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We study recurrence and transience for a particle that moves at constant
velocity in the interior of an unbounded planar domain, with random reflec-
tions at the boundary governed by a Markov kernel producing outgoing an-
gles from incoming angles. Our domains have a single unbounded direction
and sub-linear growth. We characterize recurrence in terms of the reflection
kernel and growth rate of the domain. The results are obtained by transform-
ing the stochastic billiards model to a Markov chain on a half-strip R+ × S
where S is a compact set. We develop the recurrence classification for such
processes in the near-critical regime in which drifts of the R+ component
are of generalized Lamperti type, and the S component is asymptotically
Markov; this extends earlier work that dealt with finite S.
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1.1. Overview. Billiards models arise from study of the dynamics of ideal gas molecules
in containers or from optical reflectors (see Section 1.2 below). For a parameter γ ∈ (0,1),
define an unbounded generalized parabolic or horn-shaped planar domain Dγ by

(1.1) Dγ := {(x, y) ∈R+ ×R : |y| ≤ xγ} ;
here R+ := [0,∞). Suppose that a point particle moves at unit speed in Dγ . In the interior,
the particle’s velocity is constant, so it travels in straight lines, and it reflects instantaneously
and randomly when it hits the boundary. The reflection is governed by a Markovian kernel
K, that defines the outgoing angle distribution for each incoming angle, where both angles
are measured relative to the inwards-pointing normal. We give a more formal definition in
Section 3. See Figure 1 for a picture.

0 x

y

y = xγ

y =−xγ

FIG 1: Part of the region Dγ with γ = 1/2. A section of the particle’s trajectory is indicated by the
dotted line. It hits the boundary at the incoming angle indicated by the single-ruled angle, and exits at
the angle indicated by the double-ruled angle, whose distribution is determined by the incoming angle
according to a kernel K.

The resulting process is a stochastic billiards model with Markovian reflection; we discuss
motivation and related prior work in Section 1.2 below. At the time of the nth boundary colli-
sion, denote by Zn ∈R+ the particle’s horizontal location, and denote by αn ∈ S := [−π

2 ,
π
2 ]

the incoming angle. Then (Zn, αn) is a discrete-time Markov chain on R+ × S. We aim to
establish conditions under which transience or recurrence occur, i.e., limn→∞Zn =∞, a.s.,
or lim infn→∞Zn <∞, a.s, respectively. The classification depends on the properties of the
transition kernel K that regulates the reflection at the boundary and on the growth parame-
ter γ. The case where K is independent of the incoming angle (i.e., reflections are i.i.d.) was
considered in [28, 27].

Mild conditions, e.g., appropriate irreducibility, for the reflection kernel K on the compact
space S guarantee a unique invariant measure, and we make a density assumption to avoid
the possibility of the trajectory of the billiards process hitting the boundary only finitely
many times. Thus we work in the setting where the reflection kernel K has a unique invariant
probability density ϖ on S. We further assume some mild regularity conditions that include
the reflection angles being uniformly bounded away from ±π

2 .
We will see that the critical regime for this model has

∫
Sϖ(β) tanβ dβ = 0, correspond-

ing to an asymptotically zero effective drift induced by the reflections. The main results of
this paper on the Markovian billiards model, Theorems 3.2 and 3.4, may be informally sum-
marized in terms of the following phase transition.

“THEOREM”. Suppose that
∫
Sϖ(β) tanβ dβ = 0. Then, under appropriate conditions,

there is a critical value γc ∈ [0,1], depending on K, such that if γ < γc the stochastic billiards
process is recurrent and if γ > γc it is transient.
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Section 3 below gives details of our assumptions, the formal statements of the results, and
for remarks on possible extensions and generalizations, including the critical case γ = γc.
The fact that the recurrence phase transition is located in the parameter domain γ ∈ (0,1)
is to be expected, under mild conditions, since in the case γ = 0 (a flat tube) the condition∫
Sϖ(β) tanβ dβ = 0 ensures that there is zero averaged drift in the horizontal direction,

while for γ ≥ 1 (a wedge, or wider), on each boundary reflection the process will escape to
infinity with positive probability.

Under the stronger condition
∫
SK(α,dβ) tanβ = 0 for all α ∈ S, which is the case, for

example, if every reflection distribution is symmetric around the normal vector, then γc ∈
(0,1/2) and the description of γc is rather simple (and constructive), involving the reflection
kernel K only through its stationary density ϖ: see (3.11) below. Otherwise, the description
of γc exhibits more complex dependence on K: see (3.15).

We analyse the stochastic billiards problem via a transformation to a spatially non-
homogeneous Markov process ξn = (Xn, αn) on the half-strip Σ := R+ × S, where Xn :=

Z1−γ
n . The scaling is such that the increments of Xn have variance bounded away from 0

and ∞, in which case the half-strip model falls into a (generalized) Lamperti regime where
the effective drift at Xn = x is of order 1/x; the terminology is by analogy with Lamperti’s
fundamental work on the classification of near-critical processes on R+ [23]. Half-strip pro-
cesses have their own interest and history: see Section 1.3 below.

If our billiards model lived in a flat tube (γ = 0) then αn would be itself a Markov chain
and the corresponding strip model would be spatially homogeneous; the curvature of our γ ∈
(0,1) domain Dγ given by (1.1), ensures that αn is only asymptotically Markov, in a sense
that we make precise below, since an incoming angle at a reflection is a small perturbation
of the preceding outgoing angle. Processes on the half-strip for which the second co-ordinate
is asymptotically Markov have been investigated in [12, 16] (the constant drift case) and
[16, 25] (the Lamperti case) when S is finite. Here we extend the classification to the case
where S is a compact metric space, such as the interval [−π

2 ,
π
2 ]. We use a Lyapunov function

approach, similar to [25], but for existence of suitable Lyapunov functions we must replace
finite-dimensional linear algebra with some theory of linear operators.

In this paper, we consider (1.1) for γ > 0, so Dγ is planar and grows asymptotically in
the axial direction. Extensions to higher dimensions, and/or domains that contract asymp-
totically, are of interest but need significantly different analysis; see Remarks 1.1. Further
possible generalizations, of a more technical nature, are discussed in Remarks 3.3 below.

REMARKS 1.1. (a) A natural extension would be to higher dimensions, i.e., in (1.1)
one can take (x, y) ∈R+×Rd for general d ∈N, and read |y| as the Euclidean norm ∥y∥. In-
coming/outgoing ‘angles’ are now in the (compact) hemisphere Hd := {z = (z1, . . . , zd+1) ∈
Rd+1 : ∥z∥ = 1, zd+1 ≥ 0}. The structure of the state space R+ × Hd for the half-strip is
unaffected by the increase in dimension, so our method would still be feasible, but to obtain
a half-strip model that falls into the class considered here requires rather strong assumptions.
For example, if one assumes that the horizontal component of the outgoing angle depends
only on the first component of the incoming angle, then the model behaves essentially as in
the planar case. Otherwise, if strong symmetry conditions are not imposed, then the recur-
rence classification would involve a more complex interaction between the geometry and the
invariant measure of the angle process on Hd, demanding significantly more analysis. Thus
we do not pursue higher dimensional extensions in this paper.

(b) Also of interest are ‘shrinking’ domains, as in [28], in which one expects recurrence,
but the questions of interest would be to study stability, i.e., positive recurrence, properties of
invariant measures, convergence, and ergodicity, for example. Roughly, one would take γ < 0
in (1.1), but one would need to modify the domain around x= 0 to ensure that it is smooth
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and does not produce any pathologies. In the present paper we give results on passage-time
moments for the half-strip model (see Section 2.2), but there are two main obstacles to an
analogous analysis of the billiards model. These are: (i) from a neighbourhood of the origin,
the billiards process can have heavy-tailed increments (cf. Lemma 5.2) which means that the
technical conditions of, e.g., Theorem 2.3, are not satisfied; and (ii) it seems more natural to
ask about ergodic properties of the real-time process, rather than the boundary-collisions pro-
cess, which would demand a detailed study of the time-change. Such an analysis in the case
of i.i.d. reflections was only partially completed in [28]. Thus the case γ < 0 also demands a
dedicated and thorough analysis that we do not attempt here.

The rest of the paper is organized as follows. In Sections 1.2 and 1.3 we discuss motiva-
tion and prior literature for stochastic billiards and half-strip models, to explain the origin and
context of the present paper. In Section 2 we formulate precisely the half-strip processes that
we study and state our main results on the recurrence classification. In Section 3 we do the
same for the stochastic billiards model. The main structural elements of the proofs are given
in Sections 4 and 5, respectively. The Appendix collects some auxiliary results: Section A on
results from functional analysis around the Fredholm alternative theorem for compact opera-
tors, and Section B on Lyapunov-function criteria for recurrence and transience of processes
on half-strips R+ × S for compact S.

1.2. Motivation 1: Stochastic billiards. In the early 1900s, Knudsen undertook a series
of experiments studying the flow of rarefied gases through tubes [20]. If the mean free path
length of the gas is much bigger than the diameter of the tube, then collisions between gas
particles are much rarer than collisions of particles with the tube boundary, and the bulk be-
haviour is described via single-particle dynamics. This Knudsen regime of ideal gas dynamics
leads to the study of billiards processes, in which a particle moves with constant velocity until
it hits the boundary. Similar processes are also naturally motivated from optics.

Deterministic reflection leads to classical billiards models [32]. The presence of micro-
scopic irregularities in the domain boundary (its ‘microgeometry’) motivates considering
random reflections and hence stochastic billiards: what appears to be a single reflection at
the boundary is comprised of a rapid sequence of reflections whose cumulative effect is es-
sentially random [14, 15]. On the basis of his ideal gas experiments, Knudsen argued for
i.i.d. reflections according to a cosine law; in optics, the same reflection law is known as the
Lambertian law.

Stochastic billiards with i.i.d. reflections have received much attention, including [5, 22,
7, 11] for bounded domains and [28, 27, 6] for unbounded domains. For bounded domains,
stochastic billiards with i.i.d. reflections are related to ‘shake-and-bake’ algorithms for sam-
pling uniformly from the boundary [8]. Mathematical results have supported the belief that
the Lambertian law is the most natural law in the case where reflections are independent of
the angle of incidence [22, 2], and stochastic billiards with the Lambertian reflection law
have received particular attention. For example, in [6], the distribution of the exit angle for a
Lambertian process in a half-infinite tube with an aperture is studied, and in [5] the authors
prove a scaling limit result for a Lambertian process in a thin annulus.

As described above, a central motivation for stochastic reflections is the disordered mi-
crogeometry of reflectors. However, examining this assumption leads to the conclusion that
trajectories at different incoming angles are likely to interact with the same microgeometry
in different ways, as described, for example, in [14, 15]. Thus there are physical arguments to
propose a Markovian reflection law, where the incoming angle is important for determining
the reflections; these arguments can be made in both the ideal gas and optical settings.

In the probability literature, the study of billiards with Markovian reflection laws is in the
early stages: we are aware only of recent work for one-dimensional intervals in which the
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speed (and not just the direction) may change on each reflection [4]; see Remarks 3.3(d)
for how our results can be extended to incorporate varying speeds. One motivation for the
present paper is to study the probabilistic behaviour of Markovian billiards in unbounded,
multidimensional domains. In this respect, the present paper can be seen as an extension of
the model of [28] from i.i.d. to Markovian reflections. We focus on the two-dimensional case,
the minimal setting that displays the phenomena we are interested in; see Remarks 1.1(a) for
some comments on extensions to higher dimensions.

1.3. Motivation 2: Random walks on half-strips. Let ξn be a time-homogeneous,
discrete-time Markov chain on state space X × S, and write ξn = (Xn, ηn) in coordinates,
with Xn ∈ X and ηn ∈ S. If the law of (Xn+1 −Xn, ηn+1) depends only on ηn (call this
assumption homogeneity), then ξn is a Markov random walk, ηn is itself Markov, and Xn can
be represented as an additive functional of the Markov chain (Xn −Xn−1, ηn). Under the
most common assumptions, ηn is ergodic with a unique stationary distribution π. See e.g. [1]
for a general view of such processes, which arise in many applications, such as:

• Queueing, where e.g. X = Zd+ is a space of queue-lengths and S is a set of service
regimes [29].

• Random walks with momentum, short memory, or internal degrees of freedom, where
e.g. X=Rd and S is a set of internal states for the particle [21].

• Regime-switching processes in mathematical finance, where e.g. X = Rd+ is a space of
prices or interest rates and S is a set of states of the market [17].

In practice, these may be hidden Markov models in the sense that one may not be able to
observe ηn, only Xn.

For concreteness, take X = R+. Then R+ × S is a half-strip and study of the case of
finite S is classical [26, 13]. To go deeper, it is natural to relax the homogeneity assumption,
and hence go beyond the Markov random walk case. To probe the recurrence/transience phase
transition for the half-strip model, for example, analogy with classical work of Lamperti [23]
suggests that the law of Xn+1 −Xn should also depend on Xn, and not just ηn. Once one
admits this generalization, it is often too restrictive to maintain the Markov assumption on
ηn: in the presence of non-trivial dependence between Xn and ηn, a perturbation of the
homogeneous situation to provide the necessary inhomogeneity for Xn will also tend to
introduce Xn-dependence for ηn. We refer to [16, 25] for some examples. However, progress
can be made if we replace the homogeneity assumption by an asymptotic Markov assumption
on ηn and some asymptotic regularity on the drifts of Xn, both assumptions in the case of
large Xn. This framework is the subject of [16, 25] for the case where S is finite. The present
paper extends this to the case where S is a compact metric space.

We emphasize that the application of the half-strip framework to the Markovian billiards
model demands that ηn (which will be an angle in the billiards context) is only asymptotically
Markov, so we are outside the Markov random walk setting. Moreover, the reflection rules
on a continuous curved surface with inward normal vectors in [−π

2 ,
π
2 ] leads us to consider

uncountable compact sets S. Thus, we need to go beyond the finite-S setting of [16, 25]. In
this respect, the present paper can also be seen as an extension of previous work on half-
strips, and is of parallel interest due to the broad range of applicability of such models: our
application to the stochastic billiards model is one example.

2. Markov chains on a half-strip.
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2.1. Asymptotic Markovianity. We study our stochastic billiards model by a reduction
to a Markov chain on a half-strip R+ × S. Half-strip models have their own independent
motivation, as described in Section 1.3. In this section we present our results on near-critical
half-strip models satisfying appropriate assumptions. The set S will be a compact metric
space; in our billiards application, S will be a real interval. In the somewhat simpler special
case where S is finite, our assumptions align closely with those of [16, 25].

For a metric space (H,dH) with Borel sets B(H), denote by P(H) the set of probability
measures on (H,B(H)). Recall that a function K :H × B(H)→ [0,1] is a Markov kernel
on H if (i) K(x, · ) ∈ P(H) for all x ∈ H , (ii) x 7→ K(x,A) is Borel measurable for each
A ∈ B(H), and (iii) K(x,H) = 1 for all x ∈H .

To describe our model, fix (S,dS) a compact metric space with Borel sets B(S). We denote
by Σ :=R+×S, our half-strip, whose Borel sets B(Σ) form the product σ-algebra. Suppose
that we have a probability space (Ω,F ,P) on which there is a filtration (Fn, n ∈ Z+) and
an adapted process ξ = (ξn, n ∈ Z+) taking values in Σ, with initial state ξ0 = (x0, u0) ∈ Σ
deterministic (but arbitrary). We assume that ξ is a time-homogeneous Markov process with
Markov kernel Ks (‘s’ for ‘strip’) on Σ, so that for all A ∈ B(Σ) and all n ∈ Z+,

(2.1) P(ξn+1 ∈A | Fn) = P(ξn+1 ∈A | ξn) =Ks(ξn,A), a.s.

In coordinates, we write ξn = (Xn, ηn) for Xn ∈ R+ and ηn ∈ S. We will assume the
following basic conditions.

