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Abstract: Survival signature technology has recently attracted increasing attention for its merits
on quantifying reliability of systems with multiple types of components. In order to implement
reliability evaluation of multi-state system (MSS), computing methods of survival signature are
studied for reliability analysis of several different systems in this paper. For an MSS consisting of
multi-state components, its survival signature can be developed based on the different state
definition of system. For the binary-state system with multi-state components, its survival
signature is based on the generalization of survival signature for multi-state components. For a
real life engineering MSS consisting of subsystems, the computing method of survival signature of
system has also been derived based on the survival signature of subsystems and mapping of
subsystems’ states to system’s states. This enables consecutive application of the new method to
substantial realistic MSS, with no theoretical limit on the size of the systems. Examples illustrate

the applicability of the analysis approach for systems reliability.
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1. Introduction

With the rapid progress in science and technology, today’s engineering systems are designed

to be with more and more powerful and complex functions in recent years. At the same time,

system risks and failures such as breakdown of a nuclear plant, miscommunication in internet and

malfunction of an air traffic control, are also resulting in a greater economic losses and more

significant effects on society than before. So reducing risks and improving performance and

reliability of systems become the concerns of researchers. A controllable immune algorithm is

developed to minimize the network sk in an integral routing risk model [1]. In wind power

investment, risk preference problem is solved by multi-criteria decision-making and the feasibility

is also verified by example [2]. For the risk assessment problem involving customer demands and

power supply risk, a risk assessment model is proposed [3]. In order to improve the reliability of

industrial wireless network, a routing algorithm based on redundant mechanism is proposed [4].

Computing method based on moment generation function is proposed and its reliability is also

verified through simulation for the wireless communication networks [5]. A new second-order

reliability analysis method is presented using saddle point approximating for system reliability

assessment and comparison has been done with Monte Carlo simulation [6].

Nowadays, a lucid review of system signature has been presented to quantify the reliability of

systems and networks, and some applications and theories of signatures have been developed in

engineering systems [7-10]. However, it is not really possible when attempting to generalize it to

systems with more than one component type, as it requires the computation of the probabilities of
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different orderings of order statistics of the different failure times distributions, which tends to

intractable. In order to overcome the limitations of the system signature, survival signature has

been developed as an effective tool for analyzing complex systems consisting of multiple

component types[11].Therefore, with regard to reliability quantification for complex systems and

networks, survival signature 1s often to be calculated once providing a massive reduction of the

computational cost required by the analysis. Non-parametric predictive inference method has been

developed for the reliability of system with multiple types of components using survival signature

[12]. From a Bayesian perspective, both non-parametric and parametric methods using survival

signature are presented for the reliability quantification of systems and networks [13]. Simulated

method based on survival signature has been introduced to deal with upper and lower bounds of

reliability function of system with uncertainty about parameters of assumed component failure

times distributions [14]. Several algorithms for survival signature-based simulation are presented

to answer the following question in the affirmative, whether or not the survival signature provides

sufficient information for efficient simulation to derive the system’s failure times distribution [15].

Expressions for marginal and joint reliability importance measures of a coherent system consisting

of multiple types of dependent components are presented by utilizing the concept of survival

signature [16]. An alternative to the existing limited approaches in the literature is provided by

survival signature for reliability analysis of phased mission system with similar types of

component in each phase [17]. The optimization of reliability-redundancy allocation is modeled

by using the theory of survival signature and the information of the structure of a system is

summarized by the survival signature [18].

In recent years, multi-state system (MSS) becomes focus because some intermediate states
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between “complete failure” and “perfect functioning” need to be considered in reliability analysis.

Some concepts and applications have been applied in industrial system and management [19, 20].

An implicit two-stage approach is suggested for evaluating reliability functions of non-repairable

series-parallel MSS with common cause failure (CCF) [21]. A method based on universal

generating function (UGF) 1s put forward to evaluate the rehability and sensitivity of MSS with

CCF [22]. And the UGF technology is also suitable for the MSS with protection mechanism and

imperfect cover failure[23, 24]. Considering the maintenance action, Kalman filter and Markov

process are employed to estimate state of system and component respectively [25, 26]. System

reliability and life cycle cost analysis are assessed considering stochastic multiple degradation

process [27]. Composite importance measures are evaluated and implemented via Monte-Carlo

simulation for MSS with multi-state components [28]. Furthermore, a simulated algorithm has

been put forward for reliability evaluation and prediction in multi-state coherent system with

multi-statc components [29]. For the MSS consisting of multi-state components with minor failure

and minor reparation, a combined method has been studied based on UGF technology [30]. The

theory of survival signature has been extended to allow for MSS models now, so as to represent

MSS in system life reliability. Survival signature for a certain class of MSS, viz., multi-state

consecutive-k-out-of-n: G system, is defined and studied [31]. The stress-strength reliability of

MSS is also defined based on generalized survival signature for a certain class of MSS with

multi-state components in both discrete and continuous cases [32]. The generalization of survival

signature for MSS with typical unrepairable components is presented [31] and generalization for

stress-strength reliability model with multi-state components is also developed [32]. Although the

survival signature has been well studied for several typical MSS, no work has appeared in the
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literature to address MSS with binary-state components, binary-state system with multi-state

components, MSS with multi-state component. In addition, there are few literatures on the

calculation of survival signature of MSS consisting of subsystems in complicated configuration.

