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ABSTRACT

We implement a sample-efficient method for rapid and accurate emulation of semi-analytical galaxy formation models over a
wide range of model outputs. We use ensembled deep learning algorithms to produce a fast emulator of an updated version of
the GALFORM model from a small number of training examples. We use the emulator to explore the model’s parameter space,
and apply sensitivity analysis techniques to better understand the relative importance of the model parameters. We uncover key
tensions between observational data sets by applying a heuristic weighting scheme in a Markov chain Monte Carlo framework
and exploring the effects of requiring improved fits to certain data sets relative to others. Furthermore, we demonstrate that
this method can be used to successfully calibrate the model parameters to a comprehensive list of observational constraints. In
doing so, we re-discover previous GALFORM fits in an automatic and transparent way, and discover an improved fit by applying
a heavier weighting to the fit to the metallicities of early-type galaxies. The deep learning emulator requires a fraction of the
model evaluations needed in similar emulation approaches, achieving an out-of-sample mean absolute error at the knee of
the K-band luminosity function of 0.06 dex with less than 1000 model evaluations. We demonstrate that this is an extremely
efficient, inexpensive, and transparent way to explore multidimensional parameter spaces, and can be applied more widely

beyond semi-analytical galaxy formation models.
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1 INTRODUCTION

Galaxy formation is a complex and non-linear process, involving the
interplay of gravitational, radiative, thermal, and fluid processes.
Semi-analytical modelling is an approach used to improve our
understanding of this problem by reducing it to its key ingredi-
ents using simplified mathematical relations motivated by physical
and geometric arguments (e.g. Baugh 2006; Benson 2010). These
relations take the form of coupled differential equations and simple
algebraic relations describing processes such as star formation, gas
cooling, and bar instabilities in galactic discs. Semi-analytical models
(SAMs) provide a comprehensive theoretical framework with which
to understand and develop intuition about galaxy formation, and have
produced a number of insights (e.g. White & Frenk 1991; Benson
et al. 2003; Bower et al. 2006; Croton et al. 2006; Lacey et al. 2016).

However, the semi-analytical approach has sometimes attracted
scepticism for a number of reasons. The mathematical relations that
describe the physical processes in the model often contain adjustable
parameters, and a model is defined by a particular choice for the
parameter values (analogous to the parametrized subgrid models
employed in hydrodynamic simulations, e.g. Crain et al. 2015;
Somerville & Davé 2015). These parameters are sometimes set by
theoretical or observational considerations, but in many cases they
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are less well specified (e.g. in the case of the parameters governing
the strength of feedback due to supernovae — SNe).

There is a perception — which we believe to be misplaced — that
these ‘free’ parameters allow SAMs to fit any arbitrary combination
of data sets, therefore eliminating their predictive and explanatory
power. We hope to dispel this view by demonstrating that the majority
of the variance in the model output is contributed by just a few
parameters that have clear physical interpretations [such as the
strength of feedback due to SNe or active galactic nucleus (AGN)],
and that these dominant parameters preclude arbitrary fitting.

Another major source of the scepticism towards SAMs arises from
the seemingly opaque procedures that have commonly been used to
calibrate the model parameters. This process often follows a ‘chi-
by-eye’ methodology, in which the operator adjusts the parameters
by hand, interprets the effect on the model output, and adjusts the
parameters again to improve the match of the model output to an
observable. This requires a high level of expertise and familiarity
with the SAM, and the operator often makes trade-offs between fits
to different constraining data sets in a way that is poorly defined;
model predictions are often judged to be good fits when formally
they would be rejected. This makes the process of setting the model
parameters hard to reproduce. There is also no guarantee that the
by-eye approach will produce the best fit to the calibration data sets;
the model parameters may interact in a non-linear way, which can be
difficult to conceptualize. This, coupled with the large parameter
space, makes it unlikely that such a search will find the best-
fitting parameters. We aim to side-step these issues by developing
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a method to rapidly and robustly perform an exhaustive search
of the parameter space, calibrate the SAM in an automatic way
without the need for significant human intervention, and quantify
the relative importance of the parameters. In this way, we hope to
make the model calibration process transparent and reproducible,
especially by researchers with less experience of running SAMs.
Although the cosmological parameters are now well constrained,
SAMs must still be re-tuned for simulations with different resolutions
and cosmologies, such as f(R) gravity simulations, or when a new
implementation of a process is included. The question of how to set
the model parameters therefore remains a relevant one.

The calibration and exploration of SAMs is not a new problem, and
has been investigated in a number of previous works. This effort has
generally taken two forms: direct exploration of the model parameter
space and emulation. Although SAMs are orders of magnitude
cheaper than hydrodynamic simulations, direct exploration of their
parameter space is computationally expensive due to the sheer
number of model runs required for a formal search; often this
will take a prohibitive length of time except for the case of tuning
the parameters to a small number of data sets. This approach has
been investigated in a number of papers. Kampakoglou, Trotta
& Silk (2008) implemented Markov chain Monte Carlo (MCMC)
techniques to calibrate a SAM to multiple data sets. Henriques et al.
(2009) again used MCMC to calibrate the L-GALAXIES SAM to a
number of data sets, finding that the choice of data sets altered the
values of the best-fitting parameters, pointing to deficiencies in their
model. Martindale et al. (2017) expanded on this to include the H1
mass function as a constraint, leading to a change in the best-fitting
parameters. Lu et al. (2011, 2012) constrained the parameter space
that gave acceptable fits to the K-band luminosity function (LF), and
expanded this to include the HI mass function in Lu et al. (2014).
Ruiz et al. (2015) used particle swarm optimization to calibrate
a SAM to the K-band LF. The second class of methods involves
constructing a statistical emulator of the SAM that can be evaluated
orders of magnitude more quickly than running the SAM itself, but
at the cost of being approximate by nature. Bower et al. (2010) and
Vernon, Goldstein & Bower (2010) employed a Bayesian emulation
technique (as developed by Goldstein & Wooff 2007) to constrain the
parameter space that can provide reasonable fits to the K- and b,-band
LFs, and extended this in Benson & Bower (2010) to explore this
ability of this reduced parameter space to fit to further observational
data sets. This approach has also been applied by Rodrigues, Vernon
& Bower (2017) to calibrate the GALFORM SAM to the galaxy
stellar mass function in the local Universe, and recently by Van
Der Velden et al. (2021) to calibrate the MERAXES SAM at high
redshift.

Here, we aim to emulate an updated version of the GALFORM code
implemented in the Planck Millennium N-body simulation (Baugh
etal. 2019), which uses an improved galaxy merger scheme (devised
by Simha & Cole 2017 and first implemented GALFORM by Campbell
et al. 2015), but which also includes an improved model for gas
cooling in haloes (introduced by Hou, Lacey & Frenk 2018).

We focus specifically on using deep learning to build our emulator
(for an introductory review, see e.g. Emmert-Streib et al. 2020). This
subfield of machine learning uses stacked neural layers (hence deep)
to build flexible function approximators that are able to uncover non-
linear relations in data without the need for a strongly pre-defined
model, and have proven to be highly successful in astronomical
applications (e.g. Ravanbakhsh et al. 2016; Schmit & Pritchard
2018; Cranmer et al. 2019; He et al. 2019; Perraudin et al. 2019;
Zhang et al. 2019; De Oliveira et al. 2020; Ntampaka et al. 2019).
We demonstrate that deep learning algorithms can be applied to
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accurately emulate SAMs over the full range of model outputs, and
require a relatively small number of training examples to achieve
good accuracy when compared to other methods. Since the deep
learning emulator can be evaluated orders of magnitude faster than
the time taken to run GALFORM, we are able to run many simple
MCMC chains to explore the parameter space, and investigate how
calibration to different data sets constrains the model parameters. We
achieve this by minimizing the absolute error between the emulator
output and the data, and employing a heuristic weighting scheme to
the different observational data sets to mimic the process employed
by model practitioners. In this way, we hope to elucidate and
automate the calibration process, as well as exhaustively search the
parameter space of the model. A similar approach has been explored
in Forbes, Krumholz & Speagle (2019), applied to a SAM of galactic
discs, though our sampling scheme and MCMC implementation are
different.

This approach has a number of advantages over previous work.
Non-emulation approaches such as MCMC and particle swarm
optimization offer a powerful way to quantify parameter uncertainty
and fit the model to a particular observable, but are limited in
terms of exploring and understanding the full parameter space,
and come at significant computational expense. Previous emulation
approaches, though informative, also do not fully address our aims;
they have focused on reducing the parameter space based on measures
of implausibility (a measure that incorporates information about
the emulator prediction and target data, and their variances, to
rule out regions of parameter space). By iteratively refining more
approximate emulators over a number of waves of model runs, these
methods hone in on a region of parameter space that could plausibly
contain good fits to a pre-defined set of just a few observables.
Here, we focus on producing an emulator of the GALFORM model
that is accurate across the entire parameter space. This allows us
to explore the full parameter space of the model and fit to a wide
range of observables, and to consider more diverse combinations of
observables than has been attempted in previous work. We also aim to
reduce the requirement for a large number of GALFORM evaluations.
Rodrigues et al. (2017), for example, used seven waves of 5000 runs
each to hone in on the region of parameter space that gave acceptable
fits to the local galaxy stellar mass function; here, we limit ourselves
to <1000 full GALFORM runs. In doing so, we intend to develop
a general method for investigating, understanding, and calibrating
SAMs in an inexpensive, flexible, and reproducible way.

We also apply sensitivity analysis techniques to the model pa-
rameters, as recently applied to GALFORM by Oleskiewicz & Baugh
(2019). This allows us to judge the importance of different parameters
by quantifying the proportion of the model variance due to a given
parameter through sensitivity indices. We are also able to gauge the
degree of interaction between parameters, giving us important insight
into the model.