(N) Suppose that ξ is non-confined: P(limsupn→∞Xn =∞) = 1.
(Bp,q) Suppose that for constants xB ∈R+, p, q > 0, and Bp,Bq <∞,

E
[
|Xn+1 −Xn|p

∣∣Fn]≤Bp, on {Xn ≥ xB};(2.2)

E
[
|Xn+1|q

∣∣Fn]≤Bq, on {Xn < xB}.(2.3)

The non-confinement condition (N) follows from suitable irreducibility or non-degeneracy
assumptions (see e.g. [27, §3.3]). Condition (Bp,q) includes boundedness of pth moments
in the R+ coordinate for Xn ≥ xB . While the simplest case is when xB = 0 and (2.2)
holds everywhere, it is important for our application to stochastic billiards to permit the case
where (2.2) holds on {Xn ≥ xB}, and elsewhere demand only (2.3) for some q ∈ (0, p).

We next formulate a condition that says ηn is asymptotically Markovian for large Xn. This
will entail a limiting kernel on S. Recall that a probability measure ν ∈ P(S) is invariant for
a Markov kernel K on (S,dS) if

(2.4) ν(B) =

∫
S
ν(dx)K(x,B), for all B ∈ B(S).

Write ∥ · ∥TV for the total variation norm, so that dTV(µ,ν) :=
1
2∥µ− ν∥TV defines the total

variation metric on P(S).

(K) Suppose that the Markov kernel K : S ×B(S)→ [0,1] satisfies the following.
(i) There is a unique solution ν = π to (2.4) over ν ∈ P(S).
(ii) The function u 7→ K(u, · ) is continuous from (S,dS) to (P(S), dTV).

Assumption (K)(ii) is a strong version of the Feller property and guarantees certain analytic
properties of the operator associated with K: see Section A below. To state the asymptotic
Markovianity condition, define for (x,u) ∈Σ and B ∈ B(S),
(2.5) K◦

s (x,u,B) :=Ks(x,u,R+×B),

where Ks is the kernel from (2.1), and P(ηn+1 ∈ B | Fn) = K◦
s (Xn, ηn,B), a.s. There are

two versions of the asymptotic Markovianity condition, the basic (M) and the stronger (M+);
which one we will need will depend on the other conditions that we impose. Let M±(S)
denote the set of finite signed measures on S. In (2.6) and (2.7), K is the kernel from (K).
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(M) Suppose that

(2.6) lim
x→∞

sup
u∈S

∥K◦
s (x,u, · )−K(u, · )∥TV = 0.

(M+) Suppose that there is a continuous Γ : (S,dS)→ (M±(S), dTV) such that

(2.7) sup
u∈S

∥∥K◦
s (x,u, · )−K(u, · )− x−1Γu

∥∥
TV

= o(x−1), as x→∞.

Any Γ in (M+) must have Γu(S) = 0. In (2.7) and subsequently, we use the standard Landau
O,o notation: for f : (0,∞) → (0,∞), we write g(x) = O(f(x)) to mean that there exist
C,x′ ∈ R+ such that |g(x)| ≤ Cf(x) for all x ≥ x′, and we write g(x) = o(f(x)) to mean
that for every ε > 0, there exists x′ ∈R+ such that |g(x)| ≤ εf(x) for all x≥ x′.

2.2. Lamperti regimes and recurrence classification. Classical work of Lamperti [23]
gives sufficient conditions for recurrence and transience of Markov processes on R+ in terms
of (the first two) increment moment functions: see [27, Ch. 3] for a survey of such results.
We develop here the analogous theory for the half-strip model satisfying the assumptions of
Section 2.1.

For (x,u) ∈Σ and R ∈ B(R+), define K♭
s(x,u,R) :=Ks(x,u,R× S). If (Bp,q) holds for

p≥ k ∈N and xB ∈R+, then for x≥ xB , u ∈ S, define

(2.8) µk(x,u) :=

∫
R+

(y− x)kK♭
s(x,u,dy),

so E[(Xn+1 −Xn)
k | Fn] = µk(ξn), on {Xn ≥ xB}. For r ∈R+, define the passage time

(2.9) τr := min{n ∈ Z+ :Xn ≤ r},

with the usual convention min∅ := ∞. In this section we seek to classify the asymptotic
behaviour of ξ using the asymptotic properties of µ1 and µ2.

We say ξ is transient if limn→∞Xn =∞, a.s., recurrent if there exists r0 ∈R+ such that
lim infn→∞Xn ≤ r0, a.s., and positive recurrent if there exists r1 ∈ R+ such that E τr <
∞ for all r ≥ r1. If for every r ∈ R+ there exists r1 > r such that E τr = ∞ whenever
x0 > r1 (recall X0 = x0 is deterministic, but arbitrary), we say the process is null recurrent.
Under suitable irreducibility assumptions these are essentially equivalent to other standard
definitions (see e.g. Chapter 10 of [9]). Let Cb(S) denote the continuous (hence bounded)
real-valued functions on S, and C+

b (S) those that are non-negative.

PROPOSITION 2.1. Suppose that (N), (K), and (M) hold, and that (Bp,q) holds with p > 1
and q > 0. Suppose also that there exists d ∈ Cb(S) such that µ1 defined by (2.8) satisfies
limx→∞ supu∈S |µ1(x,u)− du| = 0. Set δ :=

∫
S duπ(du). Then ξ is transient if δ > 0, and

recurrent if δ < 0. If, in addition, q ≥ 1 in (Bp,q), then ξ is positive recurrent if δ < 0.

In the special case where S is finite, Proposition 2.1 was established on Z+ × S as The-
orem 2.4 in [16]; see also Theorem 2.1 in [25]. We omit the proof of Proposition 2.1, as it
is similar to, but simpler than, those of the subsequent results in this section. A proof may
proceed using appropriate Lyapunov functions f(x,u) = xν + νxν−1φ(u) similarly to Sec-
tion 4.2.1 of [24], but, for the existence of an appropriate φ, replacing the finite-dimensional
Fredholm alternative with the operator version described in Section A.

The case where δ = 0 in Proposition 2.1 cannot be classified without further assumptions.
We move into the Lamperti setting, where the critical case has µ1 of order 1/x (in this context,
after the drifts have been ‘averaged’ against π) and µ2 also comes into play as long as we
have p > 2 in (Bp,q). The following are the assumptions we will need.
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(L) Suppose that there exist d, e, σ2 ∈Cb(S) such that, as x→∞,

(2.10) sup
u∈S

∣∣∣µ1(x,u)− (
du +

eu
x

)∣∣∣= o(x−1), and sup
u∈S

∣∣µ2(x,u)− σ2u
∣∣= o(1).

Moreover, if π is as defined in (K), suppose that

(2.11)
∫
S
du π(du) = 0.

We describe assumption (L) as ξ being in the Lamperti regime. As mentioned above,
if (2.11) does not hold, the behaviour is simpler (cf. Proposition 2.1), while if the 1/x term
in (2.10) is replaced by 1/xβ , β ∈ (0,1), the behaviour is again less critical, in that the phase
transition is driven by the sign of the effective drift alone (cf. the case of R+ as described
in Chapter 3 of [27]). Hence the Lamperti regime is the natural one in which to probe the
recurrence phase transition; it is also the regime that emerges from our stochastic billiards
application. Sufficient for (2.11) is that du = 0 for all u; this case has a special place in the
theory and we refer to it as the strict Lamperti regime:

(L0) Suppose that (L) holds with du = 0 for all u ∈ S.

In the strict Lamperti regime, the recurrence classification depends on the values of

(2.12) δθ :=

∫
S
(2eu + (2θ− 1)σ2u)π(du),

where θ ∈R. Note that if θ < θ′, then δθ, δθ′ ∈R satisfy δθ ≤ δθ′ , with equality if and only if
σ2 is identically 0. The next theorem presents the classification. In the case where S is finite,
Theorem 2.2 is essentially Theorem 2.5 of [16] (see also Theorem 2.2 of [25]).

THEOREM 2.2. Suppose that (N), (K), and (M) hold, and that (Bp,q) holds with p > 2
and q > 0. Suppose also that (L0) holds. Then the following classification applies.

(a) The process ξ is transient if δ0 > 0 and recurrent if δ0 < 0.
(b) If, moreover, q ≥ 2, then ξ is positive recurrent if δ1 < 0, while ξ is null recurrent if
δ0 < 0< δ1.

The next theorem presents a refinement of the classification into positive/null recurrence,
via quantitative information on the moments of the passage times τr as defined at (2.9). In
the case of finite S, analogous results are Theorems 2.3 and 2.4 of [25].

THEOREM 2.3. Suppose that (N), (K), and (M) hold, and that (Bp,q) holds with p > 2
and q ≥ 2. Suppose also that (L0) holds. Define δθ as at (2.12).

(a) If δθ < 0 for some θ > 0, then for any s ∈ [0, θ ∧ p/2 ∧ q/2) there exists r1 ∈ R+ for
which E[τ sr ]<∞ for all r ≥ r1.

(b) If δθ > 0 for some θ ∈ (0, p/2∧ q/2], then for every s > θ and every r ∈R+, there exists
r1 ∈ (r,∞) for which E[τ sr ] =∞ provided X0 = x0 satisfies x0 > r1.

REMARK 2.4. Theorem 2.2(b) is the special case θ = 1 of Theorem 2.3; the case q ≡
p will suffice for many applications (equivalently, xB = 0 in (Bp,q)). With regards to the
boundary cases in Theorems 2.2 and 2.3, we anticipate, in line with [16, 25], that under
slightly stronger convergence rate assumptions in (2.6) and (2.10), the cases δ0 = 0 and δ1 = 0
are null recurrent, while if δθ = 0 for θ > 0, then E[τ θr ] =∞. We believe that the approach
of the present paper could be extended to prove this, but one would need a finer Lyapunov
function (e.g., with logarithmic corrections, as in [27, §3.4]) and additional technical work.
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We need one further assumption to give a classification under (L). By disintegration [18,
Thm. 6.4, p. 108], one has the representation

(2.13) µ1(x,u) =

∫
S
K◦

s (x,u,dv)µ
◦
1(x,u, v),

where µ◦1 : Σ× S → R is measurable, essentially unique, and can be expressed via regular
conditional distributions: see Section 4.2. Let Mb(S) denote the bounded measurable real-
valued functions on S with the uniform metric d∞(f, g) := supu∈S |f(u)− g(u)|.

(D) Suppose that there exist λu ∈Mb(S) for every u ∈ S such that u 7→ λu is continuous
from (S,dS) to (Mb(S), d∞), and

lim
x→∞

sup
u,v∈S

|µ◦1(x,u, v)− λu(v)|= 0.

Let Kn denote the n-fold convolution of K, i.e., Kn(u,B) :=
∫
SK(u,dv)Kn−1(v,B) for

n ∈ N, with K0(u,B) := 1{u ∈B}. The next theorem is our classification in the Lamperti
regime. The result is of a similar form to Theorem 2.2, but the role of δθ defined by (2.12)
there is taken by δ̃θ defined in (2.14); now δ̃θ is less explicit due to the presence of the
function ψ (see Remarks 2.6).

THEOREM 2.5. Suppose that (N), (K), and (M+) hold, and that (Bp,q) holds with p > 2
and q > 0. Suppose also that (L) and (D) hold. Then there exists ψ ∈ Cb(S) (unique up to
translation) with the property

∫
S(ψ(u)−ψ(v))K(u,dv) = du for all u ∈ S. For θ ∈R, define

δ̃θ := 2

∫
S

[
eu +

∫
S
ψ(v)Γu(dv)

]
π(du)

+ (2θ− 1)

∫
S

[
σ2u + 2

∫
S
λu(v)ψ(v)K(u,dv)

]
π(du).(2.14)

Then δ̃θ is invariant under translation of ψ, and δ̃θ ≤ δ̃θ′ whenever θ ≤ θ′. The following
classification applies.

(a) The process ξ is transient if δ̃0 > 0 and recurrent if δ̃0 < 0.
(b) If, moreover, q ≥ 2, then ξ is positive recurrent if δ̃1 < 0, while ξ is null recurrent if
δ̃0 < 0< δ̃1.

Moreover, if it also holds that

(2.15) lim
n→∞

sup
u∈S

∥Kn(u, · )− π( · )∥TV = 0,

then one may take ψ ∈Cb(S) given by the convergent series

(2.16) ψ(u) =

∞∑
n=0

∫
S
Kn(u,dv)dv.

REMARKS 2.6. (a) An alternative expression for (2.16) is obtained in terms of the
linear operator TK associated with kernel K, which acts on bounded continuous f : S → R
via TKf(u) :=

∫
SK(u,dv)f(v), and is discussed in detail in Appendix A. If we set Tn+1

K :=

TK ◦ TnK, n ∈ Z+ (with T 0
K the identity operator), then (2.16) becomes ψ =

∑∞
n=0 T

n
Kd.

(b) Only for (2.16) do we explicitly assume convergence of Kn to the unique invariant
probability π; under (K), condition (2.15) holds for any irreducible, aperiodic, Harris recur-
rent K: see e.g. [9, pp. 251, 262]. For finite S, a version of Theorem 2.5 was given in Theo-
rem 2.6 of [25], without the identification of ψ at (2.16). Even with (2.16), the classification
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in Theorem 2.5 is less explicit than that in Theorem 2.2 due to involvement of function ψ,
whose probabilistic significance is explained in the next remark. In some cases, it is possible
to compute ψ explicitly: see e.g. [24, §5.1] and Example 3.7 below.

(c) Although (L) is weaker than (L0), Theorem 2.5 does not imply Theorem 2.2 because
of the presence of the stronger conditions (M+) and (D). On the contrary, we deduce Theo-
rem 2.5 from Theorem 2.2 by showing that, under the hypotheses of Theorem 2.5, the process
(Xn + ψ(ηn), ηn) satisfies the assumptions of Theorem 2.2 with appropriately transformed
parameters: see Theorem 4.8 below.

Recall that τr is the passage time defined at (2.9), and that δ̃θ is defined by (2.14) in terms
of the function ψ described in Theorem 2.5. The following result on passage-time moments
provides a quantification of recurrence, and is the analogue of Theorem 2.3. In the case of
finite S, analogous results are Theorems 2.7 and 2.8 of [25].

THEOREM 2.7. Suppose that (N), (K), and (M+) hold, and that (Bp,q) holds with p > 2

and q ≥ 2. Suppose also that (L) and (D) hold. Define δ̃θ as at (2.14).

(a) If δ̃θ < 0 for some θ > 0, then for any s ∈ [0, θ ∧ p/2 ∧ q/2) there exists r1 ∈ R+ for
which E[τ sr ]<∞ for all r ≥ r1.

(b) If δ̃θ > 0 for some θ ∈ (0, p/2∧ q/2], then for every s > θ and every r ∈R+, there exists
r1 ∈ (r,∞) for which E[τ sr ] =∞ provided X0 = x0 satisfies x0 > r1.

3. Stochastic billiards.

3.1. Model formulation and construction. Fix a domain Dγ as defined at (1.1), with
γ ∈ (0,1). We consider a stochastic billiards model that can be described informally as fol-
lows. A particle moves at unit speed, in a fixed direction in the interior of Dγ , until it hits
the boundary, at which point it reflects, randomly, according to a reflection kernel K that
operates on the incoming angle to give an outgoing angle. Angles are measured relative to
the inwards pointing unit normal vector at the collision point. Instead of working with the
continuous-time process, we construct a discrete-time Markov process that records the colli-
sion locations and the incoming angles at the collisions; the continuous-time process can be
easily constructed from the collisions process, but as we do not need it in this paper, we omit
the details.

We outline the construction of the discrete-time collisions process ζ := (ζn, n ∈ Z+) with
ζn = (Zn, χn, αn) ∈Σ⋆ :=R+×{−1,+1}×S, where S := [−π

2 ,
π
2 ], endowed with the usual

Euclidean metric. Here Zn ∈ R+ represents the horizontal coordinate of the collision loca-
tion, χn ∈ {−1,+1} is the sign of the vertical coordinate (with the convention that χn = 1
if Zn = 0), and αn ∈ S is the incoming angle. The Markov kernel K(αn, · ) is then used to
generate the outgoing angle βn. Our sign conventions are such that if one extends the nor-
mal vector at a collision point (other than the origin) so as to divide the domain Dγ into
one bounded and one unbounded component, positive βn means that the outgoing trajec-
tory enters the unbounded component, while positive αn means that the incoming trajectory
originates in the bounded component. There is then a deterministic function, derived from
the geometry of the problem, that gives ζn+1 as a function of (Zn, χn, βn). This gives us a
Markov evolution for ζ . We now give the details.