In this article, the MSS consisting of multi-state and/or binary-state components is considered

to calculate 1ts reliability function based on survival signature. Compared to the existed literatures,

this paper develops a new method for reliability evaluation of MSS under some assumptions, e.g.,

structure of system is known and additional information such as survival signature of subsystems

is needed. With regard to this advantage of this new method, it includes at least three aspects as

follows. First, deriving the survival signature is a major challenge for general system, but only

needs to be done once. But for multi-state systems where it can be build up from several

subsystems, as presented in this paper, its survival signature is a computationally trivial exercise

and can be well resolved by this method. Secondly, when the survival signature of system is

available, statistical inference or simulation ¢t cetera are computationally faster than when only

the structure function is available. The advantage depends on the level of reduction achieved, on

the structure of system, the number of components types and the number of components of the

same types. The last is about the storage and calculation. Because of the combinational problem of

different types and states of components, the computing cost will soar rapidly with the increase of

number of components. For example, for a system with 3 types of components and each type of

components have 3 ones. Its states are 3, 4 and 5 respectively. For each type of component, state

combinations are 10, 20 and 35. So the state combinations of system will reach 7000 which is a

large number and even is impossible if one directly computes the survival signature of each state

combination and stores it by manual. Similar, complex computations are often involved in the
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computation of signature for coherent systems of large order and the computation of signature of
system 1n terms of ones of subsystems or modules 1s also considered [33, 34]. Inspired by the
derivation of survival signature of system consisting of subsystems [12, 35], this idea is also
developed furthermore for the MSS. For the simplifying computation of reliability analysis using
survival signature, a new computing method for MSS consisting of several subsystems and
mapping from subsystems’ states to system’s states is also developed. The rest of this paper is
organized as follows. In Section 2, the basic definitions, formulas and notations will be presented.
Section 3 provides a state definition of MSS with binary-state components and method for
reliability analysis based on survival signature. The generalization of survival signature for
binary-state system with multi-state components is derived in Section 4. Section 5 presents the
probabilities of the MSS with multi-state components at different states. Section 6 derives the
computing approach of survival signature of MSS consisting of subsystems for reliability analysis.
And 1ts applicability 1s illustrated by a larger system. Finally, the concluding remarks arc given in

Section 7.
2. Survival signature

Consider a binary-state system with K =2 types of binary-state components, the total

K
number of component is m, with m, components of type ke {L 2, ',K} and ka =m.
k=1

We assume that the random failure times of components of the same type are independent and
identity distribution (iid), while full independence is assumed for the random times of components

of different types. Due to the arbitrary ordering of the components in the state vector, components

k

In=2 K
of the same type can be grouped together, so state vector X =(X ,X ,*++,X ,-*-,X" ) can be
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expressed with the sub-vector x = (xf ,xg e -,x::k) representing the states of the components

of type k. The structure function ¢(X):{U, l}m —>{0,1} can be defined for all possible
combinations of X.

Let O/, 0,0 -+~ 1), for [, =0,1,---,m, , denote the survival signature that a system

functions given that exact / . of its components of type k function [11]. There are [ﬂh] state
1

k

vectors X" with exact !, ofits ™, components x:'L =1, so with z‘-r“ =1 - The set of these
i=1

o ko g s
state vectors for components of type k can be denoted by 3‘, . Furthermore, let tﬁ',]_f?_.___‘,k_.___‘,&_

denote the set of all state vectors for the whole system for which ixk _; - Duc to the iid
[

i=1

assumption for the failure times of m, components of type £, all the state vectors X e Sf

are equally likely to occur, hence

X 1
ULyl es ] ) = ]‘[(;"*J < Y 4 )
k

k=1 XESH oy odg

Let Cf = {(], L-- -,mk} denote the number of components of type & in the system that
function at time /> (. If we assume that the failure times of components of different types are
independent and that the failure times of components of the same type are iid with cumulative
distribution function (CDF) F () for components of type k. then for /, E{O,l,---,mk},

k=12, K

22 2 2

PN (=4 =]TPC =1)=]] [f’*}(ﬂ(r))"‘f’*(1—11(0)** @
k=1 \\ 'k

k=12, iy
Let 77 be the random failure times of the system, then the probability that the system

functions at time >0 is
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i My

P(T >1) zzl:---Z(D(!,,!z,---,fk,---,IK)P(ﬂ{Cf =L}
k=1

h=0  Ig=0
my g K
— see |:(D(}-.121"'1'3.&!”-";]..’)]_—[‘}9((,'?7:ik)i| (3)
h=0  Ix=0 k=l
iy iy X m, my—1 /
= Z q)(lygg:\"';fka'":!!\.’)].—l I (E(!)) ' k(l_ﬂ(!))k
= = k=1 \\ ‘k

The main advantage of Eq. (3) 1s that the information about system structure is fully
separated from the information about the components’ failure times, and the inclusion of the
failure times distribution is straightforward due to the assumed independence of failure times of
components of different types. At the same time, it can be also applied if there is dependences
between failures of components of different types [16]. For the special case where a system
consists of only a single type of components, the survival signature is equivalent to system
signature [7, 11]. When evaluating the reliability of system, the key procedure is to obtain the

survival signature in terms of system structure. The following three examples illustrate this point.
3. MSS with binary-state components

In this case, an MSS can be modeled as follows. Because of binary-state characteristics of
components, corresponding multi-state properties of system need to be defined firstly. The state
definition of MSS can be introduced according to the numbers of component in one mini-path.
Obviously, the more numbers of components in one mini-path, the higher failure probability in
this mini-path is of. Let (_.TP denote the numbers of component in the min-path set of a system

while it functions. This gives a definition of system state denoted by random wvariable

