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Highlights

e Equation of state (EOS) modelling is a powerful tool to estimate mineral properties at

conditions not accessed by high pressure and temperature experiments.

e Experimental errors, both random and systematic (e.g. pressure scale, functional
forms), data consistency and sparsity all contribute to the uncertainties in mineral

seismic properties.

e Conventional explicit EOSs which are assumed to follo.~ certain form provide a priori
information by fixing their functional form or pressure scai, thereby providing a biased

estimate of uncertainties.

e Neural networks based approach can implicitl: caj ture full uncertainties together with

highlighting data gaps and identifying dat~ inconsistencies.
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Abstract

Interpretation of information available from seismic . +a in terms of temperature and com-
position requires an understanding of the physic.il sroperties of minerals, in particular, the
clastic properties of candidate Earth mirci ls .t the relevant (here, lower mantle) pressure
and temperature. A common practise for t..» bulk elastic properties is to measure volume at
a range of pressures and temperatur.. us:ng experiments or computational methods. These
datasets are then typically fit to a nre-determined functional form, or equation of state to
allow computation of elastic p. "oerties at any other pressure or temperature. However, er-
rors, both random and syste.ma‘ic, limitations in the number of data and choice of pressure
marker and scale, as vl ~< different functional forms of equations of state, all contribute
to the uncertainties in ...neral seismic properties. In an attempt to present a more com-
prehensive view of these uncertainties, we use neural-network based techniques to infer the
relationship among: pressure, temperature, volume, bulk modulus, and thermal expansivity
of MgO. We illustrate our approach on experimental data, but an extension to ab initio data
is straightforward. The type of neural network used is called a Mixture Density Network

(MDN) which is a combination of a conventional feed-forward neural network and a mixture
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model that consists of Gaussian functions. MDNs are capable of approximating arbitrary
probability density functions, which allows us to compute the uncertainties in the predicted
equations of state. Since the networks interpolate locally between input samples, pressure-
volume-temperature relations are implicitly learned from data without imposing any explicit
thermodynamic assumptions or ad-hoc relationships. We use the partial derivatives of the
mapping between inputs (pressure and temperature) and output (volume) to compute the
isothermal bulk modulus and thermal expansivity. Flexibility of the MDNs allows us to
investigate the uncertainty due to certain data in one region of pressure-temperature space
without influencing the posterior probability density everywhere. Tn general, we find that the
elastic properties of MgO are well-constrained by experime. *<1 data. However, our study
highlights regions in which sparse or inconsistent data ic.d to poorly constrained elastic
properties, namely: at low pressure and high ten hera-ure (<25GPa and >1500 K), and
temperatures above 2700 K. While the former c~uditions are likely not important for the
Earth’s lower mantle, they are relevant in ~the: planetary bodies such as the Moon and
Mars. Comparison with conventional e mscion of state forms shows that assuming a cer-
tain functional form of the pressure-vo!mme-temperature relationship leads to potential bias
in uncertainty quantification, becaus: the uncertainties are then specific to the underlying
form. In combination with data .~ts of other lower mantle minerals, this technique should

improve uncertainty quantifica.’on in interpretations of seismic data.

Keywords: equations of sta'e; lower mantle; neural networks; periclase; MgO

1. Introduction

Information such as variation of wave speeds (e.g. [Dziewonski and Anderson| 1981, |Kennett
et al. [1995)), obtained by studying seismic data is crucial for understanding the internal
structure of the Earth. Various studies have reported the presence of seismically distinct
structures at multiple scales in the Earth’s mantle (e.g. |Garnero and Helmberger| |1998|

Ritsema et al.|[1999, Romanowicz 2008, Hernlund and Houser| 2008|, |Deschamps et al.|[2012]
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Garnero et al.[2016)). In order to relate those observed seismic structures to appropriate
temperature and composition, constraints from mineral physics on the sensitivity of seismic
wave speeds to these parameters are required (e.g. |Jackson|[1998, Trampert et al.|2001]).
The sensitivities have been used to infer the probable existence of chemical heterogeneities
within the mantle (e.g. [Trampert et al.[2004, |Dobrosavljevic et al.[2019, |Jackson and Thomas
2021). Other studies have tried to constrain the (average) mantle geotherm and composition
by combining seismic data and mineral seismic properties (e.g. |Cammarano et al.| 2003
2005a,b, \IDeschamps and Trampert|[2004, |Stixrude and Lithgow-Bertelloni||2005, [Matas et al.
2007, |Cobden et al.|2008|, 2009, |Simmons et al.| 2010, Khan et a. 2009, 2011}, 2013)). Mantle
convection simulations (e.g. |[Nakagawa et al.[2009, [2010} 20,2 |schuberth et al.|2009, [2012)
have also incorporated mineral properties to illustrate *1e w...portance of joint geodynamical-
mineralogical approaches to explain the seismic anc'mali s in the mantle. Mineral properties
can be derived from experimental or theoretical methods. In particular, information on the
density (or volume V), incompressibility and -igiaity are required to obtain the seismic wave
speeds in a material. Since it is not prac‘ic.l or feasible yet to perform experiments at each
pressure (P) and temperature (T) tha. may exist within the Earth, the convention is to use
equations of state (EOSs) to define t'e relationship among the thermodynamic variables P,
V and T (e.g. Duffy and Wang]1298), and hence be able to estimate mineral properties at

the conditions not accessed by ~xperiments.

However, a number c. 'ncoroainties are associated with this procedure. Experimental mea-
surements contain randuimn and systematic errors. The choice of pressure scale as well as
different functional forms of the EOS (e.g. Vinet EOS, third/fourth order finite strain
equations, also called Birch-Murnaghan EOSs, as well as the choice of Griineisen models)
all contribute to the uncertainties in mineral seismic properties. As a result, it becomes
challenging to determine realistic uncertainties for the interpretations which relate seismic

observations to temperature and composition.

In this study, we present an Artificial Neural Network (ANN) based approach to infer the
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pressure-volume-temperature (P-V-T) relationship of MgO, with a view to extend the appli-
cation to other major lower mantle minerals. We collate experimental P-V-T data for MgO
together with reported uncertainties, regardless of pressure scale or functional form used.
By applying ANN techniques, P-V-T relationships are implicitly learned from data without
any prior assumption on the functional form (or thermodynamic model) of the relationship.
Specifically, we use Mixture Density Networks to infer material properties and assess their
uncertainties. We compute the partial derivatives of inferred volume with respect to pres-
sure and temperature to extract the bulk modulus and thermal expansivity, respectively.
In order to test the feasibility of this approach, we train the n.tworks only on experimen-
tal data, although a combination of theoretical and experin.~~¢al data is also possible and

straightforward.