Let K denote a Markov kernel on the compact metric space (S,dS). We also set S0 :=
[−θ0, θ0] for some fixed θ0 ∈ (0, π/2), and assume an ellipticity condition:

(B1) Suppose that K(α,S0) = 1 for all α ∈ S.
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On a probability space (Ω,F ,P), let U,U1,U2, . . . be a sequence of independent U [0,1]
random variables, that will serve as our random inputs. There is a measurable function Φ :
S × [0,1]→ S such that P(Φ(α,U) ∈B) =K(α,B) for B ∈ B(S) (see e.g. [18, Lem. 3.22,
p. 56]). For (z, j) ∈ R+ × {−1,+1}, we let h(z, j) := jzγ , so that if z > 0, (z,h(z,±1)) ∈
∂Dγ are the points on the upper and lower boundary at horizontal distance z. Note that
(0, h(0, j)) = (0,0) for either value of j. For (z, j) ∈ (0,∞)×{−1,+1}, denote the inwards
pointing normal vector at (z,h(z, j)) ∈ ∂Dγ by

(3.1) n(z, j) :=
(
1 + γ2z2γ−2

)−1/2
[
γzγ−1

−j

]
;

also set n(0, j) := (1,0) and let θ(z) represent the magnitude of the angle between n(z, j)
and the vertical (see Figure 2). Put differently, θ(z) is given by

(3.2) θ(0) := π/2, and θ(z) := arctan(γzγ−1) for z > 0.

Note that θ(z)∼ γzγ−1 as z→∞.

(z,h(z,1))

∂Dγ

θ(z)

n(z,1)

β

α ℓt(z,1, β)

FIG 2: Point (z,h(1, z)) ∈ ∂Dγ has inwards-pointing normal n(z,1), making angle θ(z) with the
vertical. The ray from (z,h(1, z)) at angle β relative to the normal is parametrized by ℓt(z,1, β),
t > 0. If the particle hits Dγ at point (z,h(1, z)) at incoming angle α, then it reflects at outgoing angle
β drawn from K(α, · ). In the picture, both α and β are positive.

For (j, θ) ∈ {−1,+1} × S, define Rot(j, θ) :R2 →R2 by

(3.3) Rot(j, θ)
[
x
y

]
:=

[
cosθ −j sinθ
j sinθ cosθ

][
x
y

]
=

[
x cosθ− jy sinθ
jx sinθ+ y cosθ

]
.

In words, Rot(j, θ) acts as a rotation by θ, anticlockwise for j = 1 and clockwise for j =−1.
Combining the notation at (3.3) with (3.1) and (3.2), we obtain

n(z, j) = Rot(j, θ(z))
[
0
−j

]
=

[
sinθ(z)

−j cosθ(z)

]
.

Now we can describe the construction of the Markov chain. We take arbitrary initial values
for (Z0, χ0, α0) ∈ Σ⋆ (subject to the convention χ0 = 1 if Z0 = 0). Given (Zn, χn, αn) =
(z, j,α), if z > 0 we generate an outgoing angle βn := Φ(αn,Un) according to the kernel K.
If z = 0, then instead we take βn := θ0(1− 2Un), a uniform angle on S0.
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Given (z, j) ∈ R+ × {−1,+1}, and an outgoing angle β ∈ S, we define the ray from
(z,h(z, j)) with angle β to be the open semi-line L(z, j, β) := {ℓt(z, j, β), t > 0}, where

ℓt(z, j, β) :=

[
z

h(z, j)

]
+ tRot(j, θ(z) + β)

[
0
−j

]
.

Let λ := λ(z, j, β) := inf{t > 0: ℓt(z, j, β) ∈ ∂Dγ} be the travel time of the particle un-
til the next collision (equivalently, the distance between collision points). To construct the
subsequent boundary value, set

(3.4) Λ(z, j, β) :=

{
ℓλ(z, j, β) if λ= λ(z, j, β)<∞,

0 otherwise,

and write coordinates of Λ as Λ1,Λ2. Then, with sgn(x) := 2 · 1{x≥ 0} − 1, define

(3.5) Zn+1 =Λ1(Zn, χn, βn), and χn+1 = sgn(Λ2(Zn, χn, βn)).

In words, given (z, j) locating the particle on the boundary, and an outgoing angle β, the
subsequent boundary value is at the intersection of the ray L(z, j, β) and ∂Dγ , assuming
that there is such an intersection. One has λ=∞ only if θ(z) + β = π/2, but this will be a
probability zero event for us, as we will assume K(α, · ) has a density (see (B2) below).

Finally, to determine the next incoming angle, if z > 0 and if the outgoing angle at
(z,h(z, j)) is β, then the incoming angle at Λ(z, j, β), as illustrated in Figure 3, is

(3.6) Θ(z, j, β) :=

{
β + θ(z) + θ(Λ1(z, j, β)) if jΛ2(z, j, β)< 0,

sgn(β)π− β − θ(z) + θ(Λ1(z, j, β)) otherwise.

In the exceptional case that z = 0 we set Θ(0, j, β) := π
2 − |β|+ θ(Λ1(0, j, β)). Then define

(3.7) αn+1 := Θ(Zn, χn, βn).

The combination of (3.5), (3.6), (3.7) and the function Φ that applies K to αn to generate βn
completes the construction of the time-homogeneous Markov chain ζ; to see this note that
the functions Λ and Θ are measurable, and use e.g. [18, Prop. 8.6, p. 145]. The next section
describes our assumptions on the kernel K and our recurrence classification.

(z,h(z,1))

θ(z)

β

Λ(z,1, β)

θ(Λ1(z,1, β))

β + θ(z)

(A) Case where jΛ2(z, j, β)< 0.

Λ(z,−1, β)

θ(Λ1(z,−1, β))

(z,h(z,−1))

θ(z)

β π− β − θ(z)

(B) Case where jΛ2(z, j, β)> 0 and β > 0.

FIG 3: Two examples of the computation of the new incoming angle Θ(z, j, β) as given at (3.6). In
case (A), the next collision point is on the opposite side of the domain, and Θ(z, j, β) = β + θ(z) +
θ(Λ1(z, j, β)). In case (B), the next collision point is on the same side of the domain and β > 0, so
Θ(z, j, β) = π− β − θ(z) + θ(Λ1(z, j, β)).
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3.2. Assumptions and results. Recall that the billiards reflection kernel K is a Markov
kernel on the compact set S = [−π

2 ,
π
2 ]. In what follows, in addition to (B1) above, we assume

the following density and spread conditions.

(B2) Suppose that there is a bounded measurable κ : S2 →R+ such that

(3.8) K(α,B) =

∫
B
κ(α,β)dβ, for all B ∈ B(S).

Moreover, suppose that κ is uniformly equicontinuous in each argument, i.e., for any ε >
0 there exists δ > 0 such that (i) supα∈S |κ(α,β) − κ(α,β′)| ≤ ε for all β,β′ ∈ S with
|β − β′| ≤ δ, and (ii) supβ∈S |κ(α,β)− κ(α′, β)| ≤ ε for all α,α′ ∈ S with |α− α′| ≤ δ.

(B3) Suppose that K is right progressive in the sense that there exists ε > 0 for which

K(α, [ε,π/2])≥ ε for all α ∈ S.

Under (B2), if µ is an invariant measure for K, then, by Fubini’s theorem,

µ(B) =

∫
S
µ(dα)K(α,B) =

∫
B

[∫
S
µ(dα)κ(α,β)

]
dβ, for any B ∈ B(S).

Hence every invariant measure µ has a density. The next assumption is uniqueness.

(B4) Suppose that K has a unique invariant probability measure µ, whose density we denote
by ϖ.

Define for k ∈N and α ∈ S,

ρk(α) :=

∫
S
K(α,dβ) tank β =

∫
S
κ(α,β) tank β dβ;(3.9)

ρ̄k :=

∫
S
ϖ(α)ρk(α)dα=

∫
S
ϖ(β) tank β dβ;(3.10)

the second equality in (3.9) uses the reflection density κ from (3.8), while the second equality
in (3.10) uses (3.9), Fubini’s theorem, and the invariance of ϖ, as assumed at (B2). Our first
result deals with the case where ρ̄1 ̸= 0.

PROPOSITION 3.1. Suppose that (B1)–(B4) hold. Then ζ is transient if ρ̄1 > 0 and re-
current if ρ̄1 < 0.

As we shall explain when we make the connection to the half-strip model, the critical
(Lamperti) regime corresponds to ρ̄1 = 0; this case occurs if, for example, ϖ is symmetric
about 0. As in the half-strip model, the case where ρ1(α) = 0 for all α is simpler, and corre-
sponds to the strict Lamperti regime in the terminology of Section 2.2. Here the key quantity
determining the classification is

(3.11) γc,0 :=
ρ̄2

1 + 2ρ̄2
=

∫
Sϖ(α) tan2αdα

1 + 2
∫
Sϖ(α) tan2αdα

.

We use the extra subscript ‘0’ to indicate the strict Lamperti setting, to parallel (L0). Note
that, by (B1),

∫
Sϖ(α) tan2αdα<∞ and therefore γc,0 ∈ (0,1/2).

THEOREM 3.2. Suppose that (B1)–(B4) hold, and ρ1(α) = 0 for all α ∈ S. Then ζ is
transient if γc,0 < γ < 1 and recurrent if 0< γ < γc,0, where γc,0 is given by (3.11).

REMARKS 3.3. (a) In the case where κ(α,β) does not depend on α, reflection angles
are i.i.d. with density ϖ, and the result of Theorem 3.2 is due to [28].
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(b) Recurrence/transience of ζ will transfer to the continuous-time process that follows
the trajectories of the particle. This is because Lemma 5.3 below gives a lower bound on the
real time elapsed between successive collisions under assumption (B1).

(c) Theorem 3.2 does not admit γ = γc,0. We omit this case from our analysis, since
to treat the corresponding critical case of the half-strip model requires slightly stronger as-
sumptions, a more refined Lyapunov function, and associated additional technicalities: cf. Re-
mark 2.4. However, we anticipate that the billiards model would satisfy the necessary stronger
assumptions, and hence we would expect that the case γ = γc,0 is recurrent.

(d) One extension of our model is to a Markov process (ζn, αn, un), in which un ∈ V is
the speed of the particle between the nth and (n+1)st collisions, V ⊂ (0,∞) is compact, and
the refection kernel K is extended to operate on S⋆ := S×V . Under the natural extension of
our assumptions, our analysis extends to this case, at the expense of some heavier notation,
working now on the half-strip R+ × S⋆. If outgoing angle βn depends only on incoming
angle αn, and not on incoming speed un, then our recurrence/transience results would be
unchanged, the speeds playing no role. In general, the density ϖ in the critical parameter γc,0
at (3.11) would correspond to the S-projection of the stationary distribution of K on S⋆.

(e) A possible generalization would be to relax the assumption (B1), allowing the reflec-
tion density κ(α,β) to be supported on the whole of β ∈ S = [−π

2 ,+
π
2 ], but with suitable

bounds on the tails near β = ±π/2. The half-strip setting of Section 2.2 can accommodate
unbounded increments, and the pth-moments condition in (2.2) translates to a condition of the
form supα∈S

∫
S κ(α,β)| tanβ|

pdβ <∞ (the relevant technical results on the increments of
the billiards process are Lemmas 5.1 and 5.4). However, the possibility of multiple collisions
in rapid succession introduces some technical obstacles in the billiards setting. Furthermore,
the example of the Lambertian density κ(α,β) = (1/2) cosβ has

∫
S κ(α,β)| tanβ|

pdβ <∞
if and only if p < 2, which suggests that further exploration of this interesting generalization
might fruitfully take place in a heavy-tailed setting; in the Lambertian case, taking ρ̄2 =∞
in (3.11) suggests the conjecture γc,0 = 1/2 (cf. Open Problem 6.4.13 in [27, p. 307]).

The more general case requires further assumptions, and produces a less explicit result. In
particular, we assume that the reflection densities in (3.8) are sufficiently smooth.

(B5) Suppose that κ′(α,β) := (∂/∂β)κ(α,β) and κ′′(α,β) := (∂2/∂2β)κ(α,β) exist, are
continuous in each argument, and are bounded uniformly for all α,β ∈ S.

Under (B5), ϖ(β) =
∫
Sϖ(α)κ(α,β)dα is differentiable, since ∂

∂βκ(α,β) exists and is
uniformly bounded over α,β ∈ S, with ϖ′(β) := ∂

∂βϖ(β) given by

(3.12) ϖ′(β) =

∫
S
κ′(α,β)ϖ(α)dα.

In particular, ϖ is continuous on S and vanishes outside S0, so ϖ(±θ0) = 0.

THEOREM 3.4. Suppose that (B1)–(B5) hold, and ρ̄1 = 0. Then there exists ψ0 ∈Cb(S)
(unique up to translation) with

∫
S(ψ0(α)−ψ0(β))κ(α,β)dβ = 2ρ1(α) for all α ∈ S. Let

A1 :=

∫
S
ψ0(β)ϖ(β) tanβ dβ, A2 :=

∫
S
ψ0(β)ϖ

′(β)dβ.(3.13)

Then A1 + ρ̄2 ≥ 0. Suppose that the quantities in (3.13) satisfy

(3.14) 1 +A1 −A2 + 2ρ̄2 ≥ 0, and max{A1 + ρ̄2,1 +A1 −A2 + 2ρ̄2}> 0,
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and define

(3.15) γc :=

(
A1 + ρ̄2

1 +A1 −A2 + 2ρ̄2

)
∧ 1.

Then γc ∈ [0,1], and ζ is transient if γc < γ < 1 and recurrent if 0< γ < γc.
Moreover, if, in addition, limn→∞ supα∈S ∥Kn(α, · ) − µ( · )∥TV = 0, where µ is the

unique invariant measure from (B4), then one may take ψ0 defined by

(3.16) ψ0(α) = 2

∞∑
n=0

∫
S
Kn(α,dβ)ρ1(β) = 2

∞∑
n=1

∫
S
Kn(α,dβ) tanβ.

REMARK 3.5. Under the hypothesis (3.14), the fraction in (3.15) is not 0/0, and hence
γc ∈ [0,1] is well-defined (with the usual interpretations that 1/0 :=∞ and ∞∧ 1 := 1). We
do not rule out, however, the possibilities γc = 0 (if and only if A1 + ρ̄2 = 0) or γc = 1. In
these extreme cases there would be no phase transition for γ ∈ (0,1).

The quantities A0,A1 depend on the function ψ0 and on ϖ, and so are hard to compute in
general. However, for a restricted class of reflection kernels, we apply Theorem 3.4 to obtain
Proposition 3.6, which shows that the classification of Theorem 3.2 extends beyond the case
ρ1(α)≡ 0: this can be seen as a further generalization of the results of [28] from the case of
i.i.d. reflections.

PROPOSITION 3.6. Suppose that (B1)–(B5) hold, ρ̄1 = 0, and that for some λ ∈ (−1,1),

(3.17) ρ1(α) = λ tanα, for all α ∈ S.

Suppose also that ϖ(β) =ϖ(−β) for all β ∈ S. Then ζ is transient if γ > γc,0 and recurrent
if γ < γc,0, where γc,0 ∈ (0,1/2) is given by (3.11).

The next example gives a family of reflection kernels to which Proposition 3.6 applies.

EXAMPLE 3.7. Fix λ ∈ (−1,1). Take for α,β ∈ S,

(3.18) κ(α,β) = f(α)g(β) + (1− f(α))g(−β),

where f : S→ [0,1] is uniformly continuous on S and satisfies

f(α) =
1

2
+

tanα

2 tanθ0
, α ∈ S0,

and g : S→ R+ will be constructed later to satisfy (i) g is twice continuously differentiable
on S, (ii) g(β) = 0 for |β| ≥ θ0; (iii)

∫
S0
g(β)dβ = 1; and (iv)

(3.19)
∫
S0

g(β) tanβdβ = λ tanθ0.

