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Abstract

Heterogeneous Domain Adaptation (HDA) addresses the transfer learning problems where data

from the source and target domains are of different modalities (e.g., texts and images) or feature

dimensions (e.g., features extracted with different methods). It is useful for multi-modal data

analysis. Traditional domain adaptation algorithms assume that the representations of source

and target samples reside in the same feature space, hence are likely to fail in solving the hetero-

geneous domain adaptation problem. Contemporary state-of-the-art HDA approaches are usu-

ally composed of complex optimization objectives for favourable performance and are therefore

computationally expensive and less generalizable. To address these issues, we propose a novel

Cross-Domain Structure Preserving Projection (CDSPP) algorithm for HDA. As an extension

of the classic LPP to heterogeneous domains, CDSPP aims to learn domain-specific projections

to map sample features from source and target domains into a common subspace such that the

class consistency is preserved and data distributions are sufficiently aligned. CDSPP is sim-

ple and has deterministic solutions by solving a generalized eigenvalue problem. It is naturally

suitable for supervised HDA but has also been extended for semi-supervised HDA where the

unlabelled target domain samples are available. Extensive experiments have been conducted on

commonly used benchmark datasets (i.e. Office-Caltech, Multilingual Reuters Collection, NUS-

WIDE-ImageNet) for HDA as well as the Office-Home dataset firstly introduced for HDA by

ourselves due to its significantly larger number of classes than the existing ones (65 vs 10, 6

and 8). The experimental results of both supervised and semi-supervised HDA demonstrate the

superior performance of our proposed method against contemporary state-of-the-art methods.

Key words: heterogeneous domain adaptation, cross-domain projection, image classification,

text classification
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1. Introduction

Supervised learning can achieve good performance given considerable amounts of labelled

data for training. One essential factor accounting for the recent successes in deep learning

and image classification is the ImageNet database which contains more than 14 million hand-

annotated images [8]. However, there exist many tasks in real-world applications where suffi-

cient labelled data are not available, hence the performance of traditional supervised learning ap-

proaches can degrade significantly. One promising technique alleviating this problem is transfer

learning which aims to transfer knowledge learned from the source domain to the target domain

in which labelled data are sparse and expensive to collect [35]. In many scenarios, domain adap-

tation is required since the data distributions in the source and target domains can be different

and the models trained with source domain data are not directly applicable to the target domain

[25].

Since domain adaptation is a promising solution to the training data sparsity issue in many

real-world applications, it has been studied in a variety of research tasks including image classi-

fication [33], semantic segmentation [41], depth estimation [2], speech emotion recognition [42],

text classification [44] and many others.

Domain adaptation approaches aim to model the domain shift between source and target

domains and reduce the discrepancy by aligning the data distributions [33, 32]. In the scope of

classification problems, this is usually boiled down to aligning the marginal and class conditional

distributions across domains [31, 3]. However, most existing works are based on the assumption

of homogeneity, i.e., the source and target data are represented in the same feature space with

unaligned distributions [41, 33, 40, 32]. These approaches may not be applicable in situations

where the source and target domains are heterogeneous in the forms of data modalities (e.g., texts

vs images) or representations (e.g., features extracted with different methods).

Attempts have been made to extend the success of domain adaptation approaches to the HDA

problems, however, it is non-trivial for the common subspace learning methods due to the het-

erogeneous feature spaces across the source and target domains. One common solution to such

extension is to learn two domain-specific projections instead of one unified projection for the

source and target domains in HDA problems [30, 19]. Nevertheless, there are at least two limita-

tions in these existing methods. One is most of them use Maximum Mean Discrepancy (MMD)

as the objective to learn the projection matrices. MMD based objectives have been outperformed
2



by more recent ones based on locality preserving projection [32, 18] in homogeneous domain

adaptation. In HDA problems, locality preserving objectives have not been well explored de-

spite some attempts in [30, 19]. In this paper, we present a succinct yet effective algorithm by

extending the locality preserving objectives for heterogeneous domain adaptation. The other

limitation of existing HDA approaches is the way how they exploit the unlabelled target-domain

data are sub-optimal. In our work, we propose a novel selective pseudo-labelling strategy to

take advantage of the unlabelled target-domain data. The selection is based on the classification

confidence and applies to a variety of classification models (e.g., Nearest Neighbour, SVM and

Neural Networks).

Specifically, we address the heterogeneous domain adaptation problem where the source and

target data are represented in heterogeneous feature spaces. Following the same spirits of previ-

ous domain adaptation approaches [31, 33, 32], we try to learn a common latent subspace where

both source and target data can be projected and well aligned in the learnt subspace. Specifically,

we learn domain-specific projections using a novel Cross-Domain Structure Preserving Projec-

tion (CDSPP) algorithm which is an extension of the classic Locality Preserving Projection (LPP)

algorithm [13]. CDSPP can facilitate class consistency preserving to learn domain-specific pro-

jections which can be used to map heterogeneous data representations into a common subspace

for recognition. CDSPP is simple yet effective in solving the heterogeneous domain adaptation

problem as empirically validated by our experimental results on several benchmark datasets. To

take advantage of the unlabelled target-domain data in the semi-supervised HDA setting, a se-

lective pseudo-labelling strategy is employed to progressively optimise the projections and target

data label predictions. The contributions of this work can be summarised as follows:

- A novel Cross-Domain Structure Preserving Projection algorithm is proposed for heteroge-

neous domain adaptation and the algorithm has a concise solution by solving a generalized

eigenvalue problem;

- The proposed CDSPP algorithm is naturally for supervised HDA and we extend it to solve

the semi-supervised HDA problems by employing an iterative pseudo-labelling approach;

- We validate the effectiveness of the proposed method on several benchmark datasets in-

cluding the newly introduced Office-Home which contains much more classes than the

previously used ones; the experimental results provide evidence our algorithm outperforms
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prior art.

2. Related Work

Most exiting research in domain adaptation for classification is based on the assumption of

homogeneity [32, 18, 17]. The approaches are dedicated to either learning a domain-invariant

feature extraction model (e.g., deep CNN [4, 40]) or learning a unified feature projection matrix

[31, 33, 32] for all domains whilst neither of them applies to HDA. In this section, we briefly

review related works on heterogeneous domain adaptation. The existing approaches to HDA can

be roughly categorized into cross-domain mapping and common subspace learning.

2.1. Cross-Domain Mapping

Cross-domain mapping approaches learn a projection from the source to the target domain.

The projection can be learned for either feature transformation [15, 27] or model parameter

transformation (e.g., SVM weights [44, 24]). Feature transformation approaches learn a pro-

jection to map the source data into the target data by aligning the data distribution [15] or the

second-order moment [27]. As a result, the transformed source data can help to learn a classifier

for the target domain. To avoid mapping a lower-dimensional feature to a higher-dimensional

space, PCA is usually employed to learn subspaces for both domains respectively [15] as a pre-

processing which can suffer from information loss.

Model parameter transformation approaches focus mainly on SVM classifier weights. For a

multi-class classification problem, one-vs-all classifiers are learned for source and target domains

using the respective labelled samples. Subsequently, the cross-domain mapping is learned from

the paired class-level weight vectors [44, 24]. Since the number of classes is far less than the

number of samples, these approaches are more computationally efficient but rely too much on

the learned classifiers and overlooked abundant information underlying the data distribution.

2.2. Common Subspace Learning

Common subspace learning is a more popular strategy for HDA. It learns domain-specific

projections which map source and target domain data into a common subspace. To this end,

different approaches have been proposed with varying algorithms, e.g., Manifold Alignment

[30, 20, 10, 36], Canonical Correlation Analysis [37], Coding Space Learning [21, 19, 9], Deep
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Matrix Completion [16] and Deep Neural Networks [43, 38]. Despite the diversity of implemen-

tation, the main objective of common subspace learning based HDA is similar, i.e., the alignment

of the source and target domains.

To align the distributions, [15, 21, 19, 20, 16] chose to minimize the Maximum Mean Dis-

crepancy (MMD) in their objectives which, however, can only align the means of domains (for

marginal distributions) and the means of classes (for conditional distributions). As a result, the

subspace learned via minimizing the MMD is not sufficiently discriminative. One alternative to

MMD is the manifold learning using graph Laplacian [30, 19, 20].

Li et al. [23] proposed a Heterogeneous Feature Augmentation (HFA) method and its semi-

supervised version SHFA by learning domain-specific projections and a classifier (i.e. SVM)

simultaneously. However, the computational complexity is O(n3), where n is the number of la-

belled samples and makes it extremely slow when n is large. Li et al. [21] learned new feature

representations for source and target data by encoding them with a shared codebook which re-

quires the original features have the same dimensions for source and target domains. PCA was

employed for this purpose as a pre-processing but can suffer from information loss. Lately, the

authors incorporated the learning of two domain-specific projections (in place of PCA) into the

coding framework [19]. This work is similar to ours in the sense of local consistency using the

graph regularization, however, it fails to align cross-domain class consistency due to the use of

k nearest neighbours to construct the similarity graph. In our work, the similarity graph is con-

structed based on class consistency, hence promoting the cross-domain conditional distribution

alignment.

