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Abstract
Most complex traits evolved in the ancestors of all modern humans and have been under negative or balancing selection to
maintain the distribution of phenotypes observed today. Yet all large studies mapping genomes to complex traits occur in
populations that have experienced the Out-of-Africa bottleneck. Does this bottleneck affect the way we characterise complex
traits? We demonstrate using the 1000 Genomes dataset and hypothetical complex traits that genetic drift can strongly affect
the joint distribution of effect size and SNP frequency, and that the bias can be positive or negative depending on subtle
details. Characterisations that rely on this distribution therefore conflate genetic drift and selection. We provide a model to
identify the underlying selection parameter in the presence of drift, and demonstrate that a simple sensitivity analysis may be
enough to validate existing characterisations. We conclude that biobanks characterising more worldwide diversity would
benefit studies of complex traits.

Introduction

Understanding complex traits is one of the most important
questions facing genetics as we progress into the Biobank
era. The number of Single Nucleotide Polymorphisms
(SNPs) that influence complex traits may vary from tens to
thousands in human and non-human species [1, 2]. The
effect of each SNP on a trait is estimated using Genome
Wide Association Studies (GWAS) in the very large bio-
banks and meta-analyses needed for statistical power.
Because of the requirement for large sample sizes, almost
everything that we know comes from studies in Eurasia in
which these datasets are available; for example the UK
Biobank [3], the China Kadoori Biobank [4], the Japanese

Biobank [5] and large GWAS consortia [6, 7]. Yet, most
selection acting on complex traits occurred primarily in our
evolutionary history. How did the out-of-Africa bottleneck
[8] influence our quantification of complex traits?

There is much interest in describing the genetic architecture
[9] of complex traits. If a trait is under negative or balancing
selection, then SNPs with a large effect are selected against,
and reduced in frequency. Genomic (or Genetic) architecture
quantifies the relationship between SNP frequency and the
effect the SNP has on the trait [10]. Models [11, 12] use an
explicit parameter that we will denote S that describes this
shape, and which is often linked to selection. S= 0 means that
effect size and SNP frequency are unrelated. S < 0 means that
rare SNPs have larger effect, and is expected if large effect
SNPs are driven to low frequency by negative or balancing
selection. Conversely, S > 0 implies that common SNPs have
a larger effect, and is expected if selection increases the fre-
quency of large effect SNPs via positive selection.

Genetic drift [13] is the process of SNPs varying in
frequency over time due to individuals carrying the SNP
having a random number of offspring each generation. It is
well understood in a nearly-neutral context [14] allowing
for limited selection. Clearly, the genetic architecture
representation as a conditional model describing the effect
size, conditional on the SNP frequency, is incomplete.
Whilst the allele frequency spectrum is related to selection
[15], a joint model is much more difficult, especially when
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ascertainment, linkage and other statistical artefacts are
accounted for. Figure 1 illustrates how Genetic Drift and
Complex Trait Genetic architecture interact to change the
whole SNP-frequency and effect size distribution.

We use a simulation approach to examine whether the
out-of-Africa bottleneck should change the interpretation of
parameters in the genetic architecture of complex traits. We
find that inference in a target population of Europeans, and
any other non-African population have a rather different
genetic architecture to the evolving population, proxied by
Africans, in which selection predominantly occurred. As a
consequence, S cannot be understood as a direct quantifi-
cation of selection, and indeed the value obtained depends
on many things including any Minor Allele Frequency
(MAF) thresholding performed in quality control. Models
of genetic architecture that do not correct for drift are a
useful description of the data, but further work is needed for
inference about selection.

Results

Genetic architecture is changed by genetic drift

Simulation framework

To assess the effect of genetic drift on genetic architecture
we need a large sample of individuals from around the

world, which is not currently available. To address this we
resample data from the 1000 Genomes dataset [16] using
HAPGEN2 [17] to create realistic population structure
complete with linkage disequilibrium between Africa,
Europe, South Asia, East Asia, and America. We then
simulate complex trait effect sizes in the African population
(see ‘Methods’). To generate individual data, we use (nar-
row sense) heritability h2= 0.5 throughout. We vary the
SNP frequency relationship S; recall that S < 0 implies
‘negative selection’ on the trait, and therefore high fre-
quency SNPs can only have a small effect on the trait,
whilst rare SNPs are permitted to have larger effect sizes.

