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1 Introduction

’t Hooft anomaly matching conditions is one of the very few handles on the nonperturbative
phenomena in strongly-coupled theories [1]. The anomaly is an unremovable phase in the
partition function that needs to be matched between the ultraviolet (UV) and infrared (IR),
which imposes constraints on the viable scenarios of the phases of a given asymptotically-
free gauge theory that flows to strong coupling in the IR. Recently, it has been realized that
the class of ’t Hooft anomalies is larger than what has been known since the 80s. It was
discovered in [2, 3] that Higher-form symmetries may also become anomalous, which can
be used to impose further constraints on strongly-coupled theories. These original papers
were followed by a plethora of other works that attempted to use the new anomalies to
study various aspects of quantum field theory, see [4–22] for a non-comprehensive list.

One can understand the new development as an anomaly of a global transformation
on the field content in the background of a fractional topological charge, an ’t Hooft
flux [23, 24], of the center symmetry of the gauge group. This anomaly was further enlarged
in [25] by considering the most general fractional charges in the baryon number, color, and
flavor (BCF) directions. This anomaly was dubbed the BCF anomaly (or only BC anomaly
when we have a single flavor), and was also studied in [26] on nonspin manifolds. One of
the profound consequences of the BCF anomaly is the deconfinement of quarks on axion
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domain walls, a phenomenon that is attributed to an intertwining between the light (axion)
and heavy (hadron) degrees of freedom at the core of the domain wall. The intertwining
between the different degrees of freedom can also have an important effect on models of
axion inflation [11].

In this paper we consider a 4-dimensional asymptotically-free SU(N) gauge theory
with a single Dirac flavor Ψ in a general representation R and strong-coupling scale Λ. The
theory admits a U(1)B baryon and Zdχ2TR

discrete chiral symmetries, where TR is the Dynkin
index of the representation. As the theory flows to the IR and enters its strongly-coupled
regime, we assume that it forms a nonvanishing bilinear fermion condensate 〈Ψ̄Ψ〉 6= 0.
Then, the discrete chiral symmetry breaks spontaneously, Zdχ2TR

→ Z2, leaving behind TR
degenerate vacua. These vacua are separated by domain walls of width ∼ Λ−1. If the
bilinear fermion condensate vanishes, then higher-order condensates may form, which, in
general, break Zdχ2TR

down to a discrete subgroup. We ponder on several questions:

1. A theory with an ’t Hooft anomaly precludes a unique gapped vacuum. What do
anomalies inform us about the breaking of Zdχ2TR

? Is there an anomaly that grants
the full breaking of Zdχ2TR

down to Z2? Is this anomaly unique or there are several
anomalies that yield the same result? Is one of the anomalies more restricting than
the others, and does this depend on R?

2. How do the domain walls respond to these anomalies?

3. How are the anomalies matched at finite temperature?

Indeed, it is well-known that a vector-like theory admits a mixed anomaly between
Zdχ2TR

and U(1)B, we denote it by Zdχ2TR
[U(1)B]2, which needs to be matched between the

UV and IR. If the bilinear condensate forms, then the existence of TR degenerate vacua
will automatically match the anomaly. Sometimes, however, a TR degeneracy is an overkill
in the sense that only a subset of TR vacua are needed for the matching. This happens if
the anomaly Zdχ2TR

[U(1)B]2 gives a phase valued in a proper subgroup of ZdχTR
. In this case

we might set 〈Ψ̄Ψ〉 = 0 and argue that higher-order condensates break the chiral symmetry
to a subgroup that gives the exact number of vacua needed to match the anomaly. For
example, SU(4) with a Dirac fermion in the 2-index symmetric representation has TR = 6
and we expect that the bilinear condensate, if it forms, breaks Zdχ12 spontaneously resulting
in 6 vacua. The Zdχ2TR

[U(1)B]2 anomaly, however, is valued in Z3 and can be matched by
3, instead of, 6 vacua. Then, it is a plausible scenario, in the light of the Zdχ2TR

[U(1)B]2

anomaly, that the bilinear condensate vanishes and the four-fermion condensate 〈Ψ̄ΨΨ̄Ψ〉
forms and yields 3 vacua.

Another anomaly that gives the exact same conclusion is Zdχ2TR
[gravity]2, which results

from the action of Zdχ2TR
on the fermions in the gravitational background of a nonspin

manifold.
Given this classical result, one wonders whether a yet-to-be-discovered anomaly may

impose a stronger constraint on the number of the degenerate vacua and gives us a nonper-
turbative exact statement about this number. We address this question in the light of the
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BC anomaly and show that it provides constraints stronger than or equal to the constraints
from the traditional Zdχ2TR

[U(1)B]2 and Zdχ2TR
[gravity]2 anomalies. In particular, we show,

in the absence of a topological quantum field theory, that SU(4k) with fermions in the
2-index (anti)symmetric representation has to break its discrete chiral symmetry down to
the fermion number Z2 and yields exactly T4k±2 vacua. Thus, the BC anomaly excludes
the above mentioned four-fermi condensate scenario.

In fact, we examined all SU(N), with 3 ≤ N ≤ 9, asymptotically-free gauge theories
with fermions in a general representation and concluded that there are only two types of
theories that have a stronger response to the BC anomaly than the traditional anomalies.
These theories are: (i) SU(4k) with fermions in the 2-index symmetric representation and
(ii) SU(4k), k > 1, with fermions in the 2-index antisymmetric representation . Nonethe-
less, we shall argue that it is the BC anomaly, in fact, that “orders” the breaking of the
discrete chiral symmetry. We show that a domain wall that separates two distinct vacua
couples to a 3-form field a(3) that transforms non-trivially under a 2-form symmetry, which
is at the heart of the BC anomaly. a(3), however, is inert under both Zdχ2TR

and U(1)B.
This observation seems to suggest that Zdχ2TR

[U(1)B]2 anomaly is matched by “fiat”. In the
rest of the paper we provide a justification of this hypothesis.

Because of the strong-coupling nature of the 4-dimensional theory, it is extremely hard
to provide a detailed analysis of what really happens in its vacuum; there is no separation
of scales and all phenomena, e.g., confinement and chiral symmetry breaking, take places at
the same scale ∼ Λ. In order to test our hypothesis, we study the fate of anomalies in a semi-
classical setup. We compactify the vector-like theories on a small circle S1

L of circumference
L, such that ΛL� 1, and give the fermions periodic boundary conditions on S1

L. This is not
a thermal theory; the periodic boundary conditions turn the thermal partition function into
a graded-state sum. We say that the theory lives on R3 × S1

L. In addition, we add adjoint
massive fermions or a double-trace deformation in order to force the theory into its weakly-
coupled semi-classical regime, without spoiling the original global symmetry. Effectively,
the IR theory lives in 3 dimensions, it abelianizes, and becomes amenable to analytical
studies. We can also go to a dual (magnetic) description, where the “dual photons” play
the main role in determining the pattern of the discrete chiral symmetry breaking. We show
that the dual photons couple nontrivially to the higher-form symmetry, and therefore, the
BC anomaly is communicated from the UV to the deep IR. The Zdχ2TR

[U(1)B]2 anomaly, on
the other hand, shows up as a variation of a local action and does not talk to the photons.
In this sense, we say that Zdχ2TR

[U(1)B]2 anomaly is matched by fiat. This analysis provides
evidence that it is the BC anomaly that talks to the IR degrees of freedom. Our work uses
and generalizes the observation that was first made by Poppitz and Wandler [27] that cubic-
and mixed-U(1) anomalies are matched by local background-field-dependent topological
terms instead of chiral-Lagrangian Wess-Zumino-Witten terms, while the 1-form center
symmetry talks directly to the dual photons. We further study in detail the SU(4k) theory
on R3× S1

L with 2-index (anti)symmetric fermions and analyze the dynamics that leads to
the full breaking of Zdχ2(4k±2), the expected result in accordance with the BC anomaly. As
a byproduct, we identify new composite instantons that play a major role in the IR.
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We also examine the fate of the BC anomaly as we heat up the theory. The strong
coupling nature of the 4-dimensional theory hinders our ability to answer this question. We
circumvent this difficulty, again, by studying the compactified theory at a finite tempera-
ture. Now, in addition to the spacial circle S1

L, we also have a thermal circle S1
β , where β is

the inverse temperature, and we say that the theory lives on R2×S1
L×S1

β . Effectively, it can
be shown that the theory is dual to a 2-dimensional electric-magnetic Coulomb gas. We do
not attempt to solve the effective 2-dimensional theory since the strong-coupling problem
might resurrect near the confinement/deconfinement transition. However, we trace the fate
of the BC anomaly on R2×S1

L×S1
β and show that this anomaly “cascades” from 4 down to

2-dimensions. We also use renormalization group equations to argue that the theory admits
flat directions in the dual photon space as we heat it up, and eventually the long-range force
of the dual photons, which were responsible in the first place for the breaking of the chiral
symmetry, is tamed indicating that the chiral symmetry is restored. In this case we find
that the BC anomaly becomes “confined”, or in other words local, and is matched by fiat.