Transfer Independently Together (TIT) was proposed in [20]. It also learns domain-specific

projections to align data distributions in the learned common subspace. The algorithm was based

on a collection of tricks including kernel space, MMD, sample reweighting and landmark se-

lection. In contrast, our solution is concise with one simple objective of cross-domain structure

preserving. Recently, Huang et al. [14] proposed a novel algorithm, named heterogeneous dis-

criminative features learning and label propagation (HDL). This algorithm is similar to ours in

that both tend to preserve structure information in the learned common subspace. However,

different objectives have been formulated. Our algorithm explicitly promotes the intra-class sim-

ilarity for both within-domain and cross-domain samples, whilst HDL fails to consider the intra-

class similarity for samples from the same domain in their formulation. In addition, different
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strategies of unlabelled target sample exploration were employed in two algorithms.

In summary, although manifold learning has been well studied in HDA, the existing formu-

lations for domain-specific projection learning are either inefficient or ineffective. Our approach

solves this issue and addresses the HDA problem with a novel CDSPP algorithm.

3. Method

To facilitate our presentation, we firstly describe the heterogeneous domain adaptation prob-

lem and notations used throughout this paper. Given a labelled dataset Ds = {(xxxs
i ,y

s
i )}, i =

1,2, ...,ns from the source domain S, and a labelled dataset Dt = {xxxt
i,y

t
i}, i = 1,2, ...,nt from

the target domain, xxxs
i ∈ Rds and xxxt

i ∈ Rdt represent the feature vectors of i-th labelled samples

in the source and target domains respectively; ds and dt are the dimensionalities of the source

and target features; ys
i ∈ Y and yt

i ∈ Y denote the corresponding sample labels; ns and nt are the

number of source and labelled target samples respectively. Let XXX s ∈ Rds×ns and XXX t ∈ Rdt×nt be

the feature matrices of labelled source and target data collectively, supervised HDA aims to learn

a model from labelled source and target data, which can be used to classify samples from an

unlabelled dataset Du = {xxxu
i }, i = 1,2, ...,nu from the target domain, whose feature vectors can

be collectively denoted as XXXuuu ∈ Rdt×nu .

The number of labelled target samples nt is usually very small, hence it is difficult to cap-

ture the data distribution in the target domain. Semi-supervised HDA takes advantage of the

unlabelled target samples XXXuuu during model training and can usually achieve better performance.

In this section, we describe the CDSPP algorithm which is naturally for supervised heteroge-

neous domain adaptation but can be used to address the semi-supervised heterogeneous domain

adaptation problem by incorporating it into an iterative learning framework [33, 32] as shown in

Figure 1.

3.1. Locality Preserving Projection

To make the paper self-contained, we briefly describe the original LPP algorithm [13] before

introducing our proposed CDSPP in the next subsection. Locality Preserving Projection (LPP)

was proposed by He and Niyogi [13] to learn a favourable subspace where the local structures

of data in the original feature space can be well preserved. Suppose xxxi ∈ Rd0 and xxx j ∈ Rd0 are

two data points in the original feature space, LPP aims at learning a projection matrix PPP ∈Rd×d0
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Figure 1: An illustration of the heterogeneous domain adaptation problem and our proposed approach using cross-domain

structure preserving projection. Left: the HDA problem aims at recognizing unlabelled target-domain samples with the

access of labelled source-domain samples and limited labelled target-domain samples. Right: The red and the blue

colours are used to represent the feature vectors of samples in the target and source domains respectively; markers of

different shapes represent samples from different classes; dashed markers represent unlabelled samples; our proposed

CDSPP iteratively learn a common subspace in which the unlabelled target-domain samples are pseudo-labelled and

selectively added to the training data set to promote the subspace learning in the next iteration.

(d << d0) so that data points close to each other in the original space will still be close in the

projected subspace. The objective of LPP can be formulated as:

min
PPP

∑
i, j
||PPPT xxxi−PPPT xxx j||22WWW i j, (1)

where WWW is the adjacency matrix of the graph constructed by all the data points. According to

[13], the edges of the graph can be created by either ε−neighbourhoods or k-nearest neighbours.

The edge weights can be determined by the heat kernel Wi j = e−
||xxxi−xxx j ||2

t or the simple binary

assignment (i.e. all edges have the weights of 1). Note that LPP is an unsupervised learning

method without the need for labelling information. In the following subsection, we will describe

how to extend the LPP algorithm to solve the HDA problems where there exist two heterogeneous

domains and a mixture of labelled and unlabelled data.

3.2. Cross-Domain Structure Preserving Projection

The supervised version of LPP [34] was proved to be able to learn a subspace of better

separability than other dimensionality reduction algorithms such as Linear Discriminant Analysis
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(LDA) [33]. One limitation of LPP is that it can only learn the subspace from samples represented

in a homogeneous feature space. To address this problem, we extend the traditional LPP so that

its favourable characteristics can benefit cross-domain common subspace learning. Specifically,

we aim to learn a projection matrix PPPs ∈ Rds×d for the source domain and a projection matrix

PPPt ∈ Rdt×d for the target domain to project the samples from source and target domains into a

common subspace whose dimensionality is d. We expect the samples projections are close to

one another if they are from the same class regardless of which domain they are from. To this

end, we have the following objective:

min
PPPs,PPPt

(∑
ns
i, j ||PPP

T
s xxxs

i −PPPT
sss xxxs

j||22WWW s
i j

+∑
ns
i ∑

nt
j ||PPP

T
s xxxs

i −PPPT
t xxxt

j||22WWW c
i j

+∑
nt
i, j ||PPP

T
t xxxt

i−PPPT
t xxxt

j||22WWW t
i j)

(2)

where PPPT is the transpose of PPP; WWW s ∈ Rns×ns is the similarity matrix of the source samples and

WWW s
i j = 1 if ys

i = ys
j, 0 otherwise. Similary, WWW t ∈ Rnt×nt is the similarity matrix of the labelled

target samples and WWW t
i j = 1 if yt

i = yt
j, 0 otherwise. WWW c ∈ Rns×nt is the cross-domain similarity

matrix and WWW c
i j = 1 if ys

i = yt
j, 0 otherwise. It is noteworthy that all the feature vectors are l2-

normalised to get rid of the effect of different magnitudes across features. This pre-processing

has been proved to be useful for common subspace learning in [34, 33, 32].

Proposition 3.1. The objective in Eq.(2) can be reformulated as follows:

max
PPPs,PPPt

tr(XXX sT PPPsPPPT
t XXX tWWW cT )

tr(XXX sT PPPsPPPT
s XXX sLLLs)+ tr(XXX t T PPPtPPPT

t XXX tLLLt)
(3)

where LLLs = DDDs−WWW s + 1
2 DDDcs and LLLt = DDDt −WWW t + 1

2 DDDct ; DDDs ∈ Rns×ns is a diagonal matrix with

DDDs
ii = ∑

ns
j WWW s

i j and DDDt ∈ Rnt×nt is a diagonal matrix with DDDt
j j = ∑

nt
i WWW t

i j; DDDcs ∈ Rns×ns is a diag-

onal matrix with DDDcs
ii = ∑

nt
j WWW c

i j and DDDct ∈ Rnt×nt is a diagonal matrix with DDDct
j j = ∑

ns
i WWW c

i j.

