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We exploit a conjectured continuity between super Yang-Mills onR3 × S1 and pure Yang-Mills to study
k-strings in the latter theory. As expected, we find that Wilson-loop correlation functions depend on the
N-ality of a representation R to the leading order. However, the next-to-leading order correction is not
universal and is given by the group characters, in the representation R, of the permutation group. We also
study W-bosons in super Yang-Mills. We show that they are deconfined on the string world sheet,
and therefore, they can change neither the string N-ality nor its tension. This phenomenon mirrors the
fact that soft gluons do not screen probe charges with nonzero N-ality in pure Yang-Mills. Finally, we
comment on the scaling law of k-strings in super Yang-Mills and compare our findings with strings in
Seiberg-Witten theory, deformed Yang-Mills theory, and holographic studies that were performed in the
’t Hooft large-N limit.
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I. INTRODUCTION

Flux tubes, or strings, are among the most fascinating
objects in physics. They emerge as long-distance phenom-
ena of various field theories, from the Abelian Higgs model
to quantum chromodynamics (QCD). Although we have a
good understanding of Abelian strings (Abrikosov-
Nielsen-Olesen type [1,2]), QCD strings remain poorly
understood [3,4], thanks to the strong coupling of QCD.
One of the important questions in Yang-Mills theories is

how the string tension depends on the representation of the
probe charges. The general lore, which is based on a pure
physical argument, is that the string tension cannot depend
on the representation. Instead, it can only depend on its
N-ality. The N-ality of a representation R of suðNÞ is
defined as the number of boxes in the Young tableau of R
modulo N. The physical argument in pure Yang-Mills goes
as follows: since one can convert one representation R1

with N-ality k to another representation R2 with the same
N-ality by emitting soft gluons,1 the string tension σk will
depend only on the N-ality k and not on the representation.
Unfortunately, it is extremely difficult to provide a direct
mathematical proof of such an intuitive argument; the
strong coupling nature of QCD hinders the chances to
find such a proof.

Lattice field theory provides a nonperturbative definition
of strongly coupled theories, and therefore, one hopes that
direct simulations of Yang-Mills theory can provide com-
plete nonperturbative pictures of QCD strings. Practical
lattice simulations of QCD, however, suffer from lattice
artifacts, leading to some dependence of the string tension
on the representation [5–7], which is particularly evident in
the case of a large number of colors. This is because the
relaxation time of higher representation strings can be
exponentially large, which mistakenly can signal a depend-
ence of the string tension on the representation rather than
its N-ality. Lattice strong coupling expansion, in addition,
suffers from the same artifact [8].
Fortunately, the AdS/CFT correspondence can shed

some light on the question at hand. In particular, it was
shown in [8] (also see [9]) that the expectation value of the
Polyakov loop in a representation R is given by
hPRi ¼ FðRÞe−σkA, where A is the area of the Polyakov
loop. Thus, as expected, the string tension depends only on
the N-ality k, while there is a nonuniversal representation
dependent prefactor FðRÞ. This behavior, however, was
shown only in the ’t Hooft large-N limit, leaving behind the
finite N case with no direct answer.
The lack of a direct proof of the expected universality

of string tension, specifically for finite N, calls for a new
perspective on the problem. A novel way to approach
strongly coupled pure Yang-Mills is to exploit a conjec-
tured continuity that first appeared in [10]. This is a
continuity between softly broken (via a mass term)
N ¼ 1 super Yang-Mills on R3 × S1, where S1 is a spatial
rather than a thermal circle, and pure Yang-Mills at finite
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1The gluons are in the adjoint representation, and hence they

have zero N-ality. Also, remember that in pure Yang-Mills there
is no dynamical matter that can screen the probe charges.
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temperature. According to this continuity, the quantum
phase transition in the former theory is continuously
connected to the thermal phase transition in the latter
one. This is illustrated in Fig. 1. At small circle circum-
ference L and small gaugino mass m (this is the lower left
corner, the red curve, of Fig. 1) the theory is confining, is in
a weakly coupled regime, has a preserved ZN center
symmetry, and is under complete analytical control.
Therefore, by varying m or L the theory experiences a
quantum phase transition and one goes from a center-
symmetric phase (at small m and L) to a center-broken
phase (larger values of m and L). On the other hand, as
m → ∞ the gaugino decouples and the theory flows to a
pure Yang-Mills over S1 (the right side in Fig. 1). This is a
pure Yang-Mills theory2 at finite temperature T ¼ 1=L.
This is a strongly coupled theory whose phase transition
can only be inferred from strong coupling calculations, e.g.,
lattice simulations. According to the continuity conjecture
in [10], the quantum phase transition in super Yang-Mills is
continuously connected to the thermal phase transition in
pure Yang-Mills. This continuity is indicated by the dashed
line in the intermediate region in Fig. 1. Despite the fact that
a proof of the continuity is still lacking, many checks have
shown that various physical observables share the same
qualitative behavior in both limitsm → 0 andm → ∞. This
includes the nature of phase transition, i.e., first versus

second order [10–13]; the dependence of the critical
temperature on the θ angle [14]; and the dependence of
the fundamental string on temperature [12].
In the present paper we push the continuity even further:

we check whether correlation functions in the mass
deformed N ¼ 1 super Yang-Mills on R3 × S1 and in pure
Yang-Mills are continuously connected. This demands that
correlation functions do not experience a phase transition as
long as we do not cross the phase separation line in Fig. 1.
The validity of this conjecture, as well as its limitations, is
themain subject of the present work. If this continuity holds,
then it can provide a new venue to analytically study various
observables, including the strings, which are otherwise very
hard to compute directly in the strongly coupled theory.
There are two types of strings in super Yang-Mills on