This paper is organized as follows. In section 2 we review the symmetries and the
corresponding background fields in 4-dimensional vector-like theories with a single Dirac
fermion in a general representation. We also review the essence of the BC anomaly and
compare it to the traditional anomalies. Next, we study the condensates and the role of the
BC anomaly. In section 3 we work out the construction of the vector-like theories on a small
circle; we consider both the perturbative and nonperturbative aspects and we introduce
the dual theory. Then, we show in great details how the BC anomaly is reproduced in the
dual picture and argue that it lurks deep in the IR. This is in contradistinction with the
traditional anomalies, since they are realized as the variation of local actions that do not
communicate with the IR degrees of freedom. We also trace the fate of the BC anomaly at
we heat up the dual theory. In section 4 we work out the details of SU(4k) on the small circle
with fermions in the 2-index (anti)symmetric representation and identify the microscopic
objects that are responsible for the full breaking of the discrete chiral symmetry. Finally,
we consider these theories at a finite temperature and use renormalization group equations
to understand the realization of the BC anomaly as we heat up the system.

2 Vector-like theories on R4

2.1 Symmetries and background fields

We consider SU(N) Yang-Mills theory endowed with a single left-handed massless Weyl
fermion ψ in a representation R along with another left-handed massless Weyl fermion ψ̃
transforming in the complex conjugate representation. Collectively, we can also talk about
a single Dirac fermion in R. The 4-dimensional Lagrangian reads

L4 = − 1
4g2 trF

[
FMNF

MN
]

+ θ

32π2 trF
[
FMN F̃

MN
]

+ iψ̄σ̄MDMψ + i ¯̃ψσ̄MDM ψ̃ , (2.1)

where M,N = 0, 1, 2, 3 and the partition function Z is defined over a large closed mani-
fold. The Dynkin index of the representation is denoted by TR (we use the normalization
trF [T aT b] = δab, where T a are the generators of the Lie-algebra) and its dimension is
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dimR. Strictly speaking, since the fermions are massless, we could rotate the θ angle away
by applying a chiral transformation on ψ and ψ̃. Keeping the topological term, however,
will serve a later purpose. The theory admits the global symmetry:

GGlobal = Zdχ2TR
× U(1)B

ZN/p × Z2
× Z(1)

p , (2.2)

where Z2 is the fermion number (which is a subgroup of the Lorentz group, and hence,
we mod it out), p = gcd(N,n), and n is the N-ality1 of R. Notice that ZN/p, which is a
subgroup of the center group ZN , acts faithfully on the fermions, and therefore, we needed
to mod it out since it is part of the gauge group. Zdχ2TR

and U(1)B are respectively the
0-form discrete chiral and baryon number symmetries acting on ψ and ψ̃:

Zdχ2TR
: ψ → e

i 2π
2TR ψ, ψ̃ → e

i 2π
2TR ψ̃ , U(1)B : ψ → eiαψ, ψ̃ → e−iαψ̃ . (2.3)

Finally, Z(1)
p , provided that p > 1, is the 1-form symmetry that acts on the fundamental

Wilson’s loops.
When the representation is real, then we slightly modify the above procedure since in

this case it is enough to have a single fermion without the need to introduce another fermion
transforming in the would-be complex-conjugate representation. We use the symbol λ for
the real Weyl fermions. For example, a single adjoint Weyl fermion defines super Yang-Mills
theory with Tadj = 2N , dimadj = N2 − 1, and global symmetry Zdχ2N × Z(1)

N .
We also need to turn on background fields of GGlobal since they play a pivotal role

in determining ’t Hooft anomalies. Introducing a background field of U(1)B is straight
forward; we just include it in the covariant derivative. Thus, we write D = d+ iA− iV (1),
where A is the color gauge field and its field strength is F = dA+A∧A, and V (1) is the 1-
form U(1)B gauge field with field strength FB(2) = dV (1). Introducing background fields of
discrete symmetries is more involved. In order to turn on a background field of the discrete
chiral symmetry Zdχ2TR

, we introduce a pair of 0-form and 1-form fields
(
b(0), B(1)

)
that

satisfy the relation 2TRB(1) = db(0) and demand that the integral of the 1-form field db(0)

over 1-cycles is in Z, i.e.,
∮
db(0) = 2πZ, which in turn implies

∮
B(1) ∈ 2π

2TR
Z, where the

integral of B(1) is performed over 1-cycles. These fields are also invariant under the gauge
transformation B(1) → B(1) + dω(0) and b(0) → b(0) + 2TRω(0), and dω(0) has quantized
periods over 1-cycles:

∮
dω(0) ∈ 2πZ. One may think of b(0) as the phase of a charge-2TR

non-dynamical Higgs field that acquires a vacuum expectation value and breaks a U(1)

gauge field down to the Z2TR discrete field B(1). Under the transformation ψ → e
i b

(0)
2TR ψ

and ψ̃ → e
i b

(0)
2TR ψ̃ the measure acquires a phase ei

∫
b(0)
32π2 trF [FMN F̃

MN ]. Therefore, following
the analysis of [27], one can think of b(0) as a background θ angle, and we shall use the
former instead of the latter in the following discussion.

Next, we turn to the ZN center group of SU(N). As we mentioned above, only a ZN/p,
p = gcd(N,n), subgroup of the center acts faithfully on the fermions, leaving behind a
global Zp that we may choose to turn on a background field associated to it. Yet, one

1The N-ality of a representation is the number of boxes in the Young tabulate mod N .
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can excite a background field of the full center ZN owning to the baryon symmetry. The
simplest way to understand this assertion is by examining the transition functions Gij on
the overlap between two patches Ui and Uj that cover the 4-dimensional manifold. On the
overlap Ui ∩ Uj we have

ψi = Gijψj , Gij = GZNij G
U(1)B
ij , (2.4)

where GZNij and GU(1)B
ij are respectively the transition functions of the center and baryon

number symmetries. A similar transformation holds for ψ̃. The consistency of the gauge
theory requires that the transition functions satisfy the following cocycle condition

GijGjkGki = 1 (2.5)

on the triplet overlap Ui ∩ Uj ∩ Uk. The most general solution of the cocycle condition
is obtained by taking GZNij = ei2π

n
N and GU(1)B

ij = e−i2π
n
N , where the additional factor of

n that appears in the exponent in GZNij accounts for the fact that the fermions transform
in a representation of N-ality n. This explains why one can always excite the full ZN
background. Indeed, when p > 1, then one may not use U(1)B and instead choose to turn
on a background field of Zp ⊂ ZN . As it turns out, exciting the full ZN will impose stronger
constrains on the theory by employing the related ’t Hooft anomalies.

The background field of ZN is an ’t Hooft flux that carries a fractional topological
charge. The modern way of thinking of ’t Hooft fluxes is via higher-form symmetries, as
was done in [28]. From now on, we consider Z(1)

N 1-form symmetry, which in principle
acts on Wilson’s loops. In order to turn on a background field of Z(1)

N we use a pair of
1-form and 2-form fields

(
Bc(2), Bc(1)

)
such that NBc(2) = dBc(1), see [29]. The periods of

Bc(1) are quantized in multiples of 2π:
∮
dBc(1) ∈ 2πZ, where the integral is over 2-cycles.

Now, owing to the relation NBc(2) = dBc(1), we obtain
∮
Bc(2) ∈ 2π

N Z. Next, we define
the U(N) connection Ã ≡ A+ Bc(1)

N IN×N with gauge field strength F̃ = dÃ+ Ã ∧ Ã. The
field strength F̃ satisfies the relation trF F̃ = dBc(1) = NBc(2). Going from SU(N) to
U(N) introduces a non-physical extra degree of freedom. In order to eliminate this degree
of freedom, we postulate the following invariance Ã → Ã + λ(1) under the 1-form gauge
field λ(1). Subsequently, the pair

(
Bc(2), Bc(1)

)
transforms as Bc(2) → Bc(2) + dλ(1) and

Bc(1) → Bc(1)+Nλ(1), such that the relationNBc(2) = dBc(1) remains intact. The covariant
derivative of the matter field is obtained by replacing A with Ã, i.e., D = d+iÃ−iV (1). The
invariance of D under λ(1) enforces the baryon background field to transform as V → V +
nλ(1), where the factor of n is the N-ality of the representation (recall the discussion after
the cocycle condition (2.5)), and hence, we find that FB transforms as FB → FB +ndλ(1).

2.2 The baryon-color (BC) ’t Hooft anomaly

Turning on the baryon and the center background fields enables us to find the most general
perturbative ’t Hooft anomaly on a spin manifold. As was shown in [28], this is an ’t Hooft
anomaly of the discrete chiral symmetry in the background of both Z(1)

N and U(1)B fields,
and hence, the name baryon-color (BC) ’t Hooft anomaly. Succinctly, we can compute
the anomaly from the triangle diagrams with vertices sourced by the following 2-form
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combinations F̃ − Bc(2) and FB − nBc(2), which are invariant under the 1-form gauge
transformation with parameter λ(1). The triangle diagrams yield the following color and
baryon number topological densities:

qc = 1
8π2

[
trF

(
F̃ ∧ F̃

)
−NBc(2) ∧Bc(2)

]
, qB = 1

8π2

[
FB − nBc(2)

]
∧
[
FB − nBc(2)

]
.