Proof. By firstly doing the binomial expansion then transforming it to the form of matrix multi-

plication and trace of matrices, the first term in Eq.(2) can be reformulated as follows:

∑
ns
i, j ||PPP

T
s xxxs

i −PPPT
sss xxxs

j||22WWW s
i j

= ∑
ns
i, j(xxx

s
i
T PPPsPPPT

s xxxs
i −2xxxs

i
T PPPsPPPT

s xxxs
j + xxxs

j
T PPPsPPPT

s xxxs
j)WWW

s
i j

= 2∑
ns
i xxxs

i
T PPPsPPPT

s xxxs
i DDD

s
ii−2∑

ns
i, j xxxs

i
T PPPsPPPT

s xxxs
jWWW

s
i j

= 2tr(XXX sT PPPsPPPT
s XXX sDDDs)−2tr(XXX sT PPPsPPPT

s XXX sWWW s)

(4)
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In the similar way, the third term in Eq.(2) can be rewritten as:

∑
nt
i, j ||PPP

T
t xxxt

i−PPPT
t xxxt

j||22WWW t
i j

= 2tr(XXX t T PPPtPPPT
t XXX tDDDt)−2tr(XXX t T PPPtPPPT

t XXX tWWW t)
(5)

The second term in Eq.(2) can be rewritten as:

∑
ns
i ∑

nt
j ||PPP

T
s xxxs

i −PPPT
t xxxt

j||22WWW c
i j

= ∑
ns
i ∑

nt
j (xxx

s
i
T PPPsPPPT

s xxxs
i −2xxxs

i
T PPPsPPPT

t xxxt
j

+xxxt
j
T PPPtPPPT

t xxxt
j)WWW

c
i j

= ∑
ns
i xxxs

i
T PPPsPPPT

s xxxs
i DDD

cs
ii −2∑

ns
i ∑

nt
j xxxs

i
T PPPsPPPT

t xxxt
jWWW

c
i j

+∑
nt
j xxxt

j
T PPPtPPPT

t xxxt
jDDD

ct
j j

= tr(XXX sT PPPsPPPT
s XXX sDDDcs)−2tr(XXX sT PPPsPPPT

t XXX tWWW cT )

+tr(XXX t T PPPtPPPT
t XXX tDDDct)

(6)

Substitute Eqs.(4-6) into the objective Eq.(2), we have the following form of objective:

min
PPPs,PPPt

(
tr(XXX sT PPPsPPPT

s XXX sLLLs)+ tr(XXX t T PPPtPPPT
t XXX tLLLt)

−tr(XXX sT PPPsPPPT
t XXX tWWW cT )

) (7)

where LLLs = DDDs−WWW s + 1
2 DDDcs and LLLt = DDDt −WWW t + 1

2 DDDct .

Minimizing the objective in Eq.(7) is equivalent to maximizing the objective in Eq.(3).

Proposition 3.2. The objective in Eq.(3) is equivalent to the following generalized eigenvalue

problem and the optimal projection matrix PPP =

PPPs

PPPt

 can be formed by d eigenvectors corre-

sponding to the largest d eigenvalues:

AAAPPP = (BBB+αIII)PPPΛ (8)

where III ∈ R(ns+nt )×(ns+nt ) is an identity matrix, α is a hyper-parameter for regularization [34],

Λ is a diagonal eigenvalue matrix and

AAA =

 000 XXX sWWW cXXX t T

XXX tWWW cT XXX sT 000

 , (9)

BBB =

XXX sLLLsXXX sT 000

000 XXX tLLLtXXX t T

 . (10)
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Proof. To make the proof process concise, we introduce notations SSSs = XXX sLLLsXXX sT , SSSt = XXX tLLLtXXX t T

and SSSc = XXX sWWW cXXX t T .

Let

J (PPPs,PPPt) =
tr(PPPT

t SSST
c PPPs)

tr(PPPT
s SSSsPPPs)+ tr(PPPT

t SSStPPPt)
(11)

be the objective function in Eq.(3), we calculate the partial derivatives [26] of J w.r.t. PPPs and PPPt

respectively, set them to 0 and get the following equations:

SSScPPPt =
2tr(PPPT

t SSScPPPs)

tr(PPPT
s SSSsPPPs)+ tr(PPPT

t SSStPPPt)
SSSsPPPs (12)

SSST
c PPPs =

2tr(PPPT
t SSScPPPs)

tr(PPPT
s SSSsPPPs)+ tr(PPPT

t SSStPPPt)
SSStPPPt (13)

Note that the coefficients on the right side of Eqs(12-13) are exactly the objective in Eq.(11). It

is easy to construct the following generalized eigenvalue problem by combining Eqs.(12-13): 000 SSSc

SSST
c 000

PPPs

PPPt

=

SSSs 000

000 SSSt

PPPs

PPPt

Λ. (14)

The maximum objective is given by the largest eigenvalue solution to the generalized eigen-

value problem [13] and the eigenvectors corresponding to the largest d eigenvalues will form the

projection matrix PPPs and PPPt .

3.3. Recognition in the Subspace

Once the projection matrices PPPs and PPPt are learned, we are able to project all the labelled

samples into the learned common subspace by zzzs
i = PPPT

s xxxs
i and zzzt

i = PPPT
t xxxt

i . Similar to the pre-

processing for the training data, the feature vectors xxx need to be l2-normalised before being

projected to the subspace. For the same reason, we also apply l2-normalisation to the projected

vectors zzz. The l2-normalisation re-allocates the projected vectors in the subspace to the surface of

a hyper-sphere which will benefit the measurement of distances when do the recognition using

the nearest neighbour method. More importantly, the l2-normalisation adds non-linearity to

the process so that our proposed CDSPP method can handle practical problems when linear

projection assumptions do not hold.
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For each class, we calculate the class mean z̄zzc for c = 1,2, ...,C using all the labelled sample

from both source and target domains. Given an unlabelled target sample xxxu, we classify it to the

closest class in terms of its Euclidean distances to the class means:

y∗ = argmin
c

d(z̄zzc,PPPT
t xxxu) (15)

The proposed CDSPP for supervised HDA is summarized in Algorithm 1.

Relation to DAMA The CDSPP algorithm is quite similar to DAMA proposed in [30] at

the first glance, however, they are essentially different from each other in that CDSPP does

not seek to push the sample projections belonging to different classes apart, since the penalty

imposed for this purpose (e.g., maximizing the term B in [30]) might misguide the solution to

focus too much on the separation of classes which are originally close to each other and hurt the

overall separability of the learned subspace. In contrast, our objective in Eq.(2) can guarantee the

separability of the learned subspace by promoting the preserving of cluster structures underlying

the original data distributions, which is simpler but more effective as validated by experiments.

Algorithm 1 Supervised HDA using CDSPP
Input: labelled source data set Ds = {(xxxs

i ,y
s
i )}, i = 1,2, ...,ns and labelled target data set Dt =

{xxxt
i,y

t
i}, i = 1,2, ...,nt , the dimensionality of subspace d.

Output: The projection matrix PPPs and PPPt for source and target domains, the labels predicted for

unlabelled target data XXXu.

Training:

1: Learn the projection PPPs and PPPt using labelled data Ds∪Dt by solving the generalized eigen-

value problem in Eq.(8);

Testing:

2: Classify unlabelled target samples XXXu using Eq.(15).

3.4. Extending to Semi-Supervised HDA

The CDSPP algorithm is naturally suitable for supervised HDA but can be extended to semi-

supervised HDA by incorporating it into an iterative pseudo-labelling framework [33]. Given a

set of unlabelled target samples XXXu, they can be labelled by Eq.(15). The pseudo-labelled target

samples can be used to update the projection matrices PPPs and PPPt . However, when the domain
11



Algorithm 2 Semi-supervised HDA using CDSPP
Input: labelled source data set Ds = {(xxxs

i ,y
s
i )}, i = 1,2, ...,ns, labelled target data set Dt =

{xxxt
i,y

t
i}, i = 1,2, ...,nt , unlabelled target data set Du = {xxxu

i }, i = 1,2, ...,nu the dimension-

ality of subspace d, number of iteration T .

Output: The projection matrix PPPs and PPPt for source and target domains, the labels predicted for

unlabelled target data XXXu.

Training:

1: Initialize k=1;

2: Learn the projection PPP(0)
s and PPP(0)

t using labelled data Ds ∪Dt by solving the generalized

eigenvalue problem in Eq.(8);

3: Get the unlabelled target data set Du;

4: while k ≤ T do

5: Label all the samples from Du by Eq.(15);

6: Select a subset of (top knu/T most confident) pseudo-labelled target samples S(k) ⊆Du;

7: Learn PPP(k)
s and PPP(k)

t using a combination of labelled and pseudo-labelled data sets Ds ∪

Dt ∪S(k);

8: k← k+1;

9: end while

Testing:

10: Classify unlabelled target samples XXXu using Eq.(15).
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shift is large and the number of labelled target samples is limited, the pseudo-labels can be wrong

for a considerable number of target samples. In this case, the mistakenly pseudo-labelled target

samples might hurt projection learning. To reduce this risk, confidence aware pseudo-labelling

is proposed in [33]. We employ the same idea and progressively select the most confidently

pseudo-labelled target samples for the next iteration of CDSPP learning. The proposed CDSPP

for semi-supervised HDA is summarized in Algorithm 2.

3.5. Complexity Analysis

The time complexity of CDSPP is mainly contributed by two parts: the matrix multiplications

in Eqs.(9-10) and the eigen decomposition problem. The complexity of matrix multiplications

is O((ns + nt)dsdt). The complexity of eigen decomposition is generally O((ds + dt)
3). As a

result, the CDSPP algorithm has a complexity of O((ns + nt)dsdt +(ds + dt)
3). In the case of

semi-supervised HDA, the time complexity will be increased by T times and the value of nt

increases by the number of selected pseudo-labelled target samples in each iteration.

