
Bounding the Mim-Width of Hereditary Graph
Classes
Nick Brettell
School of Mathematics and Statistics, Victoria University of Wellington, New Zealand
nick.brettell@vuw.ac.nz

Jake Horsfield
School of Computing, University of Leeds, Leeds, UK
sc15jh@leeds.ac.uk

Andrea Munaro
School of Mathematics and Physics, Queen’s University Belfast, UK
a.munaro@qub.ac.uk

Giacomo Paesani
Department of Computer Science, Durham University, UK
giacomo.paesani@durham.ac.uk

Daniël Paulusma∗

Department of Computer Science, Durham University, UK
daniel.paulusma@durham.ac.uk

Abstract
A large number of NP-hard graph problems are solvable in XP time when parameterized by some
width parameter. Hence, when solving problems on special graph classes, it is helpful to know if
the graph class under consideration has bounded width. In this paper we consider mim-width, a
particularly general width parameter that has a number of algorithmic applications whenever a
decomposition is “quickly computable” for the graph class under consideration.

We start by extending the toolkit for proving (un)boundedness of mim-width of graph classes.
By combining our new techniques with known ones we then initiate a systematic study into bounding
mim-width from the perspective of hereditary graph classes, and make a comparison with clique-width,
a more restrictive width parameter that has been well studied.

We prove that for a given graph H, the class of H-free graphs has bounded mim-width if and
only if it has bounded clique-width. We show that the same is not true for (H1, H2)-free graphs.

We identify several general classes of (H1, H2)-free graphs having unbounded clique-width, but
bounded mim-width; moreover, we show that a branch decomposition of constant mim-width can be
found in polynomial time for these classes. Hence, these results have algorithmic implications: when
the input is restricted to such a class of (H1, H2)-free graphs, many problems become polynomial-time
solvable, including classical problems such as k-Colouring and Independent Set, domination-type
problems known as LC-VSVP problems, and distance versions of LC-VSVP problems, to name just
a few. We also prove a number of new results showing that, for certain H1 and H2, the class of
(H1, H2)-free graphs has unbounded mim-width.

Boundedness of clique-width implies boundedness of mim-width. By combining our results with
the known bounded cases for clique-width, we present summary theorems of the current state of
the art for the boundedness of mim-width for (H1, H2)-free graphs. In particular, we classify the
mim-width of (H1, H2)-free graphs for all pairs (H1, H2) with |V (H1)| + |V (H2)| ≤ 8. When H1

and H2 are connected graphs, we classify all pairs (H1, H2) except for one remaining infinite family
and a few isolated cases.
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1 Introduction

Many computationally hard graph problems can be solved efficiently after placing appropriate
restrictions on the input graph. Instead of trying to solve individual problems in an ad hoc
way, one may aim to find the underlying reasons why some sets of problems behave better on
certain graph classes than other sets of problems. The ultimate goal in this type of research
is to obtain complexity dichotomies for large families of graph problems. Such dichotomies
tell us for which graph classes a certain problem or set of problems can or cannot be solved
efficiently (under standard complexity assumptions).

One reason that might explain the jump from computational hardness to tractability
after restricting the input to some graph class G is that G has bounded “width”, that is,
every graph in G has width at most c for some constant c. One can define the notion of
“width” in many different ways (see the surveys [31, 32, 38, 49]). As such, the various width
parameters differ in strength. To explain this, we say that a width parameter p dominates a
width parameter q if there is a function f such that p(G) ≤ f(q(G)) for all graphs G. If p
dominates q but q does not dominate p, then p is said to be more powerful than q. As a
consequence, proving that a problem is polynomial-time solvable for graph classes for which p
is bounded yields more tractable graph classes than doing this for graph classes for which q is
bounded. If both p and q dominate each other, then p and q are equivalent. For instance, the
width parameters boolean-width, clique-width, module-width, NLC-width and rank-width
are all equivalent [15, 37, 44, 46], but more powerful than the equivalent parameters branch-
width and treewidth [19, 47, 49]. In this paper we focus on an even more powerful width
parameter called mim-width (maximum induced matching width). Vatshelle [49] introduced
mim-width, which we define in Section 3, and proved that mim-width is more powerful than
boolean-width, and consequently, clique-width, module-width, NLC-width and rank-width.

1.1 Algorithmic Implications

One trade-off of a more powerful width parameter is the difficulty in obtaining a branch
decomposition of bounded width. In general, computing mim-width is NP-hard; deciding
if the mim-width is at most k is W[1]-hard when parameterized by k; and there is no
polynomial-time algorithm for approximating the mim-width of a graph to within a constant
factor of the optimal, unless NP = ZPP [48]. Moreover, in contrast to algorithms for graphs
of bounded treewidth [6] or clique-width [44], it is an open problem whether we can compute
a branch decomposition of constant mim-width for graphs of bounded mim-width. Hence,
algorithms for graphs of bounded mim-width still require a branch decomposition of constant
mim-width as part of the input. However, there are many interesting graph classes for which
mim-width is bounded and quickly computable, that is, the class admits a polynomial-time
algorithm for obtaining a branch decomposition of constant mim-width. We give examples
of such graph classes known in the literature in Section 1.2 before discussing the new graph
classes we found in Section 1.4. Below we briefly discuss known algorithms for problems on
graph classes of bounded mim-width.

Belmonte and Vatshelle [1] and Bui-Xuan, Telle and Vatshelle [16] proved that a large
set of problems, known as Locally Checkable Vertex Subset and Vertex Partitioning (LC-
VSVP) problems [45], can be solved in polynomial time for graph classes where mim-width is
bounded and quickly computable. Well-known examples of such problems include (Total)
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Dominating Set, Independent Set and k-Colouring for every fixed positive integer k.1
Later, Fomin, Golovach and Raymond [27] proved that the XP algorithms for Independent
Set and Dominating Set are in a sense best possible, showing that these two problems are
W[1]-hard when parameterized by mim-width.

On the positive side, XP algorithms parameterized by mim-width are now also known
for problems outside the LC-VSVP framework. In particular, Jaffke, Kwon, Strømme and
Telle [34] proved that the distance versions of LC-VSVP problems can be solved in polynomial
time for graph classes where mim-width is bounded and quickly computable. Jaffke, Kwon
and Telle [35, 36] proved similar results for Longest Induced Path, Induced Disjoint
Paths, H-Induced Topological Minor and Feedback Vertex Set. The latter result
has recently been generalized to Subset Feedback Vertex Set and Node Multiway
Cut, by Bergougnoux, Papadopoulos and Telle [3].

Bergougnoux and Kanté [2] gave a meta-algorithm for problems with a global constraint,
providing unifying XP algorithms in mim-width for several of the aforementioned problems,
as well as Connected Dominating Set, Node Weighted Steiner Tree, and Maximum
Induced Tree. Galby, Munaro and Ries [29] proved that Semitotal Dominating Set
is polynomial-time solvable for graph classes where mim-width is bounded and quickly
computable.

1.2 Mim-width of Special Graph Classes
Belmonte and Vatshelle [1] proved that the mim-width of the following graph classes is
bounded and quickly computable: permutation graphs, convex graphs and their complements,
interval graphs and their complements, circular k-trapezoid graphs, circular permutation
graphs, Dilworth-k graphs, k-polygon graphs, circular-arc graphs and complements of d-
degenerate graphs.

Some of the results of Belmonte and Vatshelle [1] have been extended. Let Kr � Kr

be the graph obtained from 2Kr by adding a perfect matching, and let Kr � rP1 be the
graph obtained from Kr �Kr by removing all the edges in one of the complete graphs (see
Section 2 for undefined notation). Kang et al. [39] showed that for any integer r ≥ 2, there
is a polynomial-time algorithm for computing a branch decomposition of mim-width at most
r− 1 when the input is restricted to (Kr� rP1)-free chordal graphs, which generalize interval
graphs, or (Kr �Kr)-free co-comparability graphs, which generalize permutation graphs.
Hence, in particular, all these classes have bounded mim-width.

Kang et al. [39] also proved that the classes of chordal graphs, circle graphs and co-
comparability graphs have unbounded mim-width; for the latter two classes, this was shown
independently by Mengel [43]. Vatshelle [49] and Brault-Baron et al. [13] showed the same
for grids and chordal bipartite graphs, respectively, whereas Mengel [43] proved that strongly
chordal split graphs have unbounded mim-width.

Let K1
1,s be the graph obtained from the (s+ 1)-vertex star K1,s after subdividing each

edge once. Brettell et al. [14] showed that the mim-width of (Kr,K
1
1,s, Pt)-free graphs is

bounded and quickly computable for every r ≥ 1, s ≥ 1 and t ≥ 1. As sP1 +P5 is an induced
subgraph of K1

1,s+2, this yielded an alternative proof of a result of Couturier et al. [20] who
showed that List k-Colouring is polynomially solvable for (sP1 + P5)-free graphs for all
k ≥ 1 and s ≥ 0. As another consequence, for all k ≥ 3, s ≥ 1 and t ≥ 1, List k-Colouring

1 In contrast to clique-width [41], Colouring (where k is part of the input) is NP-complete for graphs
of bounded mim-width, as it is NP-complete for circular-arc graphs [30], which have mim-width at
most 2 [1].
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is polynomial-time solvable for (K1
1,s, Pt)-free graphs; previously this was shown for k = 3 by

Chudnovsky et al. [18].
Bonomo-Braberman et al. [8] considered the following generalisation of convex graphs. A

bipartite graph G = (A,B,E) is H-convex, for some family of graphs H, if there exists a
graph H ∈ H with V (H) = A such that the set of neighbours in A of each b ∈ B induces
a connected subgraph of H (when H is the set of paths, we obtain exactly convex graphs).
They showed that the mim-width of the class of H-convex graphs is bounded and quickly
computable if H is the set of cycles, or H is the set of trees with bounded maximum degree
and bounded number of vertices of degree at least 3.

1.3 Our Focus

We continue the study on boundedness of mim-width and aim to identify more graph classes
of bounded or unbounded mim-width. Our motivation is both algorithmic and structural. As
discussed above, there are clear algorithmic benefits if a graph class has bounded mim-width.
From a structural point of view, we aim to initiate a systematic study of the boundedness of
mim-width, comparable to a similar, long-standing study of the boundedness of clique-width
(see [23, 32, 38] for some surveys on clique-width).

The framework of hereditary graph classes is highly suitable for such a study. A graph
class G is hereditary if it is closed under vertex deletion. A class G is hereditary if and only
if there exists a (unique) set of graphs F of (minimal) forbidden induced subgraphs for G.
That is, a graph G belongs to G if and only if G does not contain any graph from F as an
induced subgraph. We also say that G is F-free. Note that F may have infinite size. For
example, if G is the class of bipartite graphs, then F is the set of all odd cycles.

As a natural starting point we consider the case where |F| = 1, say F = {H}. It is not
difficult to verify that a class of H-free graphs has bounded mim-width if and only if it has
bounded clique-width if and only if H is an induced subgraph of the 4-vertex path P4; see
Section 3 for details. On the other hand, there exist hereditary graph classes, such as interval
graphs and permutation graphs, that have bounded mim-width, even mim-width 1 [49], but
unbounded clique-width [33]. However, these graph classes have an infinite set of forbidden
induced subgraphs. Hence, questions we aim to address in this paper are: Does there exist
a hereditary graph class characterized by a finite set F that has bounded mim-width but
unbounded clique-width? Can we use the same techniques as when dealing with clique-width?
In particular we focus on the case where |F| = 2. Such classes are called bigenic.

1.4 Our Results and Methodology

In order to work with width parameters it is useful to have a set of graph operations that
preserve boundedness or unboundedness of the width parameter. That is, if we apply such
a width-preserving operation, or only apply it a constant number of times, the width of
the graph does not change by too much. In this way one might be able to modify an
arbitrary graph from a given “unknown” class G1 into a graph from a class G2 known to
have bounded or unbounded width. This would then imply that G1 also has bounded or
unbounded width, respectively. Two useful operations preserving clique-width are vertex
deletion [42] and subgraph complementation [38]. The latter operation replaces every edge
in some subgraph of the graph by a non-edge, and vice versa. As we will see in Section 6,
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subgraph complementation does not preserve boundedness or unboundedness of mim-width2.
To work around this limitation, we collect and generalize known mim-width preserving

graph operations from the literature in Section 3 (some of these operations only show that
the mim-width cannot decrease after applying them). In the same section we also state some
known useful results on mim-width and prove that elementary graph classes, such as walls
and net-walls, have unbounded mim-width.

In Sections 4 and 5 we use the results from Section 3. In Section 4 we present new
bigenic classes of bounded mim-width. These graph classes are all known to have unbounded
clique-width. Hence, our results show that the dichotomy for boundedness of mim-width no
longer coincides with the one for clique-width when |F| = 2 instead of |F| = 1. Moreover, for
each of these classes, a branch decomposition of constant mim-width is easily computable for
any graph in the class. This immediately implies that there are polynomial-time algorithms
for many problems when restricted to these classes, as described in Section 1.1. In Section 5
we present new bigenic classes of unbounded mim-width; these graph classes are known to
have unbounded clique-width.

In Section 6 we give a state-of-the-art summary of our new results combined with known
results. The known results include the bigenic graph classes of bounded clique-width (as
bounded clique-width implies bounded mim-width). In the same section we compare our
results for the mim-width of bigenic graph classes with the ones for clique-width. We also
state a number of open problems.