Hef{0,l,h

max } ¥ max

h By is the maximum value for the best state, £, for any

I),""
intermediate state and 0 for “complete failure” state of the considered system. Based on the

survival signature, it can be grouped by C » corresponding to the state f{ . When the survival
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function of MSS at different state -/ =/ needs to be calculated, the survival signature for the
whole system at the state /7 =/ needs to be obtained firstly. For the MSS, we can define the
survival signature as the probability that the system is in state J/ =h given that /,
components of type k function. We denote this probability by ®,,_, (1, 1,,-+-,[,,--,[;.) . Here
we introduce H, as the system state at time ¢ >0, then based on Eq. (3), the probability of

!

system at state /21 can be denoted by

ny Ny

K
P(H: :h):Z”'Zq)n':;.('!1”'2"","&s”'a{x)P(ﬂ{Cf :'!;;})
k=1

=0 Ig=0
1y My K
DX EANENSVRSAY | A X
f1=l] ;K=U k=1
1y My K mg— . iy, 1, ¥ !
:Zz (D;,x:;,(fp*'z"“:"w“'»fx))n (F, ()" (1= F,(1))"
Py k=1 s

Furthermore, the reliability function R, () of multi-state system at a state hp and better state
P

can be

R, ()= 3 P(H,=h) ©)

.1':=J:P

If there are three different values of C » for the system, then H e {0,1,2}. Obviously,
complete failure state /=0 is corresponding to the C » = 0, perfect function state H =2 is

the minimum value of C » in all its mini-path set and the others for the intermediate state /7 =1.
Example 1.

The use of the survival signature for a system with x =2 types of components is illustrated
as follows. First, the system structure is presented in Fig. 1, there are three same components for

each type component. They are labeled with the number 1, 2, 3 for type 1 and 4, 5, 6 for type 2.

Component 1 is connected in series with the others which form a bridge structure.
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Fig. 1. System with two types of components.

In this example, the state 0 is for C p = 0. For more specification, there is no a mini-path
from A to E. So, the number of C » 1s zero. The perfect state 2 1s for Cp =3 . For example, the
mini-path ABCE functions when the components of type 1 function. And the intermediate state 1
is for (..'P =4 . In this state, one mini-path ABCDE contains four components with two types.
More components connected in series leads to the risk of system failure.

Secondly, survival signatures need to be calculated. With m, =m, =3 components of each

type, the survival signature ®@,,_, (1,,/,) for three states of the system is listed in Table 1.

®,, (1)

Orders L L h=0 h=1 h=2
1 0 0 1 0 0
2 0 1 ! 0 0
3 0 2 1 0 0
4 0 3 1 0 0
5 1 0 1 ! 0
6 1 1 L 0 0
7 1 P 8/9 0 19
g 1 3 23 0 13
9 2 0 1 0 0
10 2 1 1 0 0
m 2 > 5/9 2/9 2/9
12 ) 3 13 0 2/3
13 3 0 0 0 !
14 3 1 0 0 !
15 3 2 0 0 :
16 3 3 0 0 !

Table 1 Survival signatures for different states of system.
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From the above table, it can be found that only survival signature of (DH:I(Z, 2) is not

equal to zero in state 1. It can be obtained from Table 2 according to the value of C » - The labels

of components are as represented in Fig. 1.

State combination of components

Orders ! 5 3 4 5 6 Min-path & » State H
1 1 1 0 1 1 0 ABDE 3 2
2 1 1 0 1 0 1 - 0 0
3 1 1 0 0 1 1 ABCDE 4 1
4 1 0 1 1 1 0 ABDE 3 2
5 1 0 1 1 0 1 ABDCE 4 1
6 1 0 1 0 1 1 - 0 0
7 0 1 1 1 1 0 - 0 0
8 0 1 1 1 0 1 - 0 0
9 0 1 1 0 1 1 - 0 0

Table 2 Different states for survival signature @, _ (2,2).

Finally, we consider two different cases according to their failure distributions. In Case A, the
failure distribution of type 1 components C1 is an Exponential distribution with expected value 1,
so with

filt)=e" and E(t)=1-¢" (6)
and the failure distribution of type 2 components C2 is a Weibull distribution with shape
parameter 2 and scale parameter 1, so with

L) =2t and Fy(1)=1-e" 7

According to Eq. (4), the probabilities of system at different state can be plotted as Fig. 2.
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Fig. 2. Probabilities that the system is in state /1 attime [ for h=0,1,2.

For comparison of reliability function at different states, here two types of reliability

functions at the perfect state R,(f) and intermediate state R,(f) are depicted respectively as

follows.
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Fig. 3. Comparison for reliability functions at different states.

Another case is Case B. In this case, these same failure times distributions are used but for

the other components types than in Case A. So the failure distribution of C1 has the above Weibull

distribution, while the failure distribution of C2 has the above Exponential distribution. In Case B,

its probability distribution at different state can be also calculated like the plot in Case A. For the

purpose of contrast, the reliability function in Case A and B at its perfect states are depicted as Fig.
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Fig. 4. Reliability functions of Case A and B.