R3 × S1: the strings on R3 between two probe charges
located on the R2 plane, which we denote3 by SR3, and the
strings that wrap around the circle S1, which we denote by
SS1 . According to the continuity picture, the SS1 strings are
the “would-be” k-strings in pure Yang-Mills theory in the
limit m → ∞; the S1 circle (which is a spacelike circle)
becomes the thermal circle in pure Yang-Mills in the
decoupling limit. This picture is depicted in Fig. 2.
In particular, in this workwe calculate the tension of these

would-be k-strings in pureYang-Mills theory. This is carried
out by computing the Polyakov-loop correlator in super
Yang-Mills deep in the weak-coupling confining regime.
This is the Polyakov loop that wraps around the spatial S1

circle: PR ¼ TrR exp ½i HS1 A3�, where A3 is the gauge field
component along the circle and the trace is taken in
representation R. Because the theory is in a gapped phase,
then for a very large separation between two Polyakov loops
one has limr→∞hPRð0ÞP†

RðrÞi ¼ FRe−σRrL, where σR is a
constant that can be exactly determined since the theory
is in a calculable regime. According to the conjectured
continuity, σR should correspond to the string tension in
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FIG. 1. Continuity between mass deformedN ¼ 1 super Yang-
Mills on R3 × S1 and pure Yang-Mills at finite temperature. The
red thick curve in the lower left corner is the phase separation
between the center-symmetric and center-broken phases in super
Yang-Mills on R3 × S1. This part of the phase diagram is under
analytical control since the theory is in its weakly coupled
semiclassical regime. The black curve in the upper right corner
is the phase separation between the confined and deconfined
phases of the strongly coupled pure Yang-Mills. This part of the
curve can be envisaged using lattice Monte Carlo simulations.
The dotted curve is conjectured to be smoothly connecting both
the weakly coupled and strongly coupled theories.

1S
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FIG. 2. There are two types of strings in super Yang-Mills on
R3 × S1. The first type (green line), which we denote by SR3,
is the string between two probe charges located on the R2 plane.
The other type of strings (red curve), which we denote by SS1,
wraps around the S1 circle. It is this second type of strings
that can be interpreted as pure Yang-Mills k-strings in the limit
m → ∞.

2In the limit m → ∞ there is no dynamical matter. Hence, the
fact that we started with a spatial, rather than a thermal, circle
does not make any difference, since the gauge fluctuations always
obey periodic boundary conditions.

3The SR3 strings in deformed Yang-Mills theory are
thoroughly studied in [15]. A similar study of SR3 in super
Yang-Mills is left for a future work.
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pure Yang-Mills that also wraps around S1. Thus, by
computing the trace in any representation R, one can infer
the dependence of the string tension onR. Our calculations
show that for any finite N the string tension σR depends, to
leading order, on the N-ality of the representation R. The
precoefficient FR, however, is found to depend on the
representation. Albeit in a weakly coupled regime, this is
the first direct proof of the leading-order independence of the
string tension of its representation for finite N.
Our work is organized as follows. In Sec. II we review

the basics of mass deformed super Yang-Mills on R3 × S1

and set up the notation and convention. Since this topic has
been studied in great detail in the literature, we only
provide the necessary formalism that enables the reader
to grasp the main ideas. The main results of this section are
Eqs. (17)–(19). Experts can skip this section to Sec. III,
where we provide a direct proof that the Polyakov-loop
correlator depends, to leading order, on the N-ality of a
representation. In Sec. IV we study the W-bosons on the
string world sheet of super Yang-Mills. We show that these
bosons are deconfined on the string, and therefore, they
cannot affect the string tension or its N-ality. Finally in
Sec. V, we comment on the scaling of the SS1 strings and
their large-N limit and we compare our findings with
strings in the Seiberg-Witten and deformed Yang-Mills
theories.

II. MASS DEFORMED SUPER YANG-MILLS

We consider N ¼ 1 super Yang-Mills theory on
R3 × S1. This is an suðNÞ Yang-Mills theory endowed
with a single adjoint Weyl fermion (gaugino) obeying
periodic boundary conditions along the circle S1. If we take
the circumference of the circle, L, to be much smaller than
the strong scale of the theory Λ, i.e., NΛL ≪ 1, then the
theory enters its weakly coupled regime and becomes
amenable to semiclassical treatment. Upon dimensionally
reducing from 3þ 1 to 3 dimensions, the theory generates a
scalar field, which is the Wilson line holonomy along the
circle: Φ ¼ R