4. Experiments

To evaluate the effectiveness of the proposed method in heterogeneous domain adaptation,

we conduct thorough experiments on commonly used benchmark datasets. We compare the

proposed approach with existing HDA methods and analyze its sensitivity to hyper-parameters.

4.1. Datasets and Experimental Settings

Office-Caltech [11] is an image dataset containing four domains: Amazon (A), Webcam

(W), DSLR (D) and Caltech (C) from 10 common classes. Two image features (i.e. 4096-dim

Decaf6 and 800-dim SURF) are used for cross-domain adaptation. Multilingual Reuters Col-

lection (MRC) [1] is a cross-lingual text classification dataset containing 6 classes in 5 languages

(i.e. EN, FR, GE, IT, SP). We follow the settings in [15] extracting BoW features and applying

PCA to get heterogeneous feature dimensions (i.e. 1131, 1230, 1417, 1041, 807 respectively)

for five domains. In our experiments, SP serves as the target domain and the other four lan-

guages as the source domains respectively. As a result, we have four HDA tasks. NUS-WIDE

[6] and ImageNet [8] datasets are employed for text to image domain adaptation. Following [5]

we consider 8 overlapping classes using tag information represented by 64-dim features from
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Table 1: The statistics of datasets (notations: LSS/c – labelled Source Samples per class; LTS/c – labelled Target Sample

per class; UTS/c – Unlabelled Target Samples per class; all – all samples except the ones chosen as labelled target

samples).

Dataset # Domain # Task # Class # LSS/c # LTS/c # UTS/c

Office-Caltech 4 16 10 20 3 all

MRC 5 4 6 100 10 500

NUS-ImageNet 2 1 8 100 3 100

Office-Home 4 16 65 20 3 all

NUS-WIDE as the source domain and 4096-dim Decaf6 features of images from ImageNet as

the target domain. However, the above datasets contain very limited numbers of classes and may

not discriminate capabilities of different methods. We introduce Office-Home [29] containing

four domains (i.e. Art, Clipart, Product and Real-world) as a new testbed for HDA. We use

VGG16 [28] and ResNet50 [12] models pre-trained on ImageNet to extract 4096-dim and 2048-

dim features. More details of the datasets and protocols used in our experiments are summarized

in Table 1.

4.2. Comparative Methods

To evaluate the effectiveness of the proposed CDSPP in different HDA problems, we con-

duct a comparative study and compare the performance of CDSPP with state-of-the-art methods

in both supervised and semi-supervised settings. Specifically, we compare with SVMt , HFA

[23], CDLS sup [15] and a variant of DAMA [30] under the supervised HDA setting (i.e. the

unlabelled target samples are not available during training).

• SVMt is a baseline method that trains an SVM model on the target dataset Dt in a conven-

tional supervised learning manner without using the source domain data.

• HFA (Heterogeneous Feature Augmentation [23]) is designed to solve the supervised HDA

problem by augmenting the original features xxxs,xxxt with transformed features PPPxxxs, QQQxxxt and

zero vectors. The projection matrices PPP and QQQ for the source and target domains map

the original features into a common subspace so that the similarity of features across two

domains can be directly compared. The objective of learning PPP and QQQ is incorporated into

the framework of classifier (i.e. SVM) training.
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• CDLS sup (Cross-Domain Landmark Selection [15]) is the supervised version of CDLS

which aims to learn a projection matrix AAA to map source-domain data into the target do-

main. The objective is to align the cross-domain marginal and conditional data distribu-

tions by minimizing the Maximum Mean Discrepancy (MMD).

• DAMA sup (Domain Adaptation Using Manifold Alignment [30]) is originally designed

for semi-supervised HDA problems. Similar to our proposed CDSPP, it also aims to learn

two projection matrices to map source and target domain data to a common subspace where

the manifolds of data from two domains are aligned. We adapt it for supervised HDA by

considering only labelled data when constructing the feature similarity matrix WWW , the label

based similarity matrix WWW s and dissimilarity matrix WWW d . Different from the suggestion in

the original paper, we use an optimal µ = 0.1 throughout our experiments since this setting

achieves the best performance.

For semi-supervised HDA, we compare with DAMA [30], SHFA [23], CDLS [15], PA [19],

TIT [20], STN [38], DDACL[39], SSAN [22] and DAMA+, our extension of DAMA by incor-

porating it into our iterative learning framework (c.f. Section 3.4).

• DAMA [30] is employed in the semi-supervised HDA experiments in its original form

except the hyper-parameter µ is set as 0.1 as our experimental results show empirically it

gives the optimal performance.

• SHFA (Semi-supervised HFA [23]) is an extension of HFA. It takes advantage of the un-

labelled target-domain data by replacing the SVM in HFA with a Transductive SVM (T-

SVM) [7] model.

• CDLS [15] is designed for semi-supervised HDA. As described above, it aims to learn

a projection matrix AAA to map source-domain data into the target domain so that cross-

domain data can be aligned. When unlabelled target-domain data are available in the

semi-supervised HDA, the unlabelled data are pseudo-labelled by the supervised version

CDLS sup. Subsequently, the pseudo-labelled data are used to update the projection AAA.

The processes are repeated for multiple iterations. In particular, the instances are weighted

by learnable weights when constructing the objective function.

• PA (Progressive Alignment [19]) and TIT (Transfer Independently Together [20]) share
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a similar framework to CDLS but employ different algorithms of transformation matrix

learning (involving MMD, graph embedding and regularisation) and different instance

weight estimation strategies. The unlabelled target-domain data are also pseudo-labelled

to optimize the transformation matrices iteratively.

• STN (Soft Transfer Network [38]) jointly learns a domain-shared classifier and a domain-

invariant subspace in an end-to-end manner. The network model is learned by optimising

the objective similar to those in the aforementioned works, i.e., MMD. Besides, the unla-

belled target-domain data are used by the soft-label strategy.

• DDACL (Discriminative Distribution Alignment with Cross-entropy Loss [39]) trains an

adaptive classifier by both reducing the distribution divergence and enlarging distances

between class centroids.

• SSAN (Simultaneous Semantic Alignment Network [22]) employs an implicit semantic

correlation loss to transfer the correlation knowledge of source categorical prediction dis-

tributions to the target domain. A triplet-centroid alignment mechanism is explicitly ap-

plied to align feature representations for each category by leveraging target pseudo-labels.

Note that the results of best accuracy of the test samples throughout the training process

were reported in [22], we argue that this is not achievable in practice since the labels of

test samples are not available during training. Instead, we report the results achieved in the

last iterations in our experiments.

• DAMA+ is our adaptation of the original DAMA by incorporating the DAMA algorithm

into our proposed iterative learning framework with selective pseudo-labelling. Specifi-

cally, we use the supervised version of DAMA described above to initialise the projection

matrices and get the pseudo-labels of unlabelled target-domain data. The selected most

confidently pseudo-labelled target-domain data will contribute to the update of projection

matrices in the next iteration of learning. Finally, the optimal projection matrices and

predicted target-domain data labels are obtained.

• CDSPP+PCA is a variant of CDSPP by applying PCA to the original features and CDSPP

is subsequently applied to the low-dimensional features. This pre-processing is specially

designed for handcrafted features in the MRC and NUS-ImageNet datasets and 50 princi-

pal components are reserved for all features.
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In all experiments, we use the optimal parameters suggested in the original papers for the com-

parative methods if not otherwise specified whilst set the hyper-parameters of CDSPP empiri-

cally as d equal to the number of classes in the dataset, α = 10 and T = 5. More details of

hyper-parameter value selection will be discussed later.

4.3. Comparison Results

Although there exist fixed experimental protocols in terms of the number of labelled samples

used for training as shown in Table 1, there is no standard data splits publicly available to follow.

As will be demonstrated in our experimental results, selecting different samples for training can

lead to significant performance variance. We generate data splits randomly in our experiments1.

To mitigate the biases caused by the data selection, ten random data splits are generated for each

adaptation task. We report the mean and standard deviation of the classification accuracy over

these ten trials for each adaptation task. The results for all comparative methods are reproduced

using the same data splits for a direct comparison. The implementations released by the authors

are employed in our experiments. As a result, the results in this paper are not comparable with

those reported in other papers since different sample selections have been used in our experi-

ments. Our experimental results of both supervised and semi-supervised HDA on four datasets

are shown in Tables 2-5 from which we can obtain the following insights.

Table 2 (except the last column) lists the comparison results on the MRC dataset. The base-

line method SVMt achieves an accuracy of 67.0% using only 10 labelled target domain samples

per class for training. The labelled source domain data can benefit the performance with proper

domain adaptation but the improvement is marginal for both HFA and our proposed CDSPP.

