a cylinder radius R. The appropriate vector potential in this case is

A =
1

λ0

(
B− J0(λ0R)ez

)
, (C2)

which satisfies Az = 0 on r = R and has tangential components on the boundary with no

tangential divergence37. The line helicity per unit length in z for r < R is therefore

A(r) =
B0

λ0

(
J2
0 (λ0r) + J2

1 (λ0r)

J0(λ0r)
− J0(λ0R)

)
. (C3)

We can fix B0 by requiring magnetic pressure balance with a uniform field B = ez outside

the cylinder (r > R), which implies B0 = [J2
0 (λ0R) + J2

1 (λ0R)]−1/2.

Figure 12(b) shows the resulting A(r) profiles for several values of λ0, with corresponding

Bφ and Bz profiles shown in Figure 12(a). For small λ0, the flux function is almost inde-

pendent of r, including for the value λ0 = 0.25 corresponding to a tube with comparable

magnetic helicity to our numerical simulations. For larger λ0, however, A begins to show

more significant radial variation in the outer part of the tube, so that such a tube would have

uniform λ but not uniform A. (The maximum possible λ0 before there is a field reversal,

Bz(R) = 0, is ≈ 1.34.)
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