From the Fig. 4, the reliability function of Case A is lower than that of Case B before the
point C=(1,0.0928). It shows that Type | components are a bit more critical in this system because
of the left-most component. Meanwhile, it shows that the Exponential distribution makes early
failures more likely than the Weibull distribution used in this example. However, it 1s interesting
that the reliability function of Case A, after the point C, has a higher value than that of Case B.
This also shows it would have been difficult to predict exactly which case can make system run at

a higher reliability level without the detailed computations.
4. Binary-state system with multi-state components

Unlike the model in Section 3, the components here are of multiple states. For the k" type

of multi-state component with s, € {0,1,---, 5"} states, where the state 0 is for the complete

max

failure and s, for the perfect function, the first thing is to determine the probability

distribution F:: (1) at different states, Due to the multi-state of component, survival signature of
system also needs to be generalized. According to the combinations of different types of

component’s states, the survival signature of the system (D(fl,l'z,---,f&,---,f.) can be

generalized to D(/ .1 ,,-,1 m,---Jk_r.,---,I'K_O,f_,_._l,---JK“‘_F“)J{.=1,---,K,i=0,---,,5';,lm

L5 ’
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where f,”. is the number of components of type &k which are in state 7. At the same time, we

; ; k ;
need to introduce notation C,, to express the exact number of component of type k which are

L
in state i attime f> (. Here the state of system can be defined as only two states, one is for the

complete failure and the other is for the functioning state. Based on the Eq. (3), the generalized

survival signature will be adopted and the survival function can be derived by

m m, K &=
P(T=>1)= Z 2 l;d’("a.o‘fl.i"":‘n_,—.m-"'="k.a"":'rx.or"x1-"‘-";-_;;- )I}(nn{(‘:. :‘rt_r})] (8)
ha=d iy a0 : kal ta0
my my £ 5=
= Z z |:d)(f|_n,fl_|“--,|fllsl=,,,---J,_I,u-,fxn\fﬁ._],---JKI}:,)HHP(C:‘{=f,“)]
] Jrf,,-o kal iwd
" " £ m, ! Eehe s " Ty o
= Z Z d’(‘r].n‘fl,v""'fl_;m""-’r:,.“""ix.m'ix.]"">‘r‘_-_;m)1-[ ﬁ(% Q)] '(R*(f))" (P,m m
LIE A ! A ;x_o "Fkl -“'!k.,?\ : !
m ! e | —lo My =leo ==l
where =
k.0 "k 1 f; s ]&' 0 fk 1 | X
Example 2.

Here, we still take the Fig. 1 for an example. The failure distributions of components are

calculated as follows. Let component’s state transition times follow the exponential distribution

and comply with the Markov process, its probability distribution can be solved by corresponding

differential equations built by its state transmission process. For the illustration of this process, we

can assume that the component (C'1 in Fig. 1 is a multi-state component with 3 states. State 2 is

for the perfect function, 1 for intermediate state and 0 for the complete failure. Here, repair actions

are not included, viz. the components are not repairable. Its state transmission can be depicted by

Fig. 5 and parameters such as transmission rates from a higher state to a lower one are also noted

in it. Here, consider the case when only minor failures occur.
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Fig. 5. State transmission of component C1.

Based on the Fig. 5, the differential equations can be built as follows

dP! (1)
20 _ 4B
1
djf;f” =B (0= 24,B (0, ©)
dP) (1) 1
& — P’ [
20 2 P
with the initial conditions
B(©O)=E(©0)=0 (10)
P(0)=1

Here, After the solving of the equation (9) and (10), its probability distribution can be obtained as

Ay xe W — 4 xe™
’l!o - ;"11

Bl(t)=—"2—x(e™ —e)

+1

IAGE

(1D

For the binary state component C2 of type 2, its probability distribution is assigned same as
Weibull distribution. The differences are the changing of parameters, so its probability distribution

is expressed as

B (=1-¢ ™ (12)

B'(t)=1-F}(1)
Next is to calculate survival signature for this case. To generalize the survival signature for

the multi-state component, denote the exact number of components in the specified state by [, o
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where k is for the type of component and 1, for the state of component. For the purpose of

llustration, the different state combination of component C1 in Fig. 1 1s listed in the following

Table 3.
'Fi
Index, . i, ;

1 3 0 0
2 2 1 0
3 2 0 1
4 1 2 0
5 1 1 1
6 1 0 2
7 0 3 0
8 0 2 1
9 0 1 7
10 0 0 3

Table 3 Combinations of component C1 at different states.

Simularly, the combinations of component C2 1n Fig. 1 at two states are listed in Table 4.

ll
Index,

[
=
-

1
2
3
4

S = W
W N = O

Table 4 Combinations of component C2 at two states.

In total, there are 10*4 combinations for the two types of components at different states.

Survival signature for the system at different states can be figured out as Table 5. In this table,

some combinations have the same values. For example, the combinations of Index;, where ordered

value i1s equal to 10, there are totally 4 items, have the vector (0 1) for the system states. Some

combinations of Index;, where ordered value 1s between 1 and 9, there are totally 26 items, have

the same values (1 0) for the system states. Here, the principle of system function is based on the
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state of component 1. If state of component 1 is not in state 2, the system will not function.

w‘.ﬂ'-ﬁ (Il.o 2 Il.l. ¥ ll.}. » Iz.o ? 12.1)

Order of Combination Index; Index>

=
(=1
=
sy

12 3 4 2/3 1/3

20 5 4 2/3 1/3

32 8 4 2/3 173

34 9 2 1 0

36 9 4 1/3 2/3

38 10 2 0 1

40 10 4 0 1
17/41




Table 5 Survival signatures for the system with two states.

To explain the calculating procedure of survival signatures in Table 5, an example i1s
illustrated as follows. For the 19™ order of combination, viz. the tuple (Index;, Index,) = (5, 3), so
with ([, ,,1,,,1 5,0, 4,0,,) =(1,1,1,1,2) . Under this combination of numbers of components at
different states, the concrete state of each component in the system and its corresponding state of
system is listed in the following Table 6. As shown in this table, there are totally 18 combinations
of component’s state under this combination (/, ./, ,./,,.04.0,,) =(1,1,1,1,2) . However, there
is only two combinations which make the system be in the function state. So, its survival signature

is equal to 1/9 for function state and 8/9 for failure state.