The supervised version of CDLS uses PCA to learn a subspace from the target domain, hence

the dimensionality of subspace cannot be higher than nt −1. Due to such limitation, CDLS sup

performs worse than others when the number of labelled target samples is small which is usually

the case for HDA problems. For the semi-supervised HDA, DAMA and SHFA perform no better

than the baseline method SVMt which was also observed in existing works [15, 19, 20]. The best

performance (71.7%) is achieved by PA [19] and our proposed CDSPP is marginally worse with

the average classification accuracy of 68.9%. However, when applying PCA to reduce the text

features to a lower dimensionality of 50, the performance of CDSPP is improved from 68.9%

1The data splits and code are released: https://github.com/hellowangqian/cdspp-hda
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Table 2: Mean(std) of classification accuracy (%) over ten trials for cross-language and tag-to-image adaptation under

supervised (denoted by ∗) and semi-supervised settings (each column represents one Source→ Target adaptation task).

Method EN→SP FR→SP GE→SP IT→SP Avg Tag→Image

SVMt * 67.0(2.4) 67.0(2.4) 67.0(2.4) 67.0(2.4) 67.0 60.6(6.0)

HFA [23] * 68.1(3.0) 68.0(3.0) 68.0(3.0) 68.0(3.0) 68.0 67.5(2.5)

CDLS sup [15] * 63.0(3.6) 63.4(2.4) 64.0(2.2) 64.6(3.6) 63.8 66.3(3.9)

DAMA sup * 66.8(2.5) 66.3(3.3) 66.3(3.0) 66.7(2.7) 66.5 66.9(2.6)

CDSPP sup (Ours) * 67.2(2.8) 67.3(2.9) 67.3(2.9) 67.3(2.8) 67.3 67.2(3.0)

DAMA [30] 67.0(2.5) 66.6(3.1) 66.7(3.0) 67.4(2.8) 66.9 67.0(2.5)

SHFA [23] 66.9(3.7) 66.1(2.7) 67.5(3.1) 67.4(2.2) 67.0 68.1(2.7)

CDLS [15] 69.4(3.0) 69.4(3.0) 69.4(3.2) 69.3(3.1) 69.4 69.6(2.1)

PA [19] 71.4(2.9) 71.6(2.9) 71.7(3.0) 72.3(2.5) 71.7 70.5(4.0)

TIT [20] 67.1(2.8) 67.6(2.6) 66.1(3.5) 67.8(2.0) 67.2 70.7(3.4)

STN [38] 67.1(3.6) 67.3(2.5) 66.9(3.5) 66.7(3.8) 67.0 74.3(5.2)

DDACL [39] 70.2(3.0) 70.4(3.1) 70.8(3.0) 70.9(3.0) 70.6 73.8(2.8)

SSAN [22] 69.9(2.9) 69.4(2.8) 69.3(4.0) 70.2(2.5) 69.7 71.4(1.2)

DAMA + 68.9(2.1) 68.8(4.0) 68.9(2.7) 68.2(3.5) 68.7 73.4(4.3)

CDSPP (Ours) 69.1(3.2) 69.0(3.6) 68.8(3.2) 68.8(3.0) 68.9 74.7(3.4)

CDSPP+PCA (Ours) 71.2(3.2) 71.7(3.1) 71.4(3.0) 72.1(3.0) 71.6 76.5(3.3)

Table 3: Mean(std) of classification accuracy (%) over ten trials on the Office-Caltech dataset using SURF (source)

and Decaf6 (target) features under supervised (denoted by ∗) and semi-supervised settings (each column represents one

Source→ Target adaptation task).

Method C→C C→A C→D C→W A→C A→A A→D A→W D→C D→A D→D D→W W→C W→A W→D W→W Avg

SVMt * 73.6(4.9) 87.9(2.2) 92.3(3.6) 88.4(3.8) 73.6(4.9) 87.9(2.2) 92.3(3.6) 88.4(3.8) 73.6(4.9) 87.9(2.2) 92.3(3.6) 88.4(3.8) 73.6(4.9) 87.9(2.2) 92.3(3.6) 88.4(3.8) 85.5

HFA [23] * 80.1(2.3) 88.9(1.9) 91.6(3.6) 90.7(3.5) 80.2(2.3) 88.9(1.9) 91.5(3.6) 90.5(3.6) 80.2(2.2) 88.8(1.9) 91.8(3.6) 90.7(3.5) 80.2(2.3) 88.8(1.9) 91.5(3.7) 90.6(3.7) 87.8

CDLS sup [15] * 76.1(2.1) 86.6(3.2) 91.3(4.7) 87.4(3.5) 75.9(3.5) 87.0(2.8) 90.6(3.8) 86.0(3.6) 51.5(4.4) 74.2(2.4) 86.6(3.2) 77.2(5.1) 74.7(4.1) 85.4(3.0) 90.5(3.8) 86.0(3.5) 81.7

DAMA sup * 78.7(2.4) 87.3(2.2) 91.5(2.6) 88.6(4.3) 77.4(3.2) 85.9(2.4) 90.7(3.3) 88.2(4.1) 79.6(2.2) 88.8(1.6) 90.1(3.6) 89.4(4.1) 78.5(2.6) 87.4(2.0) 89.1(3.1) 88.6(4.7) 86.2

CDSPP sup (Ours) * 80.3(2.0) 89.0(1.9) 92.0(3.5) 90.7(3.8) 80.3(2.1) 89.1(1.9) 91.7(3.7) 90.7(3.7) 79.8(2.1) 88.9(1.8) 90.4(3.9) 90.1(3.9) 80.4(2.2) 89.0(1.8) 91.5(4.1) 90.6(3.8) 87.8

DAMA [30] 76.6(2.6) 86.2(1.9) 91.0(2.5) 88.2(4.3) 73.6(4.7) 83.3(2.6) 88.8(3.7) 86.5(4.4) 77.5(2.5) 88.4(1.6) 90.7(4.2) 90.1(3.8) 76.1(2.9) 86.0(2.3) 87.7(4.7) 86.8(5.8) 84.8

SHFA [23] 77.1(2.8) 86.2(3.8) 93.0(3.6) 90.0(2.6) 80.5(3.1) 86.7(2.2) 94.3(2.5) 90.0(4.0) 81.6(2.1) 88.5(2.9) 93.5(3.9) 92.0(4.1) 80.5(1.8) 88.5(2.4) 93.5(3.5) 89.5(4.2) 87.8

CDLS [15] 80.6(1.8) 88.8(2.1) 93.0(3.2) 91.1(3.7) 80.6(1.8) 88.8(2.1) 92.0(3.0) 91.0(4.5) 78.4(2.7) 87.2(2.3) 93.0(3.7) 88.9(5.6) 81.0(2.0) 88.6(2.2) 92.1(3.3) 91.4(4.2) 87.9

PA [19] 87.2(1.1) 90.8(1.3) 92.9(3.3) 93.9(3.9) 87.0(1.1) 90.5(1.7) 94.7(2.5) 94.0(3.9) 87.0(1.3) 90.5(2.0) 94.5(2.8) 94.3(3.7) 87.0(1.3) 90.7(1.5) 93.4(4.1) 92.8(4.6) 91.3

TIT [20] 84.9(1.7) 89.9(1.6) 94.6(3.1) 92.2(4.3) 84.6(1.5) 89.7(1.7) 94.6(2.2) 92.3(4.9) 82.7(1.5) 88.7(1.9) 94.3(2.7) 92.1(4.0) 84.7(1.6) 89.5(1.8) 92.5(2.8) 92.5(4.3) 90.0

STN [38] 88.2(1.7) 92.4(0.7) 94.4(2.0) 92.8(4.9) 88.4(1.6) 92.5(0.7) 95.0(2.0) 93.9(4.1) 87.9(1.7) 92.2(0.5) 94.4(2.5) 93.3(5.0) 88.2(1.8) 92.6(0.8) 93.9(3.2) 92.2(5.1) 92.0

DDACL [39] 86.5(1.6) 91.8(0.9) 94.2(2.8) 93.5(3.4) 86.2(1.9) 83.1(11.2) 89.1(5.9) 92.3(3.9) 86.2(1.7) 91.8(1.1) 93.4(3.6) 93.6(3.0) 86.8(1.7) 92.0(0.8) 94.4(3.2) 94.0(3.1) 90.6

SSAN [22] 80.9(8.7) 89.8(2.8) 95.8(2.0) 94.2(2.1) 84.9(4.7) 89.0(4.0) 93.1(3.6) 93.1(3.1) 81.0(4.7) 90.3(1.5) 93.9(3.6) 82.6(14.7) 84.3(2.2) 86.9(10.0) 93.5(5.2) 95.0(2.1) 89.3

DAMA+ 88.1(1.7) 92.7(0.6) 93.9(1.7) 92.2(4.1) 88.0(1.3) 92.9(0.6) 93.9(2.1) 92.8(4.2) 87.7(1.9) 93.2(0.5) 92.1(5.3) 94.0(3.3) 88.1(2.1) 92.7(0.7) 94.8(1.6) 93.5(3.9) 91.9

CDSPP (Ours) 88.3(0.7) 92.3(0.7) 95.6(1.5) 94.1(4.1) 88.1(1.0) 92.6(0.5) 95.7(1.0) 94.6(3.8) 88.1(0.6) 92.7(0.5) 93.5(4.6) 94.7(3.5) 88.1(1.0) 92.5(0.5) 95.7(1.3) 94.3(3.8) 92.6

to 71.6%, comparable with the best performance 71.7% achieved by PA. This demonstrates the

fact handcrafted text features (i.e. bag-of-features) used in the MRC dataset contain noisy vari-
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Table 4: Mean(std) of classification accuracy (%) over ten trials on the Office-Home dataset using VGG16 (source) and

ResNet50 (target) features under supervised (denoted by ∗) and semi-supervised settings (each column represents one

Source→ Target adaptation task).