To generate genetic variability in each of our populations
we follow [18] by assuming a relationship between fre-
quency f and effect size β, for each SNP i of the form:

βi � N 0; σ2i
� �

;

σ2i ¼ σ2β fi 1� fið Þ½ �S: ð1Þ

where σ2β is a base-rate variance (see ‘Methods’). However,
the details depend crucially on how variants that are rare in
the evolving population are treated in the generative model for
complex traits. Because less information is available about
real rare variation, little is known about how, in reality, these
affect complex traits. One reasonable assumption is that the
effect size follows the model described above for all
frequencies fi (the default unbounded effect simulation).
However, this leads to rare SNPs having unbounded effect
size. An alternative reasonable assumption is that σ2i is
bounded (referred to as the bounded effect simulation)
(‘Methods’).

Heritability is the proportion of variance attributable to
genetic variation, and therefore depends critically on
assumptions about transferability of environmental variation.
Our simulation assumes a constant value for environmental
variability, determined to be that required in Africans to give
h2= 0.5 with the specified MAF threshold, from which we
compute an observed heritability h2. We also report values
computed with ‘GCTB using “--bayes S”’ [12].

Finally, in real data analysis, it is necessary to exclude
SNPs that are very rare in the target population by excluding
those beneath some MAF threshold. These need not be the
same SNPs that were rare in the evolving population.

Inference

The resulting heritability for simulated complex traits in
African and other populations is given in Fig. 2. Both our
approach and GCTB agree that heritability in non-Africans
is strongly biased by the bottleneck, and that the magnitude
of this effect is a function of the simulated value of S.
However, we observe that thresholding critically impacts
the inferred heritability. If no thresholding is performed, the
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Fig. 1 Simulation of complex trait genetic architecture with genetic
drift. The Complex Trait has S=−1, meaning that most large effect
alleles are very rare. The blue distribution shows quantiles of effect
size in the population in which the trait evolved, conditional on fre-
quency. Genetic drift (here, Fst= 0.1) changes the blue to the
red distribution. Drift is larger for common SNPs with modest effect,
so most rare SNPs either become a little more common, or go to
fixation. The result is a much flatter distribution (e.g. the 0.5, 0.9, 0.99
quantiles) which resembles a smaller magnitude shape parameter S.
However, the most extreme SNPs at a given frequency (q= 0.999)
arrive from lower frequency and hence have much larger effect. Whilst
the red distribution cannot be exactly replicated by a different shape
parameter S, it can be closely approximated if relatively few SNPs
contribute to the complex trait.
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inferred h2 is significantly larger than simulated, whilst if
thresholding is strict, the inferred h2 may be smaller. It is
not that this heritability is ‘wrongly estimated’, but is a
property of a trait realised in a specific population due to
different genetic variation leading to different phenotypic
variation.

This is a direct consequence of genetic drift changing
allele frequencies independently of SNP effect size
(Fig. 2). Low frequency SNPs with large effects can
become common, leading to an increased genetic variation
of the trait (Supplementary Figs. 1 and 2). This is precisely
why bottlenecked populations including Ashkenazi Jews
[19], Finns [20] and Icelanders [21] are used in GWAS
studies for generally rare diseases that are common in
those populations.

It is important to emphasise that these heritability
changes are a consequence of the total genetic variation
changing as a consequence of genetic drift. Similarly,
environmental variation for real phenotypes varies due to
factors including lifestyle, societal organisation, and so on.
We report these heritability results to emphasise how
important assumptions are in modelling. Of course, it is

possible to scale the environmental variation with the
genetic variation to ensure a desired heritability. Changing
the environmental variation added to phenotypes will not
affect the inference that follows.