S1 A3. Supersymmetry guarantees the vanish-
ing of the perturbative potential VðΦÞ that results from
integrating out the tower of massive Kaluza-Klein excita-
tions of gauge bosons and gauginos. Thus, the theory has a
perturbatively exact flat direction such that turning on any
nonzero value of Φ causes the breaking of suðNÞ to the
maximum Abelian torus uð1ÞN−1. In three dimensions the
photons are dual to scalars, and hence, the 3-D long-
distance effective field theory contains massless scalars and
fermions not charged under uð1ÞN−1. The action of the
theory reads

S ¼ 1

L

Z
d3x

�
−

1

g2
ð∂μΦÞ2 − g2

16π2
ð∂μσÞ2−i

2L2

g2
λ̄σ̄μ∂μλ

�
;

ð1Þ

where g is the four-dimensional coupling which is kept
small, σ are the dual photons, and λ are the fermions. All
light fields have components only along the Cartan gen-
erators H ¼ ðH1; H2;…; HN−1Þ, which are denoted by
boldface letters, e.g., σ ¼ ðσ1; σ2;…; σN−1Þ.
The story does not end at the perturbative sector. The

theory, in addition, admits nonperturbative saddles. These
are the monopole instantons which lift the flat direction and
generate masses for the photons. The details of the story
can be found in [10,12,16–18]. In essence, the monopole
instantons generate the superpotential,

W ∼
XN
a¼1

eαa·Xþ2πiτδa;N ; ð2Þ

where X is the chiral multiplet, τ ¼ i 4π
2

g2 þ θ
2π, and θ is

the vacuum angle. The sum is over the simple roots fαag,
a¼1;2;…;N−1 as well as the affine root αN ¼−

P
N−1
a¼1 αa.

The inclusion of the affine root is a crucial ingredient in
order for the theory to have a stable vacuum. In fact,
including this root in the sum is how the theory remembers
its four-dimensional origin and, as we will see, is respon-
sible in a direct way for the observation that the string
tension depends only on the N-ality of the representation to
the leading order.
The superpotential will generate the scalar potential (we

call it the bion potential4) Vbion ¼ Kij̄ ∂W
∂Xi

∂W̄
∂X†j, where Kij̄ is

the Kähler potential, which to zeroth order in the coupling
constant g is given5 by Kij̄ ¼ δij. As we mentioned in the
Introduction, we also turn on a small gaugino mass which
breaks the supersymmetry softly and generates a perturba-
tive potential.6 In addition, the gaugino mass lifts the
monopole-instanton zero modes and gives an additional
contribution to the scalar potential Vm.
The supersymmetric theory, in the smallm and L regime,

has a preserved center symmetry and the vacuum expect-
ation value of the Wilson line holonomy is Φ0 ¼ 2π

N ρ,
where ρ ¼ P

N−1
a¼1 ωa is the Weyl vector, and ωa are the

fundamental weights. Now we write

Φ ¼ Φ0 þ
g2

4π2
b; ð3Þ

such that b are the small fluctuations of the adjoint
scalar about the vacuum. After taking the monopoles
and gaugino mass into account, we find that the total
bosonic Lagrangian in terms of σ and b is given by

4Magnetic and neutral bions are correlated events made of two
monopoles, which appear as a direct sequence of Kij̄ ∂W

∂Xi
∂W̄
∂X†j; see

[10,19] for details.
5The one-loop correction to the Kähler potential was worked

out in [12]. This correction becomes important only if the gauge
group does not have a center, e.g., G2. See [12] for details.

6The perturbative potential is the one-loop contribution from
the Kaluza-Klein tower of gauge bosons and massive gauginos.
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L ¼ 1

12π

mW

logðmW=ΛÞ
ðð∂μbÞ2 þ ð∂μσÞ2Þ þ Vnp þ Vpert;

ð4Þ

where Vnp and Vpert are, respectively, the nonperturbative
and perturbative potentials and mW ¼ 2π

NL is the W-boson
mass. As shown in [10], Vpert is suppressed by three powers
of logðmW=ΛÞ compared to Vnp, and hence, we neglect it in
our analysis. The nonperturbative potential contains con-
tributions from two parts: (1) the monopole part, which is
nonvanishing if and only if the gauginos are massive
(massless gauginos have two zero modes in the background
of monopoles, and hence, the latter cannot contribute to the
bosonic potential), and (2) the magnetic and neutral bion
potential; see footnote 4. The nonperturbative potential is
given by

Vnp¼V0
bion

�XN
a¼1

e−2αa·b−e−ðαaþαaþ1Þ·bcos½ðαa−αaþ1Þ ·σ�
�

−V0
mon

�XN
a¼1

e−αa·bcos½αa ·σþψ �
�
; ð5Þ

where ψ ¼ 2πlþθ
N , and the parameter l ¼ 0; 1;…; N − 1

labels the vacuum branch, i.e., the branch with minimum
ground energy. The bion and monopole coefficients V0

bion
and V0

mon, expressed in terms of the physical mass mW and
the strong scale Λ, are given by

V0
bion ¼

27

8π

Λ6

m3
W
log

�
mW

Λ

�
;