Order of ol =) t,.5)=(2) ‘
component state Label of component State of
inati system
combination 1 2 3 4 5 p

L 2 - 2 0 1 1 0

2 0 1 2 1 1 0 0

3 0 1 2 0 1 1 0

4 0 2 1 0 1 1 0

5 0 2 1 1 1 0 0

6 0 2 1 0 1 1 0

7 1 0 2 0 1 1 .

1 0 2 1 1 0 0

9 1 0 2 0 1 1 0

10 1 2 0 0 1 1 0

11 1 2 0 1 1 B 0

12 1 2 0 0 1 1 0

13 2 1 0 0 1 1 0

14 2 1 0 1 1 0 X

= 2 1 0 0 1 1 0

16 2 0 1 0 1 1 0

L 2 0 ! 1 1 0 1

18 2 0 1 0 1 1 0

Table 6 Explanation of survival signature of (oshahasliosloy) = (LLLL2)

Based on the Eq. (8), (11) and (12), the reliability function can be plotted as Fig. 6. When
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using the Eq. (8) in this example, the survival signature of system is taken from the last column of

Table 5, viz. the survival signature at state h=1.

08
0Tk
06}
05} \
04h
03
02}

o1k

Fig. 6. Reliability function of binary-state system with mulii-state components.

5. MSS with multi-state components

In this case, the state of MSS needs to be defined firstly according to the physical structural
of system. Then, combining Eq. (4), (5) and (8), we can calculate the probability of system at

different state /1, = h as follows

i - r 13
P(H =h)= Z ’ i {0” o Byt -“'-ﬁ,.-"'-fr.n-;x.!-'“-;x..-r- ?P(ﬂﬂ{(‘f.- ‘jhn}):| ( )
gm0y ksl 10
- - L
Z Z [CD" h“lﬂ .F,, -"'JL--"'-'r){.o-;l.'.l-"'-!,_-__.!n)l_[l_[P(Cr}.- —jt..):|
ool : r" kml iwl
=Y 3 |o [ i -----a..\----rx.o-fx.l----‘fu,_.?)l‘[[%ﬂ,(%‘tn)’“(a*(r))’"--v(P__;un"f“ H
[YC = bl | e Ted 7y
Example 3.

Considering the system structure in Fig. 1, the failure distributions of components are same

with those in Example 2. Based on the state of component labeled 1, the state of system can be

defined as follows. Because component of type 1, viz. Cl, has three states, and the location of

component labeled 1 is crucial for the function of overall system. The state of system function can

be defined based on the component labeled 1. That 1s to say, component labeled 1 works at the

state of 1, the system state can be defined as intermediate state 1. Component labeled 1 works at
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the state of 2, the system state can be defined as the perfect state 2. When the component labeled 1

cannot work, the system will not function too. So, the system can be defined as failure state 0.

Combining with the definition of system state, we can calculate the survival signature of system.

According to the above analyzing, survival signatures of system working at different states

are listed i Table 7.

l‘I'.).H'lh(‘fl D‘EI 1“’1_.“".‘ D‘I.‘ l)

Order of Combination Index, Index,
h=0 h=1 h=2
1 1 1 1 0 0
2 1 2 1 0 0
3 1 3 1 0 0
4 1 4 1 0 0
5 2 1 1 0 0
6 2 2 1 0 0
7 2 3 8/9 1/9 0
8 2 4 2/3 1/3 0
9 3 1 1 0 0
10 3 2 1 0 0
11 3 3 8/9 0 1/9
12 3 4 2/3 0 1/3
13 4 1 1 0 0
14 4 2 1 0 0
15 4 3 5/9 4/9 0
16 < -+ 1/3 2/3 0
17 5 1 1 0 0
18 5 2 1 0 0
19 5 3 5/9 2/9 2/9
20 5 -+ 1/3 1/3 1/3
21 6 1 1 0 0
22 6 2 1 0 0
23 6 3 5/9 0 4/9
24 6 4 1/3 0 2/3
25 7 1 0 1
26 7 2 0 1
27 7 3 0 1
28 7 4 0 1
29 8 1 0 2/3 1/3
30 8 2 0 2/3 1/3
31 8 3 0 2/3 1/3
32 8 -+ 0 2/3 1/3
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33 9 0 1/3 2/3
34 9 2 0 1/3 2/3
35 3 0 1/3 2/3
36 <+ 0 1/3 2/3
37 10 1 0 0 1
38 10 2 0 0 1
39 10 3 0 0 1
40 10 4 0 0 1

Table 7 Survival signatures for system at different states.

Based on the above Eq. (13), the probability of system at states 0, 1 and 2 can be depicted as

Fig. 7.
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Fig. 7. Probabilities that the system is in state s attime [ for h=0,1,2 .

Then, the reliability function of system at state kp can be calculated by

'ﬁn X

R, ()= P(H, =h) (14)

h=h,
According to this formula, reliability functions at different states are depicted respectively as

follows
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Fig. 8. Reliability functions of system at different states.

From the above figure, it is also to validate the effectiveness of this analyzing method for

multi-state system reliability by survival signature.
6. Computing the survival signature of a system consisting of subsystems

In practical industrial system, a whole system is often composed of several subsystems. So,
the survival signatures of subsystem and states mapping from subsystems to system play an
important role in the reliability evaluation of multi-state system. Considering a system consisting
of two subsystems where survival signatures are known, and the state mapping from subsystems
to system can be determined by its configuration. Let the system consist of K =1 types of
components, with 77, components of type k, for k=1--,K, of which m, 20 are in

subsystem ¥, for r=1,2 . Let subsystem F consist in total of m" components, so

r K r
' = Z&:. M, The survival signature for subsystem # can be denoted by
O L deynly), for L =01,mp.

ke -

Example 4.