Method A→A A→C A→P A→R C→A C→C C→P C→R P→A P→C P→P P→R R→A R→C R→P R→R Avg

SVMt∗ 51.8(1.2) 41.4(1.6) 71.0(1.4) 65.8(2.3) 51.8(1.2) 41.4(1.6) 71.0(1.4) 65.8(2.3) 51.8(1.2) 41.4(1.6) 71.0(1.4) 65.8(2.3) 51.8(1.2) 41.4(1.6) 71.0(1.4) 65.8(2.3) 57.5

CDLS sup [15] ∗ 58.7(0.9) 45.7(1.5) 75.0(0.8) 69.8(1.9) 53.4(1.0) 48.6(1.0) 73.9(0.9) 67.8(1.8) 55.0(0.9) 45.9(1.4) 78.0(0.8) 70.2(1.5) 56.5(1.1) 46.8(1.5) 76.2(0.5) 72.4(1.4) 62.1

DAMA sup * 56.6(2.8) 43.6(2.2) 72.0(1.4) 67.8(2.4) 42.7(4.8) 39.8(5.4) 64.8(5.9) 57.5(4.5) 52.4(3.9) 40.4(4.1) 70.1(5.7) 63.6(3.8) 51.8(3.6) 42.4(3.4) 68.8(5.1) 65.5(4.7) 56.2

CDSPP sup (Ours) ∗ 60.8(1.2) 49.5(1.1) 76.3(0.8) 71.9(1.8) 59.4(1.4) 50.4(1.0) 76.1(0.9) 71.6(1.8) 59.8(1.2) 49.6(1.1) 78.0(0.9) 72.4(1.4) 60.4(1.3) 49.8(0.9) 76.9(1.0) 73.3(1.6) 64.8

DAMA [30] 55.6(3.3) 43.8(2.1) 71.1(2.1) 66.4(3.5) 43.1(4.7) 39.3(5.2) 62.9(5.7) 56.4(4.7) 52.1(4.1) 40.4(4.6) 69.9(4.3) 64.3(5.3) 51.9(3.6) 42.0(4.3) 68.3(5.0) 65.1(4.5) 55.8

CDLS [15] 62.1(0.9) 46.9(1.2) 76.8(0.7) 71.5(2.3) 55.7(1.3) 47.4(1.2) 76.7(0.6) 70.8(2.0) 56.4(1.1) 47.0(1.2) 77.8(0.6) 71.5(2.0) 56.7(1.2) 47.6(1.3) 77.5(0.4) 72.2(2.0) 63.4

PA [19] 59.8(1.2) 48.2(1.5) 80.0(1.2) 75.5(1.8) 59.8(1.1) 48.2(1.3) 80.0(1.3) 75.4(1.9) 59.5(1.5) 48.2(1.4) 80.0(1.6) 75.7(1.9) 59.6(1.3) 48.2(1.5) 79.9(1.4) 75.7(1.8) 65.8

TIT [20] 55.6(1.0) 44.7(1.3) 74.3(1.0) 70.3(1.8) 56.1(0.9) 45.5(1.1) 74.7(0.7) 70.2(1.7) 55.9(1.1) 45.3(1.3) 74.9(0.9) 70.2(1.8) 55.5(1.5) 44.6(1.4) 74.7(0.8) 69.9(2.0) 61.4

STN [38] 62.6(1.4) 51.2(1.5) 78.7(3.9) 74.5(4.3) 56.1(3.8) 52.2(2.2) 77.0(4.0) 71.1(6.0) 60.7(1.3) 49.3(6.0) 82.4(1.0) 75.8(2.8) 61.0(1.3) 50.6(3.2) 80.4(0.9) 75.7(4.4) 66.2

DDACL [39] 50.3(2.2) 39.8(2.4) 59.4(2.8) 56.1(3.4) 45.1(2.0) 36.3(3.0) 60.9(2.9) 56.8(2.0) 40.3(1.5) 34.2(2.3) 55.7(9.1) 43.0(9.9) 41.9(2.4) 36.5(2.0) 52.4(5.1) 51.5(9.2) 47.5

SSAN [22] 50.5(1.9) 40.1(3.0) 70.9(1.8) 63.9(3.0) 43.9(2.9) 42.5(5.0) 67.8(1.2) 61.9(2.9) 44.1(2.6) 38.1(3.5) 77.3(0.9) 66.2(1.3) 45.7(3.9) 38.6(3.8) 71.7(4.0) 68.8(2.5) 55.8

DAMA+ 62.1(2.4) 49.0(1.4) 77.7(1.9) 75.0(2.5) 54.0(5.2) 44.7(6.1) 75.6(3.7) 69.0(3.4) 60.9(2.7) 46.9(3.1) 76.9(3.5) 72.5(1.9) 60.3(1.9) 48.6(3.7) 76.7(2.8) 73.4(3.3) 63.9

CDSPP (Ours) 65.7(1.0) 54.8(2.0) 81.0(1.5) 78.4(1.1) 65.0(1.4) 55.1(1.6) 80.9(1.6) 78.5(1.2) 65.6(0.4) 54.7(1.9) 81.5(1.1) 78.8(1.0) 65.5(0.9) 54.6(1.6) 80.9(1.6) 79.4(0.9) 70.0

Table 5: Mean(std) of classification accuracy (%) over ten trials on the Office-Home dataset using ResNet50 (source)

and VGG16 (target) features under supervised (denoted by ∗) and semi-supervised settings (each column represents one

Source→ Target adaptation task).

Method A→A A→C A→P A→R C→A C→C C→P C→R P→A P→C P→P P→R R→A R→C R→P R→R Avg

SVMt * 40.3(1.4) 30.5(1.6) 63.3(1.7) 56.3(2.9) 40.3(1.4) 30.5(1.6) 63.3(1.7) 56.3(2.9) 40.3(1.4) 30.5(1.6) 63.3(1.7) 56.3(2.9) 40.3(1.4) 30.5(1.6) 63.3(1.7) 56.3(2.9) 47.6

CDLS sup [15] * 51.4(1.1) 36.5(1.0) 69.6(1.1) 63.5(2.0) 46.4(1.2) 39.2(1.0) 68.7(1.2) 62.0(1.6) 47.2(1.2) 36.4(0.8) 73.1(1.0) 64.6(1.9) 48.6(1.1) 37.1(1.1) 70.9(1.2) 66.4(2.0) 55.1

DAMA sup * 46.9(1.8) 35.6(1.8) 65.9(1.4) 60.3(1.8) 43.4(2.4) 32.5(3.7) 60.3(6.0) 56.3(3.0) 44.1(4.0) 31.8(3.6) 62.2(4.0) 56.4(4.0) 45.3(3.2) 34.4(1.6) 60.9(4.6) 60.3(2.1) 49.8

CDSPP (Ours)* 49.7(1.1) 39.2(1.0) 69.5(1.3) 63.7(2.0) 48.3(1.2) 40.4(1.3) 69.5(1.5) 63.4(1.8) 48.5(1.1) 38.9(0.8) 71.3(1.4) 64.1(1.9) 49.0(1.2) 39.4(1.1) 70.1(1.3) 65.0(2.1) 55.6

DAMA [30] 46.7(2.0) 33.6(2.5) 66.2(1.7) 57.8(3.4) 43.1(4.0) 32.0(4.5) 60.2(6.2) 55.7(5.0) 44.3(3.7) 32.0(4.1) 65.5(5.6) 59.8(3.5) 45.3(3.4) 34.8(2.6) 65.0(4.4) 60.9(3.5) 50.2