V0
mon ¼

9

2π

mΛ3

mW
log

�
mW

Λ

�
: ð6Þ

For convenience, we also introduce the dimensionless
gaugino mass parameter

cm ¼ V0
mon

V0
bion

¼ 4mm2
W

3Λ3
¼ 16π2m

3ΛðΛLNÞ2 : ð7Þ

To further proceed, one needs to find the masses of the
fluctuations b. Expanding Vnp to quadratic order in b and σ

and rescaling b and σ as fb2a; σ2ag → 6π log ðmW=ΛÞ
mW

fb2a; σ2ag to
have a canonically normalized Lagrangian, we obtain

L ¼ 1

2
ð∂μbÞ2 þ

1

2
ð∂μσÞ2 þ V ð8Þ

and

V ¼ −Ncm cosψ þm2
0

XN
a¼1

�
ðαa · bÞ2 − ðαaþ1 · bÞðαa · bÞ

þ ðαa · σÞ2 − ðαaþ1 · σÞðαa · σÞ þ
cm
2
ððαa · σÞ2

− ðαa · bÞ2Þ cosψ − cmðαa · σÞðαa · bÞ sinψ
�
; ð9Þ

where

m2
0 ¼

81

4

Λ6½logðmW=ΛÞ�2
m4

w
: ð10Þ

The easiest way to obtain the mass spectra of the
quadratic Lagrangian is to go to the RN root basis. In this
basis the weights of the fundamental representations are
given by

νa ¼ ea −
1

N
; a ¼ 1; 2;…; N; ð11Þ

while the roots are

fαa ¼ ea − eaþ1; 1 ≤ a ≤ N − 1; αN ¼ eN − e1g: ð12Þ

Notice the cyclic structure of the roots in these bases. Also,
notice that the affine root αN is the link that completes
the cycle.
The cyclic nature of fαag, a ¼ 1;…; N, enables us to

use the discrete Fourier transform defined by

�
bj
σj

�
¼ 1ffiffiffiffi

N
p

XN−1

p¼0

� ~bp
~σp

�
e−2πi

pj
N : ð13Þ

In doing so, we have introduced the fictitious degree of
freedom b0, the zero mode, which decouples from the rest
of the excitations. Had we not included the monopole
corresponding to the affine root, we would not be able to
use the discrete Fourier transform to simplify our calcu-
lations. As we will see in the next section, this transform is
pivotal in our proof of the N-ality dependence of the string
tension. Now, we substitute the RN root vectors into
Eq. (9) and use the discrete Fourier transform to find,
after straightforward algebra,

V¼−Ncm cosψþm2
0

X
p

A− ~bp ~b−pþAþ ~σp ~σ−pþC ~σp ~b−p;

ð14Þ

where
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A� ¼ 8 sin4
�
πp
N

�
� 2cm sin2

�
πp
N

�
cosψ ;

C ¼ −4cm sin2
�
πp
N

�
sinψ : ð15Þ

In order to further decouple ~σp and ~bp, we define new
fields ~σ0p and ~b0p:

~b0p ¼ cos
ψ

2
~bp þ sin

ψ

2
~σp;

~σ0p ¼ − sin
ψ

2
~bp þ cos

ψ

2
~σp: ð16Þ

The mass square eigenvalues of ~σ0p and ~b0p are

M2
~σ0p
¼ 16m2

0

�
sin4

�
pπ
N

�
þ cm

4
sin2

�
pπ
N

��
;

M2
~b0p
¼ 16m2

0

�
sin4

�
pπ
N

�
−
cm
4
sin2

�
pπ
N

��
; ð17Þ

where p ¼ 1; 2;…; N − 1, and we neglected the zero mode
p ¼ 0.
Now we are in a position to calculate the correlator

h ~bpð0Þ ~b−pðrÞi. We consider the Euclidean version of our
theory such that r is a three-dimensional vector (the
Euclidean time is taken along the third direction).
Keeping in mind that the fields ~σ0p and ~b0p do not couple,

we find that the propagator h ~bpð0Þ ~b−pðrÞi is given by

h ~bpð0Þ ~b−pðrÞi
¼ cos2

ψ

2
h ~b0pð0Þ ~b0−pðrÞi þ sin2

ψ

2
h ~σ0pð0Þ ~σ0−pðrÞi

¼ 1

4πr

�
cos2

ψ

2
e
−M ~b0pr þ sin2

ψ

2
e
−M~σ0pr

�
: ð18Þ

In sequence, we use the inverse discrete Fourier trans-
form to obtain the correlator

hbjð0ÞblðrÞi ¼
1

N

XN−1

p¼0

e−
2πip
N ðj−lÞh ~bpð0Þ ~b−pðrÞi: ð19Þ

The exponents of the correlator hbjð0ÞbkðrÞi are indepen-
dent of θ.7 From here on, we set θ ¼ 0 and select
the vacuum branch l ¼ 0. Therefore, the correlator
hbjð0ÞbkðrÞi receives a contribution only from the first
term in (18). We note that the massesM ~b0p

are much lighter

than the W-boson mass, π
NL, as can be checked from (10).

The string SS1 that wraps around S1 is made of the light
excitationsM ~b0p

, and therefore, the string thickness ∼M−1
~bp

is much bigger than the circle S1. This fact is responsible
for the square sine scaling of the SS1 string, as we discuss in
the conclusion.