The layout of the paper is as follows. In Section 2, we review the
theoretical background. We describe the key processes of GALFORM
that are relevant to this work in Section 2.1. In Section 2.2, we give a
brief review of the deep learning approach and our emulator design,
and in Section 2.3 we give a description of the sensitivity analysis
method. In Section 2.4, we describe the observational constraints
under consideration, and in Section 2.5 we discuss how we find
best-fitting parameters using MCMC. In Section 3, we present our
results. In Section 3.1, we review the predictive performance of
the emulator, in Section 3.2 we show the results of our sensitivity
analysis and model exploration, and in Section 3.3 we present our
model calibration results. In Section 4, we discuss the merits of our
methods and outline potential future work, and conclude in Section 5.
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2 THEORETICAL BACKGROUND

Here, we briefly describe aspects of GALFORM pertinent to this work
(Section 2.1) and describe the process of building a deep learning
emulator and motivate our specific choice of model (Section 2.2).
We then briefly describe sensitivity analysis (Section 2.3), the
observational data sets considered (Section 2.4), and our calibration
scheme (Section 2.5).

2.1 GALFORM

GALFORM is a state-of-the-art ab initio physically motivated SAM
of galaxy formation. The model tracks the merger histories of dark
matter haloes, the cooling of gas to form galactic discs, quiescent
star formation in the disc, bursts of star formation associated with
mergers or disc instabilities, the resultant feedback and gas ejection
driven by SNe, the role of heating by AGN in inhibiting gas cooling,
and the chemical enrichment of stars and gas (for a full description of
GALFORM, see Cole et al. 2000; Lacey et al. 2016). Here, we review
some aspects of the code relevant to this work and the following
discussion.

2.1.1 Quiescent star formation in discs

The model uses an empirical star formation law formulated by Blitz
& Rosolowsky (2006) (and implemented in GALFORM in Lagos et al.
2011) based on observations of nearby star-forming disc galaxies.
The star formation rate in the disc is

1,[/'disc - VSFMmol,diSCs (1)

where M gisc 1S the mass of molecular gas in the disc and vgr is a
constant that we treat as an adjustable parameter within a reasonable
range (Bigiel et al. 2011). The mass of molecular gas depends on the
gas pressure in the mid-plane of the disc.

2.1.2 Supernova feedback

SN feedback causes gas to be ejected from galaxies. The model
assumes that this mass ejection is proportional to the instantaneous
star formation rate, v, with a mass loading factor dependent on the
circular velocity of the galaxy, V,:

. Ve ) 7SN
Meject = ( > 1//, (2)

Vsn

where both Vgy and ygy are model parameters. We can further
distinguish Vgn into Vgngise and Vsnpurst, allowing for different
values for feedback in quiescent star formation and bursts, although
these parameters have generally been assumed to be equal in most
previous versions of the model. Gas ejected from the halo is assumed
to gradually return from a reservoir beyond the halo’s virial radius
to the hot gas reservoir at a rate given by

Mres

B
Tdyn,halo

(3)

M returm = et

where T gynnato 18 the dynamical time of the halo, M is the mass in
the reservoir beyond the virial radius, and o, is a free parameter.

2.1.3 Galaxy mergers

In the model, galaxy mergers can trigger bursts of star formation
and destroy galactic discs. We define two different thresholds, fnip
and fuurst- When a satellite galaxy with baryonic mass My, ¢, merges
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Table 1. The GALFORM parameters under investigation. See Section 2.1 for
the equations that define the symbols in the first column.

Parameter Range Process

[stab 0.61-1.1 Disc instability

A ool 0.2-1.2 AGN feedback
Olret 0.2-1.2 SN feedback

Y SN 1.0-4.0 SN feedback
Vsnudise (km s7h 100-550 SN feedback

V SN,burst (kms~1) 100-550 SN feedback
Sburst 0.01-0.3 Mergers

Setip 0.2-0.5 Mergers

VSE (Gyr’l) 0.2-1.7 Quiescent star formation
S smBH 0.001-0.05 SMBH accretion

with a central galaxy with baryonic mass M}, cen tWo types of mergers
may occur. First, if My g/ Mpcen = fenip the merger is classified as a
major merger, and the disc component of the galaxy is destroyed and
forms a spheroid. The cold gas in the disc is assumed to be consumed
in a burst of star formation. Secondly, if My, o/ My, cen < feltip» the
merger is classified as minor, and the disc survives the merger. In this
case, the cold gas is consumed in a starburst if a second condition
is met, Myga/Mpcen = fourst- Both frug and fepip are treated as
free parameters. In the improved galaxy merger model of Simha &
Cole (2017), once a subhalo can no longer be resolved, an analytic
calculation of the merger time is made based on dynamical friction
arguments.

2.1.4 Disc instabilities

Galactic discs dominated by rotational motion can become unstable

to bar formation if their degree of self-gravity is too large. The

model follows the work of Efstathiou, Lake & Negroponte (1982),

and assumes that discs become unstable if the criterion
Ve(rdise) < Fua

(1-68GMdisc/rdisc)l/2

“)

is met, where M g is the total disc mass and r ;s is the disc half-
mass radius. Numerical simulations of a suite of exponential stellar
discs by Efstathiou et al. (1982) found a value of f,, &~ 1.1. while
Christodoulou, Shlosman & Tohline (1995) found a value of 0.9 for
gaseous discs. A value of 0.61 or below corresponds to universally
stable discs, since this is the value of the left-hand side of equation (4)
for a completely self-gravitating disc. We allow this parameter to vary
within a reasonable range (see Table 1). We assume that unstable
discs are disrupted by bar instabilities on a subresolution time-scale
such that all the mass is instantaneously transferred to the spheroid
and any gas present takes part in a burst of star formation.

2.1.5 SMBH growth and AGN feedback

Supermassive black holes (SMBH) can inject energy into the halo
gas, disrupting gas cooling. Hot halo accretion, BH-BH mergers, as
well as starbursts can increase the mass of the black hole (Bower
et al. 2006; Griffin et al. 2019). In the case of starbursts, the mass
accreted on to the SMBH is a fraction fsyvpy of the mass of stars
formed, where fsyvpy is an adjustable parameter. AGN accretion is
assumed to occur if both of the following conditions are met: (1) that
the gas halo is in quasi-hydrostatic equilibrium, that is the condition

Tcool/fff > l/acools (5)
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Figure 1. A schematic diagram showing a neural network with two hidden
layers. The neurons on the left-hand side represent the input layer, the central
two layers of neurons are the hidden layers, and the right-hand neurons
comprise the output layer.

is met, where 7,0 1S the cooling time of the gas, 7 the free-fall time,
and o¢o0 18 an adjustable parameter; (2) the AGN power required to
balance the radiative cooling luminosity is below a fraction frqq of
the Eddington luminosity of the SMBH.

2.2 Deep learning emulator

Before we consider observational data, we aim to construct a fast
emulator of the GALFORM model using the TENSORFLOW deep
learning framework (Abadi et al. 2015). We formulate the problem
from the perspective of supervised learning. We treat the GALFORM
model as an unknown function f () that takes some input vector X,
representing a set of values for the model parameters, and produces an
output vector y, representing one or many binned statistical properties
of the resulting synthetic galaxy population (e.g. the values of the
K-band LF in given luminosity bins). Our goal is then to develop a
fast and accurate approximation to the function f(-) by training an
emulator to predicty given x.

Since GALFORM is computationally expensive to run (at least in
comparison to a potential deep learning emulator), we are limited in
how many evaluations of the code we can perform, and so limited
in the number of input-output pairs, (x;, y;), we have to train our
emulator. To sample the parameter space evenly and efficiently, we
use Latin hypercube sampling (as described in e.g. Bower et al. 2010)
to generate the model input parameters. This method aims to fill the
target parameter space evenly given a fixed number of samples. After
evaluating GALFORM at these points, we are therefore left with the
pairs of vectors (x;, x;), corresponding to the input and output of
the model. We separate the samples randomly into three sets: the
training set, the validation set, and the holdout set. The training and
validation sets will be used to train the emulator, and the holdout set
will be kept separate so it can be used for evaluating the emulator’s
performance on out-of-sample data. The different roles of these sets
are discussed further below.

The task of emulating GALFORM is therefore reduced to a regres-
sion problem. The deep learning emulator is comprised of stacked
neural layers as shown in Fig. 1. Here we see a neural network with
an input layer on the left, two hidden layers, and an output layer on
the right. Note that the output from each neuron is passed to every
neuron in the following layer. The network is defined by a set of
weights and biases, W; the i-th neuron in the j-th layer contains an
adjustable weight vector w;; and an adjustable bias term b;. When
we propagate inputs through our network to produce a prediction, the
input layer first passes the inputs to every neuron in the first hidden
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layer. Each neuron i in each subsequent layer j, starting with the
first hidden layer, takes in the outputs from the previous layer and
calculates its own output z;; by performing the computation

Zij = 6(zj—1 - wij + b)), (6)

where we have taken the dot product between the vector of all the
neuron outputs in the previous layer z;_; and the i-th neuron’s
weights w;;, and added the bias term b;. An activation function
6 (-) is then applied. This is generally a non-linear function such as
the sigmoid or hyperbolic tangent function. The neuron outputs z;
are then passed to the next layer and the process is repeated until
we reach the final layer. The output from the final layer is then the
prediction of the network for these inputs. Usually, the neurons in
the final layer only apply a linear activation function. Therefore,
since the network outputs are linear sums of non-linear functions
of the input parameters, we can think of this method as estimating
non-linear basis functions from training data.