2. Equations of state: Uncertainties

Experimental approaches (e.g. [Vassiliou . »d Ahrens||1981] 'Yoneda (1990, [Utsumi et al.|1998|,
Duffy and Ahrens |1995, |[Fei 1999, Sinoy ~ikin and Bass|2000}, Sinogeikin et al./[2000, [Dewaele
et al.|2000, |Speziale et al.|2001} |Li et 11 |2006}, Dorogokupets and Dewaele|2007), Hirose et al.
2008, Murakami et al. 2009, [} ou. et al.|2010, Dorfman et al. |2012, |Ye et al.2017) have
been used to establish the P-V-T relationship of MgO. Experiments using a diamond anvil
cell (DAC), a multi-anvil pre;s (MAP) and shock compression have provided a huge number
of data covering a wide 1wnge of pressure and temperature. Laboratory measurements of
volume are done at a discrete set of pressure and temperature points. To cover the en-
tire pressure and temperature range of lower mantle requires pressure extrapolation and/or
interpolation of the measurements using a thermal equation of state. The most common
procedure (e.g. [Matas et al. 2007, Cobden et al.[2009) is to use an isothermal equation of
state with a Mie-Griineisen model for thermal pressure. In this approach, the total pressure
is considered to be the sum of a static pressure and a quasiharmonic thermal pressure. The

static pressure term describes the pressure-volume relationship at a reference temperature
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(usually 300 K). Different functional forms, such as third/fourth order finite strain and Vinet,
have been widely used to model isothermal compression curves often leading to different esti-
mates of fitting parameters or ambient mineral properties such as volume (V4), bulk modulus
(Kor) and pressure derivative of bulk modulus (K{,) at 0 GPa pressure (e.g. Speziale et al.
2001}, Dorogokupets and Dewaele| 2007}, Tange et al.2009). To compute temperature effects
(more precisely, thermal pressure) this framework uses a Griineisen parameter whose volume
dependence is uncertain ([Ye et al.[2017). Although anharmonic effects are very small com-
pared to the harmonic contribution to thermal pressure, some authors (e.g. |Dorogokupets

and Dewaele|2007) use models to account for this term as weil.

Additionally, the exact determination of pressure using a reli ble pressure scale in static high
pressure and temperature experiments is still a chall~mg,~g task. The ruby pressure scale of
Forman et al.[[1972 used in DAC experiments has bee.. largely calibrated (Liu and Bi|2016))
using both static and dynamic compression d.t., but still suffers from large experimental
uncertainties. Dynamic shock compression xporiments provide an absolute pressure scale.
But the correction for thermal effects can be very uncertain (e.g. Dorfman et al.|2012, Duffy
and Wang|[1998), especially at high s. ncn temperatures because the corresponding thermal
contribution also increases. Other \-iaely used pressure scales are gold, platinum and MgO
scales. A recent study by |Ye et °1.[2017shows the inter-comparison of those scales up to 140
GPa and 2500 K. They reno.* -= 1 to 4 GPa (sometimes systematic) differences in pressure
among those pressur: "cal~s. Although their study optimized different Au, Pt and MgO
pressure scales to make vnem agree within + 1 GPa, it concludes that the most preferred

form of EOS (and the pressure standard itself) remains uncertain.

Measurement errors, lack of an absolute pressure scale, and a variety of functional forms
of EOSs all contribute to the uncertainties in mineral seismic properties. Assuming one
particular EOS or pressure scale has the potential to produce biased uncertainty estimates
that are specific to the underlying functional form. In this study we train neural networks

to learn the implicit relation between pressure and temperature (as inputs) and volume,
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bulk modulus and thermal expansivity (as outputs). The results are entirely data-driven
without a priori selection of experiments or a functional form to explain the data. In this
way, we can infer the relative contributions of data sparsity versus prior conditioning to the
uncertainties. We can also map the level of certainty of the elastic parameters in pressure-

temperature space, which can be propagated into seismic interpretation.

3. The Mixture Density Network (MDN)

3.1. Background

Conventional neural networks (Hornik et al.|[[1989) are ge1.~ral function approximators, which
can be used to infer an (arbitrary nonlinear) relation.tup (Cybenko||1989)) between inputs
and targets/outputs. However, the conditional everace (i.e. the mean value of output
conditioned on input data) given by such netwc ks only provides limited information about
that relationship (Bishop|1994). Since ex¥per mental P-V-T data contain measurement errors,
and inferring P-V-T relationship us'ng those data is an inverse problem which can have
multiple solutions, naturally we seel "~ treat the problem in a probabilistic framework.
Hence, instead of having only “1e aserage volume output, we want to find the posterior
probability density function (na.® for volume. The pdf for volume at a given pressure and

temperature can be deno* ! ao

o(V|P,T). (1)

We can represent a general pdf by combining a conventional feed-forward neural network
with a Gaussian Mixture Model (GMM), which is then called a Mixture Density Network
(MDN) (Bishop |1994] and Bishop|(1995). The architecture of the MDN used in this study is
shown in Figure[I} and consists of a two layer feed-forward neural network and a GMM. The
GMM contains a mixture of a finite number of Gaussian kernels which are then weighted to
give the posterior pdf. The mean, standard deviation and weight of each Gaussian kernel

are parameterized by weights and biases of the feed-forward neural network, also known as
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network parameters ().

Application of MDNs in Earth Sciences ranges from inversion of surface wave data for global
crustal thickness (Meier et al. [2007a,b)), temperature and water content variations within
the transition zone (Meier et al.|2009), inference of Earth’s radial seismic structure (de Wit
et al.2013)), inversion of free oscillations (de Wit et al. 2014)), constraints on lower mantle
anisotropy (de Wit and Trampert|2015]), nonlinear petrophysical inversion (Shahraeeni and
Curtis 2011)), source inversion of strong-motion data (Kéaufl et al.|2016b)), inferring parame-
ters governing mantle convection (Atkins et al.2016) to trav-!-time tomography (Earp and
Curtis|2020). In our case, based on some experimental P-V T cata, we seek to approximate

the true posterior pdf (Equation [1)) by a parameterized Host. rior
p(VIP,T;a) =~ a(V P.1). (2)

In other words, for a given pressure and ten. erature, the posterior probability density for
volume is given by the pdf in expression || vhich is parameterized by the weights and biases
(at) of the feed-forward neural networn These parameters are learned during the network
training process (see Sub-section The posterior pdf (Equation [2)) can be expressed as

a linear combination of a fixed nw.-ber of Gaussian kernels (also see Figure [1)) as
M
L VIR T;0) =Y (P, T;0)pu(VIP, T; ) (3)
n=1

where M denotes the number of kernels used, and 7, are mixing coefficients which satisfy

M

> (P Tia) = 1. (4)

n=1

If the number of Gaussian kernels is M, then the total number of outputs from the feed-
forward network is K= 3M because each kernel is parameterized by its weight (), mean