(2.6)
Then, we perform a discrete chiral transformation in the background of the BC background
to find that the partition function Z acquires the phase:

Z
Zdχ2TR−−−→ e

i 2π
TR

(TRQ
c+dimRQ

B)Z , (2.7)

where Qc =
∫
qc and QB =

∫
qB and the integral is performed over a closed 4-dimensional

spin manifold. Owing to the facts: 1
8π2

∫
F̃ ∧ F̃ ∈ Z, 1

8π2
∫
FB ∧ FB ∈ Z, and N

8π2
∫
Bc(2) ∧

Bc(2) ∈ 1
NZ, we find Qc = 1− 1

N and QB = (`+ n
N )2, ` ∈ Z. Since TRQc + dimRQB is the

Dirac-index, which is always an integer, then the phase of the partition function in the BC
background is valued in ZTR or a subgroup of it:

BC Anomaly = e
i 2π
TR

(TRQ
c+dimRQ

B) ∈ ZTR . (2.8)

At this stage one might think that the BC anomaly does not impose on the dynamics any
further constraints beyond the traditional anomalies2 Zdχ2TR

[U(1)B]2 and Zdχ2TR
[gravity]2,

since the latter are also valued in ZTR :

Zdχ2TR
[U(1)B]2 = Zdχ2TR

[gravity]2 = e
i2πdimR

TR ∈ ZTR . (2.9)

However, as we will argue in the next section, unlike the Zdχ2TR
[U(1)B]2 and Zdχ2TR

[gravity]2

anomalies, the BC anomaly is more restrictive and communicates non-trivial information
to the low-energy confining phase deep in the IR. This will be evident in the semi-classical
analysis that we will perform on the theory upon compactifying it on a small circle. It is
also worth mentioning that one may compute the BC anomaly in a nonspin background,
as was done in [26]. We checked, however, that the BC anomaly on a nonspin manifold
does not impose more restrictions on the condensates compared to the same anomaly on a
spin manifold.

Finally, let us note that when p = gcd(N,n) > 1, then we can also turn on the
background of Z(1)

p ⊂ Z(1)
N without the need to employ U(1)B. This can be accomplished

by constraining the quantization of Bc(2) over 2-cycles to obey
∮
Bc(2) = 2π

p Z, and hence,
Qc = N

8π2
∫
Bc(2) ∧ Bc(2) ∈ N

p2Z . Then, we encounter a mixed ’t Hooft anomaly between
Zdχ2TR

and Z(1)
p , which gives the phase

Z
Zdχ2TR−−−→ e

i 2π
TR

(TRQ
c)Z = e

i2π N
p2Z , (2.10)

which is less restrictive than the phase from the BC anomaly.
2The most refined phase of the Zdχ2TR

[gravity]2 anomaly comes from a calculation on a nonspin manifold.
Fermions are ill-defined when the manifold is nonspin, e.g. CP2. In order to render the fermions well-defined
on CP2, we turn on a monopole background of U(1)B with charge 1

2 . The fractional monopole flux combines
with the fractional flux of the gravitational CP2 instanton and yields an integer Dirac index = 1. Hence,
one immediately finds the anomaly in (2.9).
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2.3 Condensates and role of the BC anomaly

As we flow to the IR, the theory may or may not break its discrete chiral symmetry.
In the following, we assume that: (1) the theory generates a mass gap and the discrete
chiral symmetry breaks, which can be probed via the non-vanishing color-singlet bilinear
condensate 〈ψψ̃〉 or higher-order condensates, (2) the is no topological quantum field theory
accompanying the IR phase,3 and (3) the theory does not form massless composite fermions
in the IR. The formation of the condensates, then, implies that in general the full or partial
breaking of Zdχ2TR

takes place, leading to TR or fewer distinct vacua. The conclusion about
the full breaking of Zdχ2TR

cannot be guaranteed unless there is an anomaly that is valued
in ZTR and not only in a proper subgroup of it. Only in this case the saturation of the
anomaly in the IR, indeed, demands the full breaking of Zdχ2TR

.
If gcd(TR, dimR) > 1, then (2.9) implies that both Zdχ2TR

[U(1)B]2 and Zdχ2TR
[gravity]2

anomalies do not necessarily demand the full breaking of the chiral symmetry; the partial
breaking Zdχ2TR

→ Z2gcd(TR,dimR) is sufficient to match the anomalies. Similarly, when
gcd(TR,

(
TRQ

c + dimRQB
)
) > 1, then the BC anomaly can be matched via the breaking

Zdχ2TR
→ Z2gcd(TR,(TRQc+dimRQB)).

In tables 1 and 2 we display the asymptotically free representations of SU(N), 3 ≤ N ≤
9, gauge theories as well as their anomalies. When the representation is real, then we limit
the analysis to a single Weyl fermion and in this case the discrete chiral symmetry is ZdχTR

instead of Zdχ2TR
. Also, in this case the BC anomaly is reduced to the phase given by (2.10).

For all complex representations, except two cases, we find that both Zdχ2TR
[U(1)B]2 and

BC anomalies yield the same phase. The exceptions are:

• SU(4k) theories with fermions in the 2-index symmetric representation: R =
(2, 0, . . . , 0) with TR = 4k + 2 and dimR = 2k(4k + 1).

• SU(4k), k > 1, theories with fermions in the 2-index anti-symmetric representation:
R = (0, 1, 0, . . . , 0) with TR = 4k − 2 and dimR = 2k(4k − 1).

Here we find gcd(TR, dimR) = 2, while
(
TRQ

c + dimRQB
)

(2,0,...,0)
= 4k + 3,(

TRQ
c + dimRQB

)
(0,1,...,0)

= 4k−1, and hence, gcd(TR,
(
TRQ

c + dimRQB
)
) = 1, making

the BC anomaly more restricting than Zdχ2TR
[U(1)B]2 and Zdχ2TR

[gravity]2 anomalies. Then,
the BC anomaly demands the full breaking of Zdχ2(4k±2) and the formation of 4k±2 distinct
vacua, in the symmetric and antisymmetric representations, respectively. Notice that both
of these representations admit a Z(1)

2 symmetry acting on Wilson’s loop and gauging it
leads to a trivial phase, as can be easily seen from (2.10). We conclude, in the absence of
a topological quantum field theory, that nonvanishing fermion bilinears are inevitable in
infrared-gapped SU(N) gauge theories with 2-index (anti)symmetric fermions.

We also observe that when the phase of the BC anomaly is in a prober subgroup
of the discrete chiral symmetry, then a plausible scenario is that the bilinear condensate

3The possibility of IR topological quantum field theory was considered in [10, 30].
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Group R TR dimR Zdχ2TR
[U(1)B]2 BC Condensate

SU(3) (2, 0) 5 6 Z5 Z5
〈
ψ̃ψ
〉

(3, 0) 15 10 Z3 Z3
〈

(ψ̃ψ)5
〉

(1, 1) 6 8 — Z3 〈λλ〉
(2, 1) 20 15 Z4 Z4

〈
(ψ̃ψ)5

〉
SU(4) (2, 0, 0) 6 10 Z3 Z6

〈
ψ̃ψ
〉

(3, 0, 0) 21 20 Z21 Z21
〈
ψ̃ψ
〉

(0, 1, 0) 2 6 — 1 No constraints
(0, 2, 0) 16 20 — Z4

〈
(λλ)2〉

(1, 0, 1) 8 15 — Z4 〈λλ〉
(1, 1, 0) 13 20 Z13 Z13

〈
ψ̃ψ
〉

(2, 0, 1) 33 36 Z11 Z11
〈

(ψ̃ψ)3
〉

SU(5) (2, 0, 0, 0) 7 15 Z7 Z7
〈
ψ̃ψ
〉

(0, 1, 0, 0) 3 10 Z3 Z3
〈
ψ̃ψ
〉

(1, 0, 0, 1) 10 24 — Z5 〈λλ〉
(1, 1, 0, 0) 22 40 Z11 Z11

〈
(ψ̃ψ)2

〉
(1, 0, 1, 0) 24 45 Z8 Z8

〈
(ψ̃ψ)3

〉
Table 1. The asymptotically free representations of SU(3) to SU(5). We use the Dynkin labels to
designate the representation: R = (n1, n2, . . . , nN−1) ≡

∑N−1
a=1 nawa, where wa are the fundamen-

tal weights. A representation is said to be real if (n1, n2, . . . , nN−1) = (nN−1, nN−2, . . . , n1). For
example, (1, 1), (1, 0, 1), (0, 1, 0), (0, 2, 0) are all real representations. In this case, one needs to be
more careful since U(1)B is enhanced to SU(2)f flavor symmetry. We avoid this extra complication
by considering a single Weyl fermion, λ, whenever the representation is real. Then, the discrete chi-
ral symmetry becomes ZdχTR

and the baryon number symmetry as well as the anomaly Zdχ2TR
[U(1)B ]2

disappear. Notice that we exclude the defining representation (1, 0, 0, . . . , 0) since theories with fun-
damentals do not have genuine discrete chiral symmetries. In the next to last column we list the
phases of both Zdχ2TR