The weights and biases associated with each neuron are adjusted
during training by seeking to minimize an error function between
the emulator predictions and the true values. In our case, given a
set of input parameters, we want to minimize the error between
our emulator’s prediction of the GALFORM output and the actual
GALFORM output. We choose to use the mean absolute error function
(hereafter MAE)

I <
MAE:;E [¥e = Yl 7
k=1

where 3, is the model emulator prediction for the k-th of n samples
and y; is the true value. Since both §; and y, are vector quantities,
the modulus signs represent the L1 norm (i.e. the sum of absolute
errors of the vector components); we choose this metric as it gives
less weight to outliers than the more commonly used L2 norm (i.e.
the sum of squared errors of the vector components). If we denote
the function represented by the neural network as f, parametrized by
weights and biases W, we therefore attempt to find a function f, such
that

fi= arg;fnin{MAE (f(x), »} ®)

The training is performed iteratively in steps known as epochs.
During each epoch, the model weights and biases, W, are adjusted
by an optimizer to minimize the MAE of the network’s predictions
for the training set. The optimizer is an algorithm that calculates
how best to adjust the model weights by seeking minima on the
error surface, usually by some form of gradient descent. We use
the AMSGRAD variation of the Adam optimizer (Kingma & Ba
2015; Reddi, Kale & Kumar 2018). Adam is a momentum-based
optimizer and AMSGRAD aims to improve the performance of
Adam around minima on the error surface. At the end of each epoch,
the adjusted model is evaluated on the validation set, to ensure the
model generalizes to unseen data. If the performance on the validation
set has improved (as measured by the MAE), we save the model
weights and continue training. If the performance does not improve,
we do not save the weights and continue training. This process is
repeated until the performance on the validation set has not improved
for 30 epochs at which point we halt the training. We then perform
a final fine-tuning step using the RMSprop optimizer (Tieleman &
Hinton 2012); this optimizer uses stochastic gradient descent and
treats the error surface as a quadratic bowl. For this step, we use a
very low learning rate of 107>, allowing us to take small gradient
steps towards the minima of the error surface. We find this works
well in boosting the performance of our emulator. We then evaluate
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the model on the holdout set to ensure its performance generalizes to
entirely unseen data (since we selected model weights which perform
best on the validation set, the validation set itself is not a good test
of out-of-sample performance).

2.2.1 Inputs and outputs

The aim of our emulator is to map an input vector x, the GALFORM
parameters, on to an output vector y, the statistical galaxy properties
that we wish to predict. Our choice of input parameters is informed
by previous analyses (e.g. Lacey et al. 2016; Oleskiewicz & Baugh
2019), and we aim to emulate the effects of the parameters associated
with the key processes outlined in Section 2.1. These parameters and
their ranges are shown in Table 1. We train our emulator to predict a
wide range of statistical galaxy properties calculated from the output
of GALFORM. These are the K- and r-band LFs at z = 0, the early- and
late-type galaxy sizes, the H1 mass function, the early-type fraction
with r-band magnitude, the /-band Tully—Fisher relation, the bulge—
black hole mass relation, and the metallicities of early-type galaxies.

2.2.2 Model architecture

We find that a simple architecture is sufficient to accurately emulate
GALFORM. We use a densely connected neural network, meaning
that every neuron is connected to every neuron in the previous
layer. We use two hidden layers, each with 512 neurons and sigmoid
activation functions, and linear activations on the output layer. We
investigated a number of other architectures, such as stacking long
short term memory (LSTM; Hochreiter & Schmidhuber 1997) and
1D convolutional layers to try to exploit features of the data, but
found limited improvement at the cost of slower evaluation speed.

2.2.3 Ensembling

Training a neural network is a stochastic process. The network
weights are often initialized according to some distribution (e.g.
Glorot & Bengio 2010), and the optimizer traverses the weight space
using gradient steps calculated on mini-batches of the full data set
(i.e. a small subset of the whole training set at a time), and so is
inherently stochastic. This means that training a single network is
suboptimal. Since the error surface is likely to contain many local
minima we are unlikely to find the best possible network weights
with one network alone, and each network will develop its own
idiosyncrasies in how it fits the data. Neural networks also contain
a vast number of parameters, and are therefore prone to overfitting.
One way to address these problems is ensembling. This involves
training a handful of networks with different weight initializations
and combining the individual predictions. We can also shuffle the
validation and training sets for each model in the ensemble, so that
each model is exposed to a different distribution of input—output
pairs. In general, this allows for a more robust prediction. Individual
models may over- or underfit to different features of the data, and
combining predictions averages over these individual behaviours.
We therefore train 10 models as described above, each with the
same model architecture. Our emulator is then the simple average of
the predictions of this ensemble of models. We must note however
that this is a rich avenue for exploration in future work (for a review
of popular ensembling methods, see Opitz & Maclin 1999). For
example, it may be possible to ensemble different machine learning
algorithms and combine the individual model predictions with a
weighting scheme, or even another machine learning algorithm.
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2.3 Sensitivity analysis

Once we have trained a deep learning emulator of GALFORM, we can
apply sensitivity analysis techniques (e.g. Saltelli et al. 2010; Saltelli
2017) to understand the contribution of the different parameters to
the bin-wise variance in the emulator outputs. For a full description
of calculating sensitivity indices see Oleskiewicz & Baugh (2019),
who first applied this type of analysis to a model of the entire galaxy
population. Here, we provide a brief overview of the sensitivity
indices and what they describe.

Since GALFORM is deterministic, all the variance in the output Y
will be due to the effects of the input parameters X. Assuming the
input parameters are independent, we can calculate the first-order
variance due to parameter X; by integrating the variance over the
i-th dimension. Furthermore, we can calculate the variance due to
interactions between parameters X; and X; by integrating the variance
across the i-th and j-th dimensions, and subtracting the corresponding
first-order effects of parameters X; and X;. This can be continued to
account for the interactions between many parameters. The total
variance of the model output Y can therefore be decomposed as

d d
Z Var; + Z Var; ; + ...+ Var, 54 = Var(Y), )
i=1

i<j

where Var; represents the variance due to the i-th of the d parameters,
the sum over Var;; represents the variance due to interactions between
the parameters X; and X;, and Var(Y) is the total variance in the model
output Y. This can be normalized to give the sensitivity indices of all
orders

d d
DOSi4+> Sij+..+Si2a=1 (10)
i=1 i<j
This can be separated into S, the first-order sensitivity index, which
describes the proportion of the variance due to the i-th parameter,
and S7, which encapsulates the proportion of variance due to the i-th
parameter and all higher order interactions between the i-th parameter
and all other parameters.

Given the low computational cost of our emulator, we can evaluate
it at a large number of points in the parameter space following Saltelli
sampling. This sampling method aims to both evenly sample the
space and minimize the model discrepancy (a concept whose full
explanation is beyond the scope of this work, but is described in
Saltelli et al. 2010), allowing for sample-efficient calculation of the
sensitivity indices. For this analysis, we use the SALIB python package
(Herman & Usher 2017).

2.4 Calibration and comparison data sets

We will use our emulator to calibrate GALFORM using a number of
data sets. For the most part, we adopt the data sets used for model
calibration in Lacey et al. (2016), but with a focus on low-redshift
observations. The key change we make is to the choice of LF data.
We use the K- and r-band LFs from the GAMA survey (Driver et al.
2012); we choose these data sets as they correspond to the same
survey volume and the same analysis methods are used for each
band, with consistent k-corrections to z = 0 bands. The measured
LFs should therefore be as consistent as possible, allowing our model
to fit both. We apply a number of selection criteria to the GALFORM
output to replicate the observational samples of the calibration data
sets.

The full list of calibration and comparison data sets and their
respective selection criteria are as follows:
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(i) For the K-band LF, we calibrate to data from Driver et al. (2012)
and also compare to data from Kochanek et al. (2001).

(i1) For the r-band LF, we calibrate to Driver et al. (2012).

(iii) For the early- and late-type sizes, we calibrate to data from
Shen et al. (2003). We define early types in the model as galaxies
with bulge-to-total r-band luminosities of (B/T), > 0.5 and late
typesas (B/T), < 0.5. Since the half-light radii of late-type galaxies
are measured in circular apertures projected on the sky, the late-
type galaxy sizes are corrected to face-on values by multiplying the
median sizes by a factor of 1.34 (as in Lacey et al. 2016).

(iv) For the H1 mass function, we calibrate to data from Zwaan
et al. (2005) and compare to the estimate from Martin et al. (2010).

(v) For the early-type fraction, we calibrate to data (B/T), derived
from Moffett et al. (2016) (Moffett, private communication). Here,
the (B/T), ratio was calculated from GAMA using the disc/bulge
decomposition method outlined in Lange et al. (2016). We also com-
pare to data from Gonzdlez et al. (2009), which uses concentration
indexes calculated from SDSS data (York et al. 2000). Again, early
types are defined to have (B/T), > 0.5.

(vi) For the I-band Tully—Fisher relation, we compare to a subsam-
ple of Sb—Sd galaxies from the Mathewson, Ford & Buchhorn (1992)
catalogue, as selected by De Jong & Lacey (2000). Model galaxies
are selected with (B/T)g < 0.2 and gas fractions M ¢qa/ M, > 0.1,
where M 4 is the cold gas mass and M, is the stellar mass.

(vii) For the bulge—-BH mass relation, we compare to data from
Hiring & Rix (2004). To match the bias towards early types in the
sample, we choose model galaxies with (B/T), > 0.3.

(viii) For the early-type metallicity, we compare to data from
Smith, Lucey & Hudson (2009). We select model galaxies which
reside in dark matter haloes with My, > 102! M and define
early types as before. The observed metallicities are corrected for
metallicity gradients as described in Lacey et al. (2016).