CDLS [15] 54.9(1.1) 36.6(1.1) 71.1(0.8) 65.9(1.3) 47.8(1.4) 39.8(1.2) 69.5(1.2) 63.6(1.4) 49.7(1.2) 36.8(1.2) 75.6(0.8) 67.9(1.6) 52.3(1.0) 38.5(1.3) 73.1(1.0) 69.6(1.6) 57.0

PA [19] 51.4(1.0) 38.3(1.3) 73.7(1.2) 67.4(1.6) 51.2(1.4) 38.2(1.2) 73.6(1.2) 67.4(1.6) 51.2(1.1) 38.1(1.4) 73.6(1.2) 67.3(1.9) 51.2(0.9) 38.2(1.2) 73.7(1.2) 67.4(1.4) 57.6

TIT [20] 46.8(1.7) 36.4(1.2) 69.4(0.9) 62.5(1.8) 47.0(1.7) 36.4(1.1) 69.3(1.1) 62.0(2.2) 46.8(1.7) 36.4(1.1) 69.8(0.9) 62.4(2.1) 45.9(1.6) 36.0(1.3) 69.4(1.2) 62.5(2.1) 53.7

STN [38] 52.6(1.5) 41.2(2.4) 74.9(1.0) 69.2(1.5) 51.2(1.1) 42.5(1.2) 75.3(1.2) 69.6(1.0) 53.0(1.2) 41.7(1.4) 77.3(1.2) 70.7(1.4) 52.7(1.9) 41.7(1.4) 76.6(1.0) 71.6(1.3) 60.1

DDACL [39] 33.8(2.3) 27.5(1.6) 52.2(4.0) 46.8(1.6) 31.8(2.3) 24.3(1.6) 50.8(1.9) 44.0(3.5) 32.0(2.7) 23.4(2.8) 49.0(7.9) 39.9(7.3) 32.4(2.7) 24.9(1.6) 46.5(3.7) 45.5(4.4) 37.8

SSAN[22] 42.2(4.1) 30.4(2.3) 61.9(3.7) 56.5(2.6) 37.9(1.6) 32.3(2.3) 62.1(1.5) 53.4(3.4) 38.1(2.0) 29.9(1.7) 69.0(2.9) 58.0(1.9) 37.5(2.3) 29.6(1.7) 63.3(2.2) 57.9(3.5) 47.5

DAMA+ 49.1(2.9) 37.5(1.2) 71.1(1.5) 65.4(2.5) 49.7(1.9) 32.9(4.1) 68.3(3.3) 63.2(3.7) 48.9(3.1) 33.3(3.6) 68.1(2.5) 61.4(3.9) 49.9(3.1) 36.3(2.2) 67.1(2.4) 64.6(2.1) 54.2

CDSPP (Ours) 55.6(1.1) 44.7(1.8) 75.2(1.6) 71.7(1.4) 54.5(1.2) 46.0(1.6) 75.7(1.6) 71.4(1.9) 54.7(1.2) 45.0(1.6) 76.0(1.8) 71.8(1.6) 55.0(1.3) 44.9(2.0) 75.8(1.8) 72.1(1.8) 61.9
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ables which cannot be well handled by the CDSPP algorithm itself but a pre-processing like PCA

suffices to address this issue.

Table 2 (rightmost column) also presents the results of tag-to-image adaptation on the NUS-

ImageNet dataset. There is only one adaptation task (i.e. Tag→Image) in this dataset. In the

supervised HDA setting, the baseline method SVMt is outperformed by all three comparative

methods with large margins among which HFA achieves the best performance of 67.5% as op-

posed to the accuracy of 67.2% by our proposed CDSPP sup. However, HFA is more compu-

tationally expensive than others as discussed in [23]. In the semi-supervised HDA setting, our

method achieves the best performance with an accuracy of 74.7%. The performance of our CD-

SPP can be further improved to 76.5% when PCA is applied to reduce the dimensionality of the

text features to 50.

Similar results can also be observed in Table 3 for the image classification experiments on

Office-Caltech. Both HFA and our CDSPP achieve the same average accuracy of 87.8% in the

supervised HDA setting. CDLS sup performs worse than the baseline method SVM t again due

to the restricted PCA dimensions as discussed above. In the semi-supervised HDA, our CDSPP

achieves the best results in 6 out of 16 adaptation tasks and has the highest average accuracy of

92.6%.

The experimental results for the challenging Office-Home dataset are shown in Table 4 and

Table 5. The difference between these two tables lies in the features used for the source/target

domains are VGG16/ResNet50 and ResNet50/VGG16 respectively. In this experiment, the meth-

ods HFA and SHFA are excluded due to their extremely long computation time given the scale

of this dataset. It can be seen that CDLS sup, for the first time, outperforms the baseline method

SVMt on this dataset since the total number of labelled target samples is 195 which no longer

restricts the PCA dimension in this algorithm. Two more recent approaches DDACL [39] and

SSAN [22], however, perform poorly on this more challenging dataset although they achieve

good performance on three simpler datasets. One reasonable explanation is that these two ap-

proaches along with many others benefit from the clustering characteristics of the original fea-

tures and can easily recognize the target samples cluster-wisely. For the more challenging dataset,

the classes are prone to overlap in a low-dimensional subspace if the projections are not properly

learned. The simultaneous learning of the classifier and feature projections tends to result in

an overfitted classifier to the labelled and pseudo-labelled samples and the overfitting can be an
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issue when the labelled target samples cannot represent the distribution of their corresponding

classes in the subspace. As a result, they suffer from negative adaptation when the pseudo-labels

are inaccurate at the beginning and less robustness to the choice of labelled target samples. This

also provides evidence for the necessity of new test beds for HDA approaches. In both tables,

the best performances were achieved by our CDSPP for most adaptation tasks in both supervised

and semi-supervised settings. Specifically, CDSPP achieves an average accuracy of 70.0% when

VGG16 and ResNet50 features were employed for source and target domains, significantly better

than the second-best performance 66.2% achieved by STN [38]. Similar results can be observed

in Table 5, CDSPP achieves the best performance of 61.9% as opposed to the second-best 60.1%

by STN [38]. The significant performance improvement gained by CDSPP on the Office-Home

dataset is attributed to the fact this dataset is much more challenging than other datasets since

it contains much more classes (65 vs 10, 8, 6). We believe Office-Home is a more appropriate

testbed for discriminating different HDA methods.

In addition, the performance comparison between DAMA and DAMA+ provide further ev-

idence that the use of the iterative learning framework described in Section 3.4 is beneficial to

semi-supervised HDA. On the other hand, the superior performance of CDSPP to DAMA+ across

all datasets validates the fact that our CDSPP is essentially different from DAMA as discussed

in Section 3.3. In the supervised HDA experiments, CDSPP also outperforms our adaptation of

DAMA consistently on four datasets and the performance gap on the challenging Office-Home

dataset is particularly significant. The other interesting phenomenon that can be observed from

Tables 3-4 is the semi-supervised DAMA (i.e. the original version in [30]) performs no better

than its supervised version (i.e. DAMA sup adapted by ourselves). This demonstrates that the

way how DAMA [30] exploits the unlabelled target-domain data is ineffective. By contrast, the

selective pseudo-labelling strategy employed in our proposed CDSPP is more effective and can

be readily used by other HDA algorithms.

4.4. On the Number of labelled Target Samples

We conducted additional experiments of semi-supervised HDA to compare our proposed

CDSLPP with other methods when different numbers of labelled target samples were used for

training. Specifically, we set the number of labelled target samples as 5, 10, 15 or 20 for the

MRC dataset whilst for the other three datasets the investigated numbers of labelled target sam-

ples were within the collection of {1,3,5,7,9}. For the MRC and NUS-ImageNet datasets, all
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Figure 2: Comparison results when different numbers of labelled target samples are used.

adaptation tasks (i.e. EN/FR/GE/IT → SP and Tag→ Image, respectively) were repeated

for ten trials with randomly selected data (the same as those used in the previous experiment).

To save computational time without loss of generality, we only conducted the first four adap-

tation tasks for the first three trials for the Office-Caltech (C→C,C→ A,C→ D,C→W ) and

Office-Home (A→ A,A→C,A→ P,A→ R with VGG16 and ResNet50 as the source and target

features, respectively) datasets in this experiment. For each dataset, the average classification

accuracy over all the conducted adaptation tasks in this dataset is reported for comparison.

The experimental results are shown in Figure 2 from which we can draw some conclusions.

(1) The performance of all methods is improved with the increase of labelled target samples since

more labelled target samples provide additional information for the training. (2) The performance

margins between different methods decrease when more labelled target samples are used for

training. This phenomenon demonstrates these methods have different capabilities of cross-

domain knowledge transfer which is of vital importance when there are limited labelled data in

the target domain. (3) Our proposed CDSPP algorithm outperforms the others in three out of four

datasets regardless of the number of labelled target samples. The superiority of CDSPP to other

methods is more significant when less labelled target samples are available. (4) On the MRC

dataset, our method performs the best when 5 labelled target samples are used but outperformed

by CDLS [15] and [19] when more labelled target samples are available.