[U(1)B ]2 (which is equal to Zdχ2TR
[gravity]2 anomaly) and BC anomalies. In

the last column we display the higher-order condensate that saturates the BC anomaly.

vanishes and higher-order condensates form. In the last column of tables 1 and 2 we
display the possible higher-order condensate that saturates the BC anomaly. For example,
the discrete chiral symmetry of SU(4) Yang-Mills theory with a single Dirac fermion in the
(2, 0, 1) representation is Zdχ66 and the formation of the bilinear condensate suggests that
the theory admits 33 vacua in the IR. However, the BC anomaly can be matched via the
breaking Zdχ66 → Z6, suggesting that an IR phase with only 11 vacua is enough to match
the anomaly. Thus, a plausible scenario that matches the anomalies is the vanishing of
both the bilinear and four-fermion condensates 〈ψ̃ψ〉 = 〈ψ̃ψψ̃ψ〉 = 0 and the formation of
the six-fermion condensate

〈
(ψ̃ψ)3

〉
≡ 〈ψ̃ψψ̃ψψ̃ψ〉 6= 0.
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Group R TR dimR Zdχ2TR
[U(1)B]2 BC Condensate

SU(6) (2, 0, 0, 0, 0) 8 21 Z8 Z8
〈
ψ̃ψ
〉

(0, 1, 0, 0, 0) 4 15 Z4 Z4
〈
ψ̃ψ
〉

(0, 0, 1, 0, 0) 6 20 Z3 Z3
〈
(λλ)2〉

(1, 0, 0, 0, 1) 12 35 — Z6 〈λλ〉
(1, 1, 0, 0, 0) 33 70 Z33 Z33

〈
ψ̃ψ
〉

SU(7) (2, 0, 0, 0, 0, 0) 9 28 Z9 Z9
〈
ψ̃ψ
〉

(0, 1, 0, 0, 0, 0) 5 21 Z5 Z5
〈
ψ̃ψ
〉

(1, 0, 0, 0, 0, 1) 14 48 — Z7 〈λλ〉
(0, 0, 1, 0, 0, 0) 10 35 Z2 Z2

〈
(ψ̃ψ)5

〉
SU(8) (2, 0, 0, 0, 0, 0, 0) 10 36 Z5 Z10

〈
ψ̃ψ
〉

(0, 1, 0, 0, 0, 0, 0) 6 28 Z3 Z6
〈
ψ̃ψ
〉

(0, 0, 0, 1, 0, 0, 0) 20 70 Z2 Z2
〈
(λλ)5〉

(1, 0, 0, 0, 0, 0, 1) 16 63 — Z8 〈λλ〉
(0, 0, 1, 0, 0, 0, 0) 15 56 Z15 Z15

〈
ψ̃ψ
〉

SU(9) (2, 0, 0, 0, 0, 0, 0, 0) 11 45 Z11 Z11
〈
ψ̃ψ
〉

(0, 1, 0, 0, 0, 0, 0, 0) 7 36 Z7 Z7
〈
ψ̃ψ
〉

(1, 0, 0, 0, 0, 0, 0, 1) 18 80 — Z9 〈λλ〉

Table 2. The asymptotically free representations of SU(6) to SU(8). For details see the caption of
table 1. Notice that the first non-vanishing condensate in the representation (0, 0, 1, 0, 0) of SU(6)
is a 4-fermion operator since the fermion bilinear vanishes identically for group theory reasons,
see [9, 31].

The exceptional cases discussed above give us an insight into the special role of the
BC anomaly compared to the traditional anomalies Zdχ2TR

[U(1)B]2 and Zdχ2TR
[gravity]2. We

argue that it is the BC anomaly that lurks deep in the IR and demands the existence of
multiple vacua. In section (3) we put this hypothesis into test by studying the same theory
on a small circle. This setup enables us to perform semi-classical calculations and examine
various phenomena that are rather difficult, if not impossible, to understand in the strong-
coupling regime. In particular, we will show that it is the BC anomaly that influence the
IR dynamics, while the Zdχ2TR

[U(1)B]2 anomaly is the variation of a local action and is
matched by fiat, but otherwise does not influence the IR dynamics.

Before delving into the analysis on the circle, let us show how the BC anomaly is
matched in 4-dimensions deep in the IR. As the condensate forms, domain walls will inter-
polate between the degenerate vacua. Let a(3) be the 3-form field that couples to the domain
wall such that

∮
a(3) ∈ 2πZ and the integral is over 3-cycles. Then, one can write down the
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following 5-dimensional Wess-Zumino-Witten term that matches the anomaly in the IR:

SWZW =
∫
W
dω(0)∧

[
da(3) − N

8π2B
c(2) ∧Bc(2) + dimR

8π2TR

[
FB − nBc(2)

]
∧
[
FB − nBc(2)

]]
.

(2.11)
Under a Zdχ2TR

transformation we use
∮
dω(0) ∈ 2πZ and find e−iδSWZW ∈ ZTR . A closer

examination of the action (2.11) reveals some important information about the IR physics
that cannot be seen without the BC anomaly. As we discussed above, the 2-form field
transforms under the 1-form gauge field λ(1) as: Bc(2) → Bc(2) + dλ(1). This, in turn,
demands that the 3-form field transforms as

a(3) → a(3) + N

2πB
c(2) ∧ λc(1) + N

4πλ
c(1) ∧ dλ(1) , (2.12)

which indicates that the Z(1)
N 1-form symmetry lurks deep in the IR and affects the do-

main wall dynamics. Let us contrast this behavior with the traditional Zdχ2TR
[U(1)B]2

anomaly. Here, all we need to do is to turn off Bc(2) in (2.11). Then, we still find that
e−iδSWZW ∈ ZTR . However, the 3-form field that couples to the domain wall does not
transform under U(1)B or Zdχ2TR

; the Zdχ2TR
[U(1)B]2 anomaly is matched trivially.

Although our analysis in 4 dimensions might sound like an academic exercise due to the
lack of any control on the strong dynamics, in the next section we show how our reasoning
becomes manifest once we push the theory into its weakly-coupled regime.

3 Vector-like theories on R3 × S1
L

3.1 Perturbative aspects

In this section we study the vector-like theories by compactifying the x3 direction on a
small circle S1

L with circumference L and demand that Λ, the strong coupling scale of the
theory, is taken such that LΛ � 1. In addition, the fermions obey periodic boundary
conditions on S1

L. This setup guarantees that the theory enters its semi-classical regime,
and hence, we can use reliable analytical methods to analyze it. We say that the theory
lives on R3 × S1

L. Further, the analysis of the theory simplifies considerably if we force
it into its center-symmetric point (more on that will be discussed below). This can be
achieved either by adding a double-trace deformation

LDT =
∑
j

cj
∣∣∣trF (eij ∮ A3

)∣∣∣2 , (3.1)

with large positive coefficients ci, or by adding massive adjoint fermions with mass ∼ L−1.
Both of these two alterations to the theory neither change its global symmetries nor its
’t Hooft anomalies. However, we note that, depending on R, adding adjoint fermions
might not achieve the goal of stabilizing the theory at the center symmetric point, as was
discussed in details in [32].

This construction was considered before in a plethora of works, and we refer the reader
to the literature for more details, see [33] for a review. Here, it suffices to say that the theory
completely abelianizes at the center-symmetric point: SU(N) breaks down spontaneously
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to the maximal abelian subgroup U(1)N−1. Now, all fields that appear in the low-energy
effective Lagrangian are valued in the Cartan subalgebra space, which we label by bold face
symbols. At energy scales much smaller than the inverse circle radius we dimensionally
reduce the theory to 3 dimensions with effective Lagrangian:

L3 = − L

4g2FµνF
µν − b(0)

8π2 ε
αµν∂αΦ · Fµν + 1

2g2L
∂µΦ∂µΦ + V (Φ) + L3,f , (3.2)

where µ, ν = 0, 1, 2 and in our notation, for example, Φ = (φ1, φ2, . . . , φN−1). The field
Φ is the gauge field holonomy in the S1

L direction: LA3 ≡ Φ. The second term is the
4-dimensional topological term dimensionally reduced to 3 dimensions. As we promised
above, we traded the θ angle for the background field b(0) of the discrete chiral symmetry.
The potential V (Φ) is the Gross-Pisarski-Yaffe (GPY) potential [34], which results from
summing towers of the Kaluza-Klein excitations of the gauge field, the R fermions, and the
massive adjoint fermions. We always force V (Φ) to be minimized at the center-symmetric
point either by adding massive adjoint fermions or double-trace deformation. The center-
symmetric value of Φ is

Φ0 = 2πρ
N

, (3.3)

where ρ = ∑N−1
a=1 wa is the Weyl vector and wa are the fundamental weights. See the

discussion immediately before (3.15) for more comments on the meaning of the center-
symmetric vacuum. The holonomy fluctuations about Φ0 have masses of order ∼ g