III. POLYAKOV-LOOP CORRELATOR
AND STRING TENSION

In this section we use the conjectured continuity between
mass deformed N ¼ 1 super Yang-Mills and pure Yang-
Mills to show that the string tension of the latter theory
depends only on the N-ality of the representation to the
leading order. In order to show that, we visualize the
Polyakov loop along the S1 circle TrR exp ½i HS1 A3� as a
string wrapping the circle. We can calculate the correlator
of two Polyakov loops in the small L and m regime, where
the theory is confining, has a preserved center symmetry, is
weakly coupled, and is under analytical control. We prove
that the correlator limr→∞hPRð0ÞP†

RðrÞi ¼ FRe−σRr,
where σR is a constant that depends only on the N-ality
of the representation R and the prefactor FR depends on
the representation R. Then, by continuity (the absence of
phase transitions as we take the gaugino mass to infinity),
we argue that σR can be interpreted as the string tension of
a pure Yang-Mills theory that depends only on its N-ality,
as expected on physical grounds.

A. From the fundamental to any
representation of suðNÞ

We first summarize a few important results from group
theory concerning traces of suðNÞ elements in general
representations. The following discussion holds for any
N≥3. LetR ¼ ðy1; y2;…; yN−1Þ denote the Young tableau
with yi columns of i boxes (where bigger columns are
placed on the left as usual), which is associated with a
particular tensor representation R of suðNÞ. Now, let
P be an element in suðNÞ. The trace of P in a general
representation R can be written as a sum of products of
fundamental traces as is given by the Frobenius formula
(see [22] and references therein):

TrRP ¼ 1

n!

X
j⃗∈Sn

χRðj⃗ÞðTrFPÞj1ðTrFP2Þj2…:ðTrFPnÞjn ;

ð20Þ

where n is the number of boxes in the Young tableau of
representation R (not mod N) and Sn is the permutation
group. The permutations j⃗ ¼ fj1;…; jng ∈ Sn are most
easily found as solutions of

P
n
k¼1 kjk ¼ n. For example,

for S2 we have j⃗ ¼ fð2; 0Þ; ð0; 1Þg and for S3 we have
j⃗ ¼ fð3; 0; 0Þ; ð1; 1; 0Þ; ð0; 0; 1Þg, etc. χRðj⃗Þ is the group
character, in the representation R, of the permutation j⃗.
This sets the ground to obtaining the Polyakov-loop
correlator in any representation R in terms of the

7Thus, we need to go to the next-to-leading order correction in
g to find the dependence of the string tension on θ; see [12,20,21].
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fundamental representation. We will show that the corre-
lator, to leading order, depends only on the N-ality of the
representation and not on the representation itself.

B. Perturbative expansion of the
Polyakov-loop correlator

We now turn to the derivation of the Polyakov-loop
correlator in a general representationR of suðNÞ. Since our
effective field theory is valid to zeroth-loop order, we shall
focus on the correlator expansion up to Oðg4Þ in the
coupling constant. The Wilson line operator reads

ΩðrÞ ¼ exp

�I
S1

iA3

�
¼ eiH·ΦðrÞ; ð21Þ

with r being a three-dimensional Euclidean vector and the
Wilson line wraps the S1 circle. For suðNÞ, the vacuum is
given by Φ0 ¼ 2π

N ρ. As we pointed out in Sec. II, we write

Φ ¼ Φ0 þ
g2

4π
b: ð22Þ

We are interested in the Polyakov-loop correlator in
representation R:

hPRð0ÞP†
RðrÞi≡ hTrRΩð0ÞTrRΩ†ðrÞi: ð23Þ

This is the correlator between two Polyakov loops wrapped
around the S1 circle and located at 0 and r. To this end, let

us pick any k ≠ 0ðmodNÞ and define Ωk
0 ≡ eikH·ϕð0Þ

0 , whose
eigenvalues are evenly spread around the unit circle,
whence TrFΩk

0 ¼ 0. We now expand in powers of b the
trace in the fundamental of the kth power of the Polyakov
operator (recall that the Cartan generators H commute and
that b are small fluctuations of the holonomy field about the
vacuum):

TrFΩkðrÞ¼TrF

�
Ωk

0exp
�
ikg2

4π
H ·bðrÞ

��

≅TrF

�
Ωk

0

�
1þikg2

4π
H · ~bðrÞþ g4

32π2
ðikH ·bðrÞÞ2

��
þOðg6Þ

¼ ikg2

4π
BkðrÞþ

g4

32π2
CkðrÞþOðg6Þ; ð24Þ

where

BkðrÞ≡ TrF½Ωk
0H · bðrÞ�;