Suppose that a MSS with the following configuration shown as Fig. 9, there are three types of

components C1, C2 and C3. C1 is a multi-state component with three states 0, 1 and 2. C2 and C3
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are only of two states 0 and 1. If state of each type of component k can be expressed by
5 € {0,1,---, "m} of which S:m 1s for the perfect function state, 0 for the complete failure
state and others for intermediate states, then s, € {0,1,2}, 5, €{0,1} and s, €{0,1}. Along
each component, there is a label with number in order to use conveniently. Component 1 and 2

constitute a subsystem SubSys1. The left components make up another subsystem SubSys2.

SubSys1 SubSys2
1 4
Cl C3
A B
2 3
C2 C2

Fig. 9. A system with two subsystems.

Denote the exact number of component of type k at state S, In subsystem ¥ by ]; 50
subsystem’s survival signature can be rewritten by (D;} Jr(ilO’ L ’Ill.s,"“"-"’;-0’];-1""-‘;;.5;‘“‘)’
of which /1 is the state of subsystem SubSys1 denoted by s1. The state of subsystem is defined
as follows. State 0 is for the complete failure. State 2 is for the perfect function that is defined as
each component of path is in the best state. State 1 is for the others. Based on the above definition,
the analyzing of survival signature of subsystem SubSysl can be shown as Table 8. The second

line of table indicates the states of components and subsystem.

.'Ill = ."; = f; =
51 1 1 1 1 1
Order of hoth,+1, [ Lo+l Py R (0 100 Y A 0 O |
L =1 =1 =0
combination =0 el he2
1 1 1 1 1 1 1 = = 1=z
'.'],0 ;LI il\Z ;2,0 ’Q,I '!3,0 lF_LI
1 1 0 0 1 0 0 0 1 0 0
2 1 0 0 0 1 0 0 0 1 0
3 0 1 0 1 0 0 0 0 1 0
4 0 1 0 0 1 0 0 0 1 0
5 0 0 1 1 0 0 0 0 1 0
6 0 0 1 0 1 0 0 0 0 1
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Table 8 Survival signatures of subsystem SubSys1.

Similarly, survival signatures of s2 can be easily calculated as follows. Survival signatures

of SubSys2 are listed in Table 9.

!IE = fj —: ;31 —
Order of "’I_jLI ® "1“:I + "'1?_' Lo+L, "_al,n * "_;2,1 (D;;h U{:n ’ 11?1 : ‘rf: ’ "r;,o* "’:: ’ !.:.:: ’ ‘F;J
combination s & o L
2 2 2 2 2 2 2 1= 1= 1 =2
]l.i] ;1,1 ]l 2 1 0 !2.1 !3.0 !3 1

1 0 0 0 1 0 1 0 1 0 0

2 0 0 0 0 1 1 0 0 1 0

3 0 0 0 1 0 0 1 0 1 0

4 0 0 0 0 1 0 1 0 0 1

Table 9 Survival signature of SubSys2.

Before calculating the survival signature of system, the mapping rules to define the system

state need to be presented firstly. For two subsystem connected in this example, the rules are listed

m Table 10.

Order of rules States
SubSysl SubSys2 System
1 0 >=() 0
2 >=0 0 0
3 1 ==] 1
+ >=] 1 1
5 2 2 2
6 at different at different Sum the
probability at cach probability at cach corresponding
state state probability and
divide by the number
of combination
evenly

Table 10 Mapping rules of system’s state for two subsystems.

After the survival signatures of two subsystems are obtained, then survival signature of whole

system can be further achieved by a programming method. The following 1s a developed approach
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for the calculating of survival signature of two subsystems according to the mapping rules.

Assume the survival signature of subsystem 1 and subsystem 2 1s stored in matrix A and B

respectively. The survival signatures of the system composed by those two subsystems are going

to be stored in matrix C. Here, the structures of matrix A, B and C, have the same dimensions with

the Table 8, Table 9 and Table 11. That 1s to say, the former 7 columns are the combination of

different states for different types of components and the last 3 columns are the survival signature

of system at different states. However, the rows of each matrix can vary according to the state

number and component number in each system. Then, according to the following steps, we will

procure the survival signature of the system.

Step 1. Define a variable k to express the ordinal row of matrix C and assign the initial

value k=1;

Step 2. Initiate several variables such as ¢=0, s=[0 0 0] and templ to store the state

combination of system at the k row. Here, 1t can be defined to temp1=C(k,1:7);

Step 3. Define a variables i to store the ordinal number of row in matrix A. The initial

value of this variable is i=1;

Step 4. Similarly, define another variable j to store the ordinal number of row in matrix B.

The initial value of this variable is j=1;

Step 5. Assemble the variable temp2 with the state combination of components in two

subsystems, viz., temp2=A(1,1:7)+B(j.1:7):

Step 6. If templ=temp2, then increase ¢ by 1. Whilst according to the state of two

subsystems, deduce the state of system and store it to the variable s. Here, s should be

operated by cumulative adding and return to Step 5 again with increasing j by 1;
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Step 7. Else, also return to the Step 5 with increasing j by 1;

Step 8. When the vanable j arrives at the maximum, viz., the total number of row mn B,
return to the Step 3 with adding 1 by 1;

Step 9. When variable i reaches its maximum value, viz., the total number of row in A,
divide s with ¢ and assemble s to the state of system. Meantime, s should be placed in
the k row of matrix C, viz., C(k,8:10)=s/c;

Step 10. Return to the Step 1 and increase variable k by 1. Repeat the left steps until the k
reaches its maximum.