2 Preliminaries

We consider only finite graphs G = (V,E) with no loops and no multiple edges. For a vertex
v ∈ V , the neighbourhood N(v) is the set of vertices adjacent to v in G. The degree d(v) of a
vertex v ∈ V is the size |N(v)| of its neighbourhood. A graph is subcubic if every vertex has
degree at most 3. For disjoint S, T ⊆ V , we say that S is complete to T if every vertex of S
is adjacent to every vertex of T , and S is anticomplete to T if there are no edges between
S and T . The distance from a vertex u to a vertex v in G is the length of a shortest path
between u and v. A set S ⊆ V induces the subgraph G[S] = (S, {uv : u, v ∈ S, uv ∈ E}).
If G′ is an induced subgraph of G we write G′ ⊆i G. The complement of G is the graph G
with vertex set V (G), such that uv ∈ E(G) if and only if uv /∈ E(G).

Given a graph G and a degree-k vertex v of G with N(v) = {u1, . . . , uk}, the clique
implant on v is the operation of deleting v, adding k new vertices v1, . . . , vk forming a
clique, and adding edges viui for each i ∈ {1, . . . , k}. The k-subdivision of an edge uv in a
graph replaces uv by k new vertices w1, . . . , wk with edges uw1, wkv and wiwi+1 for each
i ∈ {1, . . . , k − 1}, i.e. the edge is replaced by a path of length k + 1. The disjoint union
G + H of graphs G and H has vertex set V (G) ∪ V (H) and edge set E(G) ∪ E(H). We
denote the disjoint union of k copies of G by kG. For a graph H, a graph G is H-free if G
has no induced subgraph isomorphic to H. For a set of graphs {H1, . . . ,Hk}, a graph G is
(H1, . . . ,Hk)-free if G is Hi-free for every i ∈ {1, . . . , k}.

An independent set of a graph is a set of pairwise non-adjacent vertices. A clique of
a graph is a set of pairwise adjacent vertices. A matching of a graph is a set of pairwise
non-adjacent edges. A matchingM of a graph G is induced if there are no edges of G between
vertices incident to distinct edges of M .

2 The situation is different for mim-width 1; Vatshelle [49] showed that if mimw(G) = 1 then mimw(G) = 1.



6 Bounding the Mim-Width of Hereditary Graph Classes

The path, cycle and complete graph on n vertices are denoted by Pn, Cn and Kn,
respectively. The graph K3 is also called the triangle. A graph is r-partite, for r ≥ 2, if
its vertex set admits a partition into r classes such that every edge has its endpoints in
different classes. An r-partite graph in which every two vertices from different partition
classes are adjacent is a complete r-partite graph and a 2-partite graph is also called bipartite.
A graph is co-bipartite if it is the complement of a bipartite graph. A split graph is a graph
G that admits a split partition (C, I), that is, V (G) can be partitioned into a clique C and
an independent set I. Equivalently, a graph is split if and only if it is (2P2, C4, C5)-free. The
subdivided claw Sh,i,j , for 1 ≤ h ≤ i ≤ j is the tree with one vertex x of degree 3 and exactly
three leaves, which are of distance h, i and j from x, respectively. Note that S1,1,1 = K1,3.
For t ≥ 3, sunt denotes the graph on 2t vertices obtained from a complete graph on t vertices
u1, . . . , ut by adding t vertices v1, . . . , vt such that vi is adjacent to ui and ui+1 for each
i ∈ {1, . . . , t− 1} and vt is adjacent to u1 and ut. See Figure 1 for a picture of sun5.

Figure 1 The graph sun5.

3 Mim-Width: Definition and Basic Results

A branch decomposition for a graph G is a pair (T, δ), where T is a subcubic tree and
δ is a bijection from V (G) to the leaves of T . Each edge e ∈ E(T ) naturally partitions
the leaves of T into two classes, depending on which component they belong to when e

is removed. In this way, each edge e ∈ E(T ) corresponds to a partition Le and Le of
the set of leaves of T , depending on which component of T − e the leaves of T belong to.
Consequently, each edge e induces a partition (Ae, Ae) of V (G), where δ(Ae) = Le and
δ(Ae) = Le. For two disjoint sets X and Y , let G[X,Y ] denote the bipartite subgraph of G
induced by the edges with one endpoint in X and the other in Y . For each edge e ∈ E(T )
and corresponding partition (Ae, Ae) of V (G), we denote by cutmimG(Ae, Ae) the size of
a maximum induced matching in G[Ae, Ae]. The mim-width of the branch decomposition
(T, δ) is the quantity mimwG(T, δ) = maxe∈E(T ) cutmimG(Ae, Ae). The mim-width of the
graph G, denoted mimw(G), is the minimum value of mimwG(T, δ) over all possible branch
decompositions (T, δ) for G. See Figure 2 for an example.

3.1 Mim-Width Preserving Operations
The next lemma, which is due to Vatshelle, shows that deleting a vertex from a graph has
only a small effect on the mim-width. In particular, any class of graphs with mim-width
bounded by some constant is closed under vertex deletion, so it is indeed natural to study
which hereditary classes have (un)bounded mim-width.

I Lemma 1 ([49]). Let G be a graph and v ∈ V (G). Then mimw(G)− 1 ≤ mimw(G− v) ≤
mimw(G).
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Figure 2 An example of a graph G with a branch decomposition (T, δ). It can be easily seen
that mimwG(T, δ) ≤ 2. The partition (Ae, Ae) of V (G) in the rightmost figure witnesses that
mimwG(T, δ) ≥ 2. Hence, mimwG(T, δ) = 2. It can be checked that the branch decomposition
(T ′, δ′) obtained from (T, δ) by swapping v2 and v5 and swapping v3 and v4 shows that mimw(G) = 1.

The next two lemmas show that edge subdivision and clique implantation do not change
the mim-width of a graph by too much.

I Lemma 2. Let G be a graph and let G′ be the graph obtained by 1-subdividing an edge of
G. Then mimw(G) ≤ mimw(G′) ≤ mimw(G) + 1.

Proof. Let uv be the subdivided edge of G, and let w ∈ V (G′) \V (G) such that {uw,wv} ⊆
E(G′). We first prove that mimw(G) ≤ mimw(G′). Given a branch decomposition
(T ′, δ′) for G′, we construct a branch decomposition (T, δ) for G such that mimwG(T, δ) ≤
mimwG′(T ′, δ′). Since V (G′) = V (G)∪{w}, we simply let T be the tree obtained from T ′ by
deleting the leaf δ′(w), and let δ be the restriction of δ′ to V (G). Clearly, (T, δ) is a branch
decomposition for G.

We claim that mimwG(T, δ) ≤ mimwG′(T ′, δ′). Suppose, to the contrary, that there
exists e ∈ E(T ) such that cutmimG(Ae, Ae) > mimwG′(T ′, δ′), and let M be a maximum
induced matching in G[Ae, Ae]. By construction, e is also an edge of T ′ and the partition
(Be, Be) of V (G′) corresponding to e is either (Ae ∪ {w}, Ae) or (Ae, Ae ∪ {w}). If uv /∈M ,
then M is also an induced matching in G′[Be, Be]. On the other hand, if uv ∈M , then either
M \ {uv} ∪ {uw} or M \ {uv} ∪ {wv} is an induced matching in G′[Be, Be]. In all cases, we
find an induced matching in G′[Be, Be] of size |M | = cutmimG(Ae, Ae) > mimwG′(T ′, δ′), a
contradiction.

We now prove that mimw(G′) ≤ mimw(G) + 1. Given a branch decomposition (T, δ)
for G, we construct a branch decomposition (T ′, δ′) for G′ such that mimwG′(T ′, δ′) ≤
mimwG(T, δ) + 1. Let T ′ be the subcubic tree obtained by attaching two pendant vertices x1
and x2 to the leaf δ(u) of T , and let δ′(x) = δ(x), for each x ∈ V (G) \ {u}, and δ′(u) = x1
and δ′(w) = x2. Clearly, (T ′, δ′) is a branch decomposition for G′.

We claim that mimwG′(T ′, δ′) ≤ mimwG(T, δ) + 1. Suppose, to the contrary, that there
exists e ∈ E(T ′) such that cutmimG′(Ae, Ae) > mimwG(T, δ) + 1. Clearly, e ∈ E(T ), for
otherwise cutmimG′(Ae, Ae) ≤ 1. As e is an edge of T , u and w belong to the same partition
class of V (G′) and the partition (Be, Be) of V (G) corresponding to e is obtained from (Ae, Ae)
by removing w. Let M ′ be a maximum induced matching in G′[Ae, Ae]. If w is matched
in M ′, then it must be wv ∈ M ′ and we remove this edge. If both u and v are matched
in M ′, we remove the matching edge incident to u. In all the other cases, we keep the
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matching edges. In this way we obtain an induced matching in G[Be, Be] of size at least
|M ′| − 1 = cutmimG′(Ae, Ae)− 1 > mimwG(T, δ), a contradiction. J

I Lemma 3. Let G be a graph and let G′ be the graph obtained from G by a clique implant
on v ∈ V (G). Then mimw(G) ≤ mimw(G′) ≤ mimw(G) + d(v).

Proof. We first prove that mimw(G) ≤ mimw(G′). Suppose that v is a degree-k vertex of
G with N(v) = {u1, . . . , uk} and let {v1, . . . , vk} be the clique implanted on v. Given a
branch decomposition (T ′, δ′) for G′, we construct a branch decomposition (T, δ) for G such
that mimwG(T, δ) ≤ mimwG′(T ′, δ′). Since V (G′) = V (G) \ {v} ∪ {v1, . . . , vk}, we build
a tree T as follows. We delete the leaves δ′(v2), . . . , δ′(vk) from T ′ and let δ(x) = δ′(x) if
x ∈ V (G) \ {v} and δ(v) = δ′(v1). Clearly, (T, δ) is a branch decomposition for G.

We claim that mimwG(T, δ) ≤ mimwG′(T ′, δ′). Suppose, to the contrary, that there exists
e ∈ E(T ) such that cutmimG(Ae, Ae) > mimwG′(T ′, δ′) and let M be a maximum induced
matching in G[Ae, Ae]. Suppose, without loss of generality, that v ∈ Ae. By construction,
e is also an edge of T ′ and the partition (Be, Be) of V (G′) corresponding to e is of the
form ((Ae \ {v}) ∪ {v1} ∪X,Ae ∪ Y ), where X ⊆ {v2, . . . , vk} and Y = {v2, . . . , vk} \X. If
v is not matched in M , then M is also an induced matching in G′[Be, Be] of size |M | =
cutmimG(Ae, Ae) > mimwG′(T ′, δ′), a contradiction. Therefore, suppose that v is matched
in M . We have that vui ∈ M , for some i ∈ {1, . . . , k}. If i = 1, then M is an induced
matching in G′[Be, Be]. Otherwise, i > 1 and we proceed as follows. If vi belongs to the
partition class of v1, we replace M with M \ {vui} ∪ {viui}. If vi does not belong to the
partition class of v1, we replace M with M \ {vui} ∪ {v1vi}. It is easy to see that in all cases
we find an induced matching in G′[Be, Be] of size |M | > mimwG′(T ′, δ′), a contradiction.

We now prove that mimw(G′) ≤ mimw(G) + d(v). Suppose that v is a degree-k vertex
of G, and let {v1, . . . , vk} be the clique implanted on v. Given a branch decomposition
(T, δ) for G, we construct a branch decomposition (T ′, δ′) for G′ such that mimwG′(T ′, δ′) ≤
mimwG(T, δ) + k. We (k − 1)-subdivide the edge of T incident to δ(v) with new vertices
x1, . . . , xk−1, attach a pendant vertex yi to each xi, let δ′(vk) = δ(v) and δ′(vi) = yi, for
each i ∈ {1, . . . , k− 1}, and finally let δ′(u) = δ(u) for each u ∈ V (G′) \ {v1, . . . , vk}. Clearly,
(T ′, δ′) is a branch decomposition for G′.

We claim that mimwG′(T ′, δ′) ≤ mimwG(T, δ) + k. Suppose, to the contrary, that there
exists e ∈ E(T ′) such that cutmimG′(Ae, Ae) > mimwG(T, δ) + k. We have that e ∈ E(T ),
for otherwise cutmimG′(Ae, Ae) ≤ k. But since e is an edge of T , the vertices v1, . . . , vk

all belong to the same partition class of V (G′), say Ae, and the partition (Be, Be) of V (G)
corresponding to e is obtained from (Ae, Ae) by removing {v1, . . . , vk} and adding v to Ae.
Let M ′ be a maximum induced matching in G′[Ae, Ae]. By possibly removing the at most k
edges in M ′ incident to vertices in {v1, . . . , vk}, we obtain an induced matching in G[Be, Be]
of size at least |M ′| − k = cutmimG′(Ae, Ae)− k > mimwG(T, δ), a contradiction. J

Mengel [43] showed that adding edges inside the partition classes of a bipartite graph
does not decrease mim-width by much. This result can be generalized to k-partite graphs in
the following way.

I Lemma 4. Let G be a k-partite graph with partition classes V1, . . . , Vk, and let G′ be a
graph obtained from G by adding edges where for each added edge, there exists some i such
that both endpoints are in Vi. Then mimw(G′) ≥ 1

k ·mimw(G).

Proof. Let (T, δ) be a branch decomposition for G′. Since G and G′ have the same vertex
set, (T, δ) is a branch decomposition for G as well. It is enough to show that mimwG(T, δ) ≤
k ·mimwG′(T, δ). Therefore, let e ∈ E(T ) be such that mimwG(T, δ) = cutmimG(Ae, Ae),
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and let M be a maximum induced matching in G[Ae, Ae]. For each i, consider the set
Mi = {uv ∈ M : u ∈ Ae ∩ Vi}. These k sets partition M . Let M ′ be a partition
class of size at least |M |/k. Clearly, M ′ is an induced matching in G′[Ae, Ae] and so
k ·mimwG′(T, δ) ≥ k · |M ′| ≥ |M | = mimwG(T, δ). J

The next lemma shows that to bound the mim-width of a class of graphs, we may restrict
our attention to 2-connected graphs in the class. We note that this property is not specific to
mim-width: Gottlob et al. [31] observed it for rank-width, and this argument also applies for
any appropriate width parameter defined using branch decompositions. A block is a maximal
connected subgraph with no cut-vertex.