L , and
thus, we can neglect them whenever we are interested in energies much smaller than g

L .
The U(1)N−1 gauge fields Fµν are given, as usual, by Fµν = ∂µAν−∂νAµ. Both dΦ and F
satisfy the quantization conditions

∮
dΦ ∈ 2παaZ and

∮
F ∈ 2παaZ, where the integrals

are taken respectively over 1- and 2-cycles, for all simple roots αa, a = 1, 2, . . . , N −1. The
simple roots have length α2

a = 2 and satisfy the relation αa ·wb = δab.
Finally, we comment on the fermion term in (3.2). The 3-dimensional fermion La-

grangian is given by (here we consider the Lagrangian of ψ. An identical Lagrangian holds
for ψ̃)

L3,f = i
∑
µ∈R

∑
p∈Z

ψ̄µp

[
σ̄µ (∂µ + iAµ · µ) + iσ̄3

(2πp
L

+ µ ·Φ
L

)]
ψµp , (3.4)

where µ are the weights of R and p is the Kaluza-Klein index. The effective 3-dimensional
fermion mass can be readily found from (3.4): Mp ,µ = |2πpL + µ·Φ

L |. This mass has to
be non-vanishing for every non-zero value of µ, otherwise the low-energy U(1)N−1 gauge
theory becomes strongly coupled, which in turn, invalidates any semi-classical treatment.
Yet, in certain situations, depending on R, nonperturbative effects (these are monopole
instantons and/or their composites) can give the fermions a small 4-dimensional Dirac
mass, rendering the theory IR safe. Alternatively, we can also turn on a holonomy of
U(1)B, which ensures that all the fermions are massive with mass ∼ L−1. To this end, we
decompose the 4-dimensional U(1)B 1-form background field as

V (1) = V
(1)

3D +
(
κ

L
+ V

(0)
S1
L

)
dx3

L
, (3.5)
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where V (1)
3D is the 1-form background field in R3, κ

L is the U(1)B holonomy in the S1
L

direction, and V (0)
S1
L

are the holonomy fluctuations. Turning on κ modifies the 3-dimensional
fermion mass to Mp ,µ = |2πpL + µ·Φ−κ

L |, and now all the fermions are massive with mass
∼ L−1.

3.2 The dual Lagrangian

We shall investigate the realization of the symmetries as well as the BC anomaly on R3 ×
S1
L in the semi-classical regime deep in the IR. In order achieve this goal we need to

utilize a dual (magnetic) description. To this end, we introduce the dual photon σ as a
Lagrange multiplier that enforces the Bianchi identity εαµν∂αFµν = 0. We augment the
Lagrangian (3.2) with the term 1

4π ε
αµνσ ·∂αFµν and then vary the combination with respect

to Fµν to find:

Fµν = − g2

2πLεµνα
[
∂ασ + b(0)

2π ∂
αΦ
]
. (3.6)

Next, we break Φ into two parts: the vacuum Φ0 and the fluctuations around it ϕ such
that Φ = Φ0 +ϕ . Substituting (3.6) into (3.2) we then find

L3 = g2

8π2L

(
∂ασ + b(0)

2π ∂αϕ
)
·
(
∂ασ + b(0)

2π ∂
αϕ

)
+ 1

2g2L
∂αϕ ·∂αϕ+V (Φ) +L3,f . (3.7)

The domain of σ can be determined as follows. The integral of dσ over 1-cycles is equal to
the electric charge enclosed by the cycles. Since all the electric charges are allowed probe
charges when the group is SU(N), then the domain of σ is the finest lattice, which is the
weight lattice:

∮
dσ ∈ 2πwaZ for all a = 1, 2, . . . , N − 1.

Under a discrete chiral transformation b(0) transforms as b(0) → b(0) + 2π, Then, the
invariance of (3.7) under Zdχ2TR

demands that the dual photons shift as

σ → σ −ϕ−C , (3.8)

where C is a constant vector that belongs to the weight lattice, which is allowed owing to
the fact that it is the derivatives of σ and ϕ that appear in (3.7). The constant C can be
unambiguously determined once we take the nonperturbative effects into account.

3.3 Nonperturbative aspects

The theory also admits monopole-instantons. The action of the lowest Kaluza-Klein
monopoles (p = 0 monopoles, where p is the Kaluza-Klein index) is

Sαa = 4π
g2 αa ·Φ0 (3.9)

for every simple root αa, a = 1, 2, . . . , N − 1. There is also one extra monopole instanton
that corresponds to the affine root αN = −∑N−1

a=1 αa with an action SαN = 8π2

g2 + 4π
g2αN ·Φ0.

Module O(1) normalization coefficients, the ’t Hooft vertex associated with each monopole,
including the affine monopole a = N , is given by:

Ma = e

(
− 8π2

g2 +ib(0)
)
δNa

e
− 4π
g2αa·Φ0e

iαa·
(
σ+ b(0)

2π ϕ

)
(ψψ̃)Ia , a = 1, 2, . . . , N . (3.10)
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The exponent Ia is the Callias index that counts the number of the fermion zero modes in
the background of the monopole [35, 36]. The index of the lowest Kaluza-Klein monopole
is given by [32, 37]:

Ia =
∑
µ

⌊Φ0 · µ
2π

⌋
αa · µ , a = 1, 2, . . . , N − 1 , IN = 2TR −

N−1∑
a=1

Ia . (3.11)

Each monopole vertex has to respect the global symmetries. First, it is evident that
Ma is invariant under U(1)B. Next, in order to respect the invariance under Zdχ2TR

we
express the constant C in (3.8) as a general vector in the weight lattice as

C = 2π
N−1∑
a=1
Kawa . (3.12)

Then, the invariance of each vertex under Zdχ2TR
fixes the values of Ka:

Ka = Ia
TR

. (3.13)

As we shall discuss below, in some cases the lowest Kaluza-Klein monopoles are in-
sufficient to construct the full low-energy effective potential V (σ). Thus, we need to turn
into the first excited monopoles. Their actions can be obtained from (3.9) by replacing
Φ0 → Φ0 + παa [38]:

Sp=1
αa = 8π2

g2 + 4π
g2 αa ·Φ0 . (3.14)

This action suggests that a p = 1 monopole can be thought of as a composite configuration
of the original monopole plus a Belavin-Polyakov-Schwarz-Tyupkin (BPST) instanton.4
The number of the fermion zero modes in the background of the excited monopoles can be
read from (3.11) after adding TR extra zero modes of ψ and TR extra zero modes of ψ̃.

The proliferation of monopoles or monopole-composites will lead to confinement and
chiral symmetry breaking. Several examples that illustrate the important points of this
paper will be worked out in later sections.

3.4 The BC anomaly on R3 × S1
L

Next, we turn on a background field of the Z(1)
N center symmetry and examine the BC ’t

Hooft anomaly on R3 × S1
L. This can be achieved by recalling the exact same procedure

we followed in 4 dimensions. Here, however, we can entertain the fact that all fields are
valued in the Cartan subalgebra space, and at energies much smaller than L−1 we need to
follow the degrees of freedom that enter the semi-classical analysis. We adopt the exact
same procedure used in [27] to study the center-symmetry in super Yang-Mills theory.

To this end, we enlarge the abelian group U(1)N−1 to U(1)N by going to the RN

basis [39]. The wights of the defining representation in the RN basis are νA = eA −
4The action of a BPST instanton is 8π2

g2 and can be thought of as the composite of all the monopoles
that are charged under the simple and affine roots. Therefore, a BPST instanton has a total number of
2TR fermion zero modes.

– 14 –



J
H
E
P
0
3
(
2
0
2
1
)
1
9
1

1
N

∑N
A=1 eA, for A = 1, 2, . . . , N , and {eA} are basis vectors spanning the RN space, while

the simple roots are given by αA = eA − eA+1, for A = 1, 2, . . . , N . Let F̃A be the U(1)N
fields in this basis. Then, the periods of F̃A are given by

∮
F̃A = 2πZ, where the integration

is performed on 2-cycles. In this basis we have one spurious degree of freedom, which can
be eliminated by imposing the following constraint on the U(1)N fields: ∑N

A=1 F̃
A = 2πn,

for some integer n. Everything we have said about F̃A also applies to ϕ̃A, the U(1)N gauge
field component along S1

L.
Upon compactifying the theory on S1

L, the 4-dimensional Z(1)
N symmetry decomposes

into a 1-form symmetry that acts on Wilson’s loops on R3 (here we need to compactify R3

on a large 3-torus) and a 0-form symmetry that acts on Polyakov loops wrapping S1
L. The

latter vanish in a center-symmetric vacuum trF
[
eiΦ0·H

]
= 0, where H are the generators

of the Cartan subalgebra. Thus, the background fields of the Z(1)
N symmetry decompose as:

Bc(2) = B
c(2)
3D +B

c(1)
S1
L
∧ dx

3

L
, Bc(1) = B

c(1)
3D +B

c(0)
S1
L

dx3

L
, (3.15)

such that the conditions NBc(2)
3D = dB

c(1)
3D and NB

c(1)
S1
L

= dB
c(0)
S1
L

are obeyed. The var-

ious 0-form and 1-form fields obey the quantization conditions
∮

2−cycle dB
c(1)
3D ∈ 2πZ,∮

1−cycles dB
c(0)
S1
L
∈ Z,

∮
2−cycleB

c(2)
3D ∈

2π
N Z,

∮
1−cyclesB

c(1)
S1
L
∈ 2π

N Z.
Next, we use the fact that the 4-dimensional combination F̃ − Bc(2) is invariant un-

der the 1-form gauge transformation via the 1-form field λ(1). Thus, we can write a 3-
dimensional effective field theory, which is invariant under the same λ(1) transformation,
by replacing each component of F by F̃A−Bc(2)

3D and each component of dϕ by dϕ̃A−Bc(1)
S1
L

in (3.2). Thus, we obtain the bosonic part of the Lagrangian(we suppress V (Φ)):

Lbosonic
3D = − L

4g2

N∑
A=1

(
F̃Aµν −B

c(2)
µν,3D

) (
F̃µν,A −Bµν,c(2)

3D

)

− b
(0)

8π2 ε
αµν

N∑
A=1

(
∂αϕ̃

A −Bc(1)
α,S1

L

)(
F̃Aµν −B

c(2)
µν,3D

)

+ 1
2g2L

N∑
A=1

(
∂αϕ̃

A −Bc(1)
α,S1

L

)(
∂αϕ̃A −Bα,c(1)

S1
L

)
. (3.16)

Next, we need to eliminate the spurious degrees of freedom contained in F̃A and dϕ̃A,
and in the same time use a duality transformation to write the effective action in terms
of the U(1)N dual photons σ̃A. Both of these requirements can be implemented using the
following auxiliary Lagrangian:

Lauxilary = − 1
4π

N∑
A=1

ελµν∂ασ̃
AF̃Aµν + 1

4πε
µναuα

N∑
A=1

(
F̃Aµν −B

c(2)
µν,3D

)
,

+ 1
4πvα

N∑
A=1

(
∂αϕ̃A −Bα,c(1)

S1
L

)
, (3.17)
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where uα and vα are the two Lagrange multipliers used to impose the two constraints:

N∑
A=1

(
F̃Aµν −B

c(2)
µν,3D

)
= 0 ,

N∑
A=1

(
∂αϕ̃A −Bα,c(1)

S1
L

)
= 0 . (3.18)

Then, we substitute (3.18) into (3.16) and vary Lbosonic
3D + Lauxilary with respect to F̃Aµν to

find:

F̃Aµν = B
c(2)
µν,3D −

g2

2πLεµνα
(
∂ασ̃A − uα + b(0)

2π

(
∂αϕ̃A − 1

N

N∑
B=1

∂αϕ̃B
))

. (3.19)

Finally, we substitute (3.19) into Lbosonic
3D + Lauxilary to obtain the dual Lagrangian:

Lbosonic, dual
3D = g2

8π2L

N∑
A=1

∣∣∣∣∣∂ασ̃A − 1
N

N∑
B=1

∂ασ̃
B + b(0)

2π

(
∂αϕ̃−

1
N

N∑
B=1

∂αϕ̃
B

)∣∣∣∣∣
2

+ 1
2g2L

N∑
A=1

∣∣∣∣∂αϕ̃A −Bc(1)
α,S1

L

∣∣∣∣2 − 1
4π

N∑
A=1

εαµν∂ασ̃
AB

c(2)
µν,3D . (3.20)

This is the exact same Lagrangian that was obtained in [27] for super Yang-Mills theory.
As we show below, this Lagrangian needs to be augmented with the fermionic part to
match the full BC anomaly.

The last term in (3.20) is going to play the main role in what we do next. In terms of
differential forms, this term reads:

Lbosonic, dual
3D ⊃ − 1

2π

N∑
A=1

dσ̃A ∧Bc(2)
3D . (3.21)

Under a Zdχ2TR
transformation dσ̃A and b(0) transform as dσ̃A → dσ̃A − dϕ̃A, b(0) → b(0) +

2π (see (3.8)), and only the term − 1
2π
∑N
A=1 dσ̃

A ∧ Bc(2)
3D contributes to the variation of

Lbosonic, dual:
eiδS

bosonic, dual
3D = e−

i
2π
∑N

A=1

∫
dϕ̃A∧Bc(2)

3D . (3.22)

Then using the second constraint in (3.18), ∑N
A=1 dϕ̃

A = NB
c(1)
S1
L

, along with the quantiza-

tion conditions of Bc(2)
3D and Bc(1)

S1
L

we find

eiδS
bosonic, dual
3D = e−

i2π
N . (3.23)

The above manipulations show that the Z(1)
N background lurks deep in the IR and that

it couples to the dual photons. This, however, does not capture the full BC anomaly; we still
need to compute the variation of the fermions action in the Z(1)

N and U(1)B backgrounds.
This can be obtained from the U(1)B topological charge density, the second equation
in (2.6). Substituting (3.5) and (3.15) into (2.6) and integrating by parts along the S1

L

direction, we obtain the fermion contribution to the variation of the action:

δSfermionic = 2π
TR

dimR
4π2

∫ (
dV

(1)
3D − nB

(2)
3D

)
∧
(
dV

(0)
S1
L
− nB(1)

S1
L

)
. (3.24)
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Using the quantization condition 1
4π2

∫
dV

(1)
3D ∧ dV

(0)
S1
L
∈ Z along with the quantization

conditions of B(2)
3D and B(1)

S1
L

we find:

δSfermionic = 2πdimR
TR

(
n

N
+ `

)2
, ` ∈ Z , (3.25)

and finally we recover the BC anomaly on R3 × S1
L:

eiδS
bosonic, dual
3D +iδSfermionic = e

i 2π
TR

(
TR(1− 1

N )+dimR( nN +`)2
)
, (3.26)

which is exactly (2.7), the BC anomaly computed directly on R4.
We conclude the following:

• Our analysis shows hat the Z(1)
N center acts non-trivially on the dual photons and,

when accompanied with the contribution from U(1)B, it produces the correct BC
anomaly deep in the IR. This suggests that the BC anomaly is seen and influence the
dynamics at all scales.

• Unlike the BC anomaly, which makes use of the higher-form symmetries, the tradi-
tional ’t Hooft anomalies are variations of local terms in the action when the theory
is compactified on a small circle. This is clear from the treatment of δSfermionic

above. Switching off the center background B(2)
3D and B(1)

S1
L
, we immediately lose the

term (3.21) and find δSbosonic, dual = 0 and δSfermionic = dimR
TR

× integer. This is
exactly the Zdχ2TR

[U(1)B]2 traditional ’t Hooft anomaly. We see right away that this
variation of the action is a phase that does not talk to the photons; the dynamics
on R3 × S1

L have to obey the BC anomaly, while it is transparent to the traditional
0-form anomaly. The latter is obeyed by fiat. This observation generalizes the obser-
vation that appeared first in [27]: the cubic- and mixed-U(1) anomalies are matched
by local background-field-dependent topological terms instead of chiral-Lagrangian
Wess-Zumino-Witten terms and the 1-form center symmetry talks directly to the
dual photons.

• It is also important to emphasize, as is well known, that matching the BC anomaly on
R3×S1

L precludes a unique gapped vacuum. Such vacuum leaves δσ̃A = 0, and hence,
δSbosonic, dual = 0, a variations that does not match the anomaly. Therefore, the
anomaly implies that either there exist massless dual photons in the spectrum and/or
the discrete chiral symmetry has to break spontaneously, which yields multiple degen-
erate vacua. We shall see examples of these two possibilities in the following sections.

3.5 The BC anomaly on R2 × S1
L × S1

β

In this section we continue our investigation of the BC anomaly as we heat the semi-
classical theory that lives on R3 × S1

L. Turning on a finite temperature T is equivalent
to compactifying the time direction x0 on a circle S1

β of circumference β = 1
T and giving

the fermions anti-periodic boundary conditions on S1
β . We say that the theory lives on
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R2×S1
L×S1

β . In order to follow the anomaly from R3×S1
L to R2×S1

L×S1
β , we decompose

the background fields Bc(2)
3D and Bc(1)

3D into fields in the R2 and S1
β directions:

B
c(2)
3D = B

c(2)
2D +B

c(1)
S1
β
∧ dx

0

β
, B

c(1)
3D = B

c(1)
2D +B

c(0)
S1
β

dx0

β
, (3.27)

such that the constraintsNBc(2)
2D = dB

(1)
2D andNBc(1)

S1
β

= dB
c(0)
S1
β

are obeyed. The background

fields obey the quantization conditions
∮
dB

(1)
2D ∈ 2πZ,

∮
B
c(2)
2D ∈

2π
N Z,

∮
dB

c(0)
S1
β
∈ 2πZ, and∮

B
c(1)
S1
β
∈ 2π

N Z. At finite temperature we may dimensionally reduce the 3-dimensional
effective field theory down to 2 dimensions. In particular, using (3.27), the term (3.21),
that contains the anomaly, reduces to:

Lbosonic, dual
2D ⊃ − 1

2π

N∑
A=1

dσ̃A ∧Bc(1)
S1
β
, (3.28)

where we have neglected the dual photons derivative in the time direction. Physically,
this corresponds to keeping only the zeroth Kaluza-Klein mode of the dual photons and
neglecting the higher modes. Under a discrete chiral transformation the dual photons
transform as dσ̃A → dσ̃A − dϕ̃A and the variation of the 2 dimensional action becomes

δLbosonic, dual
2D = 1

2π

N∑
A=1

dϕ̃A ∧Bc(1)
S1
β
. (3.29)

Further, we use the second constraint in (3.18), ∑N
A=1 dϕ̃

A = NB
c(1)
S1
L

, to find the variation
of the 2-dimensional action

δSbosonic, dual
2D = −N2π

∫
B
c(1)
S1
L
∧Bc(1)

S1
β

= −2π
N
, (3.30)

which is identical to the variation of the 3-dimensional dual action. This part of the
anomaly combines with the contribution from the fermionic action (3.25) to reproduce the
BC anomaly (3.26) at finite temperature.