These properties for g ensure that (B5) holds, and, by (iii),
∫
S0
g(−β)dβ = 1, so that κ

defined at (3.18) satisfies
∫
S0
κ(α,β)dβ = 1 for all α ∈ S. Note also that (3.19) implies∫

S0

g(−β) tanβdβ =

∫
S0

g(β) tan(−β)dβ =−λ tanθ0,

so that, for any α ∈ S, ρ1(α) defined at (3.9) satisfies

ρ1(α) =

∫
S0

κ(α,β) tanβdβ = [2f(α)− 1]λ tanθ0 = λ tanα,
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by choice of f , verifying (3.17). Any stationary density ϖ for κ given by (3.18) must satisfy

ϖ(β) = ag(β) + (1− a)g(−β), a :=

∫
S0

f(α)ϖ(α)dα.

Substituting the former equality for ϖ in the definition of a and using the fact that f(−α) =
1− f(α) leads to a(1− b) = (1− a)(1− b), where b :=

∫
S0
f(α)g(α)dα ∈ (0,1). It follows

that a= 1/2, and hence the unique stationary density is

ϖ(β) =
1

2
(g(β) + g(−β)) =ϖ(−β), β ∈ S.

Hence, by (3.10) and (3.17), ρ̄1 = λ
∫
S0
ϖ(α) tanαdα= 0.

Thus all the conditions of Proposition 3.6 are satisfied. It remains to check that a suitable g
satisfying (i)—(iv) above can be chosen. We present one reasonably concrete construction.
For real numbers m,n ≥ 3 to fixed later, take P (α) := (α + θ0)

m(θ0 − α)n for |α| ≤ θ0.
Then P has zeros at ±θ0, and is strictly positive on (−θ0, θ0). Define

G(α) :=

{
P (α) if |α|< θ0,

0 otherwise.

For α ∈ (−θ0, θ0), P (α) is infinitely differentiable, and the kth derivative P (k)(α) is a sum
of products involving (α+ θ0)

r(θ0 − α)s for exponents r, s satisfying m− k ≤ r ≤m and
n − k ≤ s ≤ n. Since m,n ≥ 3, it follows that the first two derivatives of P approach 0
continuously at ±θ0. We normalize G to obtain our g, via

g(α) :=G(α)/Z, Z :=

∫
S0

P (α)dα= (2θ0)
m+n+1Γ(n+ 1)Γ(m+ 1)

Γ(n+m+ 2)
,

evaluating the integral using the change of variable α= θ0(2u− 1), u ∈ [0,1]. By the prop-
erties of P and G described, properties (i)–(iii) hold for this g.

To achieve (iv), i.e. (3.19), we describe how to tune n,m in the choice of P . Note that P
admits a unique maximum in [−θ0, θ0] at the point α = α∗ := m−n

m+nθ0. Suppose that λ ∈
(0,1). Fix n (n= 3 will do). Now, as m→∞, α∗ → θ0 and g converges to the Dirac mass
at θ0, and by the dominated convergence theorem,

lim
m→∞

∫
S0

g(α) tanαdα= tanθ0.

The function m 7→
∫
S0
g(α) tanαdα is continuous, takes value 0 when m = n and, as

m→ ∞, eventually exceeds λ tanθ0 (since λ < 1). Hence, by the intermediate value the-
orem, there exists m>n for which (3.19) holds. On the other hand, if λ ∈ (−1,0), a similar
argument applies with n→∞. If λ= 0, we can take m= n. △

REMARK 3.8. We prove our results for the stochastic billiards model by considering the
process (Xn, αn) where Xn := Z1−γ

n , and αn is the sequence of incoming angles, in the
framework of the half-strip model of Section 2. One could instead work with the process
(Xn, βn), with βn the sequence of outgoing angles. Again the results of Section 2 can be
applied, although the technical details differ. It is worth noting that although the reflection
kernel K is the same in both approaches, ρ1(α) and hence ψ0 differ, but the ultimate quantities
A1 and A2 in (3.13) are the same.

4. Proofs for the half-strip model. In this section we prove the results presented in
Section 2.2, and we adopt the notation of that section. In particular, note that S is a general
compact metric space. We first in Section 4.1 work in the strict Lamperti regime, and then
(in Section 4.2) use a transformation to reduce the more general Lamperti setting to the strict
case, with appropriate transformation of parameters.
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4.1. The strict Lamperti regime. To prove Theorems 2.2 and 2.3, we use a Lyapunov
function among the class of functions Hν,φ : Σ→R+ defined in terms of a given φ ∈C+

b (S)
and a parameter ν ∈R by

(4.1) Hν,φ(x,u) :=

{
1 if x≤ 1,

xν + ν
2x

ν−2φ(u) if x > 1.

For appropriate choices of ν and φ, depending on the parameters of the process ξn, the pro-
cess Hν,φ(ξn) will satisfy an appropriate super/submartingale condition outside a bounded
set, which will enable us to apply martingale methods for adapted processes on R+. In this
direction, the following result estimates the expected increment of the process Hν,φ(ξn).

PROPOSITION 4.1. Suppose that (K) and (M) hold, and that (Bp,q) holds with p > 2
and q > 0. Suppose also that (L0) holds. Let φ ∈ C+

b (S) and ν ∈ (2 − p, p ∧ q]. Then
EHν,φ(ξn)<∞ for all n ∈ Z+, and

E
[
Hν,φ(ξn+1)−Hν,φ(ξn)

∣∣Fn]=Wν,φ(ξn), a.s.,

where

Wν,φ(x,u) =
ν

2
xν−2

[
2eu − (1− ν)σ2u +

∫
S
(φ(v)−φ(u))K(u,dv) + εx,u

]
,(4.2)

with limx→∞ supu∈S |εx,u|= 0.

We defer the proof of Proposition 4.1 until the end of this subsection. Let

(4.3) C0
b(S) :=

{
g ∈Cb(S) :

∫
S
g(u)π(du) = 0

}
,

where π is the stationary measure from (K)(i). Define gθ ∈ Cb(S) by gθ(u) := 2eu + (2θ −
1)σ2u−δθ , where δθ is defined at (2.12). Then, by (2.12),

∫
S gθ(u)π(du) = 0, i.e., gθ ∈C0

b(S)

as at (4.3). Hence, by (K) and Proposition A.1, there is a φθ ∈C+
b (S) for which

(4.4)
∫
S
(φθ(u)−φθ(v))K(u,dv) = gθ(u), for all u ∈ S;

note we have specified that φθ ≥ 0.
We prove Theorem 2.2(a); Theorem 2.2(b) is a special case of Theorem 2.3 (cf. Re-

mark 2.4) which we prove later in this section.

PROOF OF THEOREM 2.2(a). Recall the definitions of e,σ2 from (2.10) and δ0 in the
θ = 0 case of (2.12). Recall also that the functions g0 ∈ C0

b(S) and ψ0 ∈ C+
b (S) satisfy

g0(u) := 2eu − σ2u − δ0 and the θ = 0 case of (4.4). Then Wν,φ0
given at (4.2) satisfies

(4.5) Wν,φ0
(x,u) =

ν

2
xν−2

(
δ0 + νσ2u + εx,u

)
,

with supu∈S |εx,u| → 0 as x→∞. Suppose that δ0 < 0. Proposition 4.1 with (4.5) then shows
that there exist ν > 0 and r0 ∈R+ for which

(4.6) E
[
Hν,φ0

(ξn+1)−Hν,φ0
(ξn)

∣∣Fn]≤ 0, on {Xn ≥ r0}.

Since ν > 0 it follows that infu∈SHν,φ0
(x,u)→∞ as x→∞. Then by (N) and Lemma B.1,

we conclude that ξ is recurrent. On the other hand, suppose that δ0 > 0. Now, by (4.5), there
exist ν < 0 and r0 ∈ R+ for which (4.6) again holds, but now supu∈SHν,φ0

(x,u) → 0 as
x→∞, and Lemma B.2 with (N) shows that ξ is transient.
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Now we turn to the proof of Proposition 4.1. The necessary computations run along similar
lines to those in the proof of Lemma 3.2 in [25], which is a similar result in the case of finite S,
under similar hypotheses. We give the outline of the arguments, emphasizing the differences
from [25]. For ease of notation, define for n ∈ Z+,

∆n :=Xn+1 −Xn, and Dν,φ,n :=Hν,φ(ξn+1)−Hν,φ(ξn).

In our proofs we often separate computations of expected functional increments over whether
or not the increment is relatively big; for this purpose, we define the event

(4.7) En,r := {|∆n| ≤Xr
n}, for r ∈ (0,1).

The following technical lemma is the analogue of Lemma 3.3 of [25] and is proved similarly.

LEMMA 4.2. Suppose that (Bp,q) holds for some p > 2, Bp ∈ R+, q > 0, and xB ∈ R+.
Then for all r ∈ (0,1), all s ∈ [0, p], and all n ∈ Z+,

(4.8) E
[
|∆n|s1Ec

n,r

∣∣Fn]≤BpX
r(s−p)
n , on {Xn ≥ xB}.

Moreover, if r ∈ ( 1
p−1 ,1), then for k ∈ {1,2},

(4.9) E
[
∆k
n1En,r

∣∣Fn]= E
[
∆k
n

∣∣Fn]+Xk−2
n εk(ξn), on {Xn ≥ xB},

where limx→∞ supu∈S |εk(x,u)|= 0.

On the event En,r given by (4.7), we have Xn+1 ≥Xn −Xr
n, and so for fixed r ∈ (0,1)

we may choose x1 ∈R+ such that Xn+1 > 1 on {Xn ≥ x1} ∩En,r . Hence, by (4.1),

E[Dν,φ,n1En,r
| Fn] = Uν,φ,r(ξn) +

ν

2
Vν,φ,r(ξn), on {Xn ≥ x1},(4.10)

where,

Uν,φ,r(ξn) := E
[(
Xν
n+1 −Xν

n

)
1En,r

| Fn
]
;

Vν,φ,r(ξn) := E
[(
Xν−2
n+1φ(ηn+1)−Xν−2

n φ(ηn)
)
1En,r

| Fn
]
.

The next two results give asymptotics for Uν,φ,r and Vν,φ,r .

LEMMA 4.3. Suppose that (Bp,q) holds for some p > 2 and q > 0. Suppose also that (L0)
holds, and that r ∈ ( 1

p−1 ,1). Then for any ν ∈R,

Uν,φ,r(x,u) =
ν

2
xν−2

[
2eu − (1− ν)σ2u + εx,u

]
,

where limx→∞ supu∈S |εx,u|= 0.

PROOF. The proof is similar to that of Lemma 3.4 in [25]. On the event En,r , we can
apply Taylor’s theorem to get(

Xν
n+1 −Xν

n

)
1En,r

= νXν−1
n ∆n1En,r

+
ν(ν − 1)

2
Xν−2
n ∆2

n1En,r
+ ωn,

where |ωn| ≤CXν−3
n |∆n|31En,r

≤C|∆n|2Xν+r−3
n . Using (Bp,q) and (4.9), we get

Uν,φ,r(x,u) = νxν−1µ1(x,u) +
ν(ν − 1)

2
xν−2µ2(x,u) + xν−2εx,u,

where limx→∞ supu∈S |εx,u|= 0. The result now follows from (L0).
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LEMMA 4.4. Suppose that (M) holds and that (Bp,q) holds for some p > 2 and q > 0.
Then for any r ∈ (0,1) and any ν ∈R,

Vν,φ,r(x,u) = xν−2

[∫
S
(φ(v)−φ(u))K(u,dv) + εx,u

]
,

where limx→∞ supu∈S |εx,u|= 0.

PROOF. Similarly to the proof of Lemma 3.5 of [25], first note that

E
[∣∣(Xν−2

n+1 −Xν−2
n

)
φ(ηn+1)

∣∣1En,r
| Fn

]
≤ sup
u∈S

|φ(u)|E
[∣∣Xν−2

n+1 −Xν−2
n

∣∣1En,r
| Fn

]
,

where |Xν−2
n+1 −Xν−2

n |1En,r
is bounded by a constant times Xν+r−3

n . On the other hand,

E
[
(φ(ηn+1)−φ(ηn))1En,r

| Fn
]
= E [φ(ηn+1)−φ(ηn) | Fn] + ε(ξn), a.s.,

where limx→∞ supu∈S |ε(x,u)|= 0, using the fact that φ is uniformly bounded and P(Ec
n,r |

Fn)≤BpX
−rp
n , by the s= 0 case of (4.8). Here, by (2.5),

E [φ(ηn+1)−φ(ηn) | Fn] =
∫
S
(φ(v)−φ(ηn))K◦

s (Xn, ηn,dv), a.s.

The result now follows if we note that

Vν,φ,r(ξn) = E
[(
Xν−2
n+1 −Xν−2

n

)
φ(ηn+1)1En,r

| Fn
]

+E
[
Xν−2
n (φ(ηn+1)−φ(ηn))1En,r

| Fn
]
,

and combine (2.6) with the preceding estimates.

The following result provides a bound when the increment is large.

LEMMA 4.5. Suppose that (Bp,q) holds for some p > 2 and q > 0. Then for any ν ∈
(2− p, p∧ q], there exists r ∈ ( 1

p−1 ,1) for which

E[|Dν,φ,n|1Ec
n,r

| Fn] =Xν−2
n ε(ξn), a.s.,

where limx→∞ supu∈S |ε(x,u)|= 0.

PROOF. The proof follows exactly that of Lemma 3.7 of [25], using the truncation esti-
mates from Lemma 4.2 and bounds for Hν,φ(x,u) in terms of x; this relies on the fact that φ
is uniformly bounded.

PROOF OF PROPOSITION 4.1. First note that (Bp,q) shows that EHν,φ(ξn)<∞ provided
ν ≤ p∧q. The statement follows from combining (4.10) with the estimates from Lemmas 4.3,
4.4 and 4.5, on choosing a suitable r ∈ ( 1

p−1 ,1).

We turn to the proof of Theorem 2.3. We will need the following two results that give
conditions for existence and non-existence of moments of passage times. The formulations,
taken from [27, §2.7], are based closely on results of [3], and apply to an R+-valued, adapted
process Yn and its passage times λy := min{n ∈ Z+ : Yn ≤ y}, y ∈R+.

LEMMA 4.6 (Corollary 2.7.3 in [27]). Let Yn be an integrable Fn-adapted stochastic
process, taking values in an unbounded subset of R+, with Y0 = y0 fixed. Suppose that there
exist constants δ ∈ (0,∞), y ∈ (0,∞), and a < 1 such that for any n ∈ Z+,

(4.11) E[Yn+1 − Yn | Fn]≤−δY a
n , on {n < λy}.

Then E[λsy]<∞ for any s ∈ [0, (1− a)−1).
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LEMMA 4.7 (Theorem 2.7.4 in [27]). Let Yn be an integrable Fn-adapted stochastic
process, taking values in an unbounded subset of R+, with Y0 = y0 fixed. Suppose that there
exist constants y ∈ (0,∞), B ∈R+ and c ∈R, such that for any n ∈ Z+,

E[Yn+1 − Yn | Fn]≥− c

Yn
, on {Yn > y},(4.12)

E[(Yn+1 − Yn)
2 | Fn]≤B, on {Yn > y}.(4.13)

Suppose, in addition, that for some s0 > 0, the process Y 2s0
n∧λy

is a submartingale. Then, for
any s > s0, E[λsy] =∞ provided y0 > y.

PROOF OF THEOREM 2.3. The proof is divided into two parts; we first establish existence
of moments (Theorem 2.3(a)) and then non-existence of moments (Theorem 2.3(b)). Recall
the definition of δθ from (2.12), that gθ(u) = 2eu + (2θ − 1)σ2u − δθ , and that φθ ∈ C+

b (S)
satisfies (4.4). We will use the processHν,φθ

(ξn), ν > 0, defined via (4.1), in slightly different
ways in the proofs of each of the two parts of the theorem.