I Lemma 5. Let G be a graph. Then mimw(G) = max{mimw(H) : H is a block of G}.
Moreover, given branch decompositions (TH , δH) of each block H of G, with mimwH(TH , δH) ≤
k, we can compute a branch decomposition of G with mim-width at most k in polynomial
time.

Proof. By Lemma 1, mimw(G) ≥ max{mimw(H) : H is a block of G}. We describe how to
compute a branch decomposition (T, δ) ofG such that mimwG(T, δ) ≤ max{mimwH(TH , δH) :
H is a block of G}, in polynomial time. It suffices to describe a polynomial-time procedure
when G consists of two blocks H1 and H2 joined at a vertex v (we can repeat this procedure
O(n) times, thereby constructing a branch decomposition for G block-by-block). To construct
T , join TH1 and TH2 by identifying the leaf t1 ∈ TH1 and the leaf t2 ∈ TH2 such that
δH1(v) = t1 and δH2(v) = t2, and then create a new leaf t incident to the identified vertex.
Let δ inherit the mappings from δH1 and δH2 , and set δ(v) = t. If e ∈ E(T ) is incident to t,
then cutmimG(Ae, Ae) ≤ 1, since one of Ae and Ae has size one. For any other edge of T ,
either Ae or Ae contains V (H1) or V (H2). The result follows. J

The following lemma is due to Galby and Munaro, who used it to prove that Dominating
Set admits a PTAS for a subclass of VPG graphs when the representation is given.

I Lemma 6 ([28]). Let G be a graph and let S ⊆ V . Let G′ = (V ′, E′) denote the graph
with V ′ = V and E′ = E ∪ {uv : u, v ∈ S}. Then mimw(G′) ≤ mimw(G) + 1.

The final structural lemma is used to prove that (sP1 +P5,Kt)-free graphs have bounded
mim-width for every s ≥ 0 and t ≥ 1. It shows how we can bound the mim-width of a graph
in terms of the mim-width of the graphs induced by blocks of a partition of the vertex set
and the mim-width between any two of the parts. We include it here as it might be useful
for bounding the mim-width of other graph classes.

I Lemma 7 ([14]). Let G be a graph and (X1, . . . , Xp) be a partition of V (G) such that
cutmimG(Xi, Xj) ≤ c for all distinct i, j ∈ {1, . . . , p}, and p ≥ 2. Then

mimw(G) ≤ max
{
c

⌊(p
2

)2
⌋
, max

i∈{1,...,p}
{mimw(G[Xi])}+ c(p− 1)

}
.

Moreover, if (Ti, δi) is a branch decomposition of G[Xi] for each i, then we can construct, in
O(1) time, a branch decomposition (T, δ) of G with

mimwG(T, δ) ≤ max
{
c

⌊(p
2

)2
⌋
, max

i∈{1,...,p}
{mimwG(Ti, δi)}+ c(p− 1)

}
.
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Figure 3 An elementary (4× 4)-wall. We illustrate an example of the case where h ≥ 4
√
n(W )/3

and r < 2n in the proof of Theorem 8: Q consists of the red vertices, B is the the grey box, and the
thick edges are a matching in W [Ae, Ae].

3.2 Mim-width of Some Basic Classes
Recall that Vatshelle [49] showed that the class of grids has unbounded mim-width. We next
prove that the same holds for the class of walls, which we define momentarily. Thus, we
obtain a class of graphs with maximum degree 3 having unbounded mim-width, and we will
use this result in order to prove Lemma 11. Note that it also gives us a dichotomy, as graphs
with maximum degree 2 have bounded clique-width and hence bounded mim-width.

A wall of height h and width r (an (h × r)-wall for short) is the graph obtained from
the grid of height h and width 2r as follows. Let C1, . . . , C2r be the set of vertices in each
of the 2r columns of the grid, in their natural left-to-right order. For each column Cj , let
ej

1, e
j
2, . . . , e

j
h−1 be the edges between two vertices of Cj , in their natural top-to-bottom order.

If j is odd, we delete all edges ej
i with i even. If j is even, we delete all edges ej

i with i odd.
We then remove all vertices of the resulting graph whose degree is 1. This final graph is an
elementary (h× r)-wall and any subdivision of the elementary (h× r)-wall is an (h× r)-wall.
For an example, see Figure 3.

I Theorem 8. Let W be an elementary (n× n)-wall with n ≥ 7. Then mimw(W ) ≥
√

n
50 . In

particular, the class of walls has unbounded mim-width.

Proof. We let n(W ) = |V (W )| = 2n2 − 2. Consider now a branch decomposition (T, δ)
for W . Kang et al. [39, Lemma 2.3] showed that there exists an edge e ∈ E(T ) such that
both partition classes Ae and Ae of V (W ) contain at least n(W )/3 vertices. Kanj et al. [40,
Lemma 4.10] showed that if G is a graph such that each of its subgraphs has average degree
at most d, then any matching M in G contains an induced matching in G of size at least
|M |/(2d− 1). Since W is subcubic, it is sufficient to show that W [Ae, Ae] has a matching of
size
√
n/10. We distinguish two cases, according to whether or not one of W [Ae] and W [Ae]

has a component of size at least
√
n(W )/3.

Suppose first that W [Ae] has a component Q of size at least
√
n(W )/3. The component

Q is contained in a rectangle of the underlying n × 2n grid. Consider the smallest such
rectangle B, i.e., the rectangle whose horizontal sides contain the uppermost and lowermost
vertex in Q and whose vertical sides contain the leftmost and rightmost vertex in Q. Let h
and r be the height and width of B, respectively. Since |V (Q)| ≥

√
n(W )/3, one of h and r

is at least 4
√
n(W )/3.

Suppose first that h ≥ 4
√
n(W )/3. If r < 2n, say without loss of generality B does not

intersect column C1, we do the following. For each row of B, consider the leftmost vertex of
Q in that row (since Q is connected, each row contains at least one vertex of Q). Clearly, the
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left neighbours of each such vertex belongs to Ae, and so we have a matching in W [Ae, Ae]
of size h− 2 ≥ 4

√
n(W )/3− 2, which is at least

√
n/10 when n ≥ 7. If r = 2n, we distinguish

two cases according to whether h = n or not. In the first case (i.e., r = 2n and h = n)
we argue as follows. Since Q is connected, each row of B contains a vertex of Q ⊆ Ae.
Moreover, there are at most 2n/3 rows of B with all vertices contained in Ae, for otherwise
|Ae| > (2n/3) · 2n ≥ 2n(W )/3. So there are at least n/3 rows of B containing a vertex of Ae

and a vertex of Ae. We can therefore find a matching in W [Ae, Ae] of size at least n/3. In
the second case (i.e., r = 2n and h < n), we proceed as follows. We assume, without loss
of generality, that B does not intersect the uppermost row of the grid. We partition the
columns of B into disjoint layers containing two consecutive columns each. For each layer,
we consider its left column and the uppermost vertex v ∈ Ae therein (since Q is connected,
such a vertex exists). Let v1 be the vertex on the grid above v, let v2 be the vertex to the
right of v and let v3 be the vertex above v2. By construction, v1 ∈ Ae and if vv1 ∈ E(W ), we
select this edge. Otherwise, vv1 /∈ E(W ) and so v2v3 ∈ E(W ) and we have a path vv2v3v1
in W with v ∈ Ae and v1 ∈ Ae. We then select an edge of this path which belongs to
W [Ae, Ae]. Proceeding similarly for each layer, we obtain a matching in W [Ae, Ae] of size
at least r/2 = n. Suppose finally that h < 4

√
n(W )/3. We have that r ≥ 4

√
n(W )/3 and we

proceed exactly as in the case r = 2n and h < n to obtain a matching in W [Ae, Ae] of size
at least r/2 ≥ 4

√
n(W )/3/2.

It remains to consider the situation in which all components ofW [Ae] andW [Ae] have size
less than

√
n(W )/3. In particular, since W [Ae] has more than n(W )/3 vertices, it has more

than
√
n(W )/3 components. Let Q1, . . . , Qk be these components. For each i ∈ {1, . . . , k},

there exists a vertex ui ∈ Qi with a neighbour vi ∈ Ae, as W is connected. Let H be the
subgraph of W [Ae, Ae] induced by {u1, . . . , uk} ∪ {v1, . . . , vk} (notice that we might have
vi = vj for some i 6= j). Let H1, . . . ,H` be the components of H and let ni = |V (Hi)|, for
each i ∈ {1, . . . , `}. By construction, ni ≥ 2, for each i. Moreover, since Hi is a connected
subcubic graph, it has a matching of size at least (ni − 1)/3 ≥ ni/6 [4]. But then H has a
matching of size

∑̀
i=1

ni

6 = |V (H)|
6 ≥ k

6 ≥
1
6 ·
√
n(W )

3 .

As in all cases we find a matching in W [Ae, Ae] of size at least
√

n
10 , this concludes the

proof. J

I Corollary 9. For an integer ∆, let G∆ be the class of graphs of maximum degree at most ∆.
Then the mim-width of G∆ is bounded if and only if ∆ ≤ 2.

A net-wall is a graph that can be obtained from a wall G by performing a clique implant
on each vertex of G having degree three. An example of part of a net-wall is given in Figure 7.

The following lemma is a straightforward consequence of Theorem 8 and Lemma 3.

I Lemma 10. The class of net-walls has unbounded mim-width.

Mengel [43] showed that strongly chordal split graphs, or equivalently (sun3, sun4, . . .)-free
split graphs, have unbounded mim-width. Recall that the class of split graphs coincides
with the class of (C4, C5, 2P2)-free graphs. We find two more subclasses of split graphs with
unbounded mim-width by using Lemmas 2 and 4.

I Lemma 11. The following subclasses of split graphs have unbounded mim-width:
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(i) the class in which every graph G has a split partition (C, I) where each vertex in I has
degree 2 and each vertex in C has at most three neighbours in I,

(ii) the class in which every graph G has a split partition (C, I) where each vertex in I has
degree at most 3, and each vertex in C has two neighbours in I, and

(iii) the class in which every graph G is sunt-free for all t ≥ 3.

Proof. Case (iii) is due to Mengel [43]. To prove (i) and (ii), let G be a wall, and let G′ be
the graph obtained by 1-subdividing each edge of G. Partition V (G′) into (A,B), where B
consists of the vertices of degree two introduced by the 1-subdivisions. Observe that G′ is
bipartite, with vertex bipartition (A,B). Let G′′ be the graph obtained by making one of A
or B a clique. By Lemmas 2 and 4, mimw(G′′) ≥ mimw(G)/2. The result now follows from
Theorem 8. J

A graph is chordal bipartite if it is bipartite and every induced cycle has four vertices.
Brault-Baron et al. [13] showed that the class of chordal bipartite graphs has unbounded mim-
width (we describe their construction in Section 5). Combining their result with Lemma 4,
after adding all edges between any two vertices in the same colour class, yields the following:

I Lemma 12. The class of co-bipartite graphs, or equivalently (3P1, C5, C7, C9, . . .)-free
graphs, has unbounded mim-width.

As the last result in this section we consider hereditary classes defined by one forbidden
induced subgraph. It is folklore that the class of H-free graphs has bounded clique-width if
and only if H ⊆i P4 (see [26] for a proof). It turns out that the same dichotomy holds for
mim-width.

I Theorem 13. The class of H-free graphs has bounded mim-width if and only if H ⊆i P4.

Proof. If H ⊆i P4, then H-free graphs form a subclass of P4-free graphs. Every P4-free
graph has clique-width at most 2 [19] and so mim-width at most 2 [49]. Suppose now that
H is a graph such that the class of H-free graphs has bounded mim-width. Recall that
chordal bipartite graphs have unbounded mim-width [13] (see also Section 5). Hence, H is
C3-free. As co-bipartite graphs, and thus 3P1-free graphs, and split graphs, or equivalently,
(C4, C5, 2P2)-free graphs, have unbounded mim-width by Lemmas 11 and 12, this means
that H is a (3P1, 2P2)-free forest. It follows that H ⊆i P4. J

4 New Bounded Cases

In this section, we present three general classes and two further specific classes, of (H1, H2)-
free graphs having bounded mim-width, but unbounded clique-width. First, we present
the three infinite families of classes of (H1, H2)-free graphs. We show that for a class in
one of these three families, there exists a constant k such that for every graph G in the
class, and every X ⊆ V (G), we have that cutmimG(X,X) ≤ k. This implies that every
branch decomposition of G has mim-width at most k. Thus, for a graph in one of these
classes, a branch decomposition of constant mim-width is quickly computable: any branch
decomposition will suffice. Finally, we present two more classes of (H1, H2)-free graphs
having bounded mim-width, which do not have this property, but for which we prove that a
branch decomposition of constant width can be computed in polynomial-time.

We make use of Ramsey theory. By Ramsey’s Theorem, for all positive integers a and b,
there exists an integer R(a, b) such that if G is a graph on at least R(a, b) vertices, then G
has either a clique of size a, or an independent set of size b.



N. Brettell, J. Horsfield, A. Munaro, G. Paesani, and D. Paulusma 13

Recall that Kr �Kr is the graph obtained from 2Kr by adding a perfect matching and
that Kr � rP1 is the graph obtained from Kr � Kr by removing all the edges in one of
the complete graphs. We let Kr � P1 denote the graph obtained from Kr by adding a
single vertex, attached to Kr by a single pendant edge. We also denote C4 + P1 as bowtie.
Examples of these graphs are given in Figure 4.

Figure 4 The graphs K5 �K5, K5 � 5P1, K5 � P1, and bowtie = C4 + P1.