The important observation is that the 2-dimensional dual photons still couple to the
Z(1)
N center background field, and hence, we expect the anomaly to play a role even at

finite temperatures. Nonetheless, there is an extra layer of complication in 2 dimensions,
thanks to the compact nature of σ. In 2 dimensions σ have both momentum modes, which
are responsible for the logarithmic Coulomb-like force between the monopole instantons,
and winding modes. The latter are monodromies of σ with a UV cutoff of order 1

L .
These monodromies are the W-bosons and heavy fermions that were not captured by the
low energy effective field theory in 3 dimensions. As we crank up the temperature and
approach the critical temperature of the phase transition/crossover, the heavy excitations
inevitably pop up from vacuum and participate in the dynamics alongside with monopoles
and other composite instantons. Eventually, one needs to deal with an electric-magnetic
Coulomb gas, which, in general, is a strongly-coupled problem.
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Figure 1. The molecular instantons in the theory on R3 × S1
L. From left to right they are the

bions, triplets, and higher composites. The latter composite is an example of molecular instanton
in SU(8) with fermions in the 2-index antisymmetric representation. It consist of a p = 1 Kaluza-
Klein monopole attached to 6 lowest-order monopoles. The 12 zero modes of the central monopole
are soaked up by the orbital monopoles (moons). There is a repulsive Coulomb force between the
central monopole and the its moons, which is balanced by the attractive force due to the exchange
of the zero modes. The moons, on the other hand, repel each other since they are all charged under
the same root, and thus, they are stabilized under this repulsive force.

In this paper we avoid delving into the anomaly matching in the fully-fledged electric-
magnetic Coulomb gas, leaving it for a future investigation. In the next section, however,
we give an example that illustrates the idea of the BC anomaly matching at a finite tem-
perature given that we stay well inside the semi-classical weakly-coupled regime. Then, we
comment on the fate of this anomaly at very high temperatures.

4 Examples on R3 × S1
L: the 2-index (anti)symmetric fermions

In this section we consider several examples on R3×S1
L and on R2×S1

L×S1
β that illustrate

the main points of this work: it is the BC anomaly that is responsible for communicating
the UV information to the deep IR. In particular, we found from our analysis in section 2.3
that the BC anomaly is stronger than the traditional Zdχ2TR

[U(1)B]2 anomaly. Then, we
showed in the previous sections that it is the BC anomaly that couples to the dual photon,
and thus, one expects that it controls the breaking pattern of the chiral symmetry.

4.1 SU(4k) with 2-index symmetric fermions

We work in the center-symmetric vacuum Φ0 = 2πρ
4k , which can be attained by using a

double-trace deformation. The monopole vortices are given by (see (3.10); here we neglect
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the holonomy fluctuations ϕ and set b(0) = 0):

Ma = e
− 2π2
kg2 eiαa·σψψ̃ , a 6= 2k or 4k , M2k = e

− 2π2
kg2 eiα2k·σ

(
ψψ̃
)2

,

M4k = e
− 2π2
kg2 eiα4k·σ

(
ψψ̃
)2

. (4.1)

Since all the monopoles are dressed with fermion zero modes, they cannot lead to confine-
ment or breaking of the chiral symmetry. Yet, molecular instantons that are composed of
two monopoles (bions) [40, 41] or three monopoles (triplets) [42] can form, see figure 1. The
stability of these molecules is attributed to the fact that the total potential seen by the two
or three monopoles admits a stable equilibrium point. This is ascribed to the competition
between the repulsive Coulomb force from the dual photons and the attractive force from
the exchange of the fermion zero modes (we say that the fermions zero modes are soaked
up). In particular, notice that αa ·αb = 2δa,b−δa,b+1−δa,b−1, and therefore, only monopole
and anti-monopole that are charged under neighboring simple roots can feel the repulsive
Coulomb force. The bions and triplets with the lowest fugacities are:

MaMa+1 ,1≤a<2k−1or2k+1≤a<4k−1 , M2k
(
M2k−1

)2
, M2k

(
M2k+1

)2
, (4.2)

M2k
(
M2k−1

)(
M2k+1

)
, M4k

(
M4k−1

)2
, M4k

(
M1

)2
, M4k

(
M1

)(
M4k−1

)
,

as well as their anti-bions and anti-triplets. The proliferation of bions and triplets generates
a potential of σ:

V (σ) = −e−
6π2
kg2 {cos(α2k−2α2k−1) ·σ+cos(α2k−2α2k+1) ·σ+cos(α4k−2α4k−1) ·σ

+cos(α4k−2α1) ·σ+cos(α2k−α2k−1−α2k+1) ·σ+cos(α4k−α4k−1−α1) ·σ}

−e−
4π2
kg2

∑
{1≤i<2k−1}∪{2k+1≤i<4k−1}

cos(αi−αi+1) ·σ . (4.3)

The triplets fugacity is exponentially suppressed compared to the bions fugacity and one
might be tempted to ignore the triplets. This, however, leaves some flat directions, i.e.,
massless photons,5 which are lifted once we take the triplets into account.

One can easily check that the potential admits a global minimum at σ = 0, and then
we can use the chiral transformation σ → σ − C, where C is given by (3.12), to obtain
the rest of the vacua:

σ0 = 2πn
4k + 2

2w2k +
4k−1∑

a=1,a 6=2k
wa

 , n = 0, 1, . . . , 4k + 1. (4.4)

As promised, there are 4k+2 distinct vacua, which are required to match the BC anomaly.

4.2 SU(4k) with 2-index antisymmetric fermions

We also work in the center-symmetric vacuum. The monopole vertices are given by:

Ma = e
− 2π2
kg2 eiαa·σψψ̃ , a 6= 2k or 4k , M2k = e

− 2π2
kg2 eiα2k·σ , M4k = e

− 2π2
kg2 eiα4k·σ ,

5Note, however, that massless photons can still match the BC anomaly.
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while the bions are

MaMa+1 , 1 ≤ a < 2k − 1 or 2k + 1 ≤ a < 4k − 1 . (4.5)

The proliferation of the bions and the two monopolesM2k andM4k leaves flat directions,
and in order to lift them one needs to take into account higher Kaluza-Klein monopoles.

Before discussing these higher order corrections, one wonders about the possibility of
the formation of bion-like compositions between not neighboring monopoles, e.g., bions of
the form MaMa+2 that could lift the flat directions. The problem, though, is that such
compositions are unstable against the attractive force due to the exchange of fermions
zero modes. Also, the absence of any kind of Coulomb interactions between the monopoles
(remember that αa ·αa+2 = 0) eleminates the possibility of analytically continuing the cou-
pling constant g, i.e., sending g → −g, that could generate a repulsive coulomb force to com-
pete with the fermion attractive force. This is the famous Bogomolny Zin-Justin analytical
continuation prescription that has been used in several works to stabilize bion-like objects,
see, e.g., [43]. In summary, we do not expect bions of the typeMaMa+2 to form in vacuum.