Inferred selection is affected by genetic drift

We then asked whether the relationship between SNP fre-
quency and effect size has been distorted by genetic drift,
by estimating the selection coefficient S. For this we
implemented Eq. (1) as a Bayesian model (see ‘Materials
and Methods’).

We call this the ‘simple model’ as it does not account
for genetic drift. This relationship is typically a prior that
affects effect size estimates; for our model this is a like-
lihood for the observed effect size, which we assume
given. These would be taken from GWAS, but in simu-
lations effect sizes are treated as known. This eliminates
the estimation error that often dominates genetic archi-
tecture studies.

Figure 3 shows that S, like h2, is biased by genetic drift,
but this depends critically on how the phenotype is truly

Fig. 2 Estimates of heritability when a complex trait is simulated
in 1000 Genomes Africans (AFR) with h2= 0.5 and observed in
any other worldwide population, when environmental variability
is constant across all populations. Each plot shows observed

heritability at different thresholds for SNP frequency, for a different
population group at S=−0.5 and S=−1. The final plot (Bayes S
panel) shows results from GCTB --bayes R [30] for S=−1, which
agree with our unthresholded estimates.

Genetic drift from the out-of-Africa bottleneck leads to biased estimation of genetic architecture and. . .



formed. In the unbounded effect simulation where no MAF
thresholding is performed (threshold= 0.0001 excludes
only SNPs absent in Africa), the inferred S is larger in
magnitude than the simulated S. Conversely, in the bounded
effect simulation S can be below the true value, and for large
thresholds tends towards the prior mean of 0, due to a lack
of variation in the data. There is a transition around minor-
allele-frequency of 0.05 where the biases cancel out.
However, there is significant variability in the inferred S,
due to the random nature of genetic drift and the sensitivity
of the inference to the most extreme causal SNPs.

Unlike for heritability, it is not clear how a simulation
should be updated to maintain a desired S. The choice of
environmental variation does not effect S as it is simply
adding different amounts of noise to the phenotype. This is
therefore a rather different sort of bias.

Critically however, the choice of MAF thresholding does
not affect inference in the population that experienced the
selection; in our simulations this is Africa (AFR). In this
population, accurate estimates of S are recovered for a range
of thresholds (up to MAF 0.1, above which power is lost)
which induced considerable bias in every other population.

MAF thresholding is therefore a potential sensitivity ana-
lysis tool for the interpretation of S.

Separating drift and selection

Bias in heritability and S are both natural consequences of
genetic drift. To model genetic drift and hence recover the
pre-drift values (see ‘Materials and Methods’) we allow
for genetic drift in a ‘drift model’ (Fig. 4), in which the
drift process is represented using the Balding–Nichols
model [22]. As no individual data is required, these
simulations are larger (N=4000) than Figs. 2, 3 (N=
1000). We demonstrate two cases where the drift model
works well; when the Balding–Nichols model holds
(Fig. 4a, d) and also in the bounded effect simulation
(Fig. 4b, e, f) where it may approximately hold. In these
cases, significant under-estimation of S is observed in the
simple model that ignores drift, which grows with true Fst

(Fig. 4d). We also demonstrate the requirement to accu-
rately estimate Fst (Fig. 4f) in the appropriate SNP set; use
of genome-wide non-representative estimates can create
bias in the drift model.

Fig. 3 Inferred architecture parameter S with different thresholds
for all 1000 Genomes population groups, using a simulated
S=−0.5 and S=−1. The complex trait was simulated in Africans

and inferred in the specified population using the ‘Simple model’. See
Methods for details.
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Unfortunately, due to model mis-specification, the drift
model fails in the unbounded effect simulation of 1000
Genomes data in which the rare SNPs with high effect size
are not correctly modelled (Fig. 4c), leading to bias in
all considered models, for any population except the
evolving one.