Proof of Theorem 2.3(a). Take ν := 2θ ∧ p ∧ q, where θ > 0, p > 2, and q ≥ 2 are as in the
hypotheses of Theorem 2.3(a). Set Yn :=Hν,φθ

(Xn, αn) ∈R+. Then, by choice of ν and φθ
for which (4.4) holds, the coefficient in Wν,φθ

given by (4.2) satisfies

2eu − (1− ν)σ2u +

∫
S
(φθ(v)−φθ(u))K(u,dv) = 2eu − (1− ν)σ2u − gθ(u)

= δθ + (ν − 2θ)σ2u ≤ δθ,(4.14)

since ν ≤ 2θ and σ2u ≥ 0. By hypothesis, δθ < 0, and, by (4.2), there is an x1 ∈R+ for which

sup
u∈S

Wν,φθ
(x,u)≤−ν

4
|δθ|xν−2, for all x≥ x1.

Since, by (4.1), supu∈S |Hν,φθ
(x,u)−xν |=O(xν−2), it follows that there is an x2 ∈R+ for

which, setting a := ν−2
ν < 1,

Wν,φθ
(x,u)≤−ν

4
|δθ| (Hν,φθ

(x,u))a , for all x≥ x2 and all u ∈ S.

This, together with Proposition 4.1, shows that (4.11) holds with Yn =Hν,φθ
(Xn, αn), a=

ν−2
ν , and δ = ν

4 |δθ|> 0. Note that by the choice of a we have (1− a)−1 = ν
2 = θ∧ p

2 ∧
q
2 . By

Lemma 4.6 we conclude that E[λsy]<∞ for all s ∈ [0, θ ∧ p
2 ∧

q
2) and all y sufficiently large.

Moreover, by (4.1) and the choices of φθ ∈ C+
b (S) and ν > 0, we have that Xν

n ≤ Yn, a.s.
It follows that, with τ as defined at (2.9) τy1/ν ≤ λy and therefore E[τ sr ]<∞ for all r large
enough, which completes the proof of Theorem 2.3(a).

Proof of Theorem 2.3(b). Take ν := 2θ, where 0< θ < p
2 ∧

q
2 as in the hypotheses of Theo-

rem 2.3(b). Now define Yn := (Hν,φθ
(ξn))

1/ν , where φθ ∈C0
b(S) again satisfies (4.4).

We verify the hypotheses of Lemma 4.7 for this choice of Yn; we examine the increment
Yn+1 − Yn. First, observe that Taylor’s theorem and the x > 1 case of (4.1) gives

(Hν,φ(x,u))
1/ν = x

(
1 +

ν

2
φ(u)x−2

)1/ν
= x+

φ(u)

2x
+O(x−3),

=H1,φ(x,u) +O(x−3),(4.15)

as x→∞, uniformly in u ∈ S. We claim that for every φ ∈C+
b (S), there exists C =C(φ) ∈

(1,∞) such that

(4.16) x≤ (Hν,φ(x,u))
1/ν ≤ x+C, for all x ∈R+, u ∈ S.
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For x ≤ 1, the bounds in (4.16) are immediate from (4.1), while for x > 1, they follow
from (4.15) and the fact that νφ(u)≥ 0 for all u ∈ S. It follows from (4.16) that

(4.17) |Yn+1 − Yn| ≤ |∆n|+C, a.s.

Thus we verify (4.13) as a consequence of (4.17) and (Bp,q).
We next claim that

(4.18) E[Yn+1 − Yn | Fn] = W̃ (ξn), where W̃ (x,u) =
1

2x

[
δθ − (2θ− 1)σ2u + εx,u

]
,

and, as usual, limx→∞ supu∈S |εx,u|= 0. We verify (4.18). Choose r ∈ (0,1) with r(p−1)>
1 (recall that p > 2). Then,

(4.19) E[Yn+1 − Yn | Fn] = E[(Yn+1 − Yn)1En,r
| Fn] +E[(Yn+1 − Yn)1Ec

n,r
| Fn],

where En,r is defined at (4.7). A consequence of (4.15) is that

(Yn+1 − Yn)1En,r
= (H1,φ(ξn+1)−H1,φ(ξn))1En,r

+O(x−3), on {Xn ≥ x},

uniformly over ηn ∈ S. Together with the ν = 1 cases of Proposition 4.1 and Lemma 4.5, this
implies that E[(Yn+1−Yn)1En,r

| Fn] = W̃ (ξn), where W̃ differs from W1,φθ
given by (4.2)

only in the εx,u term. On the other hand, we have from (4.17) and an application of the s= 1
and s= 0 cases of Lemma 4.2 that,∣∣∣E[(Yn+1 − Yn)1Ec

n,r
| Fn]

∣∣∣≤ E[|∆n|1Ec
n,r

| Fn] +C P(Ec
n,r | Fn)≤X−1

n ε(ξn),

where limx→∞ supu∈S |εx,u| = 0, where we have used the fact that r(p − 1) > 1. Apply-
ing (4.19) verifies (4.18), appropriately redefining W̃ (the εx,u absorbs the additional er-
ror from the contribution on Ec

n,r). Thus (4.18) is proved. It follows that (4.12) holds for
this choice of Yn, recalling from (4.16) that Xn ≤ Yn ≤ Xn + C , a.s. Moreover, since
Y ν
n =Hν,φθ

(ξn) and ν = 2θ < p∧ q, we have from Proposition 4.1 that E[Y ν
n+1−Yn | Fn] =

Wν,φθ
(ξn), a.s., where, since ν = 2θ, by (4.2) and an analogous calculation to (4.14),

Wν,φθ
(x,u) = θx2θ−2 [δθ + εx,u] ,

and, under the hypotheses of Theorem 2.3(b), we have δθ > 0. This verifies that Y 2θ
n∧λy

is a
submartingale for a sufficiently large y ∈ R+. We have thus shown that Yn satisfies all the
hypotheses of Lemma 4.7 with s0 = θ, and this establishes the conclusion of Theorem 2.3(b),
recalling once more that Xn ≤ Yn ≤Xn +C .

4.2. The Lamperti regime. The aim of this section is to prove Theorems 2.5 and 2.7. We
do so by mapping the process back to the strict Lamperti regime, identifying the appropri-
ate parameters, and verifying the conditions of, respectively, Theorems 2.2 and 2.3 for the
transformed process.

Our transformation will be achieved by a collection of horizontal shifts that eliminate the
constant-order terms of the drifts, following a similar idea to that in Section 5 of [25] for the
simpler case when S is finite. For a given ϕ ∈C+

b (S), the transformation is

Tϕ : Σ→Σ, given by Tϕ(x,u) = (x+ ϕ(u), u) for all (x,u) ∈Σ.

THEOREM 4.8. Suppose that (N), (K), and (M+) hold, and that (Bp,q) holds with p >
2 and q > 0. Suppose also that (L) and (D) hold. There exists a unique ψ ∈ C+

b (S)
with infu∈S ψ(u) = 0 and

∫
S(ψ(u) − ψ(v))K(u,dv) = du for all u ∈ S. Then the time-

homogeneous Markov process ξ̃ = (ξ̃n, n ∈ Z+) defined by ξ̃n := Tψ(ξn) ∈ Σ satisfies the
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hypotheses of Theorem 2.2. In particular, the moments conditions in (2.10) are satisfied for ξ̃
with coefficients ẽ, σ̃2 ∈Cb(S) given by

ẽu = eu +

∫
S
(ψ(v)−ψ(u))Γu(dv);(4.20)

σ̃2u = σ2u + 2

∫
S
λu(v)ψ(v)K(u,dv) +

∫
S

(
ψ2(v)−ψ2(u)

)
K(u,dv).(4.21)

PROOF. By Proposition A.1, there exists a unique ψ ∈C+
b (S) with infu∈S ψ(u) = 0 and

(4.22)
∫
S
(ψ(u)−ψ(v))K(u,dv) = du, for all u ∈ S.

Note then that ẽ, σ̃2 defined by (4.20) and (4.21) are continuous, as claimed. This follows
from Lemma A.4 using the continuity of ψ, e, σ2, of u 7→ Γu from (M+), of u 7→ λu from (D),
and the continuity of K from (K).

Since Tψ is one-to-one and measurable (continuous, even), ξ̃ is time-homogeneous and
Markov, and the non-confinement for ξ̃ is inherited from non-confinement (N) for ξ, since
ψ is bounded. Similarly the moments bound (Bp,q) carries over easily. It remains to verify
that (2.10) holds with the claimed coefficients.

Write ξ̃n = (X̃n, η̃n) in components. Then, on {Xn ≥ xB},

E[X̃n+1 − X̃n | Fn] = E[Xn+1 −Xn | Fn] +E[ψ(ηn+1)−ψ(ηn) | Fn] = µ̃1(ξ̃n), a.s.,

for a measurable µ̃1 : Σ→R, where, with K◦
s as defined at (2.5),

µ̃1(x,u) = µ1(x−ψ(u), u) +

∫
S
(ψ(v)−ψ(u))K◦

s (x−ψ(u), u,dv).

Since ψ is bounded, (M+) and (2.10) show that, for some εx,u with limx→∞ supu∈S |εx,u|=
0,

µ̃1(x,u) = du +
eu
x

+

∫
S
(ψ(v)−ψ(u))

[
K(u,dv) +

Γu(dv)

x

]
+
εx,u
x

=
1

x

[
eu +

∫
S
(ψ(v)−ψ(u))Γu(dv) + εx,u

]
,

where the second equality follows from (4.22). Similarly, E[(X̃n+1 − X̃n)
2 | Fn] = µ̃2(ξ̃n),

on {Xn ≥ xB}. Observe that

E[(X̃n+1 − X̃n)
2 | Fn] = µ2(ξn) + 2E[(Xn+1 −Xn)(ψ(ηn+1)−ψ(ηn)) | Fn]

+E[(ψ(ηn+1)−ψ(ηn))
2 | Fn].

By disintegration [18, Thm. 6.4, p. 108], for measurable f : Σ→R,

E[f(Xn+1, ηn+1) | Fn] =
∫
S

∫
R+

f(y, v)K◦
s (ξn,dv)L(ξn, v,dy), a.s.,

where L(x,u, v, · ) is a regular conditional distribution forXn+1 given (ξn, ηn+1) = (x,u, v).
In this notation, the conditional drifts appearing in (2.13) are given by

µ◦1(x,u, v) =

∫
R+

(y− x)L(x,u, v,dy).
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Hence, a.s.,

E[(Xn+1 −Xn)(ψ(ηn+1)−ψ(ηn)) | Fn] =
∫
S
ψ(v)µ◦1(ξn, v)K◦

s (ξn,dv)−ψ(ηn)µ1(ξn).

It follows that

µ̃2(x,u) = µ2(x−ψ(u), u) + 2

∫
S
ψ(v)µ◦1(x−ψ(u), u, v)K◦

s (x−ψ(u), u,dv)

− 2ψ(u)µ1(x−ψ(u), u) +

∫
S
(ψ(v)−ψ(u))2K◦

s (x−ψ(u), u,dv).(4.23)

Note that∣∣∣∣∫
S
ψ(v)µ◦1(x,u, v)K◦

s (x,u,dv)−
∫
S
ψ(v)λu(v)K(u,dv)

∣∣∣∣
=

∣∣∣∣∫
S
ψ(v) (µ◦1(x,u, v)− λu(v))K◦

s (x,u,dv) +

∫
S
ψ(v)λu(v) [K◦

s (x,u,dv)−K(u,dv)]

∣∣∣∣
≤ ∥ψ∥ sup

u,v∈S
|µ◦1(x,u, v)− λu(v)|+ ∥ψ∥ sup

u,v∈S
|λu(v)| sup

u∈S
∥K◦

s (x,u, · )−K(u, · )∥TV .

Since u 7→ supv∈S λu(v) is continuous, by (D), compactness shows that supu,v∈S |λu(v)|<
∞. Hence from (D) and (2.6) we conclude that

(4.24) lim
x→∞

sup
u∈S

∣∣∣∣∫
S
ψ(v)µ◦1(x,u, v)K◦

s (x,u,dv)−
∫
S
ψ(v)λu(v)K(u,dv)

∣∣∣∣= 0.

It follows from (4.23) with (4.24) and (2.10) that, for εx,u with limx→∞ supu∈S |εx,u|= 0,

µ̃2(x,u) = σ2u − 2duψ(u) + 2

∫
S
ψ(v)λu(v)K(u,dv) +

∫
S
(ψ(v)−ψ(u))2K(u,dv) + εx,u.

The final observation is that∫
S
(ψ(v)−ψ(u))2K(u,dv)− 2duψ(u)

=

∫
S
(ψ2(v)−ψ2(u))K(u,dv)− 2ψ(u)

[∫
S
(ψ(v)−ψ(u))K(u,dv) + du

]
,

and the term in square brackets vanishes, again by (4.22).

PROOF OF THEOREM 2.5. Under the conditions of Theorem 2.5, Theorem 4.8 shows that
the transformed process ξ̃n defined therein satisfies the hypotheses of Theorem 2.2, with
coefficients given by (4.20) and (4.21); note that ξn is (positive, null) recurrent if and only
if ξ̃n is (positive, null) recurrent. To obtain the expression for δ̃θ in (2.14), we note that, by
stationarity of π,

(4.25)
∫
S

∫
S
(ψ2(v)−ψ2(u))K(u,dv)π(du) =

∫
S
ψ2(v)π(dv)−

∫
S
ψ2(u)π(du) = 0,

and, since Γu(S) = 0, ∫
S

∫
S
ψ(u)Γu(dv)π(du) = 0.

In particular, we have from (4.25) that σ̃2u given by (4.21) satisfies

0≤
∫
S
σ̃2uπ(du) =

∫
S
σ2uπ(du) + 2

∫
S

∫
S
λu(v)ψ(v)K(u,dv)π(du),
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which also implies that δ̃θ is non-decreasing in θ. Also note that, by (D),
∫
S λu(v)K(u,dv) =

limx→∞
∫
S µ

◦
1(x,u, v)K◦

s (x,u,dv) = du, and so∫
S

∫
S
λu(v)K(u,dv)π(du) =

∫
S
duπ(du) = 0,

which implies that the terms defined in (2.14) are invariant under translation of ψ. This com-
pletes the proof of the recurrence classification. The series representation for ψ given at (2.16)
follows from Proposition A.5.

PROOF OF THEOREM 2.7. Similarly to the preceding proof, Theorem 4.8 shows that we
may apply Theorem 2.3 to the transformed process ξ̃n to obtain the result, noting that, since
|ξn − ξ̃n| ≤ C , a.s., for some constant C <∞ and all n ∈ Z+, existence of a given passage-
time moment is equivalent for the two processes.

5. Proofs for the stochastic billiards model.

5.1. Displacement estimates. Recall from Section 3.1 the construction of the stochastic
billiards process, that the reflection kernel K is a Markov kernel on S = [−π

2 ,
π
2 ], and that

S0 = [−θ0, θ0], for θ0 ∈ (0, π2 ). Each of the assumptions (B1)–(B5) plays a role in one or
more of the subsidiary results in this section.

Although (B1) ensures that outgoing angles are confined to S0, the perturbation introduced
by the curvature of the domain means that incoming angles can only be confined (for large
enough horizontal coordinate) to a bigger interval; thus in this section we need estimates for
our functions on angles over an interval S1 containing S0 in its interior. For this reason, we
take θ1 ∈ (θ0,

π
2 ), and S1 = [−θ1, θ1], so that S0 ⊂ S1 ⊂ S. With Λ defined at (3.4), define

D :R+ × S1 →R by

(5.1) D(z,β) := Λ1(z,1, β)− z.

Observe that ℓt(z,−j, β) is the reflection of ℓt(z, j, β) in the x-axis, which, with the reflec-
tion symmetry of ∂Dγ , means that λ(z,−j, β) = λ(z, j, β) and Λ1(z, j, β) = Λ1(z,−j, β).
Hence (3.5) shows that Zn+1 − Zn =D(Zn, βn) for any Zn ≥ 0, so we can interpret D as
the horizontal displacement of the billiards process.