I Theorem 14. Let G be a (Kr � rP1, 2P2)-free graph for r ≥ 3. Then cutmimG(X,X) <
max{6, r} for every X ⊆ V (G). In particular, mimw(G) < max{6, r}.

Proof. Let k = max{6, r} and let (T, δ) be a branch decomposition of G. Towards a
contradiction, suppose that there exists X ⊆ V (G) such that G[X,X] has an induced
matching of size at least k. Let X ′ = {x1, x2, . . . , xk} ⊆ X and Y ′ = {y1, y2, . . . , yk} ⊆ X

such that xiyi is an edge of the induced matching for each i ∈ {1, 2, . . . , k}.
First, observe that for any distinct i, j ∈ {1, 2, . . . , k}, either xixj or yiyj is an edge,

otherwise G[{xi, xj , yi, yj}] ∼= 2P2. We claim that X ′ or Y ′ contains a clique of size 3. Since
|X ′| = k ≥ 6 = R(3, 3), the set X ′ contains either a clique on 3 vertices, or an independent
set on 3 vertices. So we may assume that X ′ contains an independent set on 3 vertices,
{xi, xj , x`} say. Then {yi, yj , y`} is a clique of size 3 contained in Y ′, proving the claim.

Without loss of generality, we may now assume that X ′ contains a clique of size 3.
Suppose X ′ is not a clique. Then there exist distinct i, j ∈ {1, 2, . . . , k} such that xi is not
adjacent to xj . Now yiyj is an edge, since G is 2P2-free. Let X ′′ be a maximum-sized clique
contained in X ′, so |X ′′| ≥ 3. Note that {xi, xj} * X ′′, since X ′′ is a clique, so we may
assume that xj /∈ X ′′. As any pair in X ′′ \ {xi} induces an edge that is anticomplete to the
edge yiyj , we see that G contains an induced 2P2, a contradiction. We deduce that X ′ is a
clique of size k. Now, since G is (Kr � rP1)-free, there exist distinct i, j ∈ {1, 2, . . . , k} such
that yiyj is an edge. Note that since k ≥ 6, there exist distinct s, t ∈ {1, 2, . . . , k} \ {i, j}.
But now xsxt is anticomplete to yiyj , contradicting that G is 2P2-free. J

The class of (Kr�rP1, 2P2)-free graphs for r ∈ {1, 2} is a subclass of P4-free graphs, and thus
has bounded clique-width and mim-width. However, for r ≥ 3, the class of (Kr � rP1, 2P2)-
free graphs has unbounded clique-width [23, Theorem 4.18], whereas Theorem 14 shows it
has bounded mim-width. In particular, (net, 2P2)-free graphs and (bull, 2P2)-free graphs
have bounded mim-width but unbounded clique-width.

In our next two results, we present two other new classes of bounded mim-width.

I Theorem 15. Let G be a (Kr � P1, tP2)-free graph for r ≥ 1 and t ≥ 1. Then
cutmimG(X,X) < R(r,R(r, t)) for every X ⊆ V (G). In particular, mimw(G) < R(r,R(r, t)).

Proof. Let k = R(r,R(r, t)) and let (T, δ) be a branch decomposition of G. Towards a
contradiction, suppose that there exists X ⊆ V (G) such that G[X,X] has an induced
matching of size at least k. Let X ′ = {x1, x2, . . . , xk} ⊆ X and Y ′ = {y1, y2, . . . , yk} ⊆ X

such that xiyi is an edge of the induced matching for each i ∈ {1, 2, . . . , k}.
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Since |X ′| = k = R(r,R(r, t)), the set X ′ contains either a clique of size r, or an
independent set of size R(r, t). Suppose there is some J ⊆ {1, 2, . . . , k} such that XJ = {xi :
i ∈ J} is a clique of size r. Then, for an arbitrarily chosen j ∈ J , the vertices XJ ∪ {yj}
induce a Kr � P1, a contradiction. So X ′ contains an independent set of size R(r, t). Let
I ⊆ {1, 2, . . . , k} such that XI = {xi : i ∈ I} is an independent set of size R(r, t), and
consider the set YI = {yi : i ∈ I}. Since |YI | = R(r, t), the set YI either contains a clique of
size r, or an independent set of size t. In the former case, G contains an induced Kr � P1,
while in the latter case, G contains an induced tP2, a contradiction. J

I Theorem 16. Let G be a (Kr � Kr, sP1 + P2)-free graph for r ≥ 1 and s ≥ 0. Then
cutmimG(X,X) < R(R(r, s + 1), s + 1) for every X ⊆ V (G). In particular, mimw(G) <
R(R(r, s+ 1), s+ 1).

Proof. Let k = R(R(r, s+ 1), s+ 1) and let (T, δ) be a branch decomposition of G. Towards
a contradiction, suppose that there exists X ⊆ V (G) such that G[X,X] has an induced
matching of size at least k. Let X ′ = {x1, x2, . . . , xk} ⊆ X and Y ′ = {y1, y2, . . . , yk} ⊆ X

such that xiyi is an edge of the induced matching for each i ∈ {1, 2, . . . , k}.
Since |X ′| = k = R(R(r, s+1), s+1), the set X ′ contains either a clique of size R(r, s+1),

or an independent set of size s+ 1. But the latter implies that G has an induced sP1 + P2
subgraph, a contradiction. SoX ′ contains a clique of size R(r, s+1). Let I ⊆ {1, 2, . . . , k} such
that XI = {xi : i ∈ I} is an clique of size R(r, s+ 1), and consider the set YI = {yi : i ∈ I}.
Since |YI | = R(r, s+ 1), the set YI either contains a clique of size r, or an independent set of
size s+ 1. In the former case, G contains an induced Kr �Kr, while in the latter case, G
contains an induced sP1 + P2, a contradiction. J

Note that (Kr � P1, tP2)-free graphs have unbounded clique-width if and only if r ≥ 3
and t ≥ 3, or r ≥ 4 and t ≥ 2 [23, Theorem 4.18]. Note also that (Kr �Kr, sP1 + P2)-free
graphs have unbounded clique-width if and only if r = 2 and s ≥ 3, or r ≥ 3 and s ≥ 2 [23,
Theorem 4.18].

Our final results of the section are used to resolve the remaining cases where |V (H1)| +
|V (H2)| ≤ 8.3 For these results, we employ the following approach. Suppose we wish to
show that the class of (H ′1, H ′2)-free graphs is bounded, where H ′1 ⊆i H1 for one of the
pairs (H1, H2) appearing in Theorems 14 to 16. If G is a H2-free graph in the class, then
we can compute a branch decomposition of constant mim-width by one of Theorems 14
to 16. So it remains only to show that we can compute a branch decomposition of constant
mim-width for (H ′1, H ′2)-free graphs having an induced subgraph isomorphic to H2. When
H ′1 = 2P2 and H ′2 = K1,3, we exploit the structure of (2P2,K1,3)-free graphs having an
induced K3 � 3P1 to prove Lemma 17. Then, by combining this lemma with Theorem 14,
we obtain Theorem 18. Similarly, when H ′1 = 2P1 + P2 and H ′2 = bowtie (see Figure 4), we
use Lemma 19 and Theorem 16 to obtain Theorem 20.

For the proofs of Lemmas 17 and 19, we require the following definition. For an integer
l ≥ 1, an l-caterpillar is a subcubic tree T on 2l vertices with V (T ) = {s1, . . . , sl, t1, . . . , tl},
such that E(T ) = {siti : 1 ≤ i ≤ l} ∪ {sisi+1 : 1 ≤ i ≤ l − 1}. Note that we label the
leaves of an l-caterpillar t1, t2, . . . , tl, in this order. See Figure 5 for an example.

3 In Corollary 34 in Section 6 we prove that we determined all pairs (H1, H2) with |V (H1)|+ |V (H2)| ≤ 8
for which the mim-width of (H1, H2)-free graphs is bounded, and in fact also quickly computable.
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s1 s2 s3 s4 s5

t1 t2 t3 t4 t5

Figure 5 The 5-caterpillar.
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Figure 6 On the left, a (2P2,K1,3)-free graph G, and on the right the branch decomposition
(T, δ) of G as constructed in the proof of Lemma 17.

I Lemma 17. Let G be a connected (2P2,K1,3)-free graph. Given X ⊆ V (G) such that
G[X] ∼= Kr � rP1 for some r ≥ 3, where X is maximal, we can construct, in O(n) time, a
branch decomposition (T, δ) of G such that mimwG(T, δ) = 1.

Proof. Let A = {a1, . . . , ar} and B = {b1, . . . , br} such that A is a clique, B is an independent
set, and (A,B) is a partition of X. Note that G[X] ∼= Kr� rP1, but for every S ⊆ V (G) \X,
we have that G[X ∪ S] 6∼= Kr′ � r′P1 for each integer r′ > r. We assume that aibi ∈ E(G)
for each i ∈ {1, . . . , r}. Let N1 be the set of vertices from V (G) \X that have a neighbour
in X, and let N2 = V (G) \ (X ∪N1).

Let v ∈ N1. Suppose that N(v) ∩ B = ∅. Since G is connected, v has a neighbour in
A; by symmetry, we may assume that va1 ∈ E(G). Let i ∈ {2, . . . , r}, and suppose that
vai 6∈ E(G). But then G[{a1, b1, v, ai}] ∼= K1,3, a contradiction. Therefore N(v) ∩X = A.
Suppose now that N(v)∩B 6= ∅; without loss of generality we may assume that vb1 ∈ E(G).
If v is complete to B, then any three vertices of B together with v induces a K1,3, a
contradiction. Therefore, without loss of generality we assume that vb2 6∈ E(G). Since G is
2P2-free, va2 ∈ E(G). Now suppose that vai 6∈ E(G) for some i ∈ {1, . . . , r} \ {2}. But then
G[{a2, b2, v, ai}] ∼= K1,3, a contradiction. Therefore v is complete to A. Now suppose that
|N(v) ∩ B| ≥ 2; without loss of generality we may assume that b1, b3 ∈ N(v). Recall that
b2 6∈ N(v). But then G[{v, b1, b3, a2}] ∼= K1,3, a contradiction. Therefore N(v) ∩B = {b1}.
Hence, for every vertex v ∈ N1, either N(v)∩X = A or N(v)∩X = A∪ {b} for some b ∈ B.

Suppose that there exist vertices v, v′ ∈ N1 such that vv′ 6∈ E(G). Since vertices
of N1 have at most one neighbour in B, we may assume without loss of generality that
b1 6∈ N(v)∪N(v′). But then G[{a1, b1, v, v

′}] ∼= K1,3, a contradiction. Therefore vv′ ∈ E(G),
and hence N1 is a clique.

We now prove that N2 = ∅. Towards a contradiction, suppose that there exists a vertex
w ∈ N2. Since G is connected, there exists a vertex v ∈ N(w) ∩ N1. By what we have
already proved, either N(v) ∩ X = A or N(v) ∩ X = A ∪ {b} for some b ∈ B. Suppose
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that N(v) ∩B 6= ∅; without loss of generality, we may assume that N(v) ∩B = {b1}. But
then G[{v, b1, w, a2}] ∼= K1,3, a contradiction. Therefore v is anticomplete to B. It now
follows that G[X ∪{v, w}] ∼= Kr+1� (r+ 1)P1, contradicting the maximality of X. Therefore
N2 = ∅.

For i ∈ {1, . . . , r}, let Bi denote the set of vertices from N1 that are adjacent to bi

and let B0 denote the set of vertices from N1 that have no neighbour in B. Note that
(A,B,B0, B1, . . . , Br) is a partition of V (G) (into possibly empty sets), and we can construct
this partition in O(n) time. Consider the branch decomposition (T, δ) of G defined as follows;
see also Figure 6. For each i ∈ {1, . . . , r}, let Ti be a (|Bi|+ 2)-caterpillar and let ti be a
vertex of Ti of degree 2. If B0 6= ∅, let T0 be a |B0|-caterpillar and t0 a vertex of T0 of
degree 2, or of degree 1 if |B0| = 1. Let P = p1, . . . , pr be a path on r vertices. Let T ′ be the
tree with V (T ′) = V (P ) ∪

⋃r
i=1 V (Ti) and E(T ′) = E(P ) ∪

⋃r
i=1E(Ti) ∪ {tipi : 1 ≤ i ≤ r}.

If B0 = ∅ then let T = T ′, and otherwise let T be the tree obtained from T ′ by adding
an additional vertex pr+1 together with all vertices of V (T0), and adding edges prpr+1 and
pr+1t0 together with all edges of T0. Finally, let δ be any bijection from V (G) to the leaves
of T such that for all i ∈ {1, . . . , r} and for all v ∈ V (G), δ(v) ∈ V (Ti) if v ∈ {ai, bi} ∪ Bi,
and δ(v) ∈ V (T0) if v ∈ B0.

We now prove that mimwG(T, δ) = 1. Let e be an edge of T and let M be a maximum
induced matching of G[Ae, Ae]. We begin by claiming that at most one edge of M has one
endpoint in B and the other in A ∪N1. On the contrary, suppose without loss of generality
that b1x and b2y are distinct edges of M , where b1, b2 ∈ B ∩ Ae and x, y ∈ (A ∪N1) ∩ Ae.
Observe that if x ∈ N1 (respectively y ∈ N1), then x ∈ B1 (respectively y ∈ B2); and if
x ∈ A (respectively y ∈ A), then x = a1 (respectively y = a2). Since b1, b2 ∈ Ae, we have
that e 6∈ E(T1) ∪ E(T2) ∪ {p1p2, p1t1, p2t2}, and therefore {a1, a2} ∪ B1 ∪ B2 ⊆ Ae. But
N(b1) ∪N(b2) ⊆ {a1, a2} ∪B1 ∪B2, a contradiction. Therefore at most one edge of M has
one endpoint in B and the other in A ∪ N1. Since A ∪ N1 is a clique, at most one edge
of M has both endpoints in A ∪N1, and since B is an independent set, no edge of M has
both endpoints in B. Suppose that |M | ≥ 2. Then M = {uv, xy}, where, without loss of
generality, u, x ∈ Ae, u, v, x ∈ A∪N1 and y ∈ B. But since A∪N1 is a clique, xv is an edge,
contradicting M being an induced matching. Therefore |M | ≤ 1 and hence mimwG(T, δ) = 1,
as required. J

I Theorem 18. Let G be a (2P2,K1,3)-free graph. Then mimw(G) < 6, and one can
construct, in polynomial time, a branch decomposition (T, δ) of G with mimwG(T, δ) < 6.