The bias in S is controlled by two competing effects. S is
inferred to be larger in magnitude if genetic drift takes rare
SNPs with large effect to high frequency, where they are
unlikely according to the model without drift and therefore
dominate the inference. The number of such SNPs increases
rapidly with S (Supplementary Fig. S3), requiring fewer
than 10k SNPs with S=−1, 1M SNPs with S=−0.5, and
more than we could simulate with S=−0.25. Conversely,
without SNPs with large effect, genetic drift leads S to be
closer to 0 as effect sizes become more homogenous.

Complex Trait architecture is affected by any MAF fre-
quency change, not just genetic drift. Archaic admixture
(see ‘Methods’) has led to a small fraction (around 5%) of
SNPs with high differentiation, from Neanderthals for all
non-Africans cite [23], and Denisovans [24] in Oceania and

South East Asia. Simple simulations show (Supplementary
Fig. S4) that archaic admixture is not likely to be the largest
contributor to high frequency SNPs, as genetic drift from
the out-of-Africa event is already capable of creating dra-
matic changes in SNP frequency. However, this is assuming
nearly neutral drift of individual SNPs, i.e. that genetic drift
dominates selection at the individual SNP level. Loci
selected out of modern humans due to large effects do not fit
the ‘genetic architecture’ framework and could be intro-
duced via archaic populations.

Discussion

Selection occurred on most complex traits in the evolution
of modern humans; that is, most selection will have acted
on the evolving population prior to the out-of-Africa event
that led to the peopling of Eurasia and beyond. This bot-
tleneck led to considerable genetic drift in all non-Africans,
which can bias inference of selection where these are used
as a target population.

Fig. 4 Drift aware inference of genetic architecture removes bias
if the model holds. a Simulation of genetically drifted genetic data in
the unbounded effect simulation using the Balding–Nichols model of
genetic drift as used for inference leads to biased estimation of
genetic drift in the ‘simple model’ which is corrected by our drift
model. b The same bias is observed for simulation of genetically
drifted genetic data in the bounded effects model in the European
(EUR) population, which is corrected by our ‘Drift model’ (estimated
Fst = 0.101 in these SNPs, see Methods). c However, where
SNPs with large effect that do not fit the drift model are included

(the unbounded effects model) all inference is biased. d In the
Balding–Nichols simulation we can vary genetic distance Fst and find
a nonlinear relation. e The bias can be corrected for all 1000
Genomes populations with phenotypes generated in Africa (AFR),
and examined in South Asians (SAS),Native Americans (AMR),
Europeans (EUR) or East Asians (EAS). f The estimate is sensitive to
the estimate of Fst, which must be performed on data representative
of the included SNPs. (Plots show median and 90% credible sets for
inference and all use ‘Africans’ to proxy the evolving population.).

Genetic drift from the out-of-Africa bottleneck leads to biased estimation of genetic architecture and. . .



What do our results imply for real complex traits?
Unfortunately, little can yet be stated with confidence where
traits have been analysed without consideration of drift. We
demonstrated that the bias in S can be positive or negative,
sensitively to details of complex traits that are not currently
well understood: the true value of S and the effect sizes of
SNPs that were rare in the evolving population. Inferred S is
more extreme in drifted populations if the effect size of
extremely rare SNPs is appropriately modelled by the bulk
of the distribution. However, it is smaller if the effect size
remains bounded. From an ‘extreme value’ perspective
(Supplementary Fig. S4), we hypothesise that the presence
of a small number of SNPs with strong effect coupled with
much missing heritability is an indication of being in the
‘under-estimated S’ regime.

We hypothesise similar issues surrounding model-
misspecification of the complex trait. For example, if the
distribution of effects is not normal, if the variance does not
fit the assumed model, or if typical non-ancestral variants
have a biased effect (e.g. are weakly maladaptive). In such a
misspecified model, details such as the prior on the noise
can affect inference; for example, the scale of the variation
in effect size (σβ) may matter. It is likely that semi-
parametric models, which are not sensitive to the distribu-
tion of effect sizes in the bulk of the SNPs, will be more
robust to these issues, and potentially restricting inference to
common SNPs in both Europeans and Africans will aid
robustness.