(ix) Finally, we explore the model predictions for data in a very
different redshift range to our calibration data sets. We test the
calibrated model predictions against observational estimates of the
star formation rate density (SFRD) with redshift. We compare to
data from Burgarella et al. (2013), Cucciati et al. (2012), Oesch et al.
(2013), Sobral et al. (2013), and Gunawardhana et al. (2013). Since
the observationally derived SFR values depend on an assumed initial
mass function, and our model assumes a mildly top-heavy initial
mass function in starbursts, we account for this in the observational
comparison by applying an approximate correction in which we
weight the starburst SFR by a factor of 1.9 (see Lacey et al. (2016)
for further details).

2.5 Parameter fitting

Once we have trained our emulator, we use MCMC to explore the
effect of calibration to different data sets with a simple implemen-
tation of the Metropolis—Hastings algorithm (e.g. Robert 2004). The
complication here is that the observational errors on the data sets
cannot be combined straightforwardly. For example, if we aimed
to minimize x>, and the error bar on a particular data point in
the constraining observational data set was very small, this point
would dominate the total error measure. Our MCMC chain would
simply be trying to find the best fit to this one data point, without
fitting to the others. We therefore aim to minimize the absolute
error between the emulator output and the observational constraints,
without considering the observational errors. This allows us to
combine and fit to multiple data sets, without having to worry about
the robustness of the associated observational error bars, and hence
to avoid the complications described above.
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We also wish to have the flexibility to give more consideration to
a selected observational constraint over the others. This will allow us
to investigate the effect of requiring better fits to some data sets, and
to see how this affects the fit to other data sets, as well as how the
optimal parameter choices change as a result. We therefore include
a vector of heuristic weights, W, which can be varied to increase
the contribution of the residuals from one constraint to the total
error,

1< 1
MAEgs = o Z WWN)’[ -y, 11

i=1 "t

where the sum is over the n observational constraints, W; represents
the weighting of the contribution to the total error of the i-th
constraint, y; represents the emulator prediction for a set of model
parameters, and y?bs is the observational data for the i-th constraint
with n¢® data points. Since ; and y® are vector quantities, the
modulus signs represent the L1 norm. As the constraining data sets
have a variety of values, we scale each one by a constant factor
and apply a constant offset so that the range of each y®™ is [0, 1].
We apply the same scaling to the emulator predictions y,; before
calculating equations (7) and (11). Note that since different data sets
contain different numbers of data points, we divide the i-th data
set’s error by the number of data points n* so that each contributes
equivalently to the mean error. In later sections, when considering
observational data, we shall refer to equation (11) as just the mean
absolute error (MAE). We have checked that using the more common
L2 norm instead of L1 moves attention to outliers and degrades the
overall performance of the emulator.

‘We implement the Metropolis—Hastings algorithm as follows: we
initialize each chain at a (different) random point in the parameter
space, x. We then draw the next sample in the chain, x’, from indepen-
dent Laplacian distributions, £(x/|u;, b;) = zih/_exp(—|xi’ — wil/bi)
with u; = x; and the scale parameter for the i-th model parameter, b;,
taken to be 1/20th of the parameter ranges given in Table 1. We then
calculate the acceptance ratio, «, by taking the likelihood ratio of the
emulator predictions to the observational data for the parameter sets x
and x" under a Laplacian likelihood with scale parameter by, = 1/20
(i.e. the ratio L(fo(X')|/, Dobs)/ L f+(X)| 1, bobs), Where u represents
the values of the observational data and f.(-) the emulator, and
recalling we are using the modified absolute difference given in
equation 11). We next generate a uniform random number « € [0, 1];
samples are accepted if u < «, in which case we draw the next
sample from Laplacians centred on x’, or rejected if u > «, in
which case we draw the next sample from Laplacians centred on
the original point x. Therefore, if the error between the emulator
predictions for the parameter set x and the observational data is less
than or equal to the error for the predictions for x, we accept the
sample. If the error for x is not an improvement over the previous
sample, we accept it with probability «. The density of accepted
samples should then trace the regions in the parameter space which
give the best fits to the observational data. We discard the first
50 per cent of accepted samples to allow for burn-in. We test a
number of values of the sampling Laplacian widths b; in the range
0.05-0.2, in conjunction with the likelihood width b, and find that
these parameters have little effect on the convergence of the chains,
and larger bps simply increases the proportion of accepted samples.
We ran longer chains up to 100000 samples and found that they
quickly converged to their minimum MAE (as given by equation 11)
within the first 10000 samples, and so choose this as our chain
length.
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3 RESULTS

Here, we present our main results, starting with a demonstration of
the accuracy of the emulator (Section 3.1), a sensitivity analysis of
the model parameters (Section 3.2), and closing with a discussion of
the calibration of the model parameters and the tensions that arise
when using different combinations of data sets (Section 3.3).

3.1 Emulator performance

Having trained our emulator as described in Section 2.2, we evaluate
its ability to predict the output of GALFORM at unseen points in the
parameter space. We use a set of 930 GALFORM runs. The emulator
was trained as described in Section 2.2 with 80 per cent of the
runs used as the training set (i.e. 744 combinations of parameter
values), a 93 sample validation set, and a 93 sample holdout set.
For each model in the emulator ensemble (i.e. each version of the
neural network), the training and validation sets were shuffled. Fig. 2
shows the emulator prediction versus the true GALFORM output for
the holdout set. Generally, the emulator follows a tight relation on the
y = x line, indicating that the emulator is accurately predicting the
GALFORM output for the parameters sets in the holdout set. The H1
mass function, Tully—Fisher relation, and bulge-BH mass relations
are accurately predicted, as well as the faint end of the LFs and late-
type galaxy sizes. The uncertainty is greater for the predictions of the
bright-end of the LFs, and for the early-type sizes, fraction of early-
type galaxies with luminosity, and the early-type metallicity. The
lower panel of Fig. 2 sheds some light on the source of inaccuracies
in the early-type predictions, notably the early-type sizes, which
exhibit noisy behaviour for some choices of parameters, and for a
few cases (e.g. the purple line) the lower luminosity sizes are not well
predicted. For the early-type fraction, while the error bars look large,
inspection of the lower panels shows that such errors are generally in
the brighter bins. We are nevertheless able to discriminate between
parameter sets at the fainter magnitudes as the overall shape is well
captured.

We see that the emulator is able to characterize a wide range
of behaviour in the LFs, with the majority tightly predicted. In the
bottom row of Fig. 2, the orange curves in the K-band panel show
a substantial discrepancy between the true and predicted outputs;
this usually indicates that the training data did not contain sufficient
examples of this behaviour. The emulator constructs the function
f«(+) by fitting to the training examples, and in doing so should build
a function that can interpolate between points in the parameter space.
However, in sparsely sampled regions of the space, such as at the
edges of our parameter bounds, the interpolation is less reliable.
Indeed, if a point in the holdout set is an extrapolation with respect
to the training set, performance can be affected. This is why we
aim to fill the parameter space as evenly as possible using the Latin
hypercube sampling method. We expect that such disagreements will
decrease on increasing the number of training samples.

We can also judge from the distribution of predictions for the
K- and r-band LFs in Fig. 2 that the emulator slightly overpredicts
the bright end of the LF. This is a consequence of the emulator
training; in the interest of computing speed, we run GALFORM on
only a subregion accounting for 1 per cent of the full volume of the
P-MILL simulation. This leads to sampling effects at low galaxy
number densities, and for different choices of parameters the LF is
cut-off at different luminosities. Since the output of our emulator
must be fixed-length, during training we mask any points beyond
this luminosity cut-off when computing the loss. This means that in
the brighter luminosity bins the emulator is only fitting to a small
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number of runs which are biased towards having higher values of ¢
in these brighter bins. There is therefore a tendency to overpredict
at these luminosities. This should only be a minor problem in terms
of our fitting routine, since the Driver et al. (2012) data we are
fitting to does not sample ¢ to very low number densities. We also
see a quantization effect in the brighter LF bins, again due to the
discrete sampling of galaxies. These problems could be removed by
evaluating GALFORM on a larger fraction of the P-Mill simulation
volume, though this would be more computationally expensive.

3.1.1 Scaling with training set size

We train three emulators with 250, 500, and 750 samples of
parameters respectively (split into training and validation sets with
10 per cent of the samples being used for validation) to investigate
the scaling of the emulator performance with the number of full
GALFORM calculations carried out. The emulators consist of an
ensemble of 10 networks each trained on the same (shuffled) training
and validation data and the same holdout set of 93 samples. Fig. 3
shows the scaling of the emulator performance on the holdout set (as
measured by the MAE) with the number of training samples N. The
dashed line shows average performance of the individual networks,
and the solid line shows the performance of the ensemble. The model
scales well with increasing training samples, and ensembling affords
an almost constant improvement in performance (we find that at ~10
models, the performance increase from adding more models to the
ensemble saturates).

We test the ability of the emulator to generalize to unseen data
by evaluating the version of the emulator trained with 500 samples
in Fig. 3 on the remaining 430 unseen samples. We find very little
variation in the accuracy of the model between the two holdout sets.
The MAE on the 93 sample holdout set was 0.034, and on the full
430 available holdout samples was 0.032. Further, we perform a 10-
fold cross-validation with the training, validation, and holdout sets as
described in Section 3.1. We find a mean MAE of 0.030, with a range
between 0.027 and 0.034. This gives us confidence that the model is
able to learn a function which provides a very good approximation
to GALFORM across the full parameter space.