Proof. If G is not connected, we may consider each component in turn, by Lemma 5. If G is
(K3 � 3P1)-free, then mimw(G) < 6 by Theorem 14. On the other hand, if G has an induced
subgraph isomorphic to K3 � 3P1, then mimw(G) = 1 by Lemma 17.

We now show how to compute a branch decomposition (T, δ) of G, with mimwG(T, δ) < 6,
in polynomial time. Consider the following algorithm, which takes as input a connected
(2P2,K1,3)-free graph G.

Step 1 Enumerate all subsets S ⊆ V (G) such that |S| = 6 and check whetherG[S] ∼= K3�3P1.
If no such set S exists, then return an arbitrary branch decomposition of G.

Step 2 Let S ⊆ V (G) such that G[S] ∼= K3 � 3P1 and let (A,B) be a partition of S such
that A is a clique and B is an independent set.

Step 3 Set E = E(G) \ E(G[S]). While E 6= ∅:
Choose an edge e ∈ E.
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If one endpoint of e (say a) is complete to A and anticomplete to B, and the
other endpoint of e (say b) is anticomplete to A ∪B, then set A← A ∪ {a} and
B ← B ∪ {b}.
Set E ← E \ {e}.

Step 4 Using Lemma 17, with X = A ∪B, compute a branch decomposition (T, δ) of G and
return it.

It is easily checked that Steps 1–4 of this algorithm can be performed in polynomial
time. If the algorithm returns a branch decomposition in Step 1, then by Theorem 14
it has mim-width less than 6. Otherwise, the branch decomposition has mim-width 1 by
Lemma 17. J

I Lemma 19. Let G be a (2P1 + P2, bowtie)-free graph. Given X ⊆ V (G) such that
G[X] ∼= Kr �Kr for some r ≥ 5, where X is maximal, we can construct, in O(n) time, a
branch decomposition (T, δ) of G such that mimwG(T, δ) = 2.

Proof. Let A = {a1, . . . , ar} and B = {b1, . . . , br} be cliques that partition X, with aibi ∈
E(G) for all i ∈ {1, . . . , r}. Let N1 be the set of vertices of V (G) \X with a neighbour in
X. Suppose there exists a vertex v ∈ V (G) \ (X ∪N1). Then G[{v, a1, b2, b3}] ∼= 2P1 + P2, a
contradiction. So X ∪N1 = V (G).

We claim that each vertex in N1 is either complete or anticomplete to A. Suppose
v ∈ N1 has a neighbour and a non-neighbour in A. Without loss of generality, let ar

be the neighbour and let a1 be the non-neighbour. If there is a pair of distinct vertices
bi, bj non-adjacent to v for i, j ∈ {2, 3, . . . , r}, then G[{v, a1, bi, bj}] ∼= 2P1 + P2. So v has
at most one non-neighbour in {b2, b3, . . . , br}. In particular, as r ≥ 5, we may assume
without loss of generality that b3 and b4 are neighbours of v. If v is adjacent to a2, then
G[{a2, ar, v, b3, b4}] ∼= bowtie, a contradiction. So a2 is a non-neighbour of v. Now, if br is
adjacent to v, then G[{a1, a2, ar, v, br}] ∼= bowtie; whereas if br is non-adjacent to v, then
G[{a1, a2, v, br}] ∼= 2P1 + P2. From this contradiction, we deduce that v is either complete
or anticomplete to A. By symmetry, each v ∈ N1 is complete or anticomplete to B.

If v ∈ N1 is complete to both A and B, then G[{a1, a2, v, b3, b4}] ∼= bowtie, a contradiction.
If v ∈ N1 is anticomplete to both A and B, then G[{a1, a2, v, b3}] ∼= 2P1 +P2, a contradiction.
So each vertex in N1 is either complete to A and anticomplete to B, or complete to B and
anticomplete to A. Call these two sets A′ and B′ respectively. If a vertex a ∈ A′ has a
neighbour b ∈ B′, then G[X ∪ {a, b}] ∼= Kr+1 �Kr+1, contradicting the maximality of X.
So A′ and B′ are anticomplete. Moreover, if a, a′ ∈ A′ are distinct and non-adjacent, then
G[{a, a′, b1, b2}] ∼= 2P1 + P2, a contradiction. So A′ ∪A and, similarly, B′ ∪B are cliques.

Now let a′1, a′2, . . . , a′|A′| be an arbitrary ordering of A′, and let b′1, b′2, . . . , b′|B′| be an
arbitrary ordering of B′. Let (T, δ) be the branch decomposition with linear ordering

(a′1, a′2, . . . , a′|A′|, a1, b1, a2, b2, . . . , ar, br, b
′
1, b
′
2, . . . , b

′
|B′|);

that is, let T be a |V (G)|-caterpillar where δ respects this ordering, so δ(a′1) = t1, δ(a′2) = t2,
. . . , δ(b′|B′|) = t|V (G)|. Note that, given X, we can find A and B, together with the labelling
of ai’s and bi’s, as well as A′ and B′, in O(n) time, so we can compute (T, δ) in O(n) time.
We claim that mimwG(T, δ) = 2. Let e ∈ E(T ) and consider the corresponding cut (Ae, Ae).
First, observe that when Ae = A′ ∪ {a1, b1}, the graph G[Ae, Ae] has an induced matching
of size 2, with edges a1a2 and b1b2, so mimwG(T, δ) ≥ 2.

Let M be an induced matching in G[Ae, Ae]. Let V (M) denote the vertices incident to
an edge of M . Suppose V (M) ∩ Ae contains at least two vertices of A. Then there exist
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i, j ∈ {1, 2, . . . , r} such that ai, aj ∈ V (M) ∩ Ae, with i < j. Observe that bi ∈ Ae, since
bi is between ai and aj in the linear ordering, and ai, aj ∈ Ae. Let v, v′ ∈ Ae such that
aiv, ajv

′ ∈ M . If v ∈ A ∪ A′, then ajv is an edge of G, so M is not induced. Moreover,
v /∈ B′, since B′ is anticomplete to A. So v ∈ B, and hence v = bi. But then v ∈ Ae, a
contradiction. So |V (M) ∩Ae ∩A| ≤ 1. Similarly, V (M) ∩Ae contains at most one vertex
of B.

Now suppose V (M)∩Ae contains a vertex a′ ∈ A′. Suppose a′v ∈M , where a′ ∈ A′ ∩Ae

and v ∈ Ae. Then v ∈ A ∪ A′, since A′ is anticomplete to B ∪ B′. Hence a′ is the only
vertex of A ∪ A′ in Ae ∩ V (M), for otherwise v has two neighbours in V (M) ∩ Ae. So
|V (M) ∩ Ae ∩ (A′ ∪ A)| ≤ 1. Similarly, V (M) ∩ Ae contains at most one vertex of B′ ∪ B.
So |M | ≤ 2, and hence mimwG(T, δ) = 2. J

I Theorem 20. Let G be a (2P1+P2, bowtie)-free graph. Then mimw(G) < R(14, 3), and one
can construct, in polynomial time, a branch decomposition (T, δ) of G with mimwG(T, δ) <
R(14, 3).

Proof. If G is (K5�K5)-free, then mimw(G) < R(R(5, 3), 3) = R(14, 3) by Theorem 16. On
the other hand, if G has an induced subgraph isomorphic to K5 �K5, then mimw(G) = 2
by Lemma 19.

We now show how to compute a branch decomposition (T, δ) of G, with mimwG(T, δ) <
R(14, 3), in polynomial time. Consider the following algorithm, which takes as input a
connected (2P1 + P2, bowtie)-free graph G.

Step 1 Enumerate all subsets S ⊆ V (G) such that |S| = 10 and check whether G[S] ∼=
K5 �K5. If no such set S exists, then return an arbitrary branch decomposition of
G.

Step 2 Let S ⊆ V (G) such that G[S] ∼= K5 �K5 and let (A,B) be a partition of S such
that A is a clique and B is an independent set.

Step 3 Set E = E(G) \ E(G[S]). While E 6= ∅:
Choose an edge e ∈ E.
If one endpoint of e (say a) is complete to A and anticomplete to B, and the other
endpoint of e (say b) is complete to B and anticomplete to A, then set A← A∪{a}
and B ← B ∪ {b}.
Set E ← E \ {e}.

Step 4 Using Lemma 19, with X = A ∪B, compute a branch decomposition (T, δ) of G and
return it.

It is easily checked that Steps 1–4 of this algorithm can be performed in polynomial
time. If the algorithm returns a branch decomposition in Step 1, then by Theorem 16 it has
mim-width less than R(14,3). Otherwise, the branch decomposition has mim-width 2 by
Lemma 19. J

5 New Unbounded Cases

We present a number of graph classes of unbounded mim-width, starting with the following
two theorems.

I Theorem 21. The class of (diamond, 5P1)-free graphs has unbounded mim-width.
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Figure 7 A particular 4-colouring of a net-wall, used in the proof of Theorem 21.

Proof. For every integer k, we will construct a (diamond, 5P1)-free graph G such that
mimw(G) > k. By Lemma 10, for any integer k there exists a net-wall W such that
mimw(W ) > 4k. We partition the vertex set V (W ) into four colour classes (V1, V2, V3, V4) as
illustrated in Figure 7. Observe that, for each i ∈ {1, 2, 3, 4}, the set Vi is independent, and
no two distinct vertices v, v′ ∈ Vi have a common neighbour; that is, NW (v) ∩NW (v′) = ∅.

Let G be the graph obtained from W by making each of V1, V2, V3 and V4 into a clique.
By Lemma 4, mimw(G) ≥ mimw(W )/4 > k. Since any set of five vertices of G contains at
least two vertices in one of V1, V2, V3, and V4, and each of these four sets is a clique, G is
5P1-free.

It remains to show that G is diamond-free. First, observe that if G[X] ∼= K3 for some
X ⊆ V (G) with |X ∩ Vi| ≥ 2 for some i ∈ {1, 2, 3, 4}, then, since no two vertices in Vi have a
common neighbour in W , it follows that X ⊆ Vi. Now, towards a contradiction, suppose
G[Y ] ∼= diamond for some Y ⊆ V (G). Then Y is the union of two sets X ′ and X ′′ that
induce triangles in G, and |X ′ ∩X ′′| = 2. Since W is diamond-free, we may assume that
W [X ′] is not a triangle. Then X ′ contains at least two vertices of Vi for some i ∈ {1, 2, 3, 4}.
By the earlier observation, X ′ ⊆ Vi. Since |X ′ ∩X ′′| = 2, we then have |X ′′ ∩ Vi| ≥ 2, so
X ′′ ⊆ Vi, and hence Y ⊆ Vi. But this implies that Y is a clique in G; a contradiction. So G
is diamond-free. J

I Theorem 22. The class of (4P1, 3P1 + P2, P1 + 2P2)-free graphs has unbounded mim-width.

Proof. For every integer k, we will construct a (4P1, 3P1 + P2, P1 + 2P2)-free graph G such
that mimw(G) > k. By Lemma 10, for any integer k there exists a net-wall W such that
mimw(W ) > 3k. We partition the vertex set V (W ) into three colour classes (V1, V2, V3)
such that Vi is an independent set for each i ∈ {1, 2, 3} as illustrated in Figure 8. Since
W has maximum degree 3 and each vertex belongs to a triangle, a vertex has at most
two neighbours in each colour class; that is, for each i ∈ {1, 2, 3} and v ∈ Vi, we have
|N(v) ∩ Vj | ≤ 2 for j ∈ {1, 2, 3}. Note that these colour classes are chosen to satisfy the
following properties. Firstly, W does not contain a bichromatic induced P5; that is, if
W [X] ∼= P5 for some X ⊆ V (P5), then X ∩ Vi 6= ∅ for each i ∈ {1, 2, 3}. Secondly, if
W [X] ∼= bull, then |X ∩ Vi| ≤ 2 for each i ∈ {1, 2, 3}.
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Figure 8 The 3-colouring of a net-wall used in the proof of Theorem 22.

Let G be the graph obtained from W by making each of V1, V2, and V3 into a clique. By
Lemma 4, mimw(G) ≥ mimw(W )/3 > k. As any set of 4 vertices of G contains at least two
vertices in one of the cliques V1, V2, or V3, we deduce that G is 4P1-free.

We now show that G is
(
3P1 + P2

)
-free. To the contrary, suppose G[X] ∼= 3P1 + P2 for

some X ⊆ V (G). Then X is not contained in Vi for any i ∈ {1, 2, 3}. Moreover, |X ∩ Vi| ≤ 2
for each i ∈ {1, 2, 3}, for otherwise there is a vertex with at least three neighbours in a different
colour class. So, assume without loss of generality that X ∩ V1 = {v1, v

′
1}, X ∩ V2 = {v2, v

′
2},

and X ∩ V3 = {v3}. Then at least two of {v1, v2, v3}, {v′1, v2, v3}, {v1, v
′
2, v3}, {v′1, v′2, v3}

induce triangles in G. These triangles consist of one vertex in each colour class, so they
correspond to induced triangles in W . This is contradictory, as W has no two distinct
triangles that share a vertex.