Now, we need to go to the next-to-next-to-leading order in fugacity and consider the
higher Kaluza-Klein monopoles (3.14). A typical example of a complex molecule that can
lift the flat directions is composed of a p = 1 Kaluza-Klein monopole charged under α4k,
which has a total of 8k − 4 fermion zero modes, and 4k − 2 anti-monopoles charged under
the root −α1:

Mp=1
4k

[
M1

]4k−2
, (4.6)

see figure 1. The proliferation of the monopoles, bions, and higher composites generates
masses for all photons and leads to the full breaking Zdχ8k−4 → Z2. The theory admits 4k−2
distinct vacua:

σ0 = 2πn
4k − 2

4k−1∑
a=1,a 6=2k

wa , n = 0, 1, . . . , 4k − 3. (4.7)

4.3 The BC anomaly at finite temperature

In this section we attempt to partially answer the question about the BC anomaly matching
at finite temperature. As we pointed out in section 3.5, we can reduce the problem to 2
dimensions by compactifying the time direction on a circle and keeping only the zero mode
of the dual photons. Definitely, if the temperature is high enough, then the W-bosons
and heavy fermions will be liberated and their effects, in addition to the monopoles and
composite instantons, have to be taken care of. The problem, then, reduces to an electric-
magnetic Coulomb gas, which in general is a strongly-coupled system. This Coulomb gas
was considered before in the SU(2) and SU(3) cases with adjoint fermions, see [44–48].
Non of these works, however, addressed the issue of anomaly matching. Here, we do not
provide a full solution to the anomaly-matching problem at all temperatures, which will
be pursued somewhere else. Let us, at least, show how the BC anomaly is being matched
as we crank up the temperature and stay in the weakly-coupled regime. We comment on
the fate of the BC anomaly at very high temperatures at the end of the section.
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From here on we work in 2 dimensions. The general structure of V (σ) takes the form
of a collection of cosine terms, see e.g., (4.3), V (σ) = ∑

m ym cos(Qm ·σ), where ym is the
fugacity of the instanton, Qm, is its charge, and the sum runs over the various instanton
types: monopoles, bions, etc. One, then, expands the cosine terms and write the grand
canonical partition function as:

Z =
∑
m

∞∑
Nm=0

yNmm
Nm!

∫ Nm∏
jm=1

d2~xjme
−
∫
L2 , (4.8)

where
L2 = g2

8π2LT
∂iσ · ∂iσ +

∑
m

Jm · σ . (4.9)

The latin letter i = 1, 2 labels the R2 space and Jm = Qmδ
(2)(~x − ~xm) is the current

source of an instanton of charge Qm located at ~xm. Then, we can solve the Gaussian
system, ignoring the monodromies of σ since they correspond to heavy electric excitations
not accessible at low temperature, to find the potential energy between two sources:

V (~x1, ~x2) = −4πLT
g2 Q1 ·Q2 log T |~x1 − ~x2| . (4.10)

Next, we substitute this result into (4.9) to obtain the grand canonical partition function
of a magnetic Coulomb gas:

Z =
∑
m

∞∑
Nm=0

yNmm
Nm!

∫ Nm∏
jm=1

d2~xjme
4πLT
g2

∑
m,m′

∑
a 6=bQ

a
m·Qbm′ log T |~xa−~xb| , (4.11)

and we need to impose a neutrality condition on the gas to avoid IR divergences. In order to
understand what happens as we increase the temperature, we need to follow the fugacities
of the magnetic charges under the renormalization group flow. Let us consider a pair of
magnetic charges Qm and −Qm located at ~x1 and ~x2 and separated by a distance L. The
pair’s contribution to the partition function is

(
ym(a)
a2

)2 ∫
d2~x1d

2~x2

∣∣∣∣~x1 − ~x2
a

∣∣∣∣− 4πLT
g2 Qm·Qm

= y2
m(a)

(
L

a

)4− 4πLT
g2 Qm·Qm

, (4.12)

where a is a UV cutoff. Demanding the invariance of the left hand side under the renor-
malization group flow means:

y2
m(a)

(
L

a

)4− 4πLT
g2 Qm·Qm

= y2
m(aeb)

(
L

aeb

)4− 4πLT
g2 Qm·Qm

. (4.13)

Taking the derivative with respect to b and setting b = 0, we obtain the renormalization
group equations of the fugacities

dym
db

=
(

2− 2πLT
g2 Qm ·Qm

)
ym . (4.14)
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Figure 2. The critical temperatures of SU(8) with fermions in the 2-index symmetric represen-
tation. The directions of the arrows indicate the temperature range at which the fugacity of the
corresponding charge becomes relevant. The domination of magnetic (electric) charges is indicated
by black (red) arrows, while the temperature increases from left to right. At temperatures smaller
that T c(1)

triplet we have a magnetic plasma of bions and two types of triplet molecules. As we increase
the temperature above T c(1)

triplet one type of the triplets becomes irrelevant and decouples, i.e., the
system exhibits a BKT transition, leaving behind a single massless photon. As the temperature
exceeds T c(2)

triplet the second type of triplets also decouples (a second BKT transition) and now there
are 3 massless photons. As long as the temperature is kept below T

c(1)
µ the system stays in the semi-

classical regime. As we exceed this temperature both the electric and magnetic charges dominate
the plasma and the system enters a strongly-coupled regime, where, presumably, a phase transition
occurs in the range T c(1)

µ < T < T cbion.

Equation (4.14) determines the critical temperature above which the fugacity of a
certain magnetic charge becomes irrelevant:

T cm = g2

πLQm ·Qm
. (4.15)

Therefore, as we heat the system, magnetic charges with bigger Qm ·Qm decouple first.
This is the Berezinskii-Kosterlitz-Thouless (BKT) transition.

In oder to make sure that T cm is well within the semi-classical regime — so that we
can neglect the effect of the electric charges, hence, the renormalization group analysis we
performed above is justified — we need to compute the critical temperatures at which the
electric excitations, the W-bosons and heavy fermions, dominate the plasma. An electric
charge with mass M will have a fugacity given by the Boltzmann factor ye = e−

M
T , and

the electric potential between two charges is given by:

V (~x1, ~x2) = − g2

4πLTQ1 ·Q2 log T |~x1 − ~x2| . (4.16)

Then, we can repeat the above steps to find the renormalization group equations of the
electric fugacities:

dye
db

=
(

2− g2

8πLTQe ·Qe

)
ye , (4.17)
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from which we find the critical temperature above which the electric charges proliferate:

T ce = g2

16πLQe ·Qe . (4.18)

As expected, the bigger the electric chargeQe·Qe, the higher the critical temperature above
which it dominates the plasma, which is the exact opposite of the magnetic critical tempera-
ture. Staying inside the semi-classical, magnetically disordered, regime demands Tmc < T ec .

As an example, let us apply this treatment to SU(8) with fermions in the 2-index
symmetric representation. This theory contains two types of magnetic charge: the bions,
that carry charge Q = αa − αa+1, a = 1, 2, 5, 6, and triplets. There are also two types of
triplets: the first type, e.g., M4

(
M3

)2
has charge Q = α4 − 2α3, and the second type,

e.g., M4
(
M3

) (
M5

)
has charge Q = α4 − α3 − α5. Using the renormalization group

equation of the magnetic fugacities (4.14), we find 3 distinct critical temperatures:

T
c(1)
triplet = g2

14πL , T
c(2)
triplet = g2

11πL , T cbion = g2

6πL , (4.19)

which correspond, respectively, to the temperatures above which the first triplet, the second
triplet, and then the bions become irrelevant. Similarly, we use the weights of the 2-index
symmetric representation, the fact that the W-bosons carry charges valued in the root
lattice, along with the renormalization group equations of the electric fugacities to find 3
distinct critical temperatures:

T c(1)
µ = 3g2

32πL , T cW = g2

8πL , T c(2)
µ = 7g2

32πL , (4.20)

which correspond, respectively, to the temperatures at which a first group of heavy
fermions, the W-bosons, and then a second group of heavy fermions become relevant.

The 6 critical temperatures and the corresponding relevant excitations are depicted
in figure 2. At temperatures smaller than T c(1)

triplet the chiral symmetry is fully broken and
all the photons are massive. For temperatures in the range T c(1)

triplet < T < T
c(2)
triplet the first

type of triplets decouple leaving behind a vacuum with one flat direction, i.e., a single
massless photon.6 This can be envisaged by studying the effective potential (4.3) after
neglecting the first type of triplets. Then, as we crank up the temperature to the range
T
c(2)
triplet < T < T

c(1)
µ the second type of triplets decouple leaving behind 3 massless photons.

Interestingly, as long as the temperature is below T
c(1)
µ , the theory is still inside the semi-

classical, magnetically disordered, domain and the BC anomaly is always matched either
by the multiple vacua or by the massless photons. In this range of temperatures the BC
anomaly is not local in the sense that it is felt at arbitrarily long distances.

For temperatures above T c(1)
µ the electrically confined charges are liberated and it

becomes harder to analyze the system, a study that is left for the future. We recall
that the theory at hand has a genuine Z(1)

2 1-form symmetry acting on the Polyakov’s
loops on R3. We expect a confinement/deconfinement phase transition to occur in the

6Since we are in 2 dimensions, the appearance of massless photons in this context simply means the
occurrence of a BKT transition and the restoration of one or several of the U(1)7 magnetic shift symmetries.
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temperature range T c(1)
µ < T < T cbion. Presumably this is a first order transition given

the large number of degrees of freedom.7 Beyond the transition temperature the magnetic
charges become confined (irrelevant). Since it is the dual photons that lead to the long-
range force between monopoles, the fact that the magnetic charges become confined above
the phase transition temperature means that the BC anomaly becomes local; it is an overall
phase in the transition function that is now matched by fiat, but otherwise does not dictates
the dynamics in the deep IR. We also expect the discrete chiral symmetry to be restored
above the phase transition temperature.
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