The impressive scaling of the emulator error with number of
training samples is encouraging. SAMs are used to build mock
catalogues for upcoming surveys, and some of these have stringent
requirements on fits to certain data sets, such as the redshift
distribution of galaxies. We can envisage using this technique to
produce high-accuracy parameter estimates for fits to such data sets
by increasing the number of training samples, or using ‘zoom-in’
training samples as in previous work (e.g. Bower et al. 2010) to
focus in on a particular region of parameter space which is deemed
to give acceptable fits to the constraining data sets. Nevertheless,
we find that our current emulator is sufficiently accurate to facilitate
calibration and model exploration.

3.2 Sensitivity analysis

We apply the techniques described in Section 2.3 to calculate the
contribution of each parameter to the variance in each bin of the
nine constraints. The results are shown in Fig. 4. The open circles
indicate the first-order sensitivity index, S;, which quantifies the
proportion of the variance due to just one parameter. The total order
sensitivity, St, is shown as solid lines, and indicates the proportion of
the variance contributed by one parameter and its interactions with
the other parameters. We can interpret the difference between the
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Figure 2. Emulator performance across nine statistics computed from the model output for out-of-sample parameter sets. These statistics are either number
densities or median values in luminosity or mass bins, and are the same ones used for the observational comparisons. The first three rows show the emulator
output (y-axis) versus the GALFORM output (x-axis). Black error bars indicate the 10-90th percentile range of the residuals. The bottom row shows a random
draw of emulator outputs (dotted) and true GALFORM outputs (solid) for the K-band LF, early-type fraction, and early-type sizes, reading from left to right. In

these panels, different colours denote different parameter sets.

first order and total order sensitivity as a measure of the strength of
the interaction between a given parameter and the other parameters.
For clarity, we exclude parameters which never contribute more than
10 per cent of the variance to any bin. Both fu and f .y, meet this
condition, and so do not appear in the plots.

We see that the dominant parameters for the majority of the model
outputs are, perhaps unsurprisingly, the SN feedback parameters.
Vsn.aisk and ygn account for the majority of the variance at the
faint end of the K- and r- band LFs. At the bright end, oo, the
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parameter governing the strength of AGN feedback, contributes the
largest proportion of the variance. The majority of the variance in the
late- and early-type sizes, the Tully-Fisher relation, as well as the HI
mass function is also contributed largely by the same two or three
parameters.

The early-type fraction is dominated by the threshold for disc
instability, f b, up until M, — Slogh ~ —21. At brighter magnitudes,
disc instabilities become unimportant as mergers takes over as the
main channel for building spheroidal components (see Husko et al., in
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Figure 3. Emulator mean absolute error with the number of training
examples of full GALFORM runs for the ensemble (solid line) and single
(dotted line) networks. The emulators were trained on 250, 500, and 750
samples and performance evaluated on the same holdout set of 93 samples.
Recall that the emulator outputs are scaled as described in Section 2.5.

preparation, for an exploration of the relative importance of different
channels for the growth of galaxy stellar mass).

The sensitivity analysis hence dispels one of the myths surrounding
SAMs as it shows that the model cannot be made to fit to any arbitrary
combination of data sets. To match the faint end of the K-band LF, we
are strongly constrained in our choice of SN feedback parameters,
which contribute the vast majority of the variance to these bins. Our
predictions of early- and late-type galaxy sizes, the H1mass function,
the Tully—Fisher relation, and the bright end early-type fraction are
also then largely constrained, since the SN feedback parameters
dominate these outputs too. This is in line with the analysis performed
by Bower et al. (2010), which reached similar conclusions.

The parameters also have clear physical interpretations, and are
analogous to the parameters used in the subgrid physics models in
hydrodynamic simulations (e.g. Crain et al. 2015; Weinberger et al.
2016; Pillepich et al. 2017). The parametric model for SN feedback
can indeed be tuned to give a good match to the late-type galaxy
sizes, but in doing so we are strongly constraining our fits to other
data sets; the model does not include arbitrary parameters that allow
for fine-tuning to an individual data set without physical motivation
or consequences for the fits to other data sets.

3.3 Calibration and data set tensions

We now apply the methods described in Section 2.5 to calibrate
the model to the data sets described in Section 2.4, focusing on
uncovering any tensions that exist between data sets. First, we aim
to replicate a known tension in the model discussed in Bower et al.
(2010) and Lacey et al. (2016). This is the tension between reproduc-
ing late-type galaxy sizes and the galaxy LFs; these data sets have
been found to prefer different values for the SN feedback parameters.
We can investigate this by adjusting the weightings applied to the
residuals between our emulator prediction and each data set (as in
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equation 11), and then performing an MCMC parameter search to
see how the best-fitting parameter choices respond.

In Fig. 5, we show the emulator predictions for three sets of best-
fitting parameters. In the first case, shown by the blue line, we weight
only the residuals for the K-band LF. For the orange line, we weight
only the size—luminosity relation for late-type galaxies, and the green
line shows the results when weighting both data sets equally (i.e.
both data sets have equal influence over the best-fitting parameter
values). The shaded region is shown only around the fit to the K-
band LF for clarity, and represents the 10-90th percentile error of
the emulator when predicting similar values in the holdout set (this
gives a rough idea of the uncertainty of the emulator, but is certainly
not an exact measure). We can clearly see the tension between these
two data sets uncovered in an automatic and objective way; matching
the sizes of faint late-type galaxies leads to an overprediction of
the LF at all luminosities by up to an order of magnitude. When
matching both the K-band LF and the late-type galaxy sizes, we
see an overprediction in the faint-end of the LFs, and the sizes of
faint late-types are overpredicted by a factor of ~2. The early-type
sizes and Tully—Fisher relation are also shown in Fig. 5. Although
no weighting was applied to these data sets in this exercise, we can
see improved matches emerge naturally when we fit to the late-type
galaxy sizes. We can gain some intuition for this behaviour from
Fig. 4. As discussed, the Tully—Fisher relation, early- and late-type
galaxies sizes, and the faint-end of the galaxy LF are highly sensitive
to the choice of SN feedback parameters, y sy and V gy gise (Which
together account for ~ 90 per cent of the variance in the faint-end
LFs and the sizes of faint late-type galaxies). Therefore, we might
expect that some tension would arise in trying to fit to a number of
the above data sets at the same time.

It is also informative to investigate how the acceptable regions of
parameter space change as we introduce weightings to other data
sets. We demonstrate this for the tension between the LF/late-type
sizes in Fig. 6. The shaded regions represent accepted samples from
our 20 MCMC chains, each 10000 steps in length, with the first
50 per cent of each chain discarded to allow for burn-in. The red
region corresponds to a fit to the K-band LF, and the blue region to
fits to both the K-band LF and late-type galaxy sizes. The shading
gives a sense of the density of accepted samples, i.e. the darker
colours correspond to the more favoured parts of parameter space in
this projection. The darkest regions correspond to the 25th percentile,
and the lighter regions to the 50th and 75th percentiles. Also shown
in Fig. 6 are 1D histograms of the density of accepted samples.
We find that, as in previous analyses, a reasonably large range of
parameter values result in acceptable fits to a given constraint. This
can be best understood (as explained in Bower et al. 2010) as the
effect of the high dimensionality of the parameter space; though
when plotted in projection down to one or two dimensions the
space appears widely sampled, the higher dimensional acceptable
region is reduced significantly. Also, some of the parameters produce
degenerate effects (see for example Fig. Al in Appendix A, where
we show the degenerate effects of the f ., and V gn_ purst parameters).
Nevertheless, we see that the K-band LF fit prefers somewhat higher
values of ysn & 3.6 and lower values of Vgy, gise & 200kms™!, in
contrast to the fit to both the K-band LF and late-type sizes, where
we find a preferred value of y sy &~ 2.3 and Vgy_gisc at the top of the
explored range at ~550 km s~'. Interestingly, there seems also to be a
preference for lower values of vsg to match the late-type galaxy sizes.
We can understand this crudely by investigating the first-order effect
associated with the vgr parameter. Inspecting Fig. A2 in Appendix A,
we see that the vgr parameter has a some effect on the bright-end of
the K-band LF. This counteracts the enhancement from the higher
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Figure 4. The emulator sensitivity to different parameters for each of the observables considered in this work; each panel shows a different observable, as
labelled. Open circles indicate S; as described in the text, and solid lines represent St. For clarity, error estimates are shown for the S; calculation but not for
St, although they are similar. Sensitivities for parameters that never exceed more than 10 per cent of the variance in any bin are not plotted.

value of Vg _4isk, and also marginally improves the fit to the late-type
galaxy sizes.

Another tension arises between the H I mass function and the bright
end of the K- and r-band LFs. This is shown in Fig. 7. As before, the
blue line corresponds to the fit to the K-band LF alone, the orange
line to the fit using the HI mass function alone, and the green to
a fit to both data sets. We can again propose (from our plot of the
sensitivity indices, Fig. 4) that the main cause of this discrepancy is
a tension in the choices for the AGN feedback parameter, o¢o01, and
the SN feedback parameters. Indeed, when fitting the observational
constraints individually, the fit to the K-band LF prefers a higher value
for the AGN feedback parameter, with oo =~ 0.8, whereas the fit
to the H1 mass function prefers « ., &~ 0.5. We can also investigate
how calibrating to both data sets shifts the parameter values. We do
this as before with an MCMC exploration of the parameter space
(see Fig. A3 in Appendix A). Fitting to both the K-band LF and
the HI mass function (as compared with a fit just to the K-band
LF) causes a shift in the preferred Vg gisc to higher values. vgg, the
parameter that controls the rate of quiescent star formation, shifts to
the lowest values in the explored range, and the parameter o, which
is involved in gas return to haloes following SN feedback, becomes
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more strongly peaked, with the peak shifted to slightly higher
values.