It remains to show that G is
(
P1 + 2P2

)
-free. Towards a contradiction, suppose G[X] ∼=

P1 + 2P2. Note that G[X] has a dominating vertex h. Without loss of generality, let h ∈ V1.
Since h has degree 4 in G[X], we have |X ∩ V1| ≥ 2. In fact, as W has no cycles of length 4,
no two vertices in V2 ∪ V3 share a pair of common neighbours in V1, so |X ∩ V1| ≥ 3. Since
G[X] is K4-free, we have |X ∩ V1| = 3. Let X ∩ V1 = {x, x′, h} and X \ V1 = {y, z}. We
may assume without loss of generality that y ∈ V2. Now there is a 5-vertex path xyhzx′
in W , up to the labels of x and x′. If z ∈ V2, then the four edges of this path are the
only edges in G[{x, y, h, z, x′}] where the two endpoints are in different colour classes, so
W [{x, y, h, z, x′}] ∼= P5. Since W has no bichromatic induced P5, we deduce that z ∈ V3.
But then W [X] ∼= bull and |X ∩ V1| = 3, a contradiction. J

Next we use the construction of a chordal bipartite graph G′ from a graph G, given by
Brault-Baron, Capelli and Mengel [13]4. Let G = (V,E) be a graph. We take two copies
of V labelled as follows: X = {xv : v ∈ V } and Y = {yv : v ∈ V }. To construct G′, start
with a complete bipartite graph with vertex bipartition (X,Y ), and add, for each edge e ∈ E
with endpoints u and v, two paths: an xuyv-path xuqeteyv, and an xvyu-path xvq

′
et
′
eyu. For

4 Alternatively, we could take a wall, which has bipartition classes A and B; 2-subdivide all of its edges;
and make A complete to B. The resulting graph has the same structure as G′ and can have arbitrarily
large mim-width due to Theorem 8 and Lemmas 2 and 4.
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convenience, we let Q =
⋃

e∈E(G){qe, q
′
e} and T =

⋃
e∈E(G){te, t′e}. Observe that (X,Y,Q, T )

partitions V (G′); see also Figure 9.

Y

T

Q

X

ya yb yc yd

xa xb xc xd

t′ab tab t
′
bc tbc t

′
cd tcd

q′ab
qabq′bc

qbcq′cd
qcd

Y

Z

X

ya yb yc yd

xa xb xc xd

z′ab

zab

z′bc

zbc

z′cd

zcd

Figure 9 The graphs G′ and G′′, where we did not draw the edges between X and Y .

We need two lemmas. The first one is due to Baron, Capelli and Mengel.

I Lemma 23 ([13, Lemmas 15 and 16]). For any graph G, the graph G′ as constructed above
is chordal bipartite. Moreover, if G is bipartite, then mimw(G′) ≥ tw(G)/6, where tw(G)
denotes the treewidth of G.

I Lemma 24. For any graph G, the chordal bipartite graph G′ is (P8, P3 + P6, S1,1,5)-free.

Proof. We label the vertices of G′ as described in the construction, so (X,Y,Q, T ) is a
partition of V (G′). We first claim that if some A ⊆ V (G′) induces a path in G′, with |A| ≥ 6,
then X∩A and Y ∩A are non-empty. Suppose G′[A] ∼= P|A| and Y ∩A = ∅. In G′[X∪Q∪T ],
each vertex in T has degree 1, and each vertex in Q has two neighbours: one in X and one
in T . If a vertex of T is in A, then it is an end of the path G′[A]; so |T ∩A| ≤ 2. If a vertex
of Q is in A, then either it is an end of the path G′[A], or it is adjacent to a vertex of T that
is an end of the path G′[A]. So |Q ∩ A| ≤ 2. Since X is independent, |A| ≤ 5. The claim
now follows by symmetry.

Now suppose some A ⊆ V (G′) induces a path in G′ where A ∩X 6= ∅ and A ∩ Y 6= ∅.
Since G′[X ∪ Y ] is complete bipartite, we may also assume that |X ∩ A| ∈ {1, 2} and
|Y ∩A| = 1. For each vertex v ∈ Q ∩A (respectively, v ∈ T ∩A), either v is the end of the
path G′[A], or v has a neighbour in X ∩A (respectively, Y ∩A). Suppose |(Q ∪ T ) ∩A| ≥ 5.
Let A′ be the vertices in (Q∪T )∩A that are not ends of the path G′[A]. Then |A′| ≥ 3, and
each vertex in A′ has a neighbour in (X ∪ Y )∩A. Since A∩X and A∩ Y are non-empty, no
two vertices in (Q∪ T )∩A share a neighbour in (X ∪ Y )∩A. So |NG′[A](A′)∩ (X ∪ Y )| ≥ 3,
implying |X ∩A| = 2. However, then the vertex in the singleton set Y ∩A has degree 3 in
G′[A], a contradiction. So |(Q ∪ T ) ∩A| < 5, and |A| < 8. It now follows that G′ is P8-free.

Next we suppose, for some F ⊆ V (G′), that G′[F ] is a linear forest, one component of
which is a P6. Let A ⊆ F such that G′[A] ∼= P6. By the foregoing claim, X ∩A and Y ∩A
are non-empty. Since G′[X ∪ Y ] is complete bipartite, it follows that F \A ⊆ Q ∪ T . Hence
G′[F \A] ∼= sP1 + tP2 for some s, t ≥ 0, implying G′ is (P3 + P6)-free.

Finally, suppose G′[S] ∼= S1,1,5 for some S ⊆ V (G). Let A ⊆ S such that G′[A] ∼=
P7. By the foregoing, X ∩ A and Y ∩ A are non-empty, and |(Q ∪ T ) ∩ A| < 5. Hence
{|X ∩A|, |Y ∩A|} = {1, 2}. Observe now that both ends of the path G′[A] are in either Q or
T , and the vertices of the path adjacent to the ends are in either T or Q, respectively. But
then some vertex in T or Q has degree 3 in G′[S] and hence in G′, a contradiction. Hence
G′ is S1,1,5-free. J

Lemma 24 is tight in the following sense: for some graph G, the graph G′ can contain, as an
induced subgraph, tP2 + P7 or tP5 for any non-negative integer t, or S2,2,4.
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Theorem 25 now follows from Lemmas 23 and 24 and the fact that bipartite graphs can
have arbitrarily large treewidth (see, e.g., [49]). We use Lemma 4 to obtain Theorems 26
and 27.

I Theorem 25. The class of chordal bipartite (P8, P3 +P6, S1,1,5)-free graphs has unbounded
mim-width.

I Theorem 26. The class of (4P1, gem, P1 + 2P2)-free graphs has unbounded mim-width.

Proof. For every integer k, we will construct a (4P1, gem)-free graph G such that mimw(G) >
k. Let B be a bipartite graph with tw(B) > 24k. Then, mimw(B′) > 4k by Lemma 23.
Observe that B′ is 4-partite, where V (B′) has a partition (X,Y, T,Q) into independent colour
classes, using the labelling described in the construction. Let G be the graph obtained from
B′ by making X, Y , T , and Q into cliques. By Lemma 4, mimw(G) ≥ mimw(B′)/4 > k.

Observe that X ∪ Y , T , and Q are cliques that partition V (G), so G is 4P1-free. Note
also that each vertex in Q has exactly one neighbour in T , exactly one neighbour in X, and
no neighbours in Y . By symmetry, each vertex in T has exactly one neighbour in Q, exactly
one neighbour in Y , and no neighbours in X. In particular, each vertex in Q∪T has at most
one neighbour in X ∪ Y . It remains to show that G is (gem, P1 + 2P2)-free.

Suppose G[D] ∼= diamond for some D ⊆ V (G). Since X ∪Y is a clique, |D∩ (X ∪Y )| ≤ 3.
In fact, |D ∩ (X ∪ Y )| ≤ 1, since each vertex in Q ∪ T has at most one neighbour in X ∪ Y .
Note also that D * T ∪Q, since a vertex in T has at most one neighbour in Q (and vice
versa). It follows, without loss of generality, that |D ∩Q| = 3 and |D ∩X| = 1.

Now suppose G[D′] is isomorphic to gem or P1 + 2P2 for some D′ = D ∪ z with z ∈
V (G) \D. Note that a gem or a P1 + 2P2 has a dominating vertex h, and h ∈ D ∩ Q. If
z ∈ X, then hz is not an edge, since the only neighbour of h in X is the vertex in D ∩X.
If z ∈ Y ∪ T , then z has degree 1 in G[D′]. If z ∈ Q, then G[D′] contains a K4. From this
contradiction we deduce that G is (gem, P1 + 2P2)-free. J

I Theorem 27. The class of (diamond, 2P3)-free graphs has unbounded mim-width.

Proof. For every integer k, we will construct a (diamond, 2P3)-free graph G such that
mimw(G) > k. Let B be a bipartite graph with tw(B) > 12k. Then, mimw(B′) > 2k by
Lemma 23. Observe that B′ is bipartite, where (X ∪ T, Y ∪ Q) is a bipartition of V (B′).
Let G be the graph obtained from B′ by making X and Y into cliques. By Lemma 4,
mimw(G) ≥ mimw(B′)/2 > k.

Observe now that X ∪ Y is a clique of G. Moreover, G can be obtained starting from
G[X ∪Y ] by adding 3-edge xy-paths for some x ∈ X and y ∈ Y . It follows that each induced
P3 subgraph of G contains some vertex of X ∪ Y . Since X ∪ Y is a clique, any two disjoint
induced P3 subgraphs of G have an edge between them. So G is 2P3-free.

Finally, observe that for each induced K3 subgraph of G we have V (K3) ⊆ X ∪ Y .
Hence, if G[A] ∼= diamond for some A ⊆ V (G), then A ⊆ X ∪ Y , but then A is a clique, a
contradiction. So G is diamond-free. J

We now describe the construction of a graph G′′ from a graph G = (V,E). This
construction is similar to the construction of G′; we adapt the approach taken by Brault-
Baron et al. [13] to construct graphs with arbitrarily large mim-width. Take two copies of
V labelled as follows: X = {xv : v ∈ V } and Y = {yv : v ∈ V }. Construct a graph G′′ on
vertex set X ∪ Y ∪ Z where Z =

⋃
e∈E(G){ze, z

′
e}. Start with a complete bipartite graph

with vertex bipartition (X,Y ), and add, for each edge e ∈ E with endpoints u and v, two
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paths xuzeyv and xvz
′
eyu. Observe that G′′ is 3-partite, with colour classes (X,Y, Z); see

also Figure 9.
The following lemma is proven by modifying the proof of Lemma 23 given by Brault-Baron

et al. [13]. Alternatively, we could take the n× n wall W , which has bipartition classes A
and B; 1-subdivide each edge of W ; and make A complete to B. By applying Theorem 8
and Lemmas 2 and 4, we obtain a lower bound on the mim-width in terms of n.

I Lemma 28. If G is a bipartite graph, then mimw(G′′) ≥ tw(G)/6.

Proof. Let G be a bipartite graph with vertex bipartition (A,B), and let (T ′′, δ′′) be an
arbitrary branch decomposition of G′′. We will show that mimwG′′(T ′′, δ′′) ≥ tw(G)/6.

We first construct a branch decomposition (T, δ) of G such that E(T ) ⊆ E(T ′′), as follows.
Let T be the tree obtained from T ′′ by deleting the leaves t ∈ V (T ′′) such that δ′′(t) = xv

for some v ∈ B, or δ′′(t) = yu for some u ∈ A, or δ′′(t) ∈ Q ∪ T . In the resulting tree T , for
each leaf t ∈ T we define δ(t) = v if δ′′(t) = xv for some v ∈ A; and δ(t) = u if δ′′(t) = xu

for some u ∈ B.
Suppose e ∈ E(T ). Recall that (Ae, Ae) denotes the partition of V (G) induced by the

two components of T\e, and let (A′′e , A′′e ) denote the partition of V (G′′) induced by the two
components of T ′′\e. Let uv be an edge in the cut G[Ae, Ae]. Since G is bipartite, we may
assume u ∈ A and v ∈ B. Then xu and yv are on different sides of the cut G′′[A′′e , A′′e ]; we
may assume that xu ∈ A′′e and yv ∈ A′′e . Since there is a path xuzuvyv in G′′, either the edge
xuzuv or the edge zuvyv is in G′′[A′′e , A′′e ].

Let M be a matching of G[Ae, Ae]. We obtain a matching M ′ of G[A′′e , A′′e ] of size |M |
as follows: for each edge uv in M , choose the edge xuzuv or zuvyv that is in G[A′′e , A′′e ]. We
partition M ′ into (M ′X ,M ′Y ) where M ′X consists of the edges incident to a vertex of X and
M ′Y consists of the edges incident to a vertex of Y . Let M ′′ be the larger of M ′X and M ′Y ;
then |M ′′| ≥ |M |/2. Note that M ′′ is a matching of G′′[A′′e , A′′e ] since M ′′ ⊆M ′.

By [13, Lemma 9], there exists some edge e ∈ E(T ) such that G[Ae, Ae] has a (not
necessarily induced) matching M of size at least tw(G)/3. By the previous paragraph,
G′′[A′′e , A′′e ] has a matching M ′′ of size at least |M |/2 ≥ tw(G)/6, which consists of edges
between a vertex in Z and a vertex in either X or Y .

We claim that M ′′ is an induced matching. Suppose not. Then we may assume (up to
swapping X and Y ) that M ′′ has edges xuzuv and xu′zu′v′ , for some distinct u, u′ ∈ V (G),
and G′′ also has an edge xuzu′v′ or xu′zuv. But, by construction, the vertices zuv, zu′v′ ∈ Z
have only one neighbour in X, so neither xuzu′v′ nor xu′zuv is an edge of G′′. Thus M ′′ is
induced, and hence mimwG′′(T ′′, δ′′) ≥ tw(G)/6, as required. J

We use Lemma 28 to show the following theorem.