For the purpose of more clarity about the above steps, the flow chart Fig. 10 can be depicted

as follows.

l-'/ Define matrix A,B and C ™\ ™ Assign =1
N with 10 columns. /
Initiate the structure of each matrix with the Assl-gn =l
former 7 columns used as state combination
of component and the last 3 columns used = -

as state combination of system

Assign |

. - temp2=A(i, 1 :7+B(,1:7)
Store the survival signature
of subsystem l and2to0 A ¥
and B respectively | _— No
v “If templ=temp? =—
-~ P P<,
Store the state combination of - ——

component of system to
matrix C

¥
For each row of state combination

of component of system in matrix
C and assign k=1

!

Initiate other variable ¢=0,
5=[0 0 0] and temp1=C(k,1 :7]|

According to the
state of subsystem,
assign the state of
system t and s=stt

Fitt

ay T~ No
" Does j equal the -

Clk.8:10)=sc | “~_maximum row of B2~

T

;’ Yes

i

| k=k+1 ]

e = -
" Does k equal the

Does i equal e No
v . ~ - Does i equal the -~
u]?iI:mm rows::’[g; < maximum row of A7 /‘—
Yes ~ T -

~— -

The results are stored in C Yes :r
and End.

Fig. 10. Flow chart for calculating survival signatures of system consisting of two sub systems.
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After running for the above program, the survival signature of system can be shown in Table

11.
l = l, = I, =
Order of Lo+, +h, bo+h, Lo+l On(hoshishaslyorhyslsonhsy)
combination =1 =2 =1
Lo I, hs L Ly Ly L, h=0 h=1 h=2
1 1 0 0 2 0 1 0 1 0 0
2 1 0 0 2 0 0 1 1 0
3 1 0 0 1 1 1 0 1 0
4 1 0 0 1 1 0 1 1/2 1/2 0
] 1 0 0 0 2 1 0 1 0
6 1 0 0 0 2 0 1 0
7 0 1 0 2 0 1 0 0 0
8 0 1 0 2 0 0 1 0 0
9 0 1 0 1 1 1 0 1/2 1/2 0
10 0 1 0 1 1 0 1 0 1 0
11 0 1 0 0 2 1 0 0 1 0
12 0 1 0 0 2 0 1 0 1 0
13 0 0 1 2 0 1 0 1 0 0
14 0 0 1 2 0 0 1 0 1 0
15 0 0 1 1 1 1 0 1/2 1/2 0
16 0 0 1 1 1 0 1 0 1 0
17 0 0 1 0 2 1 0 1 0
18 0 0 1 0 2 0 1 0 0 1

Table 11 Survival signatures of the whole system.

For the purpose of verifying the validating of above program, we can take the o™

combination for an example. Under this situation, the state of component and system is listed in

Table 12. The number of system state in state 0 and 1 is both equal to 1. So, the survival signature

of system state at state 0 and state 1 is both equal to 1/2. These values are same as the values

obtained from the above program.

State of component State of  State of State of system
Koo 1 2 3 4 subsysl subsys2 h=0 h=1 h=2
1 1 0 1 0 1 1 0 0
2 1 1 0 0 1 0 1 0 0
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Table 12 Details of the 9th combination in Table 11.

Here, the probability distribution of component type 1 1s same as Eq. (11). As for component
C2, which is of two states, its Weibull probability distribution is same as Eq. (12). The component
C3 is of the same Weibull type but different parameters, it can be expressed by

(~(z5)°)
3 . 500
P)=1-¢ 6iss
3 3
E@=1-F@)
The probability of system at different state can be calculated by Eq. (13). Combining Eq. (13)

and survival signature from Table 11, the probability of system at three states can be depicted as

Fig. 11.
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Fig. 11. Probabilities that the system is in state /1 attime { for h=0,1,2.

Then the reliability function of system at hp state can be calculated by Eq. (14). Based on

Eq. (14), the reliability function of system at state 1 and 2 can be depicted as Fig. 12.
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Fig. 12. Reliability functions of system at different states.

Example 5.

Here is another example of MSS consisting of subsystems connected in different

configuration. Taking the following Fig. 13 as an example where the system consists of two

subsystems, SubSys1 and SubSys2. Survival signature of system can be obtained similarly.

SubSysl
2

C1 C1

3

C2

4

C2

— s

c3

SubSys2

Fig. 13. Subsystems connected in different configuration.

The survival signature of SubSysl1 is listed in Table 13.