To understand this further, we investigate the first-order effects
of the parameters (Vsn_ disc» Vs, and o), perturbed around the
fit to the K-band LF. We show the results in Fig. 8. We vary
the parameters individually (‘one-at-a-time’) across their explored
range, with lighter colours corresponding to lower parameter values.
We can begin to understand the changes in the preferred parameter
choices in terms of these transformations. When fitting both the
H1 mass function and the K-band LF, we find that there is a slight
overprediction of the bright-end of the LF. From these one-at-a-time
plots, we can see that the increase in V g _ gisc causes an overprediction
at the bright-end of the LF, and a reduction in amplitude at the faint-
end, but more accurately matches the high-mass end of the H1 mass
function. The H I mass function can be better matched at intermediate
masses by a decrease in vgg. In GALFORM, reducing v has the effect
of decreasing the rate of quiescent star formation in discs. As a result,
lower values of this parameter provide a better fit to intermediate
masses of the H1 mass function, while simultaneously reducing the
number density of the most luminous galaxies in the K-band LF, and
so counteracting the enhancement due to the increase in the V gy gisc
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Figure 5. A comparison of the emulator predictions for fits to the K-band LFs, the late sizes, and a combination of the two (represented by different colour
dashed lines). We fit to the data from Driver et al. (2012) (black) for the K-band LF, and Shen et al. (2003) for the late-type sizes. The emulator predictions
correspond to the best fit found from 20 MCMC chains, each 10 000 steps in length. The blue shading represents the 10-90th percentile errors when predicting
a similar value in the holdout set. The black and grey data points represent the calibration data described in Section 2.4. For the K-band LF, we also compare
to data from Kochanek et al. (2001) (grey). For the r-band LF, we compare to data from Driver et al. (2012). For the early-type sizes, we compare to data from
Shen et al. (2003), and for the Tully—Fisher relation we compare to data from De Jong & Lacey (2000).

parameter. We can further improve the match of the prediction for the
LF to the observational data by increasing o, which has little impact
on the H1 mass function but reverses some of the ‘flattening’ of the
LF caused by the increase in Vg gisc. In previous galaxy formation
models, using the WMAP-7 cosmological parameters, this tension
has not been so apparent, but can also be seen between the b;-band
LF and the H1 mass function in Baugh et al. (2019).

Our approach also allows us to uncover a significant tension
between the bright end of the LFs, the early-type fraction, the Hi
mass function, and the early-type metallicity. We demonstrate this
in Fig. 9, where we compare a fit found by calibrating to the K-band
LF, H1 mass function, and the early-type fraction with and without
including the early-type metallicity constraint (note that we do not fit
to data sets shown in grey). Including the early-type metallicity has
a significant effect on the best-fitting parameter values; it generally
improves the fits to the galaxy sizes, and degrades the fit to the early-
type fraction [at least when considering the Moffett et al. (2016)
data] and the H1 mass function. We investigate the impact on the
acceptable region of parameter space in Fig. 10, where we show
the key changes induced by including the early-type metallicity
constraint. The red region shows the fit to the K-band LF, HI mass

function, and early-type fraction, and the blue region also includes
the early-type metallicity. We find that there is a reconfiguration
of the SN feedback parameters, ysn, and VN purse to match the
early-type metallicity. This reconfiguration provides better fits to
the galaxy sizes, while degrading the fit to the HI mass function,
which is also very sensitive to the choice of ygn. The fits found
when we choose not to include the early-type metallicity constraint
are very similar to those found in Lacey et al. (2016) and Baugh
et al. (2019), with overpredictions for the sizes of faint early-type
galaxies, good fits to the HI mass function, and an underprediction
of the metallicity of faint early-type galaxies. Including the early-
type metallicity constraint, however, moves us to a different region
of parameter space for this updated version of the GALFORM code.
Another key shift is in the preferred value of f.p; the preference
for lower values of f,, leads to a suppression of the early-type
fraction at intermediate luminosities. At these luminosities, disc in-
stabilities are the main channel for building up spheroid components
and decreasing f . limits the number of disc instabilities (see Husko
etal., in preparation). Although f ., does not appear in the early-type
metallicity sensitivity analysis (as shown in Fig. 4), this is because
the sensitivity indices are dominated by the strong effects of the
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Figure 6. Accepted samples from 20 MCMC chains for fits to the K-band LF (red), and both the K-band LF and the late-type galaxy sizes (blue). The first
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SN feedback parameters. A lower f ., does increase the early-type
metallicity but to a far lesser extent than the SN feedback parameters,
and so gives a more exact match to the observational data.

In our analysis so far, we are perhaps making the mistake of
attempting to understand a non-linear model in terms of just first
order, one-at-a-time changes to the parameters. Indeed, this is
one of the key weaknesses of traditional ‘chi-by-eye’ parameter
fitting. However, as shown in Fig. 4, we can justify this mode of
investigation; the majority of the variance due to a given parameter is

MNRAS 506, 4011-4030 (2021)

generally due to just its first-order effect. vsp, 0rer, ®eool, and fsvpn
only have weak higher order variance contributions. In the cases
where this assumption is less valid, for example in the case of the
parameter y sy and Vg gisk this can be understood straightforwardly
with reference to equation (2); these parameters directly interact in
the implementation of SN feedback. It is striking how much of the
variance is due to the parameters’ first-order effects. The outlier is
f stab» Which has strong higher order interactions and is not directly
coupled to the other parameters in any equation.
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3.3.1 Best-fitting model

We can now re-calibrate the GALFORM model across all constraints
to produce an estimate of the best-fitting parameters. As we have
seen, there is no single choice of parameters that can reproduce all of
the constraints, and we have to decide during the calibration which
data sets we would like to give more or less weighting. The ideal
of automatically calibrating a semi-analytical model is therefore a
difficult one to realize; we will always have to make trade-offs in
how we fit to the various data sets. As described in Section 2.4, we
can do this in a semi-automatic way using the heuristic weighting
scheme.

We have seen that there are a number of trade-offs or tensions to
consider when aiming to find a best-fitting model. Fitting to the late-
type galaxy sizes, the Tully—Fisher relation, or the H1 mass function
generally degrades the fit to the K- and r-band LFs. We have also seen
that trying to reproduce the early-type metallicities worsens the fit to
the Moffett et al. (2016) data for the early-type fraction, and worsens
the fit to the high-mass end of the HI mass function. On the other
hand, other observational constraints are more easily fitted; since the
bulge-BH mass relation is largely dependent solely on the fsyvpn
parameter, and this has very little influence on other observables,
fitting this constraint is trivial.

With these considerations in mind, we choose heuristic weights
such that the r- and K-band LFs are strongly weighted. We know
from our previous analysis that there will be trade-offs between
both the bright- and faint-ends of the LFs, but we require good
fits to both. Therefore, we doubly weight both of these constraints
when calculating the MAE given in equation (11) (i.e. by setting
W; = 2 for each observable). Since the late-type sizes, early-type
sizes, and the Tully—Fisher relation are important constraints, but
lead to compromised LF fits, we apply single weighting to all these
constraints (i.e. W; = 1). We also give a single weighting to the
early-type metallicity since this trades-off against the bright end of
the LF and the high mass end of the HI mass function. Since the H1
mass function is an important constraint, but as we are aware that it
generally degrades the fit to the bright end of the LF, we give this
constraint a triple weighting. This is to ensure that more total weight
is applied to the K- and r-band LFs in combination. We apply a single

weighting to the early-type fraction; we have seen that this fit is in
strong tension with the early-type metallicities and sizes.

We run 100 MCMC chains with our emulator, each 10 000 steps
in length. We find that the minimum MAESs (as computed using the
emulator) obtained with each chain lie in the range ~0.15-0.20; since
this range is similar to the out-of-sample accuracy of the emulator,
and so in principle we cannot discern which parameter sets give the
best fit to the observational data with the emulator alone, we evaluate
these 100 minimum MAE parameter sets with the GALFORM code.

The best fits are shown in Fig. 11. Here, we plot the best 50 sets
of parameters from the 100 MCMC chains, as evaluated with the
GALFORM code. These runs have very similar MAEs, covering the
range 0.16-0.18, while the runs not shown cover the range 0.18-0.22,
which is slightly wider than the range predicted by the emulator, but
within the expected emulator error (0.04 in this weighting scheme).
The solid red line indicates the run with the lowest MAE, and the
blue lines show the remaining 49 runs. The shading on these lines
indicates the size of the residuals between the model and the H1
mass function, with darker lines indicating smaller residuals, and
demonstrates that the parameter choices that provide the best fits
to the H1 mass function overpredict the bright-end of the LFs. The
black dashed line shows the statistical galaxy properties of the model
presented in Baugh et al. (2019) (hereafter Baugh19). In Table 2, we
show the set of parameters with the lowest MAE to the observational
data (corresponding to the red line in Fig. 11), the parameter range of
the best 50 parameter sets, and compare with the parameters adopted
in Baugh19 for an older version of the model. We reiterate, however,
that the best-fitting parameters are just one realization out of many
possible choices due to the degeneracies between the parameters,
and the effect of calibrating to multiple data sets. Also, the ranges
shown in Table 2 do not indicate that any choice of parameters within
these ranges will yield an equivalent fit; the value of one parameter
will constrain the choices for the other parameters, hence the reason
for giving an example of a best-fitting set of parameters. We find
that some parameters, such as vsg and y gy are constrained to a tight
range of values, whereas others, such as f,, can be drawn from a
large fraction of the explored range.