(i, ) and standard deviation (o,). Equation |4 ensures that the posterior integrates to 1
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Hidden layer | Output layer | GMM p(V|P, T; )

two layer feed-forward neural networl- mixture model posterior pdf

Figure 1: Architecture of the Mixture Density Nety ~rk (MDN). A two layer feed-forward neural network
(left) is combined with a GMM (centre) to get th: pcsterior pdf (right). P & T denote the network inputs, h;,
are the hidden nodes, and yy, are the outputs ot [~ -forward network. Indices J and K represent the number
of hidden and output nodes, respectively. Fxcept fo. the input nodes, each circle represents a computational
node. Hidden layer nodes take a weighted suw. (with weights a;;, where i # 0) of input data (P & T') plus a
bias term (av;) as inputs and apply a sigruo ! activation function. The output layer nodes take a weighted
sum (weighted by o, where j # 0) of th cutputs from the hidden layer plus a bias (agx) and apply a
linear activation function to give the o 1itpu‘s yi. These outputs are related to the mean, standard deviation
and weight of each Gaussian in the CM.." (see for details). Each Gaussian in the GMM is then
weighted to give the final posterior p *.

making it a valid probakb lity density. ¢, in equation |3 are Gaussian kernels of the form

1 (V = (P, T 0))?

= o BT (5)

on(VIP,T; ) 20,(P, T; x)?

where u, and o, are the mean and standard deviation of Gaussian kernels in the GMM.

These parameters of the GMM are related to the outputs (yx) of the feed-forward network

(see details in [Appendix A)).
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3.2. MDN initialization and training

In order to find the appropriate weights and biases of the feed-forward neural network,

we train the MDN using a sub-set of the experimental P-V-T data. In fact, the total

experimental P-V-T data, shown in Figure 1999, [Jacobsen et al|[2008, [Fei et al

20044, [Fei et al.|2004bl, [Dewaele et al|2000, [Speziale et al.|[2001, [Utsumi et al.|[1998, [Fiquet]

et al|[1999] [Ye et al|2017] [Kono et al.|[2010], Dorfman et al|2012] [Zhang[2000, [Fiquet et al.
1996, Dubrovinsky and Saxenal[1997), [Hirose et al.|2008, [Litasov et al.|2005, Murakami et al.|

2012, [Sinogeikin and Bass 2000, |[Li et al.| 2006, and Fan et .1

2019), is divided into three

sets: training (70%), monitoring (20%) and test (10%) sets. Du.’ng training, the MDN takes
pressure and temperature from the training data and cutpits a pdf for volume according
to Equation |3l However, we need to decide on the i":i*1a! values of the network parameters
of the feed-forward neural network to compute the st output. We randomly draw the
input layer and hidden layer weights according to Gaussian distributions (see
for details). Once the MDN s 1iticlized and training has started, the difference
between the output and the target can be ¢ mputed according to an error function defined

in This function is also alied the loss function which is minimized iteratively

using the ADAM optimization mtu>d (see detailed algorithm in Kingma and Ba/2014). We

use TensorFlow (1.13.1) (Abaa. =t al.|2015) to construct, train and evaluate the MDN.

Overfitting is a general prop >rty of the maximum likelihood technique (Bishop|[1995). We
use a separate monitoring data set to monitor the error decay during training. We evaluate
the monitoring set error at the end of each iteration; if the monitoring error starts to increase
(i.e. the network starts to over-fit the training data) then we stop the training procedure and

save the last best trained model. This technique is also called the early-stopping technique.

It is known that the inverse problem can have multiple solutions (i.e. a range of network

parameters can possibly provide equally likely solutions). We train a number of independent

MDNs, and combine them by a weighted sum (e.g. Kéufl et al.|2016a). The weight of each

network is based on how well it performs on the test data which is not used during training.

9
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Figure 2: Experimental P-V-T data for MgO used in b’s s tudy (Feil[1999] [Jacobsen et al|[2008, [Fei et al.
20044, [Fei et al.|[2004b, Dewaele et al.]2000, [Spezial~ et «i./2001, [Utsumi et al|[1998, [Fiquet et al.|[1999| [Ye
let al]2017], [Kono et al|2010, [Dorfman et al|[2077], [ "ha..~J[2000, [Fiquet et al][1996, [Dubrovinsky and Saxena)
[1997], [Hirose et al.|[2008], Litasov et al|[2005] [M ral ami et al|[2012] [Sinogeikin and Bass|[2000] [Li et al.|[2006|
and [Fan et al|[2019) to train the MDNs. Data w’*h uncertainties from X-ray diffraction experiments (in
static high P-T, Brillouin spectroscopy and .ltrasonic interferometry) are collected for the analysis. Note:
uncertainties in collected experimental de.. arc not plotted because the scale would be inappropriate to
visualize them.

The performance is measured “y t..e same error function that we use to calculate training

and monitoring errors (for =tans see [Appendix BJ). In this way, the explicit dependence of

the posterior on the n~tw vk parameters can be avoided. The choice of the number of MDNs

depends on the problem -t hand. A rough estimate for a relatively simple problem (e.g. a

few inputs and a target/output) may lie in the range 10-20 (Kaufl et al.[2016a). However,

in order to compute the uncertainties in bulk modulus and thermal expansivity (details in
Section [5)) we train a large number of MDNs (10%). The number of hidden nodes to use in
each MDN are randomly selected from a pre-defined range which is 16-32. We conducted a
separate test (not shown here) to find the range that provides the lowest errors for the test
set. Similarly, we propagate the uncertainties in experimental data through the MDNs by

randomly perturbing the thermodynamic variables within the reported uncertainty range.

10
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3.3. Network performance

We use the test data set to examine how well the trained MDNs perform when a new datum
is presented. Since the test data are not used in network training, we can use them to
predict the output and subsequently compare with target data. In Figure (3| (top panel) the
predicted volume is compared with the target data. The MDNs predict pdfs for volume, and
for this comparison we compute the conditional mean volume (conditioned on inputs P &

T), instead of using the full posterior pdfs on volume, as

M

<VIPTia>=Y m(P,Ti0)pa( 21 o). (6)

n=1

This special case of MDN corresponds to the standard n.iral network output (Bishop [1994)),
i.e. only the feed-forward network with one volume ~atput. Equation [6] shows the mean
volume output for one MDN, and we calculate Jh> weighted sum (weights are chosen ac-
cording to the test set error as mentioned ,.evi~usly) of mean volumes from all MDNs. One
alternative to the conditional posterior m.an could be the posterior mode. However, the

posterior mode may be biased towar<~ cctain pressure scales which contain relatively more

data in the training set comparec. .~ voher scales.