- I = I =
Onder of Io+D +1 Lo+, I+1 LRI (9 Y O Y A A
combination =2 =1 =0
he Lyon, by L, Ly, L h=0 h=1 h=2
1 2 0 0 1 0 0 0 1 0 0
2 1 1 0 1 0 0 o0 1 0 0
3 1 0 1 1 0 0 0 1 0 0
4 0 2 0 1 0 0 0 0 1 0




5 0 1 1 1 0 0 0 0 1 0
6 0 0 2 1 0 0 0 0 1 0
7 2 0 0 0 1 0 0 0 1 0
8 1 1 0 0 1 0 0 0 1 0
9 1 0 1 0 1 0 0 0 1 0
10 0 2 0 0 1 0 0 0 1 0
11 0 1 1 0 1 0 0 0 0
12 0 0 2 0 1 0 0 0 0 1
Table 13 Survival signatures of SubSysl.
Similarly, the survival signature of SubSys2 is listed in Table 14.
Order of "Eu +"'12.1 + ffz -";_D +ff,_1 i’_f_o +-'";_1 mj—li.‘:(’l;io’il:.l"!ﬁl’IEE.U’I;.I’IJZ.U’;S;‘.I)
combination =0 =1 =1
':1:.0 "1?1 ‘?12.2 "‘“.u ‘?22.1 !_3.0 'Isz.l h=0 h=1 h=2
1 0 0 0 1 0 1 0 1 0 0
2 0 0 0 0 1 1 0 0 1 0
3 0 0 0 1 0 0 1 0 1 0
4 0 0 0 0 1 0 1 0 0 1

Table 14 Survival signatures of SubSys2.

According to the following rules, the system’s state can be determined based on the states of

subsystems. Those rules are listed in Table 15.

States
Order of rules Probability at different states
SubSysl SubSys2 System
1 0 0 0
2 1 <=1 1
2] Oorl =1 1 1
4 2 <=2 2
5 <= 2 2
Sum the
L . . .. . . corresponding
Other situations: including probability ~ Probability =~ Probability -
o o . . . probability
distribution at different states of one or 1sa 1sa .
6 . X . . and divide
two subsystems is between the interval — numeric at  numeric at
evenly by the

(0,1) any state any state .
number of

combination

Table 15 Rules for the state of system consisting of two subsystems in different configuration.
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Similarly, the above rules can be used to calculate the state of system by programming. The

results can be shown in Table 16.

-

Az ;3.0" 'Irj.l }

2shh0515

h (;1.0’;I.1 JI.

5
H

d;

Order of

combination

h=2

h=0

1/2

1/2

1/2

1/2

10

11

13
14
15
16
17
18
19
20
2.0

1/2

1/2

1/2

1/2

22
23
24
25
26
27
28
29
30
31
32

1/2

1/2

1/2

1/2

33
34
35
36
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Table 16 Survival signatures of system consisting of two subsystems in different configuration.

To venfy these results, the 28" combination can be taken as an example. The combination of
system and component is listed in Table 17. From this table, there are 4 different combinations for
the 28" combination. According to the states of components, the state of system can be determined.
As shown in this table, there are 2 combinations in state 1 and 2 respectively. So, the survival

signature of system at the corresponding state is equal to 2/4, viz. 1/2.

State of component State of  State of State of system
Orders
1 2 3 4 5 subsysl  subsys2 h=0 h=1 h=2
1 1 2 0 1 1 1 2 0 0 1
2 1 2 1 0 1 1 1 0 1 0
3 2 1 0 1 1 1 2 0 0 1
4 2 1 1 0 1 1 1 0 1 0

Table 17 System and component state of 28" combination of system.

Using formulae (11), (12), (13), (15)and the Table 16, the probability of system at different

state can be depicted in Fig. 14.
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Fig. 14. Probabilities that the system is in state / attime ¢ for h=0,1,2.

Similarly, the reliability curve can be expressed as Fig. 15 by using Eq. (14).
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Fig. 15. Reliability curves of system at different states.

Example 6.

A more complicated example with more components and subsystems is presented here. Its

configuration is shown as Fig. 16.

SubSys3
6
SubSysl SubSys2 C1 C1
1 3
7
C1 C3 C2
A B
- -
2 4 )
C2 C2 e
=
C3
SubSysd

Fig. 16. System with more components and subsystems.

According to the survival signature in Table 11 and Table 16, the survival signature of system

in Fig. 16 can be calculated by the programming method mentioned above. Results are listed in

Table 18 which can be founded in the Appendix. The states mapping from subsystems to system

can be finished by consecutive applying of Table 10 and Table 15.

Similarly, the probability of system at different state can be plotted as shown in Fig. 17 by Eq.

(11), (12), (13), (15) and Table 18.
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Fig. 17. Probabilities that the system is in state /# attime { for h=0,1,2.

According to the Eq. (14), its reliability function can be depicted in Fig. 18.
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7ig. 18. Reliability functions of system.

7. Concluding remarks

In this article, the concept of survival signature has been extended from binary state system to
the mixture of multi-state and binary-state. For the MSS with binary-state components, the
definition of system state is based on the number of components in its mini-path. For the
multi-state components, its state transition is based on the Markov stochastic process without
considering the repair and maintenance tactics. The survival function and reliability function for
binary-state and multi-state system are derived respectively.

For a practical system consisting of several subsystems connected in different configuration,
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the computing method for the survival signature of the system has been developed based on the

survival signature of subsystems. It provides a feasible path to implement the rehability analysis

for a real industrial system where survival signature can be obtained by iterating program on the

survival signatures of subsystems. A larger example illustrates its validity. Other multi-state

models such as competitive and cascade model will be considered 1n the future research.

As reliability of MSS is an important topic for research and application, there are a large

number of research topics building on the new survival signature method presented in this paper.

Some topics are further computational methods, statistical inference methods, detailed modelling

of component state change processes and support of decisions with regard to inspection and

maintenance. Development of general methods for such topics is of important, it is particularly

useful to do this related to real world applications, to ensure that the future developments are of

most practical relevance.
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Appendix

Order of

combination

I = L= L=

5
Lo+1,+1,, Loth, "3.0 +1,, CDH-."J('!1.0’"'1,1’[1.:“!.‘..0”'2.1533,0‘JJ.I)
=3 =4 =
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Table 18 Survival signatures of the system with more components and subsystems.
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