Calculating the mean absolute error of the best-fitting model,
and the Baughl9 model, using the same procedure as described

MNRAS 506, 4011-4030 (2021)

120Z 1snbny g| uo Jasn weylnd 1o AusiaAiun Aq GOEE L9/ LOY/E/90S/8101B/SBIUW/WOoD dNo-olWwspeoe//:sdny WwoJj papeojumoq



4024  E. J. Elliott, C. M. Baugh and C. G. Lacey

-1 § K-band luminosity function 0 %§$ HI mass function
o 7ol
‘51) &
g 2 =2
T 2
S I _
= =3
s 20
= 2
b A
=) =
% S
2 } :ql) _5
_7] Varying Vo, aisk =61 Varying Vix, disk
-18 =20 =22 —-24 6 8 10
My — 5logh log(Myui/h—*Mg)
-11 % 0

|
(S}

|
ES

log(®/h*Mpc >mag ")
log(dn/dlog My /h*Mpe %)
I
W

—_—
7z
|

[V}

-7 Varying vsp Varying vsp

|
=

-18 =20 =22 -24 6 8 10
My —5logh log(My;/h ~2M,,)

-4

{ R

-6
-18 =20 =22 -24 6 8 10
My — blogh log(My;/h~2M,,)

log(®/h*Mpe>mag ™)
IN

g (dn/dlog My /h*Mpe 2)
|
)

Varying et

_7] Varying ot

Figure 8. Emulator predictions for perturbing three key parameters around
a fit to the K-band LF. The top row shows the result of varying the parameter
Vs, disc between 100 and 550 kms™!, the middle row varies vsp between 0.2
and 1.7 Gyr", and the bottom row varies oyt between 0.2 and 1.2. Darker
colours correspond to higher values of the varied parameter.

in Section 2.5 (and recalling that we scale each output so that the
data lie in the range [0, 1]), we find that at least under this metric
the new model is a better fit to the data. Over all the data sets, the
new best fit found in this work gives an MAE of 0.16 versus an
MAE of 0.20 for the Baugh19 model. We note that the MAE for the
model used in Baugh19 is within the range of the minimum MAE
reached by the 100 MCMC chains. The reduced MAE of the new
best-fitting model compared to the Baugh19 model is mainly due
to large improvements in the fits to the early-type galaxy sizes and
their metallicities, while the fits of the new model to the early-type
fraction and Tully—Fisher relation are slightly worse.

As shown in Fig. 11, we find that our model provides a slightly
better fit to the K- and r-band LFs than the Baugh19 model.! For

'Baugh et al. (2019) concentrated on reproducing the b;-band LF, and the HT
mass function, and did not consider the r-band LE.
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the updated model presented in this work, we find an MAE of 0.05
versus 0.08 for the Baugh19 model in the K band and 0.04 versus 0.06
in the r band. The galaxy sizes are an improvement over previous
iterations of the GALFORM model, particularly the early types, which
are now more qualitatively similar to the observational data in that
they are monotonically increasing with luminosity (at least in the
range of the data), whereas the Baugh19 model features a marked dip
at intermediate magnitudes and significant overprediction at fainter
magnitudes, differing from the observed sizes by a factor of ~3. The
MAE:s in this case are also significantly lower for the new model: for
the late-type galaxies, we find an MAE of 0.14 in this work versus
0.21 for the Baugh19 model, and 0.09 versus 0.39 for the early-type
sizes. This difference is largely due to the different choices for the y sn
parameter. Here, we find a preference for much lower values of ysn,
in the range 2.05-2.72, versus 3.40 for the Baugh19 model. Reducing
this parameter significantly weakens the effect of SN feedback in low-
mass galaxies, leading to smaller sizes (see fig. C10 of Lacey et al.
2016). Interestingly, the preferred ysy we recover is much closer
to the value expected from energy conservation arguments, y sy = 2
(Larson 1974; Lagos, Lacey & Baugh 2013).

The fit to the H1mass function is slightly worse than the fit found in
the Baugh19 version of the model (with MAEs of 0.09 versus 0.08); a
better fit would come at the expense of a more severe overprediction
of the bright-end of the LF as previously discussed, and as shown by
the shading of the blue lines in Fig. 11. As we have seen in Fig. 9, we
are able to produce better matches to the H I mass function and the LFs
if we exclude the early-type metallicity and galaxy sizes constraints
(the fits found in this case are much more similar to the Baugh19
model, with similarly high y sy in the range ~3.2-3.8, as shown in
Fig. 10). Our fit to the early-type metallicities is an improvement over
the prediction of the Baugh19 version of the model, where the MAE
of our model is 0.15 versus 0.55 for the Baugh19 model. However,
our early-type metallicities fit comes at the cost of slightly degrading
the fit to the early-type fraction (0.13 versus 0.10). Our fit to the
Tully—Fisher relation is worse than in the Baugh19 model, with an
MAE of 0.28 versus 0.17, though we have demonstrated that we can
retrieve a fit more similar to Baugh19 by giving less weight to the
early-type metallicity constraint (again as shown in Fig. 9).

3.3.2 Predictions for cosmic star formation history

We have calibrated GALFORM to low-redshift constraints and now
investigate the predictions for the evolution of the SFRD with
redshift. To do this, we evaluate the SFRD with redshift for the sets
of parameters corresponding to the GALFORM runs shown in Fig. 11.
Fig. 12 shows the SFRD predictions for these parameter choices.
Since GALFORM assumes a mildly top-heavy initial mass function
(IMF) for stars formed in starbursts, we apply an approximate
correction to give the SFR that would be inferred assuming a
Kennicutt IMF (Kennicutt 1983) by weighting the starburst SFR
by a factor of 1.9 (as in Lacey et al. 2016). The curves therefore
represent an apparent SFRD that can be compared with observational
estimates that assume a solar neighbourhood IMF. Interestingly, we
see that the spread of the model predictions only increases slightly as
we move out to larger redshifts. This suggests that the low-redshift
calibration data sets actually constrain the redshift evolution of the
model reasonably well.

4 DISCUSSION

We have presented a method for efficiently calibrating and exploring
a SAM of galaxy formation across a wide range of outputs. In doing
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Figure 9. A comparison of the emulator predictions for fits to the K-band LF, the H1 mass function, and the early-type fraction with and without including the
early-type metallicity constraint (represented by different colour dashed lines, as labelled in the top left panel). The emulator predictions correspond to the best
fit found from 20 MCMC chains, each 10000 steps in length. In both cases, all included constraints were equally weighted. The data described in Section 2.4
are shown in black and grey. For the bulge-BH mass relation, we compare to data from Héring & Rix (2004), for the early-type fraction we fit to data from
Moffett et al. (2016) and compare to data from Gonzélez et al. (2009), and for the early-type metallicity we compare to data from Smith et al. (2009). Black
data points indicate that the data was used for fitting, grey data points are included for comparison.

so, we have uncovered a number of tensions between data sets:
for example, in Fig. 9, we found that on relaxing the requirement
for a good fit to the early-type metallicities, we recovered a fit
very similar to those found in Baugh et al. (2019) and Lacey
et al. (2016). By increasing the weight given to the early-type
metallicity constraint, we moved to a new region of parameter space,
changing our fit to the early-type fraction and early-type sizes.
Tensions such as this point to either deficiencies in the model or
a discrepancy between the observational data sets. For example,
again in Fig. 9, we see that the early-type fraction fit to the Moffett
et al. (2016) data (shown in black) degrades when we include the
early-type metallicity constraint. However, in this case, the fit is then
in better agreement with the Gonzédlez et al. (2009) data (shown
in grey). Similarly, for the HI mass function, the Zwaan et al.
(2005) and Martin et al. (2010) data sets do not agree with one
another, differing by up to a factor of 5 in abundance at high

masses.

In other cases, we can see a clearer deficiency in the GALFORM
predictions. For example, in Fig. 5, we show the effect of fitting to
the K-band LF or the late-type galaxy sizes, or both together. We see
that even when we fit only to the late-type size constraint, we are still
not able to recover the observed monotonic increase in radius with
increasing luminosity. Clearly, this suggests that the treatment of the
galaxy disc sizes in GALFORM needs to be improved.

The emulation method presented here contrasts with previous
work; most emulators have focused on reducing the parameter space
by using more approximate emulators, but with robust uncertainty
measures, to iteratively reduce the volume of parameter space that
could plausibly produce good fits to the data. Van Der Velden et al.
(2021), for example, used a total of 3000 runs over three waves
to calibrate the MERAXES SAM to the stellar mass function. We
have focused instead on maximizing the accuracy of our emulator
of GALFORM across the whole parameter space. Our aim is to build
an emulator that allows us to explore a wide range of calibration
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show the distribution of each parameter in 1D projection. The darkest regions
correspond to the 25th percentile, and the lighter regions to the 50th and 75th
percentiles.

data sets, and different combinations of these data sets. As shown in
Fig. 2, our emulator performs well: most of the key constraints are
tightly predicted.

In this vein, we have discounted the observational error bars to
facilitate model exploration. In Section 3.3.1, we calibrated our
model to the full set of observational data sets under consideration.
However, since we did not include observational errors and used
an absolute error metric, it is difficult to give meaningful error bars
around our estimates of the best-fitting parameters quoted in Table 2.
As previously mentioned, SAM calibration involves making trade-
offs between certain observational constraints; often the best-fitting
model is calibrated in a way that is poorly defined. We have attempted
to reproduce and elucidate this process in an automatic way through
a heuristic weighting scheme. We aim to investigate a more robust
calibration analysis in the future with an improved treatment of the
observational errors.