Part (a) of the next result states that, outside of a bounded set, successive collisions occur
on opposite sides of the boundary, part (b) is a displacement bound, while (5.2) and (5.3) give
sharp expansions for D(z,β) and its β-derivative.

LEMMA 5.1. Suppose that (B1) holds. There exist constants C,z0 ∈R+ such that

(a) for all z ≥ z0, all β ∈ S1, and any j ∈ {−1,+1}, jΛ2(z, j, β)< 0;
(b) for all z ≥ z0, supβ∈S1

|D(z,β)| ≤Czγ .

Moreover, as z→∞,

sup
β∈S1

∣∣D(z,β)−
[
2zγ tanβ + 2γz2γ−1 + 4γz2γ−1 tan2 β

]∣∣=O(z3γ−2);(5.2)

sup
β∈S1

∣∣∣∣ ∂∂βD(z,β)− 2zγ sec2 β

∣∣∣∣=O(z2γ−1).(5.3)

PROOF. The main part of the argument is essentially that given on [27, pp. 284–7], but,
since there are a couple of minor errors there, and (5.3) is new, we outline the main steps.
Write D :=D(z,β) for convenience.
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Recall the definition of θ(z) from (3.2) and that, by (1.1), ∂Dγ = {(z,h(z, j)) : z ∈
R+, j ∈ {−1,1}} where h(z, j) = jzγ . Choose θ2 ∈ (θ1,

π
2 ) and ε ∈ (0, π2 − θ2). Since

(∂/∂z)h(z,1) = γzγ−1 → 0 as z → ∞, we may choose z1 large enough so that, for all
z ≥ z1, (i)

∣∣γzγ−1
∣∣ < ε, and (ii) |θ(z) + β| < θ2 for all β ∈ S1. Since |θ(z) + β| < π/2 it

follows that, for all z sufficiently large, L(z, j, β) meets ∂Dγ at the opposite boundary, giv-
ing (a). Furthermore, by assumption (B1), there is a constant C ∈R+ such that, for all z suf-
ficiently large, the ray from (z,h(z, j)) meets the opposite boundary at a point (z′, h(z′,−j))
with D := z′ − z satisfying |D| ≤Czγ ; this gives the bound in part (a).

(z,h(z,1))

θ(z) β

Λ(z,1, β)

β + θ(z)
D =D(z,β)

FIG 4: An illustration of the horizontal increment between successive collisions.

Suppose z ≥ z0 as above. Some geometry (see Figure 4) shows that

D = (zγ + (z +D)γ) tan(θ(z) + β) = zγ [1 + (1 +D/z)γ ] tan(θ(z) + β),(5.4)

since |β + θ(z)| < π/2 for β ∈ S1. Because |D| ≤ Czγ , we can use a Taylor’s theorem
expansion in (5.4) to obtain, uniformly in β ∈ S1,

D = zγ
[
2 + γz−1D+O(z2γ−2)

] tanβ + tanθ(z)

1− tanβ tanθ(z)
.

Since tanθ(z) = γzγ−1, and using the fact that D/zγ and tanβ are both O(1), rewriting the
fraction above as (tanβ + γzγ−1)(1 + γzγ−1 tanβ +O(z2γ−2)) we obtain

D = zγ(2 + γDz−1)(tanβ + γzγ−1)(1 + γzγ−1 tanβ) +O(z3γ−2)

= 2zγ tanβ + γDzγ−1 tanβ + 2γz2γ−1(1 + tan2 β) +O(z3γ−2).

(The above display corrects the corresponding display at the bottom of p. 286 in [27], which
has an erroneous extra term.) Re-arranging the above display we get

D =
2zγ tanβ + 2γz2γ−1(1 + tan2 β)

1− γzγ−1 tanβ
+O(z3γ−2)

=
(
2zγ tanβ + 2γz2γ−1(1 + tan2 β) +O(z3γ−2)

) (
1 + γzγ−1 tanβ +O(z2γ−2)

)
,

which yields (5.2). Finally, note that (5.4) and the implicit function theorem show that
D(z,β) is differentiable in β. Writing D′ = (∂/∂β)D, we obtain from (5.4) that

D′ = (zγ + (z +D)γ) sec2(θ(z) + β) + γ(z +D)γ−1D′ tan(θ(z) + β),

and hence

D′ =
(zγ + (z +D)γ) sec2(θ(z) + β)

1− γ(z +D)γ−1 tan(θ(z) + β)
.
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Since |D| = O(zγ), sec2(θ(z) + β) = sec2 β + O(zγ−1), and tan(θ(z) + β) = O(1) we
obtain (5.3).

Lemma 5.1 gives control over the increments of the billiards process outside a bounded
set, which, after a suitable transformation of the process (see Section 5.2) will more than
suffice to check the condition (2.2) in (Bp,q). Near the origin, we must verify the weaker
condition (2.3). This is the purpose of the next result.

LEMMA 5.2. Suppose that (B1) and (B2) hold. For any z0 ∈ R+, there is a constant
C ∈R+ such that for every r > 0, P(Zn+1 > r | Fn)≤C/r1−γ on {Zn ≤ z0}.

PROOF. For any z ≤ z0, from point (z,h(z, j)) the set of angles β that give Λ1(z, j, β)≥ r
is contained in an interval I(z, j)⊂ S with |I(z, j)| ≤Crγ−1. Then, since P(βn ∈B | Fn) =
K(αn,B), a.s.,

P(Zn+1 > r | Fn)≤K(αn, I(Zn, χn))≤Crγ−1 sup
α,β∈S

κ(α,β), on {Zn ≤ z0},

which gives the result, since κ is uniformly bounded under (B2).

The following fact will be used to show that the billiards process is non-confined, and
also concerns the implications of our results for the continuous-time version of the stochastic
billiards process (see Remark 3.3(b)).

LEMMA 5.3. Suppose that (B1) holds. There exists ε0 > 0 such that λ(z, j, β)≥ ε0 for
all z ∈R+, j ∈ {−1,+1}, and all β ∈ S0.

PROOF. Due to the smoothness of ∂Dγ , infβ∈S0
λ(z, j, β) > 0 everywhere. Moreover,

(z,β) 7→ λ(z, j, β) is continuous over (z,β) ∈ R+ × S0 \ {(0,0)}. Also, for any z, j,
infβ∈S0

λ(z, j, β) is attained at β ∈ {−θ0, θ0}. Thus z 7→ infβ∈S0
λ(z, j, β) is continuous over

z ∈R+, and tends to ∞ as z→∞. Hence infz∈R+
infβ∈S0

λ(z, j, β)> 0.

5.2. Translation to the half-strip model. Define Xn := Z1−γ
n , a rescaling of the horizon-

tal displacement.

LEMMA 5.4. Suppose that (B1)–(B3) hold. The process (Xn, αn) is a time-homogeneous
Markov process on Σ :=R+ × S, satisfying the following.

(a) There exist xB,B ∈R+ such that P(|Xn+1 −Xn| ≤B | Fn) = 1 on {Xn ≥ xB}.
(b) There exists C ∈R+ such that P(Xn+1 > r | Fn)≤C/r on {Xn ≤ xB}.
(c) There is non-confinement: limsupn→∞Xn =+∞, a.s.

PROOF. We already observed below (5.1) that Zn+1 = Λ1(Zn,1, βn) is a function of
Zn, βn only. On the other hand, Λ2(z,−j, β) = −Λ2(z, j, β), which means that the sign of
jΛ2(z, j, β) is the same for j ∈ {−1,+1}. Hence Θ(z, j, β) defined by (3.6) does not depend
on j, and αn+1 =Θ(Zn,1, βn) given at (3.7) is a function of Zn, βn only. Hence (Zn, αn) is
a time-homogeneous Markov process on Σ :=R+ × S. The same is true for (Xn, αn), since
(z,α) 7→ (z1−γ , α) is a bijection for γ ∈ (0,1).

For statement (a), Taylor’s theorem applied to the function z 7→ z1−γ shows that

(5.5) (z +D)1−γ − z1−γ = z1−γ

[(
1 +

D

z

)1−γ
− 1

]
= (1− γ)Dz−γ(1 + o(1)),
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if |D| = o(z) as z → ∞. Lemma 5.1 shows that |Zn+1 − Zn| ≤ CZγn on {Zn ≥ z0}, and
so (5.5) with z = Zn and D = Zn+1−Zn implies that |Xn+1−Xn| ≤ 2C(1−γ), on {Xn ≥
xB} for xB sufficiently large. For statement (b), it follows directly from Lemma 5.2 that
P(Xn+1 > r | Fn) = O(1/r) on {Xn ≤ xB}. For statement (c), we have from (B1) and
Lemma 5.3 that there is a z0 ∈ (0,∞) such that P(Xn+1 ≥ 2z0 | Fn) = 1 on {Xn ≤ z0},
while assumption (B3) ensures that there is ε > 0 for which P(Xn+1 −Xn ≥ ε | Fn) ≥ ε
on {Xn > z0}. The combination of these two facts implies limsupn→∞Xn =+∞, by, for
instance, Proposition 3.3.4 of [27].

For z ∈R+ and β ∈ S, define

(5.6) bz(β) := θ(z) + θ(Λ1(z,1, β)).

From Lemma 5.1(a), (3.6) and (5.6), we have that for all β ∈ S1 and all z ∈ R+ sufficiently
large Θ(z, j, β) = β + bz(β) does not depend on j; for ease of notation, we write Θz(β) :=
β + bz(β) and Θ′

z(β) := (∂/∂β)Θz(β). We will need the following basic properties of Θz .

LEMMA 5.5. Let θ1 ∈ (θ0,
π
2 ) be arbitrary and recall S1 = [−θ1, θ1]. Then, as z→∞,

(5.7) sup
β∈S1

∣∣z1−γ(Θz(β)− β)− 2γ
∣∣→ 0, and sup

β∈S1

∣∣Θ′
z(β)− 1

∣∣=O(z2γ−2).

Moreover there exists a differentiable Tz : S1 → S such that, for all z sufficiently large,
Θz(Tz(β)) = β for every β ∈ S1. The function Tz satisfies, as z→∞,

(5.8) sup
β∈S1

∣∣z1−γ(Tz(β)− β) + 2γ
∣∣→ 0, and sup

β∈S1

∣∣T ′
z(β)− 1

∣∣=O(z2γ−2).

PROOF. Note that (5.1) and Lemma 5.1(b) imply that supβ∈S1
|Λ1(z,1, β)− z|=O(zγ),

as z → ∞. Then, by (3.2), it follows that θ(z) ∼ γzγ−1 and θ(Λ1(z,1, β)) ∼ γzγ−1, uni-
formly for β ∈ S1. We also note that by Lemma 5.1(a), (3.6), and (5.6), for all z large enough
and all β ∈ S1, Θz(β)− β = bz(β) = θ(z) + θ(Λ1(z,1, β)). Therefore,

lim
z→∞

sup
β∈S1

∣∣z1−γ(Θz(β)− β)− 2γ
∣∣= lim

z→∞
sup
β∈S1

|z1−γbz(β)− 2γ|= 0,

establishing the first statement in (5.7). Let b′z(β) := (∂/∂β)bz(β), where bz is defined
at (5.6). Since Θz(β) = β + bz(β), we have that Θ′

z(β) = 1 + b′z(β). From (5.1) we have
∂
∂βΛ1(z,1, β) =D′(z,β) and, by the chain rule,

(5.9) sup
β∈S1

|Θ′
z(β)− 1|= sup

β∈S1

|b′z(β)|= sup
β∈S1

|θ′(Λ1(z,1, β))D
′(z,β)|,

where differentiation of (3.2) shows that

θ′(z) :=
d

dz
θ(z) =−γ(1− γ)zγ−2

1 + γ2z2γ−2
=−γ(1− γ)(1 + o(1))zγ−2.

By (5.1) and Lemma 5.1(b), it follows that θ′(Λ1(z,1, β)) = O(zγ−2) and also, by (5.3),
it holds that supβ∈S1

|D′(z,β)| = O(zγ). Thus, by (5.9), we obtain the second statement
in (5.7). We now turn to the proof of (5.8). Take θ′1 ∈ (θ0, θ1), and let S′

1 := [−θ′1, θ′1], so
that S0 ⊂ S′

1 ⊂ S1. By (5.7), we have infβ∈S1
Θ′
z(β)> 0 for all z sufficiently large, and the

image Θz(S1) contains S′
1. Thus for all z sufficiently large, there is an inverse function Tz :

S′
1 → S1 such that Θz(Tz(β)) = β for all β ∈ S′

1. Moreover, by (5.7), T ′
z(β) = 1/Θ′

z(Tz(β))
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satisfies supβ∈S′
1
|T ′
z(β) − 1| = O(z2γ−2). Since β = Θz(Tz(β)) = Tz(β) + bz(Tz(β)) for

every β ∈ S′
1, by (5.7) we have that

lim
z→∞

sup
β∈S′

1

∣∣z1−γ(Tz(β)− β) + 2γ
∣∣= lim

z→∞
sup
β∈S′

1

∣∣z1−γ(β − Tz(β))− 2γ
∣∣

= lim
z→∞

sup
β∈S′

1

∣∣z1−γ(Θz(Tz(β))− Tz(β))− 2γ
∣∣= 0.

Thus we have established (5.8), but over β ∈ S′
1 rather than the (larger) S1; since both S′

1 and
S1 were chosen arbitrarily, a suitable relabelling shows that (5.8) holds as written.

Write Tz(B) := {β ∈ S0 : β + bz(β) ∈ B} for B ∈ B(S), and define K◦
b : R+ × S ×

B(S)→ [0,1] via

(5.10) K◦
b(x,α,B) :=K(α,Tx1/(1−γ)(B)).

By (3.6) and (3.7), if we denote the next incoming angle by αn+1 and the next outgoing angle
by βn, with the notation of (5.6) we see that there is x1 ∈R+ for which

αn+1 = βn + bZn
(βn), on {Xn ≥ x1}.

We now note that, on {Xn ≥ x1},

P(αn+1 ∈B | Fn) = P(βn + bZn
(βn) ∈B | Fn) = P(βn ∈ TZn

(B) | Fn),
and that, since P(βn ∈B | Fn) =K(αn,B), a.s.,

P(αn+1 ∈B | Fn) =K(αn, TZn
(B)) =K◦

b(Xn, αn,B), on {Xn ≥ x1},
using (5.10). The next result shows that K◦

b satisfies the asymptotic Markovianity condi-
tion (M) or (M+), as appropriate.

LEMMA 5.6. Suppose that (B1)–(B3) hold. Then for K◦
b as defined at (5.10) and K the

billiards reflection kernel, it holds that

(5.11) lim
x→∞

sup
α∈S

∥K◦
b(x,α, · )−K(α, · )∥TV = 0.

Moreover, if (B5) holds, then, as x→∞,

(5.12) sup
α∈S

∥∥K◦
b(x,α, · )−K(α, · )− x−1Γα

∥∥
TV

= o(x−1).

Here α 7→ Γα is continuous from (S,dS) to (M±(S), dTV), given by

(5.13) Γα(B) :=−2γ

∫
B
κ′(α,β)dβ, for all B ∈ B(S),

where κ′(α,β) = (∂/∂β)κ(α,β) as in (B5).

PROOF. Let κ be the density from (B2). First note that

(5.14) ∥K◦
b(x,α, · )−K(α, · )∥TV = sup

f∈Cb(S):∥f∥≤1

∫
S
f(β) (K◦

b(x,α,dβ)−K(α,dβ)) ,

where ∥f∥ := supα∈S |f(α)|, and we emphasize that in (5.14), β in K represents the next
outgoing angle, but in K◦

b it is the subsequent incoming angle. From (5.10), for x≥ x1,∫
S
f(β)K◦

b(x,α,dβ) =

∫
S
f(β)K(α,Tx1/(1−γ)(dβ))

=

∫
S
f(β)κ(α,Tx1/(1−γ)(β))T ′

x1/(1−γ)(β)dβ.(5.15)
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Since (B1) states that κ(α,β) = 0 for β /∈ S0, and Tz(β)→ β uniformly for β ∈ S1 (see (5.8)
in Lemma 5.5), for all x large enough we can replace S by S1 in the final integral in (5.15).
Thus from (5.15), the boundedness of κ from (B2), and the bound on T ′

z from Lemma 5.5,

(5.16) sup
f :∥f∥≤1

sup
α∈S

∣∣∣∣∫
S
f(β)K◦

b(x,α,dβ)−
∫
S1

f(β)κ(α,Tx1/(1−γ)(β))dβ

∣∣∣∣=O(x−2),

as x→∞. By the uniform equicontinuity of κ(α, · ) from (B2), and the fact that Tz(β)→ β
uniformly in β ∈ S1, it then follows from (5.16) that

lim
x→∞

sup
f :∥f∥≤1

sup
α∈S

∣∣∣∣∫
S
f(β)K◦

b(x,α,dβ)−
∫
S
f(β)κ(α,β)dβ

∣∣∣∣= 0.