In the region of high temperat. ves and low pressures (Figure|3| top panel) the trained MDNs
show lower resolving capci. , providing more uncertain volume predictions. We found that
this discrepancy in netw. vk predictions comes from the inclusion of specific training data
points (high temperature data of [Fiquet et al.[1996)) in those ranges. We note that |Fiquet
et al. 1996 did not include a thermal pressure term in their experiments and so it is likely
that the total pressure is underestimated. Moreover, the reported temperatures are likely
overestimated by about 20 to 50%. We trained another network excluding these data in our
training set and access the prediction performance (Figure , bottom panel). In doing so,
MgO volumes are resolved within the prior range of experimental data, also in the region

of low pressure and high temperature. This shows the networks’ ability to capture the

11
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Figure 3: Performance of MDNs. Target volui. @s ‘rom the test data set are compared with mean volumes
(Equation @ predicted by the MDNs. Top panel s. "ws mean volumes predicted by the MDNs trained with
all experimental data while bottom shows . sults with high temperature data of [Fiquet et al.[1996] and
Murakami et al2012] excluded (also see Sr.i ~eciion [1.2)). The pressure (left) and temperature (right) range
of the test data set is shown by colourbars o b >th panels. We note that the solid red line in the Figure refers
to a perfectly resolved network predict.on Foints located near this line are well resolved and those located
away represent more uncertain volur:e , redictions. The MDNs best predict the volumes in low temperature
regions and at simultaneous high t.mperature and pressure. However, including high temperature data
of [Fiquet et al.[1996| into training , rovides more uncertain volume predictions in the low pressure, high
temperature region. For two daw. points marked with “4” in both left and right plots in the top panel,
we plot posterior pdfs for vo'ume in Figure [d One datum is located in the low pressure, high temperature
region where the effect of 1."vh (~.perature data from [Fiquet et al.][1996]is significant and another away from
it.

underlying data consistency.

Low pressure data (approximately less than 30 GPa) are relatively dense up to about 1400 K
compared to higher temperatures. Similarly, most of the high pressure data, i.e. extending to
the lower mantle environment, come either from approximately between 1500 K to 2700 K or
from ambient temperature measurements. Besides that, the experimental data doesn’t cover

simultaneous high temperature and high pressure regions, for example temperatures greater

12



208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

than ~2700 K at pressures expected near the bottom of lower mantle. Hence, we expect
wider posterior probability density functions for volume in regions of sparse experimental

data coverage.

So far we have only shown the mean of the posterior pdf for volume. To illustrate more

clearly the effect of the high temperature data of Fiquet et al.|[1996 on the posterior pdf

at low pressure, high temperature, we take two data points from the test set (denoted by
‘+° in Figure , top panel). Both points are drawn at low pressures, but one is at high
temperature and located away from the solid line and anotl =~ at low temperature is close
to it. In Figure [] posterior pdfs at those points are show't. hey show a more uncertain
prediction for the high temperature, low pressure inptt. Once we remove [Fiquet et al.

1996 data from training (see Sub-section , the r~twrk predicts narrow posterior pdfs

showing less uncertainty (cf. including those in train.‘ng) in volume. Although excluding

Fiquet et al.|[1996) provides less uncertain volu v: j redictions, due to limited availability of

experimental data at high temperature a.a 'ow pressure (approximately >1500 K and < 25

GPa) the predicted posterior pdfs are stili -lightly wider than at similar temperatures and

high pressures (also see Sub-section aud [Appendix C.1J).
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Figure 4: Posterior pdfs for MgO volume (solid curves) for two data points from top panel of Figure
together with their target values (red dashed line) and conditional mean volume (black dashed line). Left:
inputs are 24.86 GPa and 300.19 K. The posterior pdf is narrow and uni-modal with the posterior mode
located close to the target value. Right: inputs are 1.36 GPa and 2116.03 K. The posterior pdf is broad
and multi-modal with target volume located away from the posterior modes. The smaller peak is the due to

experimental P-V-T data of [Fiquet et al.|[1996]
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4. MDN predicted material properties

4.1. P-V relationship at 300 K

The predicted pdfs for volume along a 300 K isotherm are presented in Figure[5. A subset of
the training data (i.e. only around 300 K temperature) is also shown along with the MDN
predictions. The uncertainty in volume increases with pressure as shown by the increasing
width of pdfs. This is expected as the training data (around 300 K) are more consistent

with each other at lower pressures.

pdf(V|P,300K) pd, V| P,300K)
80 : pdf ) 0 e e e e e e e R
0.8 | —— predicted pdf 310
75 | ) «  training data
70 06 [
=65 B g
z = 300 =
£ [04 5 o g
=60 24 k&= Z
= 3 I ﬁ>>¢* g
i sl &
* 0.2 H T §>>\>_ | | 295 °
50 S0l L >}’>1
i - ~ ‘ 200
%0 25 50 75 100 125 5y 25 &0 75 100 125
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Figure 5: The predicted pdf by the MDNs for solume of MgO along a 300 K isotherm. Left: pdf for volume
up to lower mantle pressures is shown :.s « ~ontinuous function of pressure. The colour scale shows the value
of the probability density function. Right: pdfs on volume are shown at 5 GPa pressure intervals together
with training data around 300 K (shc 7 as circles in the background). The training data show less variation
at low pressures which results in na. ~wer pdfs compared to high pressures.

In Figure [6] we compa.» s for the volume of MgO along a 300 K isotherm with EOSs

of Tange et al.|[2009, Speziale et al] 2001}, [Stixrude and Lithgow-Bertelloni| [2005], [2011] and
Dorogokupets and Dewaele 2007| (denoted as T09, S01, SLB0511 and DD07, respectively). In

this study, we use MINUTT (Sturhahn/[2020) to compute volume, bulk modulus and thermal

expansivity as a function of pressure (and temperature) from these EOSs. For ambient
temperature comparisons, static equations (i.e. third-order finite strain or Vinet) together
with respective fitting parameters (Vo, Kor and Kjp) as reported in the literature are used.
We show the pdfs for volume (Figure [6] left panel) at every 5 GPa. The EOSs diverge as

the pressure increases. At 135 GPa, the difference in volume between the equations of state
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of |Stixrude and Lithgow-Bertelloni| 2005, 2011] and [Tange et al.|[2009] is ~0.68 A3, whereas

one standard deviation predicted by the neural networks is +0.54 A%. Moreover, the slope of

each individual EOS differs. This can best be visualized by computing g—‘lj for all EOSs (see

Figure [6] right panel). Although [Speziale et al|[2001] and [Stixrude and Lithgow-Bertelloni

2005, 2011| are based on third order Birch-Murnaghan EOSs, their fitting parameters are

different. Comparisons between different EOSs and their fitting parameters are given by

other studies (e.g. [Dorogokupets and Dewaele|2007, Tange et al.|2009, Ye et al|2017, etc.).