More constructively, we demonstrated that a simple
sensitivity analysis, that of performing inference at a range
of minor-allele frequencies, can identify whether genetic
drift has an influence on the inferences made on a particular
complex trait. We then showed that correcting for genetic
drift was plausible and desirable, and provided a Bayesian
inference algorithm for this.

It is important to emphasise that our algorithm imple-
ments the ‘prior’ component of the model and can only be
used on real data if unbiased estimates of effect sizes
(allowing uncertainty) can be obtained. Whilst our imple-
mentation lacks the SNP selection component of established
tools, our model can be directly used by performing SNP
selection within other software, or software could be
updated to allow more appropriate models. S is always a
valid summary of a specific genetic architecture, but to link
S to selection it is essential that sensitivity analysis or fur-
ther modelling supports this interpretation.

Our model uses relatively little information and is not
likely to reconstruct true allele frequencies from the past; it
instead learns ancestral SNP frequencies that make the
Complex Trait effect size distribution most plausible. It also
does not implement inference of Fst, as it would be incon-
sistent to infer Fst on a trait-by-trait basis for the same SNP

set. However, it is the case that Fst varies considerably
between SNP sets and the Fst we observed across popula-
tions was low, which may be due to the relatively high
frequency imposed on this during SNP selection.

Genome-Wide, Fst between Africans and Eurasians is
high at ∼0.2 [16]; within Eurasians is moderate (∼0.1
between Europe/China) and small within ancestry groups
(∼0.01 between North and South Europe). Yet the appro-
priate Fst from the ancestor of all humans is not completely
clear. Diversity within Africa is extremely high (again ∼0.2
−0.3) [25]. As larger datasets within Africa become avail-
able, we will need to establish whether selection has con-
tinued to operate effectively on complex traits, leading to
unbiased estimates from these populations. If not, it may
still be inappropriate to use a specific modern African
population as a proxy for the ancestral population of mod-
ern humans. Despite this, African individuals who have not
experienced the bottleneck will be essential in establishing
the true genetic architecture of complex traits, as drift
modelling alone will have limited power to infer the original
SNP frequencies.

On Complex Traits whose variation is dominated by
relatively few SNPs, it will be hard to separate genetic
drift and selection. This leads to two independent avenues
of further research. The first is to increase diversity of
large-scale population studies and especially African
ancestry, to access the genetic diversity that was lost in
the Out-of-Africa bottleneck. The second is to develop
multi-ethnic models of genetic architecture to account for
population structure.

Materials and methods

Datasets

The 1000 genomes project

We use the 1000 Genomes Project data for simulation
analyses. The latest release is phase 3, containing 84.4
million variants for 2504 individuals. Population groups in
this data are African (AFR), European (EUR), South Asian
(SAS), East Asian (EAS) and American (AMR) [16].

1000 Genomes data (genome wide) were pruned
based on linkage disequilibrium. Variant pruning was
done using PLINK 1.9 [26, 27] with ‘command LD
“--indep-pairwise 200 10 0.07”’. After pruning 354,443
SNPs were retained. These SNPs were further passed
to HAPGEN2 [17] to simulate 10,000 individuals from
each population. The dataset for analysis was 10,000
individuals, 354,443 SNPs for each of five population
groups.

B. Ashraf, D. J. Lawson



Complex trait simulation

We generate a random complex trait by selecting N causal
SNPs at random, and simulating effects from our model
following [18]: βi � Nð0; σ2β½ fið1� fiÞ�SÞ: We set σ2β ¼ 1
without loss of generality, and fi are taken as the African
SNP frequencies.