Together with (5.14), this yields (5.11).
For (5.12), we look in more detail at (5.16). Under assumption (B5), we have that

(∂/∂β)κ(α,β) = κ′(α,β) and (∂2/∂2β)κ(α,β) = κ′′(α,β) are both uniformly bounded
over α,β ∈ S. Then, by the uniform boundedness of κ′ and κ′′, and the asymptotics
for Tz(β)− β from Lemma 5.5, Taylor’s theorem with Lagrange remainder shows that

sup
α∈S

sup
β∈S1

∣∣κ(α,Tx1/(1−γ)(β))− κ(α,β) + 2γx−1κ′(α,β)
∣∣= o(x−1).

Thus from (5.16) we obtain

sup
f :∥f∥≤1

sup
α∈S

∣∣∣∣∫
S
f(β)K◦

b(x,α,dβ)−
∫
S
f(β)κ(α,β)dβ +

2γ

x

∫
S
f(β)κ′(α,β)dβ

∣∣∣∣= o(x−1).

But the left-hand side here is
∥∥K◦

b(x,α, · )−K(α, · )− x−1Γα
∥∥
TV

, where Γα is given
by (5.13). Finally, continuity of α 7→ Γα follows from the fact that

sup
B∈B(S)

|Γα(B)− Γα′(B)| ≤ 2γ

∫
S

∣∣κ′(α,β)− κ′(α′, β)
∣∣dβ→ 0,

as α′−α→ 0, by dominated convergence, the uniform boundedness of κ′, and the continuity
of α 7→ κ′(α,β) from (B5).

By Lemma 5.4 there exist measurable µk :R+ × S→R such that, on {Xn ≥ xB},

E[Xn+1 −Xn | Fn] = µ1(Xn, αn), E[(Xn+1 −Xn)
2 | Fn] = µ2(Xn, αn).

Also, similarly to (2.13), by disintegration there exists µ◦1 :R+ × S × S→R such that

(5.17) µ1(x,α) =

∫
S
K◦

b(x,α,dβ)µ
◦
1(x,α,β), for all x≥ xB,

where K◦
b is given by (5.10); we emphasize that while we often use β for the next outgo-

ing angle, in (5.17) and other equations involving µ◦1, β represents the subsequent incoming
angle. Recall the definition of ρk from (3.9).

LEMMA 5.7. Suppose that (B1)–(B4) hold. For each k ∈N, ρk ∈Cb(S), and, as x→∞,

sup
α∈S

∣∣µ1(x,α)− 2(1− γ)ρ1(α)− 2x−1γ(1− γ)(1 + ρ2(α))
∣∣=O(1/x2);(5.18)

sup
α∈S

sup
β∈S1

∣∣µ◦1(x,α,β)− 2(1− γ) tanβ
∣∣=O(1/x);(5.19)

sup
α∈S

∣∣µ2(x,α)− 4(1− γ)2ρ2(α)
∣∣=O(1/x).(5.20)
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PROOF. Since K(α,S0) = 1, we may extend tank α continuously to a uniformly bounded
function over S, and then an application of Lemma A.4 shows that ρk is continuous and
bounded, as claimed. Denote the increment of process Xn at (x,α) when the outgoing angle
is β by µ̃◦1(x,α,β). Then, on {Xn > x1} for x1 sufficiently large,

Xn+1 −Xn = Z1−γ
n+1 −Z1−γ

n =Λ1(Zn,1, βn)
1−γ −Z1−γ

n = µ̃◦1(Xn, αn, βn).

Moreover, since P(βn ∈B | Fn) =K(αn,B), a.s., we have

µ1(x,α) =

∫
S
K(α,dβ)µ̃◦1(x,α,β);

compare to µ◦1 as defined through (5.17). For x= z1−γ and D(z,β) as defined at (5.1),

µ̃◦1(x,α,β) = Λ1(z,1, β)
1−γ − z1−γ = z1−γ

[(
1 +

D(z,β)

z

)1−γ
− 1

]
.

Lemma 5.1 shows that supβ∈S0
|D(z,β)|=O(zγ), so that, by Taylor’s theorem,

µ̃◦1(z
1−γ , α,β) = (1− γ)z−γD(z,β)− γ(1− γ)

2
z−1−γD(z,β)2 +O(z2γ−2),

uniformly over α ∈ S,β ∈ S0. Thus we obtain from (5.2) that

(5.21) sup
α∈S

sup
β∈S0

∣∣µ̃◦1(x,α,β)− 2(1− γ) tanβ − 2γ(1− γ)x−1
[
1 + tan2 β

]∣∣=O(1/x2).

Recall from (3.7) and Lemma 5.5 that αn+1 = ΘZn
(βn), where Θz has an inverse Tz such

that supβ∈S1
|Tz(β)− β|=O(zγ−1). Then we see that

µ◦1(x,α,β) = µ̃◦1(x,α,Tz(β)),

and thus (5.19) follows from (5.21). Moreover, since Xn+1 − Xn = µ̃◦1(Xn, αn, βn) on
{Xn > x1}, we obtain from (5.21) that

(5.22)
∣∣Xn+1 −Xn − 2(1− γ) tanβn − 2γ(1− γ)X−1

n

[
1 + tan2 βn

]∣∣≤CX−2
n ,

for some C ∈ R+. Since P(βn ∈ B | Fn) = K(αn,B), we have E[tank βn | Fn] = ρk(αn),
with ρk as defined at (3.9). It then follows from (5.22) that

E[Xn+1 −Xn | Fn] = 2(1− γ)ρ1(αn) + 2γ(1− γ)X−1
n (1 + ρ2(α2)) +O(X−2

n ),

where the implicit constants in the O( · ) are non-random. This gives (5.18). A similar argu-
ment, starting from (5.22), yields (5.20).

5.3. Recurrence classification. To prove our results from Section 3.2, we will combine
Lemmas 5.4, 5.6 and 5.7 to show that the rescaled billiards process (Xn, αn) satisfies the
conditions of the appropriate half-strip results from Section 2.2. First we present the proof of
Proposition 3.1.

PROOF OF PROPOSITION 3.1. Under the conditions of Proposition 3.1, the process
(Xn, αn) is a half-strip Markov chain for which (N) holds (by Lemma 5.4(c)) and (Bp,q)
holds for all p > 1 and all q ∈ (0,1) (Lemma 5.4(a) and (b)). Condition (K) follows
from (B2) and (B4), with the identification π(dα) = ϖ(α)dα. Also by Lemma 5.6 it fol-
lows that (M) holds, and by Lemma 5.7 it follows that limx→∞ supα∈S |µ1(x,α)− dα|= 0
where dα := 2(1 − γ)ρ1(α). Write δ = δ(γ) =

∫
S dαϖ(α)dα = 2(1 − γ)ρ̄1, by the k = 1

case of (3.10). Then Proposition 2.1 says that the process is transient if δ > 0 and recurrent
if δ < 0, and the sign of δ is the same as the sign of ρ̄1.
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Observe that equations (5.18) and (5.20) show that (2.10) holds with

(5.23) dα = 2(1− γ)ρ1(α); eα = 2γ(1− γ)(1 + ρ2(α)); σ2α = 4(1− γ)2ρ2(α).

Also (5.19) shows that (D) holds with

(5.24) λα(β) = 2(1− γ) tanβ.

PROOF OF THEOREM 3.2. When ρ1(α) = 0 for all α ∈ S we have dα ≡ 0 and so (L0)
holds. Then Theorem 2.2 applies; write δ = δ(γ) = δ0 as in (2.12), so, by (5.23),

δ =

∫
S
(2eα − σ2α)ϖ(α)dα= 4(1− γ) (γ(1 + 2ρ̄2)− ρ̄2) .

Theorem 2.2 gives recurrence if δ < 0 and transience if δ > 0, where δ < 0 if 0 < γ < γc,0
and δ > 0 if γc,0 < γ < 1, with γc,0 given in (3.11).

Moving on to Theorem 3.4, we will denote by ψγ ∈Cb(S) a function (whose existence is
guaranteed by Proposition A.1) such that∫

S
(ψγ(β)−ψγ(α))K(α,dβ) =−dα =−2(1− γ)ρ1(α).

The function ψγ is unique up to translation (see Proposition A.1). We may also suppose that
ψγ and ψ0 are related by ψγ = (1− γ)ψ0.

PROOF OF THEOREM 3.4. Theorem 2.5 shows that we have recurrence or transience ac-
cording to the sign of δ = δ(γ) = δ̃0, as defined at (2.14); by (5.13), (5.23), and (5.24),

δ = 4γ(1− γ)(1 + ρ̄2)− 4(1− γ)2ρ̄2 − 4γ

∫
S

∫
S
ψγ(β)κ

′(α,β)ϖ(α)dαdβ

− 4(1− γ)

∫
S

∫
S
ψγ(β)κ(α,β)ϖ(α) tanβdαdβ.

Moreover, δ is invariant under translation of ψγ . Using the fact that ϖ is invariant to simplify
the last term, and ψγ = (1− γ)ψ0, we get

δ = 4(1− γ)(γ + (2γ − 1)ρ̄2)− 4γ(1− γ)

∫
S

∫
S
ψ0(β)κ

′(α,β)ϖ(α)dαdβ

− 4(1− γ)2
∫
S
ψ0(β)ϖ(β) tanβdβ.

Thus, with (3.12) and the definitions of A1,A2 at (3.13), we get

δ = 4(1− γ) [(γ + (2γ − 1)ρ̄2)− (1− γ)A1 − γA2] .

It follows from (5.3) that, for γ ∈ (0,1), the sign of δ is the same as that of c(γ), where

(5.25) c(γ) := γ (1 +A1 −A2 + 2ρ̄2)−A1 − ρ̄2, for 0< γ < 1.

Theorem 2.5 then shows that ζ is transient if c(γ)> 0 and recurrent if c(γ)< 0.
A consequence of the fact that δ̃θ as defined at (2.14) is non-decreasing in θ (see The-

orem 2.5) is that A1 + ρ̄2 ≥ 0. Under the hypothesis (3.14), the function γ 7→ c(γ) given
by (5.25) is non-decreasing with c(0)≤ 0, and γc ∈ [0,1] given by (3.15) is well defined (see
Remark 3.5). If 1 + A1 − A2 + 2ρ̄2 = 0, then, by (3.14), A1 + ρ̄2 > 0 and γc = 1, while
c(γ) = −A1 − ρ̄2 < 0 (recurrence) for all 0 < γ < 1 = γc. If 1 +A1 −A2 + 2ρ̄2 > 0, then
c(γ) is strictly increasing, and has the property that c(γ)< 0 if γ < γc and c(γ)> 0 if γ > γc.
This completes the proof of the recurrence classification.

The expression for ψ0 in (3.16), under the hypothesis on the total-variation convergence
of Kn, is a consequence of (2.16), (3.9), and (5.23).
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PROOF OF PROPOSITION 3.6. If (3.17) holds then we claim that a solution ψ0 ∈ Cb(S)
to

∫
S(ψ0(β)−ψ0(α))κ(α,β)dβ =−2ρ1(α) is given by

(5.26) ψ0(β) =
2λ

1− λ
tanβ, for β ∈ S.

Indeed, with the choice for ψ0 given by (5.26), by (3.17) it follows that∫
S
(ψ0(β)−ψ0(α))κ(α,β)dβ =

2λ

1− λ

∫
S
κ(α,β) tanβdβ − 2λ

1− λ
tanα

=
2λ

1− λ
ρ1(α)−

2λ

1− λ
tanα=−2ρ1(α),

as required. By uniqueness of ψ0 up to translation, we may suppose that ψ0 is given by (5.26).
Recall the definitions of A1,A2 from (3.13). With ψ0 given by (5.26), we have

A1 =
2λ

1− λ

∫
S
ϖ(β) tan2 βdβ =

2λ

1− λ
ρ̄2.

Now to compute A2 observe first that the function ψ0 given by (5.26) is differentiable on S0,
with derivative ψ′

0(β) =
2λ
1−λ(1 + tan2 β). Under (B5), the density ϖ is also differentiable

with derivative given by (3.12). Also, since ψ0(−β)ϖ(−β) =−ψ0(β)ϖ(β) for all β ∈ S0,
we have that h(β) := ψ0(β)ϖ(β) has h(−β) =−h(β). Thus∫

S0

[
ψ0(β)ϖ

′(β) +ψ′
0(β)ϖ(β)

]
dβ =

∫
S0

h′(β)dβ = 2h(θ0) = 0,

since ϖ(θ0) = 0, by the comment after (3.12). The above computation implies that

A2 =

∫
S0

ψ0(β)ϖ
′(β)dβ =−

∫
S0

ψ′
0(β)ϖ(β)dβ

=− 2λ

1− λ

∫
S0

[
1 + tan2 β

]
ϖ(β)dβ =− 2λ

1− λ
[1 + ρ̄2] .

Since λ ∈ (−1,1), A1 + ρ̄2 =
1+λ
1−λ ρ̄2 > 0, and 1 + A1 − A2 + 2ρ̄2 =

1+λ
1−λ(1 + 2ρ̄2) > 0,

which means that condition (3.14) holds, and, moreover, that γc defined by (3.15) is given by
γc =

ρ̄2
1+2ρ̄2

= γc,0, as given by (3.11). The result now follows from Theorem 3.4.

APPENDIX A: KERNELS, OPERATORS, AND FREDHOLM THEORY

As in Section 2, let (S,dS) be a compact metric space, B(S) its Borel σ-algebra, and
K : S ×B(S)→ [0,1] a Markov kernel on S. Recall that Mb(S) is the set of bounded mea-
surable functions on S, and Cb(S) the continuous functions on S. We endow Cb(S) with
the supremum norm ∥f∥ := supu∈S |f(u)|, so Cb(S) is a Banach space. The kernel K is
associated with a functional TK :Mb(S)→Mb(S) whose operation is defined by

(TKf)(u) =

∫
K(u,dv)f(v), for all u ∈ S.

The Feller property is that f ∈ Cb(S) implies TKf ∈ Cb(S) [9, §12.1]. The Feller property
does not hold in general, but it does under assumption (K)(ii), which implies the stronger fact
that TKf ∈ Cb(S) for all f ∈Mb(S): see Lemma A.4. We also note that ∥TKf∥ ≤ ∥f∥ for
all f . Thus TK defines a continuous linear operator TK :Cb(S)→Cb(S) [19, p. 127].

Consider for f, g ∈Cb(S) the Poisson equation

f − TKf = g.(A.1)
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Recall that if K satisfies (K)(i), then there is a unique invariant probability measure π ∈ P(S);
recall the definition of C0

b(S) from (4.3). The main result of this section is Proposition A.1
below. We will employ Proposition A.1 in two ways in the proofs of our results on the half-
strip model: first, to establish existence of Lyapunov functions with appropriate properties to
conduct the proofs for the strict Lamperti regime, as described in Section 4.1, and second, to
construct a transformation mapping the general Lamperti case into the strict Lamperti case,
as described in Section 4.2.

PROPOSITION A.1. Let (S,dS) be a compact metric space, B(S) its Borel σ-algebra,
and K : S × B(S) → [0,1] a Markov kernel satisfying (K). Then there exists a continuous
linear operator F : C0

b(S) → C0
b(S) such that for every g ∈ C0

b(S) there is a unique f =
F (g) ∈C0

b(S) that solves (A.1).