The mean slope predicted by the neural network shows a slightly stiffer EOS compared to
the "standard” EOSs from the literature. This may be due to tuno fact that our training data
include experiments which make use of different pressure <. »uards (e.g. Ruby, NaCl, Pt,
Au) than the EOSs considered for comparison (which &.e Lwsed on MgO). Nevertheless, such
a difference in slope together with the volume diffe-~nce will inevitably lead to a significant

divergence in the inferred compressibility and th-rmal expansivity (see Section .

pdf(V|P300K)

80 e S -2
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75 S01 4 S01
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Z 60 F‘;;E'm i ' l | = -8
=) kk"'- | E’_
. o
55 =10
a0
—12
45 . = .. - - — — — — —
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Figure 6: Left: our predicted pdfs for volume of MgO along a 300 K isotherm (black lines) compared with
previously published EOSs (Tange et al. 2009, [Speziale et al.|[2001}, [Stixrude and Lithgow-Bertelloni|2005|
2011| and Dorogokupets and Dewaele|[2007)) (coloured lines). Pdfs for volume are shown at 5 GPa pressure
intervals. Right: % of MgO EOSs from the left panel. For this computation, we take the mean (Equation
@ of the output posterior on volume at every 0.1 GPa interval. The divergence between different EOSs

increases with pressure.
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4.2. High temperature P-V-T relationships

We use the trained MDNs to predict volumes of MgO at different temperatures. As an

example, we plot the predicted pdfs for volume along a 2500 K isotherm in Figure[7], left panel

(other isotherms are provided in [Appendix C.1J). Similar to the ambient temperature (Sub-

section, the 2500 K isotherm shows a well-constrained volume prediction at lower mantle
pressures. However, the high temperature pdfs show more uncertain volume predictions at
low pressures (except at 0 GPa). For example, at 5 GPa the pdf is relatively wide and
bimodal compared to that at high pressures (e.g. 100 GPa) w.>:ch is unimodal. As discussed
earlier in Section [3.3] high temperature experimental data of [Fiq. et et al|[1996/do not include
a thermal pressure term, and it is likely the total pressire 1; underestimated. This can be
visualised in Figure [7], left panel, where training dat- , o1.ts located approximately between
5-15 GPa have a smaller volume compared to data arc 'nd 20 GPa and ~2500 K. We train
another network without the high temperature 1.tz of |[Fiquet et al.|[1996/ and plot the results
on the right panel of Figure[7] The poste.1o1 pdi for volume at 5 GPa now shows a unimodal
peak and the width is decreased by approx.mately a factor of 2 (cf. left panel at 5 GPa).
Although removing [Fiquet et al.[19%0| . ~duces the uncertainties in volume, the posterior pdf
is still wider than at high pressiices ‘or the same temperature. This region of low pressure,
high temperature is known t~ Lo dominated by anharmonic effects. Although these effects
are implicitly represented ‘n cwr volume pdfs, there are limited experimental data in this

region (temperature >.~0u K and pressure <25 GPa) to further constrain them.

We compare the MDN predicted pdfs along a 2500 K isotherm (Figure[7]) with some conven-
tional EOSs (Tange et al. 2009, [Speziale et al. 2001, Stixrude and Lithgow-Bertelloni| 2005,
2011 and Dorogokupets and Dewaele 2007). The variation in volume between these EOSs
at high pressures is similar to that observed at 300 K. It has been noted in earlier studies
(e.g. |Ye et al.2017) that the discrepancies in high temperature EOSs are partly due to
persistence of the disagreement between them at 300 K (reference isotherm). Furthermore,

at low pressure (<25 GPa) |Speziale et al.||2001] diverges from other EOSs. This deviation is
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Figure 7: Left: pdfs for volume of MgO along a 2500 K isotherm predicted by MDNs trained with all data.
Right: same as left but [Fiquet et al.|[1996] and [Murakami et al.|2012| ¢ ta are excluded. For comparison,
volumes along the high temperature isotherm for some previously publis®~1 1.)Ss (Tange et al.[2009, Speziale|
et al /2001, [Stixrude and Lithgow-Bertelloni 2005} 2011 and [Dorogoku sets md Dewaele[2007) are computed
using MINUTT (Sturhahn!2020)). On both panels we plot a sub-set .. tuc total training data, namely those
data at temperatures between 2100 and 2600 K. Excluding [Fiau -t et al|[1996] data from neural network
training significantly reduces the width of the pdfs at high tem, ~rature and low pressure.

likely due to different values of fitting parameters tosev.er with distinct Griineisen models to

compute the thermal behavior. For example, Sy czie.e et al.|2001]do not consider anharmonic

effects, and their ambient Griineisen pa-an ete.s are also different than other studies (see

e.g. |Ye et al.| 2017, Dorogokupets and Dewc2le/2007). Besides that, as with the case of the
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Figure 8: Left: pdfs for volume of MgO along a 2700 K isotherm predicted by the MDNs trained with all
data. We also plot a sub-set of the training data, namely those whose temperatures lie between 2600 and
2800 K. Note: the large uncertainty in volume in the low pressure region (approximately below 25 GPa) is
due to inclusion of data from [Fiquet et al|[1996] as discussed in the text. Right: Comparison of posterior
pdfs for volume predicted by MDNs trained with and without Murakami et al.|2012 (M12) and [Fiquet et al.
(F96) data at 2700 K and 60 GPa. The small peak at around 66 A% is due to [Murakami et al.[2012
data.
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300 K isotherm, all explicit EOSs lie within the uncertainty range predicted by our MDNs,
which is expected because some training data come from the MgO pressure scales described

by these EOSs.

At 2700 K, the MDN predicted pdfs (Figure [§)) show bimodal volumes in the pressure range
of approximately 45-90 GPa. Once we plot the associated training data on top, it becomes
clear that the smaller peaks in the pdfs are the representation of experimental data points
of Murakami et al.|2012. Surprisingly, for the same reported volume and temperature they
report pressures which are different from each other by al ~ut 36 GPa. However, their
reported densities appear to be physically reasonable. Never’ hei ss, we train another network
to discriminate how much uncertainty is coming from tiose specific data points. In doing
so, the posterior becomes unimodal. At 60 GPa, inc'»*i. 5 Murakami et al|2012| data leads
to a factor of approximately 3.5 wider pdfs for volum. (Figure , right panel) compared to
results without those data. However, the effe 't o those data points seems to be local in
P-V-T space and their influence decreases 1. v c.;ample, at higher pressures. This is because
MDNs interpolate locally in between samp.~s, and data in one region of P-T space doesn’t

influence uncertainties everywhere.