4.5. On the Effect of Hyper-parameters

In all our experiments described above, we empirically set the dimensionality of the common

subspace d equal to the number of classes in the dataset and set the hyper-parameters α = 10 (c.f.

Eq.(8)) and the number of iterations T = 5 (c.f. Algorithm 2). In this experiment, we will show
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how these values were selected and the fact that our algorithm is not sensitive to these hyper-

parameters across all the datasets. Similar to the experimental settings in the previous section,

we repeated all the adaptation tasks for ten trials for the MRC and NUS-ImageNet datasets

and repeated the first four adaptation tasks for the first three trials for the Office-Caltech and

Office-Home datasets to save time without loss of generality. The average accuracy over all the

investigated adaptation tasks is reported for each dataset when a specific hyper-parameter value

is used.

Firstly, we investigate the effect of the subspace dimension d. The values of d were from the

set {2,4,6,8,10,16,32,64/65,128,256,512} which contains the class numbers of four datasets

(i.e. 6, 8, 10 and 65) as well as other candidate values less or greater than the class numbers. The

experimental results are shown in the left graph of Figure 3. It is not hard to see that the best

performance can be achieved when the value of d is no less than the number of classes in each

dataset. A greater value of d does not further improve the performance but a smaller value of d

leads to a significant performance drop. As a result, it is easy to select an optimal value of the

subspace dimension for our proposed CDSPP.

Subsequently, We investigate the effect of the regularization parameter α in Eq.(8) by con-

ducting experiments with the values of α selected from {0.01,0.1,1,10,100,1000}. The ex-

perimental results are shown in the middle graph of Figure 3 from which we can see that the

optimal values of α should be between 10 and 100 across all datasets. A smaller value of α leads

to performance drops for all datasets except Office-Caltech. This validates the necessity of the

regularization term in Eq.(8) in our method and it is not very sensitive to the value of α . Similar

findings have been validated in the traditional LPP algorithm by Wang and Chen [34].

Finally, we are concerned about the number of iterations T by setting T =

{1,3,5,7,9,11,15,21}. The right-side graph in Figure 3 shows that the CDSPP algorithm per-

forms generally well when T ≥ 5. Increasing the number of iterations further can only improve

the performance on the NUS-ImageNet dataset very marginally but will increase the computa-

tional cost significantly. As a result, we selected T = 5 as the optimal value in all our experiments.

4.6. Qualitative Evaluation

To give an intuitive explanation of how our algorithm can align two heterogeneous domains

progressively, we take the tag-to-image adaptation task in the NUS-ImageNet dataset as an ex-

ample and visualise the distribution of samples in the learned subspace. As shown in Figure 4(a),
23
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Figure 3: Performance sensitivity to hyper-parameters.

the original features from the two domains are independent of each other although the clustering

characteristics are evident. Figure 4(b) illustrates how the three labelled target samples (“cir-

cles”) are pulled closer to the corresponding source classes (“squares”) after the first iteration

of CDSPP. More importantly, due to the property of structure preservation of CDSPP, the unla-

belled target samples (“crosses”) are also moving towards their corresponding source clusters.

In Figure 4(c), we can see more target samples are pseudo-labelled (“crosses” within “circles”)

and the source and target domains are further aligned. Such progressive pseudo-labelling and

domain alignment are enhanced in Figure 4(d) and no significant improvement can be observed

in the following iterations (e) and (f). This is consistent with the recognition results achieved

by our CDSPP in this particular experiment (i.e. from the first to the fifth iteration, recognition

accuracy is 70.1%, 76.7%, 79.1%, 78.9% and 79.0%, respectively).

It is obvious that the clustering of eight classes has converged after the third iteration and the

two domains are relatively well aligned. The samples which are misclassified in the final iteration

are those located in the overlapping regions of two classes. The overlap comes from the original

features as shown in Figure 4(a) and can be mitigated in different ways. The best way is to

extract more discriminative features to avoid such distribution overlap from the beginning which,

however, is beyond our focus of this paper. Alternatively, one can use a more capable domain

adaptation algorithm such as our proposed CDSPP to mitigate the class overlap by learning the

most discriminative features from the original ones. In addition, the choice of labelled target

samples also makes a difference. Taking a closer look at Figure 4(a), we can see one of the three

randomly selected labelled target samples for class 5 is far away from the target cluster of class 5.

When this outlier is pulled closer to the source cluster of class 5, some samples from class 2 and
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class 6 are also mistakenly pulled close to the source cluster of class 5 as shown in Figure 4(b).

These observations also imply it is important to choose the most representative target samples to

label for improved performance in practice.

(a) (b) (c)

(f)(e)(d)

Figure 4: Visualisation of the learned subspace for the NUS-ImageNet dataset (i.e. the tag to image adaptation task)

using the proposed CDSPP, best view in colour. (Results are from one of the ten trials with a specific random seed;

eight classes 1-8 are represented by different colours; “squares”: labelled source samples; “crosses”: unlabelled target

samples; “circles”: labelled or pseudo-labelled target samples; (a) the original features learned by two separate PCA

projections independently; (b)-(f) projections in the subspace learned by CDSPP after 1st-5th iteration.)

4.7. On the Computational Efficiency

We compare the computational efficiency of different methods by calculating the time cost

of each method in the experiments. The experiments are conducted on a laptop with an Intel

Core i5-7300HQ CPU @ 2.5 GHz and 32 GB memory. For neural network based methods

STN and SSAN, the Nvidia Titan Xp GPUs are used. The results are shown in Table 6. The

computational time is calculated by averaging the time for all adaptation tasks (i.e. 4, 1, 16 and

16 tasks for MRC, NUS-ImageNet, Office-Caltech and Office-Home respectively) over three

trials. By comparison, our proposed CDSPP is generally the most efficient method on three out

of four datasets. The exception on Office-Caltech is because CDLS and TIT use dimensionality

reduction such as PCA to reduce the dimensionality of Decaf features from 4096 to a much lower

value whilst our CDSPP uses the original 4096-dimensional features. From Table 6 we can also
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Table 6: Computation time (s) of different methods on four datasets (the total time of all adaptation tasks in each dataset

is calculated).

Method MRC NUS-ImageNet Office-Caltech Office-Home

DAMA [30] 46 7 58 477

SHFA [23] 917 25 255 Inf

CDLS [15] 168 6 47 272

PA [19] 617 30 121 3991

TIT [20] 175 11 52 1740

STN [38] 2734 343 7134 40857

DDACL [39] 622 169 2940 3421

SSAN [22] 9520 1229 13245 47145

DAMA + 49 21 288 1390

CDSPP (Ours) 16 7 161 256

see different methods have the varying capability of scaling to larger datasets (e.g., from NUS-

ImageNet to Office-Home) in terms of both feature dimensionality and the number of samples.

In particular, SHFA takes an excessively long time before completing one single adaptation task

of Office-Home in our experiment hence is marked as In f in the table. STN and SSAN take the

most time across all datasets since neural networks are trained for a large number of iterations

which is generally much less efficient compared with our CDSPP which can be solved by eigen-

decomposition.

5. Conclusion and Future Work

We propose a novel algorithm CDSPP for HDA and extend it to the semi-supervised setting

by incorporating it into an iterative learning framework. Experimental results on several bench-

mark datasets demonstrate the proposed CDSPP is not only computationally efficient but also

can achieve state-of-the-art performance on four datasets. We also investigate the effect of the

number of labelled target samples in the performance of different methods and found that the use

of too many labelled target samples will suppress the performance distinction among different

methods. The newly introduced benchmark dataset Office-Home for HDA is proved a proper
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testbed for HDA since it is more challenging with much more classes than others and the per-

formances of investigated methods on this dataset are more significantly varied. In addition, the

proposed method for HDA is not sensitive to hyper-parameters and it is easy to select optimal

hyper-parameter values across varying datasets.

One limitation of the proposed method is that its performance relies on the quality of pre-

extracted features. As we have observed in our experiments on the MRC dataset, proper pre-

processing of features can affect the domain adaptation performance significantly. One direction

of future work to address this issue is to unify the feature extraction neural networks and domain

adaptation. For HDA, the source and target domains are different either in the data modality

(e.g., text and image) or in the feature space. As a result, two individual neural networks are

needed for feature extraction before feeding the features into the domain adaptation module. Our

selective pseudo-labelling strategy described in this paper can also be easily applied to exploit

the unlabelled target-domain data when training the unified neural networks for HDA.
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