CkðrÞ≡ TrF½Ωk
0ðikH · bðrÞÞ2�: ð25Þ

Moreover, since there is no Oðg0Þ term, we further obtain

ðTrFΩkðrÞÞ2 ¼ −
k2g4

16π2
B2
kðrÞ þOðg6Þ; ð26Þ

and ðTrFΩkðrÞÞa ∼Oðg6Þ for a > 2.
Now, let us make use of the Frobenius formula (20). For a

representation R of suðNÞ, corresponding to a Young
tableau of n boxes (not mod N), we express TrRΩðxÞ in
terms of TrF and expand in g. The onlyOðg2Þ contribution in
this expansion comes from the termwith j⃗ ¼ ð0; 0; 0;…; 1Þ,
i.e., the term ðTrFPnÞjn with jn ¼ 1. Assuming that
n ≠ 0; N; 2N; 3N;…, then there is noOðg0Þ term, and thus
we have

hPRð0ÞP†
RðrÞi ¼

n2g4

16π2
χIRhBnð0Þ · B†

nðrÞi þOðg6Þ

¼ n2g4

16π2
χIR

XN
j;l¼1

TrF½Ωn
0Hj�TrF½Ω−n

0 Hl�

× hbjð0ÞblðrÞi þOðg6Þ; ð27Þ

where χIR ≡ χRðj⃗ ¼ ð0; 0; 0;…; 1ÞÞ and we have used the
RN basis in writing the double sum in (27). As we will see
next, despite the fact that the prefactor depends on the
representationR, the rest of this expression is a function of
TrF½Ωn

0Hj�, which only depends on the N-ality of R since

Ωn
0 ¼ ΩnðmodNÞ

0 .
The case n ¼ 0ðmodNÞ (e.g., the adjoint) gives a term

Oðg0Þ, which leads to the behavior of the correlator
hPRð0ÞP†

RðrÞi ∼ constantþOðg2Þ. The Oðg0Þ term is
interpreted as the breaking of the flux tube. This is the
expected behavior of all zero N-ality representations since
the probe charges of these representations can be com-
pletely screened by soft gluons. The breaking of adjoint
strings is extremely difficult to see in lattice simulations;
see, e.g., [6,7]. The continuity conjecture, on the other
hand, provides a neat way to see the breaking.

C. Combining everything: The string tension

So far we have set the stage to finally obtain a closed-
form expression of the Polyakov-loop correlator. First
we recall that the Cartan generators Hi are the components
of the weights in the fundamental representation (defining
representation), i.e., Hi ¼ diagððν1Þi; ðν2Þi;…; ðνNÞiÞ.
Then, substituting (19) into (27) we obtain

hPRð0ÞP†
RðrÞi

¼ n2g4

16π2N
χIR

XN
j;l;k;m¼1

XN
p¼1

e
2πin
N ðνk−νmÞ·ρðνkÞjðνmÞl

× e−
2πip
N ðj−lÞh ~bpð0Þ ~b−pðrÞi: ð28Þ

Recalling that in the RN basis we have ðνaÞi ¼ δai − 1
N, and

that ρ ¼ P
N−1
b¼1 ωb, where
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ωb ¼
Xb
a¼1

ea −
b
N

XN
a¼1

ea; ð29Þ

we find ρ · νb ¼ −bþ Nþ1
2
. Using this information in (28)

we find three main terms that come from the multiplica-
tion ðνkÞjðνmÞl:
(1) The constant term 1

N2, which is the constant part of
ðνkÞjðνmÞl. This term is multiplied by the sumP

N
m¼1 e

i2πnm
N , which is zero.

(2) The term δkj
N . Again, this term is multiplied by the

sum
P

N
m¼1 e

i2πnm
N , which is zero.

(3) Finally, we have the term δkjδml, which is the only
term contributing a nonzero value to hPRð0ÞP†

RðrÞi:

XN
j;l;k;m¼1

XN
p¼1

e
2πin
N ðνk−νmÞ·ρδkjδmle−

2πip
N ðj−lÞh ~bpð0Þ ~b−pðrÞi

¼
X
p;k;l

e−
2πikðnþpÞ

N e
2πilðnþpÞ

N h ~bpð0Þ ~b−pðrÞi

¼ N
XN
p;l

δnþp¼0e
2πil
N ðnþpÞh ~bpð0Þ ~b−pðrÞi

¼ N2h ~bpð0Þ ~b−pðrÞip¼−nðmodNÞ: ð30Þ

Therefore, we finally obtain

hPRð0ÞP†
RðrÞi ¼

Nn2g4

16π2
χIRh ~bkð0Þ ~b−kðrÞik¼nðmodNÞ: ð31Þ

Equation (31) is the main result of this work. It shows
that apart from a nonuniversal and representation depen-
dent prefactor, the Polyakov-loop correlator can only
depend on the N-ality of representation.
We can use Eq. (31) to obtain the string tension as

follows. We are interested in a length scale r > M ~b0k¼nðmodNÞ
,

which is much bigger than than the compactification length
L. Therefore, we take the limit r → ∞ in (18):

limr→∞ loghPRð0ÞP†
RðrÞi¼constant−M ~b0k¼nðmodNÞ

r; ð32Þ

from which we read the string tension

σk ¼ L−1M ~b0k¼nðmodNÞ
: ð33Þ

Thus, the string tension of the representation R will only
depend on nðmodNÞ ≠ 0, which is the N-ality of the
representation.