5. Bulk modulus and the -m.! expansivity

Since the training da‘a 1o 25t contain explicit values for the volume derivatives with respect

to the inputs (P and T, getting constraints on bulk modulus (—Vg—i) and thermal expansivity

(Lav

v ar) is less straightforward than constraining the volumes. Hence, we follow a slightly

different approach compared to volume. We calculate the mean volume using Equation [0] for
any given P and T from each earlier obtained MDN. Then we perturb pressure (P+0P) while
keeping the temperature fixed and compute the mean volume (< V(P + §P,T) >) for that
pressure from the same MDN. This way, we can compute the mean isothermal bulk modulus
(K) as shown in Equation [7] Similarly, we evaluate mean volumes for two slightly different

temperatures but at a fixed pressure, and use that to compute the thermal expansivity, a
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(Equation . For numerical differentiation, we use 0P = 0.1 GPa and 67" = 1 K. Using a

different value for 0P or OT provides similar results.

dP
<V(P+6PT)>—-<V(PT)>

<K|PT)aa> = <-V(PT)>

1 <V(P,T+¢T)>—-<V(P,T) >
P.T; = 8
<apTia> <V(P,T) > oT (8)

Hence, in this approach, we take the derivatives of the P-V /i T-V) curve defined by the
mean of the posterior pdfs from each neural network rath r t1 an fitting P-V-T data to a
predefined EOS to get fitting parameters (such as Kor nd K{p). Since we have trained a
large number of MDNs (10%) to predict the posterior . 1. volume, we get the same number
of mean isothermal bulk modulus and thermal exran.ivity values. This way, each neural
network approximates a slightly different man; ing and its derivatives, and the distribution
on the mean bulk modulus and thermal ex) ansivity can approximate the uncertainties on
them. Moreover, we use the same networks to compute the pdfs for volume and the mean
volumes; the volume that goes into “n¢. ~aiculation of bulk modulus and thermal expansivity

is therefore consistent.

As an example, Figure [0 shows bulk modulus as a function of pressure along two selected

isotherms (refer to [App mdi: C.2| for other isotherms). The bulk modulus predicted by

neural networks shows a ) igher value at high pressure along the 300 K isotherm compared
to conventional EOSs. As mentioned earlier, this is likely due to the fact that the training
data come from experiments which make use of different EOSs and pressure standards than
those (MgO based) EOSs considered for comparison. Moreover, the fitting parameters (4,
Kor and K{;) are different for different EOSs. Hence, although these EOSs predict volume
within the uncertainty range predicted by MDNs (Figure [6] left panel), their derivatives
(Figure |§|, right panel) differ significantly from each other and also from the MDN prediction,

leading to different values of bulk modulus.
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Figure 9: Comparison of ¢ti. meawn bulk modulus (a, b, ¢ and d) and thermal expansivity (e and f) predicted
by the neural networks with j reviously published equations of state for MgO (Tange et al[[2009, [Speziale|

et al.|[2001} [Stixrude and Lithgow-Bertelloni [2011| and [Dorogokupets and Dewaele|2007) as a function of

pressure. The output from the neural networks is shown with greyscale- the darker the region of the plot,
the greater the number of MDNs which predict the bulk modulus (or thermal expansivity) has that value.
Frequency counts for output from the MDNs are at intervals of 1 GPa for pressure and bulk modulus, and
10~7 K~! for thermal expansivity. For (a), (c) and (e) neural networks are trained with all collected data,
whereas for (b), (d) and (f) data from |Fiquet et al.[1996/ and Murakami et al. 2012 have been excluded.
Due to the inclusion of [Fiquet et al.|[1996) data we obtain large uncertainties in bulk modulus and thermal
expansivity in low pressure, high temperature regions. Note: the overlapping of different EOSs makes the

background histogram difficult to visualise.

135 One high temperature (2000 K) comparison between the neural network predicted mineral

13 properties and other studies is shown in Figure [9} ¢, d, e and f. In general, bulk modulus
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Figure 10: Comparison of the MDN predici. 1 mean bulk modulus at (a) 2700 K, 60 GPa, (b) 2700 K, 135
GPa, (c) 300 K, 135 GPa and (d) thermal e-man.ivity at 2700 K, 135 GPa of MgO trained with and without
Murakami et al.[2012 (M12) and [Fiquet € l|[x996| (F96). The effect of Murakami et al.|[2012| data on bulk
modulus and thermal expansivity is m .. 'v wcound 2700 K, and it gradually reduces as pressure decreases
or increases outside the interval appro. ‘mately 45-90 GPa.

values predicted by the nciral networks agree well with explicit EOSs, although
2009 shows slightl - hi sher values at moderate pressures (e.g. 60 GPa). The mean

bulk modulus predicted Fy the neural networks shows a large uncertainty at low pressures

(below ~ 25 GPa) when high temperature data by [Fiquet et al| 1996 are included. In

Figure [0} d, we show the bulk modulus predicted by the neural network trained without

Fiquet et al.|[1996| (and Murakami et al|2012). Here, the uncertainties at low pressure

are significantly decreased. Similarly, neural networks trained without those two data sets
predict physically reasonable thermal expansivities (Figure |§|— f) compared to those trained
with all data sets (Figure |§|— e). At high temperatures, we still see a sharp bend around 20
GPa (also see which we suggest may be related to anharmonic effects. As the
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experimental data is relatively sparse in this region, one would need additional measurements
(or theoretical studies) to confirm this. Furthermore, the thermal expansivity of [Speziale
et al. 2001 deviates from other EOSs. As mentioned in earlier studies (e.g. |Dorogokupets
and Dewaele [2007)), this may be improved by including anharmonic terms in the EOS. In
equation of state formalisms, one can add an anharmonic term to the total free energy. This
additional term has a T? dependence, rather than simply a linear temperature term. The
effect of adding this term is most significant at low pressures, and can potentially capture
more accurately the volume dependence at high temperatures compared with the standard
thermal models without anharmonicity (for temperatures less than or equal to 2700 K in

this meta dataset).

Besides low pressure, including Murakami et al.|2012 1a.~ during network training provides
mean bulk modulus uncertainties that are more tha. 4 times larger (Figure a) than
excluding them together with |Fiquet et al. [1'°5, and this discrepancy reduces at higher
pressures (Figure b). Moreover, as e<p cted, neither [Fiquet et al. 1996 nor [Murakami

et al|2012| data influence bulk modulus at :~w temperatures, as shown in Figures c and

O a, b.

6. Discussion

Fitting parameters (s.~h 22 Kor and K{;) are inherent to explicit global EOSs, and a
correlation between ther. tells us how one parameter changes with another providing optimal
global fit. We do not estimate the uncertainties on fit parameters of EOSs which are specific
to the underlying global functional form. Instead, we directly provide the uncertainties on
volumes which are local in P-T space. The MDN is a kernel based method where we fit
(a mixture of Gaussian) kernels to the experimental data and get an arbitrary probability
density function on volume at any given P and T. The neural networks are flexible and
interpolate locally; the uncertainties in one region of P-T space don’t impact the posterior

pdf everywhere. For example, Figure|7|shows no change in high pressure pdfs while removing
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Fiquet et al.||1996 data in the region of low pressures. Our approach is also very powerful at

identifying data inconsistencies when using different data sources.