Individual level data are required for running GCTB,
and for the computation of heritability and genetic var-
iance under genetic drift. Then the genetic variation
Vg ¼

PN
i¼1 βi fið1� fiÞ, and we fix narrow sense herit-

ability[28] h2 ¼ Vg

VgþVe
¼ 0:5 in the evolved population to

set the environmental variation Ve ¼ VgðevolvedÞ: we
use N= 1000 and the phenotype of an individual k is
sampled from their (binary) genome xki � BernðfiÞ as
the sum of genetic plus environmental contributions
yk ¼

PN
i¼1 βixki þ Nð0;VeÞ. All 354,443 SNPs were pas-

sed to GCTB, but only the N causal SNPs were con-
sidered by our algorithm. For Fig. 4 in which no
individual data is generated, N= 4000.

Bayesian model for genetic architecture with drift

We created a novel MCMC algorithm in Stan [29] (mc-stan.
org) using the Rstan interface.

Model 0 is the baseline model which is an implementa-
tion of the BayesS model in which there are no SNPs that
do not affect the trait, because we know which these are.
Model 0 can be written for each SNP i ¼ 1::L for the
observed frequency fi and observed effect size βi:

S � U �2; 2ð Þ;
σβ � U 0; 2ð Þ;
βi � N 0; σ2β fið1� fiÞ½ �S

� �
:

The ‘drift model’ is an extension accounting for genetic
drift. It follows Model 0, except that we simulate the
complex trait in a ‘pre-drifted population’. SNP frequencies
in this population is pi which generates the ‘drifted data’
frequency fi using the Baldings–Nichols model [22] to
represent drift using the ‘Fixation Index’ Fst, treated as
known. This leads to:

fi � Beta pi
1� Fstð Þ
Fst

; ð1� piÞ 1� Fstð Þ
Fst

� �
;

βi � N 0; σ2β pið1� piÞ½ �S
� �

:

Here, Normal distributions are specified via (mean, var-
iance) and the Beta distribution is specified as Beta(α, β)
defined in terms of shape and scale parameters with expec-
tation α/(α+ β). Therefore fi has expectation EðfiÞ ¼ pi, and
variance VarðfiÞ ¼ Fst pið1� piÞ.

When Fst is known (Fig. 4a, b) this is provided to the
model. When Fst is unknown, we estimate it on our dataset
using plink1.9 (www.cog-genomics.org/plink/1.9/) [26]
using ‘--fst –within’, providing only the individuals
belonging to the two populations being compared.

Unless otherwise stated, all SNPs are considered without
thresholding in the target population, except for those that
have reached fixation, which are omitted as they have zero
probability under the likelihood.

For Fig. 4 we run ten replicates using four chains each and
retain only runs that converged according to the Rhat statistic
[29] using the criterion Rhat(S) < 1.2. Typically, each chain
either converges rapidly to the correct mode (Rhat < 1.02 in
78% of replicates) or one or more chains become stuck in a
poor local optima with S > 0 leading to Rhat ≥ 1.5.

Default and bounded effect simulation for effect
sizes

The difference between these models is created solely by the
selection of SNPs to be included in the simulation. For the
default simulation, all SNPs with frequency > 0 in Africans are
considered. For the bounded effect simulation, only SNPs with
frequency > 0.01 in Africans are considered for sampling.

The nomenclature arises from the consequences of this
thresholding. The variance of SNPs in the bounded effect
simulation is therefore bounded at ½pið1� piÞ�S � 101 if
S=−1 and pi ¼ 0:001; compared to a minimum variance
of 4 if pi ¼ 0:5. This is 200 times smaller than the variance
of 20001 assigned to the rarest SNP in the dataset
(pi ¼ 5e�5).

Simulation model for Supplementary Fig. 3

We created a simulation model that could characterise our
model rapidly without going through the 1000 Genomes
data, hence providing a simulation that could generate a
range of simulated Fst values and demonstrating perfor-
mance under the assumed model. We choose a value of S
and Fst and then simulate data from the ‘drift model’ with a
specified L (=10,000 throughout).

We also threshold MAF to 0.0001, i.e. in the inference
model, any frequency less than 0.0001 is treated as 0.0001.

Code availability

The code necessary to replicate the results presented here
are given at https://github.com/danjlawson/genomica
rchitecture.
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