IV. W-BOSONS ON THE STRING WORLD SHEET

As a corollary of our main result, Eq. (31), one can also
examine the effect of W-bosons on the string between two

probe charges in representation R. We repeat our previous
analysis in super Yang-Mills on a small circle by computing
correlators of Polyakov loops wrapping the S1 circle with
W-boson insertions. In the semiclassical limit, theW-bosons
are heavy andwe can neglect their kinetic energies. They are
charged under the moduli fields,8 b (the charges live in the
root system), and hence, they can exchange quanta of bwith
the probe charges. Therefore,W-bosons can be thought of as
adjoint Polyakov loops wrapping the circle and their effect
on the string can be inferred by computing higher Polyakov-
loop correlators. A typical correlator that is invariant under
charge conjugation takes the form

Cðr; r1; r2Þ ¼ hTrRΩð0ÞTradjΩWðr1Þ
× TradjΩ

†
Wðr2ÞTrRΩ†ðrÞi; ð34Þ

and we assume that the N-ality of R is k ≠ 0. Since the
W-bosons are in the adjoint representation, we have

TradjΩWðr1Þ ≅ −1þ i
g2

4π
Tradj½eiH·ΦH · b� þOðg4Þ: ð35Þ

By assumption, the N-ality ofR is not zero, and hence, the
expansion of TrRΩ starts at Oðg2Þ. Then, the leading order
contribution to Cðr; r1; r2Þ comes from the first term in (35)
and Oðg2Þ term of TrRΩ. Using (31), we find that the
correlator, to Oðg4Þ, is given by

Cðr; r1; r2Þ ¼ hPRð0ÞP†
RðrÞi

¼ Nn2g4

16π2
χIRh ~bkð0Þ ~b−kðrÞik¼nðmodNÞ: ð36Þ

This shows that the N-ality of the string does not change by
placingW-bosons on the string world sheet. Also, the string
tension is unaffected, to leading order in g, by the presence of
W-bosons. The fact that the string tension does not get a
contribution from the W-bosons leads us to conclude that
they are deconfined on the string world sheet.
This result was also reached in [24] by analyzing the SR3

strings onR3. Here, we provide a simple explanation of this
interesting phenomenon. Let us consider two fundamental
probe charges (quarks) of suð2Þ, Q and Q̄, with opposite
charges, separated a distance r, and ending on the opposite
sides of our SR3 string. The total energy of the system is
E ¼ 2mQ þ Tr, wheremQ is the quarkmass andT is theSR3

string tension. The force between the quarks is F ¼
−dE=dr ¼ −T and hence they experience linear confine-
ment. Now, consider the same situation but with two W-
bosons placed on the string world sheet. Since theW-bosons
belong to the adjoint representation and hence carry twice
the charge of a fundamental quark, it is easy to convince
oneself that the only configuration that respects the flux

8See [23] for details.

REPRESENTATION DEPENDENCE OF k-STRINGS IN … PHYSICAL REVIEW D 96, 114015 (2017)

114015-7



conservation is that shown in Fig. 3. The total energy of the
system is E ¼ 2mQ þ 2mW þ Tðr1 þ r2 þ r3Þ, where mW

is the W-boson mass. Fixing the distance between the probe
charges to be r1 þ r2 þ r3 ¼ r ¼ constant, we find that
placing the W-bosons anywhere on the string world
sheet cannot change the energy of the system. Hence,
the W-bosons do not experience any force on the string
world sheet despite the fact that they interact logarithmically
off the string.9

Therefore, we learn from the above treatment of the W-
bosons on SS1 and SR3 that they are deconfined on the
world sheets (experience no force) and they do not affect
the string tension. On the pure Yang-Mills side, the W-
bosons are the soft gluons that cannot screen the nonzero
N-ality probe charges. This is a very intuitive phenomenon
that is hardly proven in the strongly coupled regime.
Nevertheless, we have shown that this phenomenon can
be rigorously proven in the mass deformed super Yang-
Mills on R3 × S1, and by continuity we conclude that the
same phenomenon takes place in pure Yang-Mills theory.

V. DISCUSSION

In this work we have shown that the tension of the string
wrapping the S1 circle depends, to leading order, on the
N-ality of the representation. The next-to-leading order
effect depends on the representation R and is expressed
in terms of the group characters of the permutation group
in representation R. These findings exactly match holo-
graphic computations that were performed in the ’t Hooft
large-N limit [8]. It is extremely important to emphasize the
role of center symmetry and the affine monopole in arriving
at this result. The affine root is the way the theory
remembers its four-dimensional origin, and including the
corresponding monopole is crucial to link super Yang-Mills
to pure Yang-Mills via the conjectured continuity.
In terms of the strong coupling scale and the mass of the

W-boson, the k-string tension is given by

σk ¼
ffiffiffiffiffi
81

p

π

NΛ3

mW
log2

�
mW

Λ

�

× sin2
�
πk
N

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4πmm2
W

3Λ3
sin−2

�
πk
N

�s
; ð37Þ

where k ¼ 1; 2.…; N − 1. At small values of m (this is the
regime that is continuously connected to pure Yang-Mills
theory), the string tension σn follows a square sine law:

σk
σ1

¼ sin2ðπkN Þ
sin2ðπNÞ

; ð38Þ

where σ1 is the fundamental string tension. This is in
contradistinction with the Casimir law, σk ¼ ð1 − k−1

N−1Þσ1,
or sine law, σk ¼ sinðπkN Þ

sinðπNÞ σ1, which have been advocated in

the literature as two possible scalings of k-strings in Yang-
Mills theories; see, e.g., [25–28]. The sine law in particular
is consistent with the ’t Hooft large-N limit, which requires
the next-to-leading order correction of σk to go as 1=N2

instead of 1=N, as the Casimir law predicts. It is also
consistent with various supersymmetric gauge theories and
AdS/CFT computations; see, e.g., [29–32].
Another question concerns the large-N limit of (37),

which has to be taken with care. In the standard ’t Hooft
limit one takes N → ∞, keeping Ng2 fixed. In this limit the
W-bosons of super Yang-Mills on R3 × S1 become very
light, mW ∼ 1=ðNLÞ, which pushes the theory to strong
coupling and invalidates the semiclassical treatment.
The proper limit in gauge theories on a circle is the
Abelian large-N limit, which amounts to taking N → ∞,
keeping the W-boson mass fixed. In this limit we have
σk ¼ k2 þOð 1

N2Þ, which is different from the expected
’t Hooft large-N limit σkσ1 ¼ kþOð 1

N2Þ in noncompact Yang-
Mills theory. In the latter theory, the linear dependence of
the string tension on the N-ality k indicates that the string is
made of k independent components that do not interact with
each other, which is not the case for the SS1 strings in the
compactified theory.10

The square sine law scaling in super Yang-Mills on
R3 × S1 as well as the unexpected large-N behavior is
attributed to the fact that the string SS1 is much thicker than
the compactification radius, and therefore, one should not
expect the string to be composed of N noninteracting
components, as in the 4-D ’t Hooft large-N case. One
expects, however, the string tension to depart from the
square sine law and approach the sine law in theΛ−1 ≪ NL
limit. Assuming that the continuity between super and pure

FIG. 3. W-bosons on the world sheet of the SR3 string. In this
specific example, the quarks, Q, Q̄, are taken in the fundamental
representation of suð2Þ. Since the W-bosons are in the adjoint
representation, they carry twice the charge of the fundamental
quark. The shown configuration is the only one that satisfies the
conservation of the electric flux. r1;2;3 label the W-boson
positions on the world sheet.

9Super Yang-Mills onR3 × S1 is dimensionally reduced toR3.
Electric charges in a three-dimensional theory experience loga-
rithmic interactions.

10It was also shown in [33] that super Yang-Mills on R3 × S1

in the Abelian large-N limit flows to a gapless theory in R4,
which indicates that the large-L and Abelian large-N limits do not
commute.
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Yang-Mills holds, then this will happen in a way that
preserves the N-ality dependence of the representation.
Finally, we compare our findings to other string models

in the literature. In particular, we compare our SS1 strings to
the SR3 strings that were studied in deformed Yang-Mills
theory11 on R3 × S1 in [15] and also to strings in the softly
broken Seiberg-Witten (SW) theory [35,36]. We start with
SW theory, where the strings are Abelian in nature and of
Abrikosov-Nielsen-Olesen type. The Weyl group in SW
theory is broken, and therefore, one hasN − 1 different flux
tubes corresponding to the N − 1 fundamental weights ωa,
a ¼ 1; 2;…; N − 1, as indicated in [31]. The breaking of
the Weyl group results in having different string tensions
between quarks belonging to the same representation,
depending on the specific weights of the quarks. For
example, in suð3Þ we have two nondegenerate strings
ω1 and ω2, corresponding to the two fundamental weights.
Hence, fundamental quarks (antiquarks) with weights
ν1; ν2; ν3 (ν̄1; ν̄2; ν̄3) will have strings μ1; μ2 − μ1; μ2,
respectively. This is in contradistinction with SR3 strings
in deformed Yang-Mills (dYM) theory, where we have an
unbroken Weyl group. This results in degenerate string
tensions among all the fundamental quarks. For higher
N-ality, the string tensions of a representation fall into
distinct ZN orbits, each of which has degenerate string

tensions. In this regard, the SR3 strings of dYM are closer in
nature to the QCD strings than the SW strings. The string
tension in dYM, however, will in general depend on the
representation, not only on its N-ality. For example, the
two-index symmetric and two-index antisymmetric repre-
sentations have different string tensions. Unlike both types
of strings (SW and dYM), we find that SS1 strings in super
Yang-Mills, even though the theory is still in the Abelian
regime, depend only on the N-ality of the representation,
making them identical to what one expects for QCD.
This work lends extra support to the continuity picture

between a class of deformed Yang-Mills theory on R3 × S1

and real-world QCD, including the conjectured continuity
between super and pure Yang-Mills. Until now, there have
been several tests to check the nature of this continuity, its
regime of validity, and we were able to extract important
lessons about the four-dimensional theory [22,37–40]. It
has been found that the deformed theories share a range of
characteristics that point to an underlying structure in the
four-dimensional Yang-Mills, which is not yet understood
but is similar to the structure of the deformed theory.
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