I Theorem 29. The class of (K4, diamond, P6, P2+P4)-free graphs has unbounded mim-width.

Proof. We show that for every integer k, there is a (K4, diamond, P6, P2 + P4)-free graph G
such that mimw(G) > k. Let B be a (simple) bipartite graph with tw(B) > 6k and let
G = B′′. Then mimw(G) > k by Lemma 28. Observe that X, Y and Z are independent sets.

First we claim that G is K4-free. Suppose G[A] ∼= K4 for some A ⊆ V (G). Since each
vertex in Z has degree 2, A ⊆ X ∪ Y . But then |A ∩X| ≥ 2 or |A ∩ Y | ≥ 2, a contradiction.

Next we claim that G is diamond-free. Suppose G[A] ∼= diamond for some A ⊆ V (G).
Since each vertex in Z has degree 2, the degree-3 vertices of the diamond must be in X or Y .
Since these vertices are adjacent, one is in X and one is in Y . As the other two vertices of
the diamond are complete to these two vertices, these vertices are in Z. Let A ∩X = {xu},
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A∩Y = {yv}, and A∩Z = {ze, ze′}. Now xuzeyv and xuze′yv are paths in G, corresponding
to multiple edges e = uv and e′ = uv in B, but this contradicts that B is simple.

Next we claim that G is P2 + P4-free. Suppose G[A] ∼= P2 + P4 for some A ⊆ V (G) and
G[A′] ∼= P4 for some A′ ⊆ A.If A′ ⊆ Y ∪Z, then one end of G[A′] is in Y , and the other end
is in Z. But each vertex in Z has one neighbour in X and one neighbour in Y , so A′∩X 6= ∅
and, by symmetry, A′ ∩ Y 6= ∅. Now each vertex in X or Y is adjacent to a vertex of G[A′].
So A \A′ ⊆ Z, but then G[A \A′] ∼= 2P1, a contradiction.

It remains to show that G is P6-free. Suppose G[A] ∼= P6 for some A ⊆ V (G). If
A ⊆ X ∪ Z, then each vertex of A ∩ Z has degree at most 1 in G[A], so there are at most
two such vertices. But then |A∩X| ≥ 4, and this set is independent in G[A], a contradiction.
So A ∩ Y 6= ∅ and, by symmetry, A ∩ X 6= ∅. Since X is complete to Y , we also have
|A∩ (X ∪Y )| ≤ 3. Without loss of generality we may assume A∩X is a singleton {x}. Then
x has two neighbours in A∩ Y , so A∩X and A∩Z are anticomplete. But then A∩ (X ∪Z)
is an independent set of size at least 4, a contradiction. J

6 State of the Art

In this section, we show the consequences of the results from Sections 3–5 for the boundedness
and unboundedness of mim-width of classes of (H1, H2)-free graphs. We will also make a
comparison between the results for mim-width and clique-width. In contrast to the situation
where only one induced subgraph is forbidden, we note many differences when two induced
subgraphs H1 and H2 are forbidden. Figure 10 illustrates a number of graphs that we use
throughout the section.

Figure 10 The graphs K5�P1 = K1,4 + P1, K1,3 + 2P1, S1,1,2, paw, hammer, diamond and gem.

6.1 Two Summary Theorems
In our first summary theorem we give all pairs (H1, H2) for which the mim-width of the
class of (H1, H2)-free graphs is bounded. This theorem gives more bounded cases than the
corresponding summary theorem for boundedness of clique-width of classes of (H1, H2)-free
graphs, which can be found in the survey of Dabrowski, Johnson and Paulusma [23] and which
we need for our proof. To get the summary theorem for clique-width, replace Cases (x)–(xv)
of Theorem 30 by the more restricted case where H1 = Kr and H2 = sP1 for some s, t ≥ 1.
Note that for Cases (xii)–(xv), the obtained bound on mim-width depends on the constants r,
s and/or t.

I Theorem 30. For graphs H1 and H2, the mim-width of the class of (H1, H2)-free graphs
is bounded and quickly computable if one of the following holds:
(i) H1 or H2 ⊆i P4,
(ii) H1 ⊆i paw and H2 ⊆i K1,3 + 3P1, K1,3 + P2, P1 + P2 + P3, P1 + P5, P1 + S1,1,2,

P2 + P4, P6, S1,1,3 or S1,2,2,
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(iii) H1 ⊆i P1 +P3 and H2 ⊆i K1,3 + 3P1, K1,3 + P2, P1 + P2 + P3, P1 + P5, P1 + S1,1,2,

P2 + P4, P6, S1,1,3 or S1,2,2,
(iv) H1 ⊆i diamond and H2 ⊆i P1 + 2P2, 3P1 + P2 or P2 + P3,
(v) H1 ⊆i 2P1 + P2 and H2 ⊆i P1 + 2P2, 3P1 + P2 or P2 + P3,
(vi) H1 ⊆i gem and H2 ⊆i P1 + P4 or P5,
(vii) H1 ⊆i P1 + P4 and H2 ⊆i P5,
(viii) H1 ⊆i K3 + P1 and H2 ⊆i K1,3,
(ix) H1 ⊆i 2P1 + P3 and H2 ⊆i 2P1 + P3,
(x) H1 ⊆i 2P1 + P2 and H2 ⊆i bowtie,
(xi) H1 ⊆i K1,3 and H2 ⊆i 2P2,
(xii) H1 ⊆i Kr for r ≥ 1 and H2 ⊆i sP1 + P5 for s ≥ 0,
(xiii) H1 ⊆i Kr � rP1 for r ≥ 1 and H2 ⊆i 2P2,
(xiv) H1 ⊆i Kr � P1 for r ≥ 1 and H2 ⊆i tP2 for t ≥ 1, or
(xv) H1 ⊆i Kr �Kr for r ≥ 1 and H2 ⊆i sP1 + P2 for s ≥ 0.

Proof. Cases (i)–(ix) follows from the fact that each of the classes of (H1, H2)-free graphs in
these cases has bounded clique-width and that clique-width is quickly computable for general
graphs [44]. For Case (i) we also refer to Theorem 13. Boundedness of clique-width has
been proven for Case (ii) as follows: in [26] for K1,3 + 3P1; in [25] for K1,3 + P2; in [21] for
P1 + P2 + P3 and P1 + P5; in [26] for P1 + S1,1,2; in [24] for P2 + P4; in [9] for P6; in [25] for
S1,1,3; and in [21] for S1,2,2. It has been proven for Case (iv) as follows: in [21] for P1 + 2P2;
and in [22] for 3P1 +P2 and P2 +P3. It has been been proven for Case (vi) as follows: in [10]
for P1 + P4; and in [11] for P5. It has been proven for Case (viii) and (ix) in [7, 12] and [5],
respectively. Cases (iii), (v), (vii) follow from Cases (ii), (iv) and (vi), respectively, after
recalling that the clique-width of a class of (H1, H2)-free graphs is bounded if and only if the
clique-width of the class of

(
H1, H2

)
-free graphs is bounded [38]. Cases (x) and (xi) follow

from Theorems 20 and 18 respectively. Case (xii) has been proven in [14]. Cases (xiii)–(xv)
follow from Theorems 14–16, respectively. J

For our second summary theorem, we turn to the unbounded cases. We let S be the class of
graphs every connected component of which is either a subdivided claw or a path. We let N
denote the class of graphs that contain a connected component with either a cycle of length
at least 4 or at least two (not necessarily vertex-disjoint) triangles; note, for example, that
N contains C4, diamond, and K4.

I Theorem 31. For graphs H1 and H2, the class of (H1, H2)-free graphs has unbounded
mim-width if one of the following holds:
(i) H1 /∈ S and H2 /∈ S,
(ii) H1 ⊇i C3 and H2 ⊇i P3 + P6, P8 or S1,1,5,
(iii) H1 ⊇i K1,3 and H2 ∈ N ,
(iv) H1 ⊇i diamond and H2 ⊇i 5P1, P2 + P4, 2P3 or P6,
(v) H1 ⊇i 3P1 and H2 ⊇i 3P1, C5 or C2s+1 for s ≥ 3,
(vi) H1 ⊇i 4P1 and H2 ⊇i gem, 3P1 + P2 or P1 + 2P2,
(vii) H1 ⊇i 2P2 and H2 ⊇i C4, C5, K1,4, 2P2, 3P1 + P2 or sunt for t ≥ 3, or
(viii) H1 ⊇i K4 and H2 ⊇i P2 + P4 or P6.

Proof. Cases (i) and (iii) follow from Theorem 8 and Lemma 10, respectively, possibly after
applying Lemma 2 a sufficient number of times. All three subcases of Case (ii) follows from
Theorem 25. The first subcase of Case (iv) follows from Theorem 21, the second one follows
from Theorem 29, the third one follows from Theorem 27 and the fourth one follows from
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Theorem 29. All three subcases of Case (v) follow from Lemma 12. Case (vi) follows from
Theorems 22 and 26. All subcases of Case (vii) follow from Lemma 11. Case (viii) follows
from Theorem 29. J

We note that the situation for the unbounded cases is again different from the situation for
the unbounded cases of clique-width. For example, (H1, H2)-free graphs have unbounded
clique-width if both H1 /∈ S and H2 /∈ S (see, for example, [26]). Take, for instance, H1 = 4P1
and H2 = 2P2. Then H1 = K4 and H2 = C4, and thus H1 /∈ S and H2 /∈ S, so (H1, H2)-
free graphs have unbounded clique-width. However, by Theorem 30-(xiii), (H1, H2)-free
graphs have bounded mim-width. As (H1, H2)-free graphs have unbounded mim-width by
Theorem 31-(i), this example also shows that the complementation operation, a standard tool
for working with clique-width, does not preserve mim-width. Consequently, for mim-width
there are many more open cases than the only five open cases for clique-width [23].

6.2 Three Consequences of the Summary Theorems
In order to get a handle on the open cases for mim-width, we now present some consequences
of Theorems 30 and 31. We first consider the case where H1 and H2 are forests.

I Corollary 32. Let H1 and H2 be forests. Either the pair (H1, H2) satisfies Theorem 30 or
Theorem 31, or one of the following holds:
1. H1 = 2P2 and H2 = K1,3 + sP1 for s ≥ 1, or
2. H1 = 2P2 and H2 = S1,1,2 + sP1 for s ≥ 0.

Proof. Throughout the proof we assume that H1 and H2 are not induced subgraphs of P4,
as otherwise we can apply Theorem 30-(i). This means that H1 contains an induced 3P1 or
an induced 2P2 and the same holds for H2. If both contain an induced 3P1, then we can
apply Theorem 31-(v). If both contain an induced 2P2, then we can apply Theorem 31-(vii).
Suppose neither of these two cases apply. Then we may assume without loss of generality
that 2P2 ⊆i H1 while 3P1 6⊆i H1, and 3P1 ⊆i H2 while 2P2 6⊆i H2. The above implies that
H1 = 2P2 and H2 has at most one connected component with an edge.

First suppose that H2 is a linear forest. Then H2 = sP1 + P3 or H2 = sP1 + P4 for
some s ≥ 1, and we apply Theorem 30-(xiii). Now suppose that H2 is not a linear forest, so
K1,3 ⊆i H2. If K1,4 ⊆i H2, then we apply Theorem 31-(vii). If H2 = K1,3, then we apply
Theorem 30-(xi). Hence H2 = K1,3 + sP1 for some s ≥ 1 or H2 = S1,1,2 + tP1 for some
t ≥ 0. J

I Open Problem 1. Determine the (un)boundedness of mim-width of (H1, H2)-free graphs
when
1. H1 = 2P2 and H2 = K1,3 + sP1 for s ≥ 1, or
2. H1 = 2P2 and H2 = S1,1,2 + sP1 for s ≥ 0.

Next we consider the case where H1 and H2 are connected.

I Corollary 33. Let H1 and H2 be connected graphs. Either the pair (H1, H2) satisfies
Theorem 30 or Theorem 31, or one of the following holds:
1. H1 = P5 and H2 = S1,1,2 or K1,r + sP1 for r ≥ 3 and s ∈ {1, 2},
2. H1 = P7 or Sh,i,j for h ≤ i ≤ j ≤ 4 with i+ j ≤ 6 ≤ h+ i+ j and H2 = C3 or paw, or
3. H1 = K1,3 or S1,1,2 and H2 = hammer.
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Proof. If H1 /∈ S and H2 /∈ S, then we apply Theorem 31-(i). Hence, we may assume without
loss of generality that H1 ∈ S. As H1 is connected, this means that H1 is a subdivided claw
or a path. If H1 is 3P1-free, then H1 ⊆i P4, and we apply Theorem 30-(i). Assume that
3P1 ⊆i H1. Then H2 must be co-bipartite, as otherwise we can apply Theorem 31-(v).

First suppose H1 is a path. If H1 ⊆i P4, then we apply Theorem 30-(i). Now suppose
P5 ⊆i H1. Then both 3P1 ⊆i H1 and 2P2 ⊆i H1. Then H2 must be a co-bipartite 3P1 + P2-
free split graph, as otherwise we can apply Theorem 31-(vii). Suppose H1 = P5. If H2 = gem,
then we apply Theorem 30-(vi). If H2 = Kr for any r ≥ 1, then we apply Theorem 30-(xii).
Otherwise we find that H2 = S1,1,2 or H2 = K1,r + sP1 for some r ≥ 3 and s ∈ {1, 2}, which
correspond to Case 1. Now suppose H1 = P6. If K4 ⊆i H2, then we apply Theorem 31-
(viii). Suppose H2 is K4-free. If H2 ⊆i paw, then we apply Theorem 30-(ii). Otherwise
diamond ⊆i H2 and we apply Theorem 31-(iv). Now suppose H1 = P7. If K4 ⊆i H2 or
diamond ⊆i H2, then we apply Theorem 31-(viii) or Theorem 31-(iv), respectively. Otherwise
we find that H2 = C3 or paw; this falls under Case 2. Finally suppose P8 ⊆i H1. If
C3 ⊆i H2, then we apply Theorem 31-(ii). Otherwise we find that H2 ⊆i P4 and we apply
Theorem 30-(i).