Similarly, our approach could be extended to include a more robust
measure of the emulator’s uncertainty in reproducing GALFORM
outputs. When emulating a set of model outputs, we should ideally ac-
count for epistemic and aleatoric uncertainty. Epistemic uncertainty
refers to the uncertainty associated with the emulator’s parameters
(in this case, the weights of the neural network), and aleatoric
uncertainty refers to uncertainty inherent in the data generating
process (e.g. the sampling noise on the GALFORM outputs). Our
approach does not currently model the epistemic uncertainty on the
emulator’s weights, but instead acts to reduce it by averaging over a
number of individual estimates provided by the neural networks in
our ensemble. Itis possible therefore that we are discarding regions of
the parameter space that potentially contain reasonable fits to the data.
However, we are somewhat protected from this scenario in that the
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regions that are most difficult for our emulator to model are regions
that produce ‘unusual’ or ‘undesirable’ outputs (e.g. LFs without a
clear exponential break), which are unlikely to be good matches to
the observations anyway. Nevertheless, ideally we would like our
emulator to return an estimate of its uncertainty (both the uncertainty
in the emulator’s weights and uncertainty inherent in the data-
generating process). GALFORM is a deterministic code, but we are still
limited by the noise associated with sampling from a relatively small
population of galaxies at high masses. Bayesian neural networks
(Neal 1994; Bishop 1997) are a class of models that seek to
incorporate epistemic and aleatoric uncertainty into the deep learning
framework; these networks often apply independent Gaussian prior
distributions over model weights, and model the outputs themselves
as distributions. We believe this may be a promising line of inquiry to
combine the power of the neural network’s adaptive basis functions
with the uncertainty quantification of a full Bayesian analysis.

Another appealing method is the deep kernel learning approach
(Wilson et al. 2016). Here, a deep neural network is employed to
transform the inputs to the kernel of a Gaussian process regression,
and it has been shown to outperform both the plain Gaussian process
model and the plain deep neural network in a number of cases (e.g.
Wilson et al. 2016; Patacchiola et al. 2020) while also providing
robust uncertainty estimates. Here, the deep neural network can be
thought of as a feature extractor that reduces the number of features
input into the Gaussian process kernel and so allowing it to better
generalize to higher dimensional inputs.

In Fig. 3, we demonstrated that we could improve the performance
of our emulator as much as 10 per cent by averaging over 10
neural networks, rather than using just one. It may be interesting
to investigate this avenue further. Our method used a simple average,
but if a selection of machine learning algorithms are able to give
errors that are not strongly correlated (i.e. some fit better to certain
examples than others), it may be possible to use a more sophisticated
approach to incorporate the respective advantages of a number of
different algorithms (see e.g. Opitz & Maclin 1999).

We have proposed a number of ways to investigate the GALFORM
model with our emulator. We can use sensitivity analysis techniques
to evaluate the effect of different parameters, and since the emulator
is extremely fast, we can manually explore the outputs in detail.
It may also be possible to use symbolic regression such as the
proprietary software EUREKA (as described in Dubcdkova 2011)
or sparse regression-based methods (see e.g. Rudy et al. 2019) to
generate closed-form expressions of the neural network outputs if
desired (i.e. an estimate of the functional form of the outputs).
Cranmer et al. (2019), for example, applied symbolic regression
techniques in conjunction with graph neural networks to extract
equations from cosmological simulations.

5 CONCLUSIONS

We have implemented a deep learning approach to emulate the
GALFORM SAM. We trained an ensemble of deep learning algorithms
to approximate the full model using just 930 evaluations of GALFORM.
We used this to explore the parameter space of GALFORM, and to
calibrate the model parameters to a wide array of observations.
Typically, the exploration of a model parameter space and the
determination of a best-fitting set of parameter requires many more
than 930 explicit full calculations. Our emulator is remarkably
accurate, particularly in regions of the parameter space for which
the model gives outputs that are close to matching the observed
Universe.
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Figure 11. The GALFORM evaluations of the best-fitting parameters found with 100 MCMC chains, each 10000 samples in length, using the constraint
weightings described in the text. Here, we plot a sample of the best 50 runs, as measured by MAE. The red line indicates the parameter set with the lowest MAE.
The remaining 49 runs are plotted in blue, with darker shades indicating small residuals to the HI mass function. Note therefore that runs with the smallest
residuals to the H1 mass function overpredict the bright-end of the K- and r-band LFs. The black dashed line shows the Baugh19 model. The data described in
Section 2.4 are shown in black and grey. We calibrate to the data shown in black.

Table 2. The best-fitting parameters (as measured by MAE, equation 11)
found by using MCMC combined with our emulator. For reference the last
column gives the parameter values used by Baugh et al. (2019). The first
column indicates the set of parameters with the lowest MAE, and the second
column indicates the parameter ranges of the 50 best runs of the 100 MCMC
chains, again selected by MAE as described in the text.

Parameter This work Range Baugh19
fstab 0.79 0.73-1.00 0.90
ool 0.84 0.66-1.16 0.80
Oret 0.59 0.32-0.86 1.00
YsN 224 2.05-2.72 3.40
V snise (kms™") 489 368-541 320
V SN purst (kms™!) 284 230-292 320
fburst 0.25 0.12-0.30 0.05
Fellip 0.20 0.20-0.39 0.30
vsr (Gyr™) 0.20 0.20-0.33 0.74
fsmBH 0.003 0.001-0.004 0.005

We used sensitivity analysis to quantify the influence of different
parameters on the model outputs, to better understand which parame-
ters are of greatest importance in fitting to different observations (see
Oleskiewicz & Baugh 2019). Here, as shown in Fig. 4, we found that
the majority of the variance is due to just a few key parameters, which
leads to tension when trying to calibrate to multiple observational
data sets.

We explored the tensions between the use of different observa-
tional data sets further, using MCMC to fit the emulator output to
observational data with a heuristic weighting scheme. This allowed
us to reproduce the known tension between the faint-end galaxy LFs
in the K and r bands and the late-type galaxy sizes, and to uncover
a number of others. Furthermore, we used the same technique to
find a global fit to the observational data sets, finding a set of
parameters that provide an improved fit to the early-type galaxy
sizes and metallicities as compared with an earlier version of the
GALFORM code presented in Baugh et al. (2019).
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Figure 12. The apparent SFRD predictions for the GALFORM model evalu-
ations shown in Fig. 11. The red line indicates the predictions for the best-
fitting parameters (as calculated by MAE), while the blue lines indicate the
remaining 49 runs. These lines are shaded according to the model’s residuals
to the H1 mass function, with darker shades indicating smaller residuals. We
compare to observational data from Burgarella et al. (2013), Cucciati et al.
(2012), Oesch et al. (2013), Sobral et al. (2013), and Gunawardhana et al.
(2013). Note that these data were not used in the fitting. A correction has
been applied to the predicted SFRD in bursts to give an apparent SFRD, as
described in the text.

We intend to apply our emulation approach to calibrate GALFORM
using the observed galaxy redshift distribution to generate mock
galaxy catalogues for the DESI bright galaxy survey (Aghamousa
et al. 2016). This requires model outputs over a large number of
redshifts, which makes running GALFORM more computationally
expensive. We are motivated therefore to reduce the required number
of model evaluations as much as possible; calibrating the model
across this redshift range would be prohibitively expensive for direct
MCMC methods, and very difficult to achieve by eye. Our emulator
is ideally suited to this task; we have demonstrated that we require
very few runs to achieve good accuracy, and that we are able to
emulate over a wide range of outputs.

We believe our approach to be an inexpensive, intuitive, and
accurate alternative to other emulation techniques in the literature,
and that this method will serve as an invaluable tool in quickly
exploring and calibrating SAMs, and for the rapid assessment of the
implications of changes to the underlying model.
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APPENDIX: SUPPLEMENTARY FIGURES

Here, we provide some additional figures to provide further illustra-
tion of points discussed in the main text.

Fig. Al illustrates the one-at-a-time effect of varying the parame-
ters fsab and Vs, burst, @s @ demonstration of their degenerate effects.

Fig. A2 shows the one-at-a-time effect of varying vsg on the
K-band LF and late-type galaxy sizes. When fitting both the K-
band LF and the late-type galaxy sizes, we see a decrease in the
preferred value of vsg; Fig. A2 demonstrates that this is because a
lower vgr counteracts the enhancement in the bright-end of the K-
band LF caused by the higher value of Vgx, gisc When including both
constraints. We also see that reducing vsg marginally improves the
fit to the late-type galaxy sizes.

Fig. A3 shows the accepted parameters of 20 MCMC chains when
we fit the K-band LF (red), and when we fit to the K-band LF and
the H 1 mass function (blue). Here, we see that including the H 1 mass
function results in higher values of V gy gisc being preferred. vgr is
also moved to the bottom end of the explored range, and « ¢ becomes
more sharply peaked and takes slightly higher values.
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Figure Al. Emulator predictions for one-at-a-time perturbations of the
parameters fsuab (left) and VN, burst (right) around a fit to the K-band LF. We
vary the parameters between the full range given in Table 1. Darker colours
correspond to higher values. The data shown correspond to those described
in Section 2.4.
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Figure A2. Emulator predictions for one-at-a-time perturbations of the
parameter vgg for the K-band LF (left) and the late-type galaxy sizes (right)
around a fit to the K-band LE. We vary the parameters between the full range
given in Table 1. Darker colours correspond to higher values. The data shown
correspond to those described in Section 2.4.
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Figure A3. Accepted samples from 20 MCMC chains for fits to the K-band
LF (red), and both the K-band LF and the H1 mass function (blue). The first
50 per cent of samples were discarded to allow for burn-in. The histograms
show the distribution of the parameters in 1D projection. The ranges on each
axis are the same as those quoted in Table 1. The shading gives a sense of the
density, with darker colours corresponding to more densely sampled regions.
The darkest regions correspond to the 25th percentile, and the lighter regions
to the 50th and 75th percentiles.
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