The posterior pdfs given by the MDNs represent uncertainties in volume due to experi-
mental errors, data gaps and data inconsistencies from different studies. Together with the
uncertainties in mean isothermal bulk modulus and thermal expansivity, these results can
be used by, for example, seismologists working on thermochemical interpretation of seismic
data. Although uncertainties in volume, bulk modulus and thermal expansivity vary locally
depending on sparsity and consistency of the experimental « #ta, using these outputs from
MDNs, one can directly compute bulk wave speed (¢ = K¢ /p) and density (p) at any given
pressure and temperature. However, in order to comput:: bu k wave speeds at temperatures
applicable to the lower mantle, we need the adiabati~ bk modulus (Kg = Kr(1 4+ anT)),
where 7 is Griineisen parameter and « is the therma. expansivity. Nevertheless, assuming
that the difference between isothermal (K1) an ¢diabatic (Kg) bulk moduli, at 300 K is
roughly within +1.0% (Marquardt et al.|2u'8), the bulk wave speed of MgO is 11.1440.07
km/s at 135 GPa. At the same condition, ‘he relative uncertainty (one standard deviation
around mean) in density predicted 1, - tne MDNs is about +1.0%. This is larger than or
comparable to the relative density .ariations in lower mantle estimated by previous studies
(e.g. [Ishii and Tromp| 1999, 1.ompert et al. 2004, Koelemeijer et al.2017). Although the
Griineisen parameter varies o< a function of volume that ultimately depends on pressure
(and temperature), ve as.mae it to be approximately 1.14+0.3 (e.g. Stixrude and Lithgow-
Bertelloni 2011} |Ye et ai.[2017) at 2700 K and 135 GPa to give an estimate of uncertainties
in bulk wave speed. In doing so, the relative uncertainty in bulk wave speed is about +1.77%
which is larger than the reported bulk sound speed variation in the lower mantle (e.g. (Tram-

pert et al.|[2004)).

Estimation of mineral properties beyond the range of experimental data requires extrapola-
tion. The standard EOSs can easily be used for extrapolation provided that the assumptions

of the functional form hold in the region of no data. In general, it has been observed that
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Figure 11: Probability density function for volume ¢! Mgu along a 2700 K isotherm (a) and 100 GPa isobar
(b). Training data belonging to temperature be owe n =100 and 3000 K (a), and pressure range from 96 to
103 GPa (b) are also shown. Magenta (SLB051." 7 ad red (T09) curves are Stixrude and Lithgow-Bertellonil
[2005| [2011] and [Tange et al|2009] EOS, respectively. They follow the volume trend predicted by the network.
In the region outside the prior data, the trai. 1 MDNs provide wider pdfs as they are forced to extrapolate
the volume. To illustrate this more clear’y, -olume pdfs at a fixed temperature (and pressure) and three
different pressure (and temperature) are als» shown in ¢ (and d).

MDNSs provide a wider estima.~ of uncertainties in the region of little to no training data

(Kéufl et al|[2016a). Here v»0 as shown by the wider pdfs in Figure [I1] the uncertainty

in predicted mineral . "p.*ies increases when the network has to extrapolate from distant

training data. We note tL.at EOSs of Stixrude and Lithgow-Bertelloni 2005, 2011] and [Tange|

closely follow the pdf predicted by the network indicating that it learns a func-
tional form present in the data, but errs on the cautious side by returning larger uncertainties.
From a Bayesian perspective, we would advise against extrapolation as this covers a region
outside the prior. Figure however, demonstrates some capability of neural networks to
extrapolate beyond the ranges of the data, although we would need to establish how far this

is related to the precise network architecture.
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The shear modulus is required to calculate compressional and shear wave speeds. There is no
thermodynamic expression for the shear modulus, but functional forms are often assumed,
for example third order finite-strain and shear counterpart of the Keane EOSs (Keane||1954))
by [Kennett| 2017, to compute the shear modulus which are based on the bulk modulus
calculation. One can also use the linear relationship among shear modulus, adiabatic bulk
modulus and pressure given by Stacey|1995. However, the uncertainties in shear modulus
would then be dependent on those in bulk modulus, and the assumption that shear properties
can be constrained from the bulk properties. An alternative is to use data from experiments
such as Brillouin Spectroscopy that provide shear wave speed »formation. Together with
unit-cell volume, as measured by X-ray diffraction on the sat.~ ;ample (e.g. Murakami et al.
2012, Kurnosov et al.[[2017) and known sample commosicion, the density and thus shear
moduli can be determined. However, these data setc do 1 ot cover simultaneous high pressure
and temperature regions that are expected in th:~ farth’s lowermost mantle. For example,
the highest temperature and pressure data “r vigO reported in Murakami et al. 2012 are
six measurements at 2700 K and betwe-n 32.5-68.4 GPa. Nevertheless, a combination of
wave speed data from ultrasonic techiiques and Brillouin Spectroscopy together with high
P-V-T data from x-ray diffraction e “hniques has the potential to exhaustively sample the

lower mantle geotherm in the rea- future (Marquardt and Thomson |2020).

We note that, in principle a ~cmbination of experimental data and theoretical calculations
(e.g. [Karki et al.[199C, | Ve~ v and Dorogokupets 2003, [Wu et al.[2008) is possible. This may
provide additional const.aints on the predicted mineral properties covering a wider range of
pressure and temperature. Since our approach implicitly identifies the consistency between
different data sources, a proper rationale can be developed to mix data and uncertainties from
theory with experiments. Furthermore, the MDN based approach can easily be extended to
the upper mantle and the core. Since MDNs are flexible, they can be employed to model
multi-mode targets/outputs. This would be helpful to model for example volume anomalies
induced by the iron spin transition (e.g. Marquardt et al.| 2009, [Speziale et al.|2007, Lin

et al. 2006, |[Crowhurst et al.| 2008, Solomatova et al.|[2016]). A natural progression of this
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work is to extend it for solid solution. It is straightforward to include composition, e.g. the
Mg/Fe ratio, by including it as an extra dimension in the input data (i.e. P, T and mol% Fe

in ferropericlase) provided there is enough training data.