Now suppose H1 is a subdivided claw. If C4, K4, or diamond ⊆i H2, then we apply
Theorem 31-(iii). From now on assume that H2 is (C4,K4, diamond)-free. Recall that H2 is
co-bipartite. If H2 is C3-free, this means that H2 ⊆i P4 and we apply Theorem 30-(i). Hence,
we may assume that C3 ⊆i H2. This means that H2 ∈ {C3, paw, bowtie, hammer, 2C3 + e},
where the graph 2C3 + e is obtained from 2C3 by inserting an edge between the two
triangles. First suppose H1 ∈ {K1,3, S1,1,2}. If H2 ⊆i paw, then we apply Theorem 30-
(ii). Otherwise we find that H2 ∈ {bowtie, hammer, 2C3 + e}. If H2 ∈ {bowtie, 2C3 + e},
then we apply Theorem 31-(iii). The two remaining cases correspond to Case 3. Now
suppose that H1 /∈ {K1,3, S1,1,2}. Then 2P2 ⊆i H1. If H2 ∈ {bowtie, hammer, 2C3 + e},
then 2P2 ⊆i H2, which means that we can apply Theorem 31-(vii). Hence, we may assume
that H2 ∈ {C3, paw}. If H1 ∈ {S1,2,2, S1,1,3}, then we apply Theorem 30-(ii). If H1 is not
(P3 + P6, P8, S1,1,5)-free, then we apply Theorem 31-(ii). Otherwise we obtain the remaining
cases of Case 2. J

I Open Problem 2. Determine the (un)boundedness of mim-width of (H1, H2)-free graphs
when
1. H1 = P5 and H2 = S1,1,2 or K1,r + sP1 for r ≥ 3 and s ∈ {1, 2},
2. H1 = P7 or Sh,i,j for h ≤ i ≤ j ≤ 4 with i+ j ≤ 6 ≤ h+ i+ j and H2 = C3 or paw, or
3. H1 = K1,3 or S1,1,2 and H2 = hammer.

Finally, we note that Theorems 30 and 31 cover all pairs (H1, H2) with |V (H1)|+ |V (H2)| ≤ 8.

I Corollary 34. Let H1 and H2 be graphs with |V (H1)| + |V (H2)| ≤ 8. Then the pair
(H1, H2) satisfies Theorem 30 or Theorem 31.

Proof. Recall that S is the class consisting of graphs where every connected component is
either a subdivided claw or a path. If H1 /∈ S and H2 /∈ S, then we apply Theorem 31-
(i). Hence, we may assume without loss of generality that H1 ∈ S. As each of the pairs
(H1, H2) in Open Problem 1 (Corollary 32) has |V (H1)| + |V (H2)| ≥ 9, we deduce that
H2 contains a cycle. As each of the pairs (H1, H2) in Open Problem 2 (Corollary 33) has
|V (H1)|+ |V (H2)| ≥ 9, we deduce that at least one of H1, H2 is disconnected.

Case 1. H1 is disconnected.
First suppose that H1 is 3P1-free. Then either H1 ⊆i P4 or H1 = 2P2. In the first case we
apply Theorem 30-(i), Assume the latter case. Then H2 is C4-free, as otherwise we apply
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Theorem 31-(vii). Hence H2 contains a C3. If H2 ∈ {C3,K3 + P1,K3 � P1,K4}, then we
apply Theorem 30-(xiii). Otherwise, H2 = diamond and we apply Theorem 30-(iv).

Now suppose H1 contains an induced 3P1. Then H2 must be 3P1-free, as otherwise
we can apply Theorem 31-(v). First consider when |V (H1)| ≤ 4 and |V (H2)| ≤ 4. Then
H1 ∈ {3P1, 4P1, 2P1 + P2, P1 + P3} and H2 ∈ {C3, C4, diamond, paw,K3 + P1,K4}. If
H1 = P1 + P3, then we apply Theorem 30-(iii). So H1 ∈ {3P1, 4P1, 2P1 + P2}. If H2 ∈
{C3, C4, paw,K3 + P1,K4}, then we apply Theorem 30-(xiv) or Theorem 30-(xv); whereas if
H2 = diamond, then we apply Theorem 30-(iv).

It remains to consider when H1 = 3P1 and |V (H2)| = 5, or H2 = C3 and |V (H1)| = 5.
In the latter case, H2 = C3 and H1 is a linear forest on 5 vertices, in which case we
apply Theorem 30-(ii). In the former case, if H2 ∈ {K3 + P2, hammer, P5,K4 + P1,K4 �
P1,K5}, then H2 ⊆i K5 � K5, so we apply Theorem 30-(xv); whereas if H2 belongs to
{S1,1,2, P2 + P3, gem, P1 + 2P2, 2P1 + P3, 3P1 + P2}, then we apply Theorem 30-(iii). The
only possibility that remains is H2 = bowtie, for which we apply Theorem 30-(x).

Case 2. H1 is connected.
Then H2 is disconnected. As H2 contains a cycle, |V (H2)| ≥ 4, so |V (H1)| ≤ 4. As H1 is
connected and belongs to S, we find that H1 ⊆i P4 or H1 = K1,3. In the first case we apply
Theorem 30-(i). In the second case, |V (H1)| = 4, so |V (H2)| = 4. As H2 is disconnected and
contains a cycle, H2 = K3 + P1, so we apply Theorem 30-(viii). J

6.3 When H1 is Complete or Edgeless
We first consider the (un)boundedness of mim-width for the class of (Kr, H2)-free graphs for
a positive integer r and a graph H2. Such classes are interesting for the following reason. For
any H2 such that mim-width is bounded and quickly computable for the class of (Kr, H2)-free
graphs, k-Colouring is polynomial-time solvable for all k < r; for example, see [14] for the
case where H2 ⊆i sP1 +P5. More generally, for problems having polynomial-time algorithms
when mim-width is bounded and quickly computable, we obtain nf(ω(G))-time algorithms, for
some function f , when restricted to H2-free graphs; that is, XP algorithms parameterized by
ω(G) (the size of the largest clique in G). Recently, Chudnovsky et al. [17] showed that for
P5-free graphs, there exists an nO(ω(G))-time algorithm for Max Partial H-Colouring, a
problem generalizing Maximum Independent Set and Odd Cycle Transversal, and
which is polynomial-time solvable when mim-width is bounded and quickly computable.

For r ≥ 4, Theorems 30 and 31 imply that the mim-width of the class of (Kr, H2)-free
graphs is bounded and quickly computable when H2 ⊆i sP1 + P5 or tP2, and unbounded
when H2 ⊇i K1,3, P2 + P4, or P6, or H2 /∈ S. In the following theorem we prove that all
remaining cases belong to one infinite family: when H2 = tP2 + uP3 for u ≥ 1 and t+ u ≥ 2.
Note that Theorem 35 just concerns the case that r ≥ 4. When r = 3, further open cases
arise; for example, see Open Problem 2.

I Theorem 35. Let H be a graph and let r ≥ 4 be an integer. Then exactly one of the
following holds:

H ⊆i sP1 + P5 or tP2, and the mim-width of the class of (Kr, H)-free graphs is bounded
and quickly computable;
H /∈ S, or H ⊇i K1,3, P2 + P4, or P6, and the mim-width of the class of (Kr, H)-free
graphs is unbounded; or
H = tP2 + uP3 where u ≥ 1 and t+ u ≥ 2.
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Proof. By Theorem 31-(i), if H /∈ S, then the mim-width of the class of (Kr, H)-free graphs
is unbounded. So we may assume that H is a forest of paths and subdivided claws. By
Theorem 31-(iii), if H contains a K1,3, then the mim-width is again unbounded. So we may
assume that H is a linear forest. If H ⊆i sP1 + P5 or H ⊆i tP2, then mim-width is bounded
and quickly computable by parts (xii) and (xiv) of Theorem 30. So we may assume that H
is a linear forest containing P2 + P3. By Theorem 31-(viii), we may also assume H contains
neither P2 + P4 nor P6, otherwise the mim-width is again unbounded. It now follows that
H ⊆i tP2 + uP3 for some u, t such that u ≥ 1 and t+ u ≥ 2. J

I Open Problem 3. For an integer r ≥ 4, and for each integer t ≥ 0 and u ≥ 1 such that
t+ u ≥ 2, determine the (un)boundedness of the class of (Kr, tP2 + uP3)-free graphs.

We note that this is also open when r = 3, except when u = t = 1 (so H2 = P2 + P3) in
which case we can apply Theorem 30-(ii).

We now consider the class of (rP1, H2)-free graphs, for an integer r and a graph H2. If the
mim-width of such a class of graphs is bounded and quickly computable, we obtain, for many
problems, XP algorithms parameterized by α(G) for the class of H2-free graphs, where α(G)
is the size of the largest independent set in G. For r ≥ 5, Theorems 30 and 31 imply that the
mim-width of the class of (rP1, H2)-free graphs is bounded and quickly computable when
H2 ⊆i Kt �Kt for some t, and unbounded when H2 is not co-bipartite, or H2 ⊇i diamond.
Below we show that all unresolved cases belong to the infinite family H2 = Ks,t + P1 for
s, t ≥ 2 (we observe that if s = t = 2, then H2 = bowtie). Note that Theorem 36 just
concerns the case that r ≥ 5. When r ∈ {3, 4}, further open cases arise, and there are more
cases where the class of (rP1, H)-free graphs has bounded mim-width, by cases (iii) and (x)
of Theorem 30.

I Theorem 36. Let H be a graph and let r ≥ 5 be an integer. Then exactly one of the
following holds:

H ⊆i Kt �Kt for some integer t ≥ 1, and the mim-width of the class of (rP1, H)-free
graphs is bounded and quickly computable;
H is not co-bipartite or H ⊇i diamond, and the mim-width of the class of (rP1, H)-free
graphs is unbounded; or
H = Ks,t + P1 for some s, t ≥ 2.

Proof. By Theorem 31-(v), if H is not co-bipartite, then the mim-width of the class of
(rP1, H)-free graphs is unbounded. So we may assume that H is co-bipartite. In particular,
H is 3P1-free, and hence if H is a forest, we have that H ⊆i P4 or H ⊆i 2P2. In either case,
H ⊆ K4 �K4, so the mim-width is bounded and quickly computable by Theorem 30-(i). So
we may assume that H contains a cycle. In particular, since H is (C5, 3P1)-free, H contains
no induced cycle of length at least 5. By Theorem 31-(iv) we may assume that H contains
no diamond, otherwise the class has unbounded mim-width.

Suppose that H contains an induced C4. It follows from H being co-bipartite and
diamond-free that H ⊆i Kt�Kt for some t, in which case mim-width is bounded and quickly
computable by Theorem 30-(xv). So we may assume that H does not contain an induced C4,
and hence H is chordal.

It remains to show that H is a block graph consisting of two blocks each being complete
and having at least 3 vertices. Let K be a maximum clique of H. So K has size at least 3.
By Theorem 30-(xv) we may assume that V (H) \K 6= ∅. Since H is diamond-free and by
the maximality of K, any vertex of H not in K has at most one neighbour in K. Then since
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H is 3P1-free, V (H) \K is a clique. Now, if at most one vertex of V (H) \K has a neighbour
in K, then H is an induced subgraph of Kr �Kr, so we can apply Theorem 30-(xv). So we
may assume there are distinct vertices u, v ∈ V (H) \K each with a single neighbour in K.
Suppose that N(u) ∩K = {ku} and N(v) ∩K = {kv} for distinct ku, kv ∈ K. Since H is
3P1-free, uv ∈ E(H). But then {u, v, ku, kv} induces a C4 in H, a contradiction. Without
loss of generality, N(V (H) \K)∩K ⊆ {ku}. Now, since H is diamond-free and V (H) \K is
a clique, V (H) \K is complete to {ku}. It follows that H = Ks,t + P1 for some s, t ≥ 2. J

I Open Problem 4. For each integer r ≥ 4, and for each integer s, t ≥ 2, determine the
(un)boundedness of the class of (rP1,Ks,t + P1)-free graphs.

We note that Open Problem 4 includes the case r = 4, in contrast to Theorem 36, since the
(un)boundedness of (4P1,Ks,t + P1)-free graphs is also open for s ≥ 2 and t ≥ 2. In fact,
when r = 3, the (un)boundedness of (3P1,Ks,t + P1)-free graphs is also open except when
s = t = 2, in which case we have the class of (3P1, bowtie)-free graphs, and so we can apply
Theorem 20.

7 Conclusion

We extended the toolkit for proving (un)boundedness of mim-width of hereditary graph
classes. Using the extended toolkit, we found new classes of (H1, H2)-free graphs of bounded
width and unbounded mim-width. We showed that the situation for mim-width of hereditary
graph classes is different from the situation for clique-width, even when only two induced
subgraphs H1 and H2 are forbidden. For future work, Open Problems 1–4 deserve attention.
In particular, the class of (P5,K1,r + sP1)-free graphs, for r ≥ 3 and s ∈ {1, 2} (Case 1 of
Open Problem 2), is the only remaining infinite family of pairs (H1, H2) where both H1 and
H2 are connected. Moreover, for Open Problem 1, a similar approach to Theorem 18 might
be conducive to resolving further open cases where H1 = 2P2.
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