We establish Proposition A.1 by the Fredholm alternative theorem for linear operators.
First we collect some necessary concepts and notation. The linear dual space to Cb(S) is
the Banach space L(S) of continuous linear functionals from Cb(S)→R, endowed with the
induced (operator) norm ∥ϕ∥ := sup∥f∥≤1 |ϕ(f)|. By the Riesz representation theorem [10,
p. 265], L(S) can be identified isometrically with M±(S), the space of finite signed Borel
measures on S, with total variation norm

(A.2) ∥ν∥TV = sup

{∫
S
f(u)dν(u) : f ∈Cb(S), ∥f∥ ≤ 1

}
,

since a continuous linear functional ϕ ∈ L(S) corresponds to a unique finite signed Borel
measure ν, via ϕ(f) =

∫
S f(u)ν(du) over all f ∈Cb(S).

The adjoint operator T ∗
K to TK, acts as T ∗

K : L(S) → L(S) via T ∗
Kϕ = ϕTK, or, equiva-

lently, as T ∗
K :M±(S)→M±(S) via

(A.3) (T ∗
Kν)(B) :=

∫
S
ν(du)K(u,B), for all B ∈ B(S).

In particular, T ∗
K restricts to a functional given by (A.3) on the metric space (P(S), dTV),

where dTV(µ,ν) =
1
2∥µ− ν∥TV is the total variation distance.

A linear operator between two Banach spaces is compact if it maps bounded sets into
relatively compact sets. The following lemma is essentially given in [31, pp. 36–37]; we
include a short proof here for completeness.

LEMMA A.2. If (K)(ii) holds, then the operator TK :Cb(S)→Cb(S) is compact.

PROOF. Let Br = {f ∈ Cb(S) : ∥f∥ ≤ r} ⊂ Cb(S). It suffices to prove that TKBr =
{TKf : f ∈Br} ⊆Br is relatively compact. For f ∈Cb(S) and u, v ∈ S we can write

(A.4) TKf(u)− TKf(v) =

∫
S
f(z)Lu,v(dz),

where Lu,v ∈M±(S) is the signed measure defined by Lu,v(B) = K(u,B)−K(v,B) for
B ∈ B(S). It then follows from (A.2) and (A.4) that

(A.5) |TKf(u)− TKf(v)| ≤ r · ∥Lu,v∥TV, for all f ∈Br.

Let u ∈ S. By (K)(ii), for any ε > 0 there exists δ > 0 such that ∥Lu,v∥TV < ε for all v ∈ S
with |u− v|< δ. Thus (A.5) shows that the collection of functions TKBr is equicontinuous.
Furthermore, ∥TKf∥ ≤ ∥f∥. Hence the Arzelà–Ascoli theorem [10, p. 266] shows that TBr
is relatively compact.
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Now we can complete the proof of Proposition A.1. Let T be a compact operator on a
Banach space X and T ∗ its adjoint on the dual space X ∗; in both spaces we denote by I
the identity operator. For a set C ⊆ X ∗ let Ca := {x ∈ X : ϕ(x) = 0 for all ϕ ∈ C}, the
annihilator of C . We write ‘ker’ and ‘ran’ for kernel and range, respectively. We will use the
following result, which can be found e.g. in [10, pp. 609–610] or [19, p. 369].

LEMMA A.3 (Fredholm alternative). Let T be a compact operator on a Banach space X
and T ∗ its adjoint on the dual space X ∗. Fix a scalar λ. Then

dimker(λI − T ) = dimker(λI − T ∗),

and

ran(λI − T ) = (ker(λI − T ∗))a.

Moreover, for any y ∈ (ker(λI − T ∗))a, the set of all solutions x ∈ X with (λI − T )x= y is
equal to {x0 + z : z ∈ ker(λI − T )} for any particular solution x0.

PROOF OF PROPOSITION A.1. In (K)(i) we have assumed uniqueness of solutions to
T ∗
Kν = ν over P(S); we claim that this implies that

(A.6) every solution to T ∗
Kν = ν over M±(S) has ν = ρπ for some ρ ∈R.

To prove (A.6), we use a decomposition argument. If ν = T ∗
Kν for ν ∈M±(S), the Hahn–

Jordan decomposition of ν is ν = ν+ − ν− for two finite measures ν+, ν−, and ν+ = T ∗
Kν

+

and ν− = T ∗
Kν

− too [9, p. 17]. By assumption, ν = T ∗
Kν has a unique solution ν = π ∈ P(S),

which means that every ν ∈M±(S) for which ν = T ∗
Kν has ν+ = ρ+π and ν− = ρ−π for

ρ+, ρ− ∈R+. Thus ν = (ρ+ − ρ−)π= ρπ, ρ ∈R, verifying (A.6).
Now Lemma A.3 with λ= 1 together with (A.6) shows that ker(I − T ∗

K) = {ρπ : ρ ∈ R}
so both ker(I − T ∗

K) and ker(I − TK) are one-dimensional. Hence ker(I − TK) consists of
only the constant functions. In addition, by the definition of C0

b(S) at (4.3),

(A.7) ran(I − TK) = (ker(I − T ∗
K))

a =C0
b(S).

Thus (A.1) has a solution f ∈Cb(S) for a given g ∈Cb(S) if and only if g ∈C0
b(S).

Moreover, given g ∈ C0
b(S), the set of all solutions to (A.1) is {f + c, c ∈ R}, where

f ∈Cb(S) is any solution to (A.1). It follows that for g ∈C0
b(S) there is a unique f ∈C0

b(S)
that solves (A.1). Thus we may define F : C0

b(S)→ C0
b(S) by F (g) = f satisfying (A.1). It

is easy to see that F is linear. It remains to prove that F is continuous.
Consider U = I − TK. Then (A.7) says that the range of U is C0

b(S). The set C0
b(S)

is closed in Cb(S). To see this, take gn ∈ C0
b(S) with limn→∞ gn = g ∈ Cb(S); then∫

S g(u)π(du) = limn→∞
∫
S gn(u)π(du) = 0, by the bounded convergence theorem. Since U

has a closed range, there exists a constant K <∞ such that for every g ∈ C0
b(S), we can

find h ∈ Cb(S) with Uh= g and ∥h∥ ≤K∥g∥ [10, p. 487]. But if F (g) = f ∈ C0
b(S), then

Uf = g and since solutions to (A.1) are related by additive constants, we must have f = h−c
where c=

∫
S h(u)π(du). Hence

∥F (g)∥= ∥h− c∥ ≤ 2∥h∥ ≤ 2K∥g∥, for all g ∈C0
b(S).

Thus F is bounded, and hence continuous [19, p. 127].

We will also use the following simple continuity result.

LEMMA A.4. Let (S,dS) be a compact metric space. Suppose that L : (S,dS) →
(M±(S), dTV) is continuous, and that gu ∈Mb(S), u ∈ S, is a family of functions with
u 7→ gu continuous. For u ∈ S, define G(u) =

∫
S L(u,dv)gu(v). Then G ∈Cb(S).
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PROOF. Since u 7→ ∥gu∥ is continuous and S is compact, supu∈S ∥gu∥ <∞. Similarly,
since u 7→ ∥L(u, · )∥TV is continuous, supu∈S ∥L(u, · )∥TV <∞ also. Hence G is bounded.
Define Lu,u′ ∈M±(S) by Lu,u′(B) := L(u,B)−L(u′,B), B ∈ B(S). Then

|G(u)−G(u′)|=
∣∣∣∣∫
S
Lu,u′(dv)gu(v)−

∫
S
L(u′,dv)(gu′(v)− gu(v))

∣∣∣∣
≤ ∥gu∥ · ∥Lu,u′∥TV + ∥L(u′, · )∥TV · ∥gu′ − gu∥,

which tends to 0 as dS(u,u′)→ 0, since both ∥Lu,u′∥TV → 0 and ∥gu′ − gu∥→ 0.

We conclude this section with a more explicit description of the function F from Proposi-
tion A.1, under an additional uniform convergence assumption on Kn, the n-fold convolution
of K. Related results can be found in [30, pp. 57–63].

PROPOSITION A.5. Suppose that (K) and (2.15) hold. Let g ∈C0
b(S). Then f = F (g) ∈

C0
b(S) defined in Proposition A.1 has the representation

(A.8) f(v) =

∞∑
n=0

∫
S
Kn(u,dv)g(v).

REMARKS A.6. (a) As in Remark 2.6(a), note that by (A),
∫
SK

n(u,dv)g(v) =
TnKg(v) and (A.8) is equivalent to f =

∑∞
n=0 T

n
Kg.

(b) We emphasize that while the series on the right-hand side of (A.8) converges for g ∈
C0
b(S), it does not, in general, make sense to interchange the integral and the sum, since the

measures H(u, · ) :=
∑∞

n=0Kn(u, · ) will typically be trivial in our setting; here H is the
potential kernel of K [31, p. 41].

PROOF OF PROPOSITION A.5. Suppose that g ∈C0
b(S). For n ∈ Z+, define

fn(u) :=

n∑
k=0

∫
S
Kk(u,dv)g(v) =

n∑
k=0

∫
S

[
Kk(u,dv)− π(dv)

]
g(v).

Recall that K0(u,B) = 1{u ∈B}, so that f0 = g. Note that ∥Kk(u, · ) − Kk(u′, · )∥TV is
non-increasing in k (see e.g. Lemma D.2.10 of [9, p. 634]), so (K)(ii) implies that, for every
k ∈ N, u 7→ Kk(u, · ) is continuous from (S,dS) to (M±(S), dTV), and hence so is u 7→∑n

k=1Kk(u, · ). Lemma A.4 then shows that fn − f0 = fn − g ∈ Cb(S), and hence fn ∈
Cb(S). Moreover,

∫
S fn(u)π(du) = 0 by (K)(i), so fn ∈C0

b(S) for all n ∈ Z+. Furthermore,∫
S
fn(v)K(u,dv) =

n∑
k=0

∫
S

∫
S
K(u,dv)Kk(v,dw)g(w)

=

n∑
k=0

∫
S
Kk+1(u,dw)g(w) = fn+1(u)− g(u).

Thus

(A.9)
∫
S
(fn(u)− fn(v))K(u,dv) = g(u)−

∫
S
Kn+1(u,dv)g(v) =: gn(u).

Note that (A.9) is equivalent to fn−TKfn = gn. Also note that gn ∈Cb(S) (by Lemma A.4)
and

∫
S gn(u)π(du) = 0, so gn ∈ C0

b(S) for all n ∈ Z+. By assumption (2.15), gn → g in
Cb(S) as n→∞. In particular, supn ∥gn∥<∞.
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By uniqueness of solutions to (A.9) over C0
b(S), we have that fn = F (gn) where F is

the continuous functional from Proposition A.1. Since F is continuous, it is bounded, so
supn ∥fn∥ ≤C supn ∥gn∥<∞. Next, we have that

fn+1(u)− fn+1(u
′) = g(u)− g(u′) +

n+1∑
k=1

∫
S

[
Kk(u,dv)−Kk(u′,dv)

]
g(v)

= g(u)− g(u′) +

n∑
k=0

∫
S

∫
S

[
K(u,dw)−K(u′,dw)

]
Kk(w,dv)g(v)

= g(u)− g(u′) +

∫
S

[
K(u,dw)−K(u′,dw)

]
fn(w).

It follows that

sup
n

∣∣fn+1(u)− fn+1(u
′)
∣∣≤ ∣∣g(u)− g(u′)

∣∣+ ∥∥K(u, · )−K(u′, · )
∥∥
TV

· sup
n

∥fn∥.

Thus fn, n ∈ Z+ are bounded and equicontinuous, and hence relatively compact by the
Arzelà–Ascoli theorem [10, p. 266]. This means that any subsequential limit f of fn is con-
tinuous, and so f = F (g) by continuity of F . Hence all subsequential limits coincide, and
we have f = limn→∞ fn = F (g) ∈C0

b(S), as claimed.

APPENDIX B: SEMIMARTINGALE CRITERIA

We obtain our recurrence classification using some semimartingale criteria, related to those
presented in [27, Ch. 3], which apply to discrete-time adapted processes on R+ without any
irreducibility assumptions. We present appropriate generalizations that apply to processes on
R+ × S. The following recurrence result is based on Theorem 3.5.8 of [27].

LEMMA B.1. Let Σ=R+ × S for a compact metric space S, and suppose that (ξn, n ∈
Z+) is a stochastic process with ξn = (Xn, ηn) ∈Σ, adapted to a filtration (Fn, n ∈ Z+). Let
f : Σ→R+ be such that infu∈S f(x,u)→∞ as x→∞. Suppose that Ef(ξn)<∞ for all
n ∈ Z+, and there exists r0 ∈R+ for which, for all n ∈ Z+,

E[f(ξn+1)− f(ξn) | Fn]≤ 0, on {Xn ≥ r0}.

Then if P(limsupn→∞Xn =∞) = 1, P(lim infn→∞Xn ≤ r0) = 1.

PROOF. By hypothesis, Ef(ξn) <∞ for all n. Fix n ∈ Z+ and let λn := min{m ≥ n :
Xm ≤ r0} and, for some r > r0, set σn := min{m≥ n :Xm ≥ r}. Since limsupn→∞Xn =
∞ a.s., we have that σn <∞, a.s. Then f(ξm∧λn∧σn

), m≥ n, is a non-negative supermartin-
gale with limm→∞ f(ξm∧λn∧σn

) = f(ξλn∧σn
), a.s. By Fatou’s lemma and the fact that f is

non-negative,

Ef(ξn)≥ Ef(ξλn∧σn
)≥ P(σn < λn) inf

(y,u):y≥r
f(y,u).

So

P
(

inf
m≥n

Xm ≤ r0

)
≥ P(λn <∞)≥ P(λn < σn)≥ 1− Ef(ξn)

inf(y,u):y≥r f(y,u)
.

Since r > r0 was arbitrary, and inf(y,u):y≥r f(y,u)→∞ as r→∞, it follows that, for fixed
n ∈ Z+, P(infm≥nXm ≤ r0) = 1. Since this holds for all n ∈ Z+, the result follows.

The corresponding transience result is based on Theorem 3.5.6 of [27].
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LEMMA B.2. Let Σ=R+ × S for a compact metric space S, and suppose that (ξn, n ∈
Z+) is a stochastic process with ξn = (Xn, ηn) ∈Σ, adapted to a filtration (Fn, n ∈ Z+). Let
f : Σ→ R+ be bounded, with supu∈S f(x,u)→ 0 as x→∞, and inf(x,u):x≤r f(x,u) > 0
for all r ∈R+. Suppose that there exists r0 ∈R+ for which, for all n ∈ Z+,

E[f(ξn+1)− f(ξn) | Fn]≤ 0, on {Xn ≥ r0}.

Then if P(limsupn→∞Xn =∞) = 1, P(limn→∞Xn =∞) = 1.

PROOF. Since f is bounded, Ef(ξn)<∞ for all n. Fix n ∈ Z+ and r1 ≥ r0. For r ∈ Z+

let σr := min{n ∈ Z+ : Xn ≥ r}. Since P(limsupn→∞Xn = ∞) = 1, we have σr <∞,
a.s., for every r ∈ Z+. Let λr := min{n≥ σr :Xn ≤ r1}. Then f(ξn∧λr

), n≥ σr , is a non-
negative supermartingale, which converges, on {λr <∞}, to f(ξλr

). By optional stopping
(e.g. Theorem 2.3.11 of [27]), a.s.,

sup
(x,u):x≥r

f(x,u)≥ f(ξσr
)≥ E[f(ξλr

)1{λr <∞} | Fσr
]

≥ P(λr <∞ | Fσr
) inf
(x,u):x≤r1

f(x,u).

So

P(λr <∞)≤
sup(x,u):x≥r f(x,u)

inf(x,u):x≤r1 f(x,u)
,

which tends to 0 as r→∞, by our hypotheses on f . Thus,

P
(
lim inf
n→∞

Xn ≤ r1

)
= P

(
∩r∈Z+

{λr <∞}
)
= lim
r→∞

P(λr <∞) = 0.

Since r1 ≥ r0 was arbitrary, we get the result.
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