7. Conclusions

This study demonstrates the feasibility of a neural network based approach to infer the
material properties of lower mantle minerals. In our approach, we learn the underlying P-V-
T relationship providing a reasonable approximation of the P-V-T data of MgO. This allows
us to compute the uncertainties in density, thermal expar<1,:*y and bulk modulus without
prescribing an explicit EOS. Once the networks are tramed, it is a simple function that can
be evaluated at any given pressure and temperaturc to ¢ et volume, mean bulk modulus and
thermal expansivity with uncertainties. In orde» *o train the networks, we collect data from
high P-V-T experiments without prior selec-ion of data (e.g. based on pressure scale or
functional form used). Hence, our uncer. ircies are not biased towards a subjective selection
of experimental data. Furthermore, «uir approach identifies inconsistencies between data
from different sources. The assumpt.on that an EOS follows a particular form provides a
priori information by fixing then form (or thermodynamic model) and/or pressure scale.
It remains to be determined w. icn EOS form best describes the thermodynamic behaviour
of MgO at wide range of p.essures and temperatures. In this study, we compare a few
"standard” EOSs with th. material properties inferred from neural networks and show that

choosing one particular explicit form provides a biased estimate of uncertainties.

Based on the prediction performance of the MDNs and comparison with conventional EOSs
(such as Figures [3] [}, [9] and [Appendix C]), we can be most confident about physical inter-
pretation of seismic data in the lower mantle within the prior range of experimental data
(Figure . In the regions where there exists little evidence about how the P-V-T relationship
behaves, such as at low pressure, high temperature (<25 GPa, >1500 K), and temperatures

approximately >2700 K at pressures expected towards the core-mantle boundary, neural
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networks show increasingly uncertain predictions. Although for the Earth’s lower mantle,
low pressure and high temperature environments may not be relevant, they are expected in
other planetary bodies such as the Moon and Mars (e.g. |[Khan et al.| 2014} [2018)). With
currently available data, it likely provides meaningful uncertainties that could be used by
seismologists within certain ranges of pressure and temperature, while highlighting the P,
T regions in which more experimental (or theoretical) data is needed before we can draw

robust conclusions on temperature and composition.

Acknowledgements

We would like to thank an anonymous reviewer for helpi:! comments which improved the
manuscript. AR and LC received funding from the T 'utc.» Research Council (NWO) on grant
number 016.Vidi.171.022. JMJ is thankful for di=cussions with Wolfgang Sturhahn and for
support of this research by the National Sci-nce roundation’s Collaborative Studies of the

Earth’s Deep Interior (EAR-1161046 an' FAR-2009735).

Appendices
Appendix A. Generalisea theory of the MDN

Let, € = {x1, x2, ..., 7} »e the input data to the feed-forward part of the MDN. Please note,
to generalise this section, we write inputs as @ and targets as my, instead of P & T and V,
respectively. The feed-forward network outputs y, are computed as a weighted sum of the

outputs from the hidden nodes plus a bias

J
Y = fg (Z ajkhj + Ck(]k> (Al)

where the function f, is an identity function such that fo(p) = p, ;i is the hidden layer

weight matrix and ag; represents a bias term of each output node. Now, the hidden node
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outputs h; are computed as

I
hj = f1 (Z Q55 + Oéoj) (AQ)

where the function f; is a logistic sigmoid function f;(p) = ;; is the input layer

1
l+exp(—p)’

weight matrix, g, are the biases of hidden nodes and x; are input data. y; are related to
the parameters, namely weights (7,,), means (u,,) and standard deviations (o,,) of Gaussians
in the Gaussian Mixture Model (GMM) by the following relationship (for details see e.g.
Bishop| 1994} de Wit et al.|2013)

(7) i
exp(y, (x;¢)
(T o) = p(y —) -, (A.3)

Sl eap(y i @)

tn(T; ) = p b )'\m, a) and (A.4)

onl@: a,) = eap (47 (@; @)). (A.5)

Appendix B. MDN initia!‘zat.on and training details

The total data (x) is dividel into three sets- training (70%), monitoring (20%) and test
(10%) sets such that

train C x, a.:momtor Cx CLTLd wtest Cx (B].)

with girein n gmonitor — () - gtrain O glest — () and gmenitor N gtest = (). Using the training
data (z'"*") we train the MDN. However, before we train the MDN we need to decide on
initial values of the network parameters. We randomly draw the input layer and hidden layer
weights (Bishop |1995)) according to the following Gaussian distributions
o ~ N (0, L) (B.2)
I+1
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and

Qi ~ N(o, JLH) (B.3)

respectively. Where I and J are number of input and hidden nodes, respectively. Similarly,
the output layer biases are initialized by a K-means clustering algorithm (i.e. fitting a
GMM to the training data set). Once the initialization is done and the training begins,
the difference between the output and the target can be computed according to the error

function

plrain Z —In <p(mk|mtrain; O’\\, (B4)

train

which is summed over all training data providing the avercoe error. This function is also
called the loss function which is minimized iteratively w.ing *+ae ADAM optimization method
(see detailed algorithm in Kingma and Baj|2014)). The exlicit dependence of output posterior
on the network parameters (see Kaufl et al.|20164 «nd references therein) can be avoided by
using multiple MDNs and combining them ty v ighted sum. The weight of each MDN is

determined by the test set error as

Etest (wtest’ az) >

¥ (B.5)

w; = ep,(\—

where index ¢ denotes the i-th 2TDN (C' MDNs in total) and N is the size of the test data

set, and the MDNs are comb.~~d according to

p(mi|x; o) = pZ (mg|z; ;). (B.6)
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Figure Appendix C.1: P-V relationship of MgO predicted by MDNs trained with (left) all data and (right)
excluding Murakami et al.| 2012 and Fiquet et al.|1996. Comparison with previously published EOSs (Tange
et al.|2009| [Speziale et al.|2001}, [Stixrude and Lithgow-Bertelloni| 2005, [2011] and [Dorogokupets and Dewaele
2007) along 1500 K (top), 2000 K (middle) and 2700 K (bottom) isotherms also shown.
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Figure Appendix C.2: Comparison of the bulk r10a 1lus of MgO predicted by the neural network along 1500
K (top) and 2700 K (bottom) isotherms with o."er studies (Tange et al.||2009} Speziale et al.|2001} Stixrude|
land Lithgow-Bertelloni 2011| and [Dorogokupets a..1 Dewaele|[2007) as a function of pressure. Left panel
shows results from MDNs trained with all « ta and the right panel shows results from MDNs excluding

Murakami et al]2012 and [Fiquet et al|[19%u] 1ate in training.
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Figure Appendix C.3: Con. arison of the thermal expansivity of MgO predicted by neural networks with
Tange et al.|[2009] [Stixrude ar I Lithgow-Bertellonil [2011] and [Dorogokupets and Dewaele|[2007] along 300 K
(top), 1500 K (middle) and 2700 K (bottom) isotherms as a function of pressure. Left panel: MDNs trained

with all data. Right: MDNs trained without [Murakami et al.|[2012| and [Fiquet et al.]1996 data.
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