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Abstract: The exact expressions for integrated maximal U(1)Y violating (MUV) n-point
correlators in SU(N) N = 4 supersymmetric Yang-Mills theory are determined. The
analysis generalises previous results on the integrated correlator of four superconformal
primaries and is based on supersymmetric localisation. The integrated correlators are
functions of N and τ = θ/(2π) + 4πi/g2

YM
, and are expressed as two-dimensional lattice

sums that are modular forms with holomorphic and anti-holomorphic weights (w,−w)
where w = n − 4. The correlators satisfy Laplace-difference equations that relate the
SU(N+1), SU(N) and SU(N−1) expressions and generalise the equations previously found
in the w = 0 case. The correlators can be expressed as infinite sums of Eisenstein modular
forms of weight (w,−w). For any fixed value of N the perturbation expansion of this
correlator is found to start at order (g2

YM
N)w. The contributions of Yang-Mills instantons

of charge k > 0 are of the form qk f(gYM ), where q = e2πiτ and f(gYM ) = O(g−2w
YM

) when
g2
YM
� 1. Anti-instanton contributions have charge k < 0 and are of the form q̄|k| f̂(gYM ),

where f̂(gYM ) = O(g2w
YM

) when g2
YM
� 1. Properties of the large-N expansion are in

agreement with expectations based on the low energy expansion of flat-space type IIB
superstring amplitudes. We also comment on the identification of n-point free-field MUV
correlators with the integrands of (n− 4)-loop perturbative contributions to the four-point
correlator. In particular, we emphasise the important rôle of SL(2,Z)-covariance in the
construction.
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1 Overview and outline

In recent work [1, 2] we conjectured an exact expression for an integrated four-point cor-
relator of superconformal primaries of the stress tensor multiplet of N = 4 SU(N) super-
symmetric Yang-Mills theory, that is given by a two-dimensional lattice sum and manifests
the SL(2,Z) modular symmetry of the theory. In this paper we will extend these results
to n-point correlation functions that violate U(1)Y charge conservation maximally.

1.1 Overview

The standard correlators of operators in supersymmetric conformal field theory are po-
sition dependent and therefore in general break supersymmetry. However, integrating
over the positions of the operators in a correlator with suitable measure leads to a su-
persymmetric integrated correlator. The form of certain integrated correlators in N = 4
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supersymmetric SU(N) Yang-Mills (SYM) theory can be determined by supersymmetric
localisation in the manner described in [3] and briefly reviewed in appendix A. These are
obtained by exploiting the fact that N = 4 SYM theory is a limit of N = 2∗ SYM theory
in which the hypermultiplet mass vanishes. The particular integrated correlator consid-
ered in the large-N expansion in [3] is the correlator of four superconformal primaries,
〈O2(x1, Y1) · · · O2(x4, Y4)〉, integrated over their positions, xi, with a particular measure.1

This is given by taking four derivatives of the logarithm of the partition function of N = 2∗

SU(N) SYM on S4,

GN (τ, τ̄) = 1
4 ∆τ∂

2
m logZN (m, τ, τ̄)

∣∣∣∣
m=0

, (1.1)

where ∆τ = 4τ2
2 ∂τ∂τ̄ is the hyperbolic Laplacian. The partition function of N = 2∗ SYM,

ZN (m, τ, τ̄), is precisely determined by supersymmetric localisation [4]. The parameter m
is the mass of the hypermultiplet and in the limit m = 0 the N = 2 supersymmetry is
extended to N = 4.

Our notation follows usual conventions where the complex Yang-Mills coupling con-
stant is defined by

τ = τ1 + iτ2 := θ

2π + i
4π2

g2
YM

, (1.2)

with θ the topological theta angle and gYM the Yang-Mills coupling constant.
The large-N ‘t Hooft expansion (in which the ‘t Hooft coupling λ = g2

YM
N is fixed)

of GN (τ, τ̄) was considered in some detail in [3, 5]. The large-N expansion with fixed g2
YM

was considered in [6], where the instanton contributions to the correlator play an essential
rôle in implementing Montonen-Olive SL(2,Z) duality [7–9]. The considerations in [1, 2]
led to a reformulation of this correlator as a two-dimensional lattice sum, which makes
the modular properties of GN (τ, τ̄) manifest for all values of N and greatly simplifies and
extends the analysis of the large-N expansion. These properties of the four-point correlator
are also briefly summarised in appendix A.

A second example of an integrated correlator presented in [10] is obtained from four
derivatives with respect to the masses, ∂4

m logZN (m, τ, τ̄)|m=0 of N = 2∗ SYM partition
function. and is again an integral of 〈O2(x1, Y1) · · · O2(x4, Y4)〉 over xi, but with a different
measure. Its large-N expansion in the ‘t Hooft and fixed g2

YM
limits were discussed in [10]

and [11], respectively. The exact results of these integrated correlators have been used to
determine scattering amplitudes of type IIB superstring theory in AdS5 × S5, after taking
flat-space limit, which match precisely with known results [12–16].

U(1)Y -violating correlators. Our aim here is to extend the preceding considerations
to a class of n-point correlators of operators in the stress tensor supermultiplet that are
modular forms with non-zero modular weights (w,−w), so they transform under SL(2,Z)
by a U(1)Y transformation, where the U(1)Y charge is given by qU = 2w (see appendix B
for a brief summary of some relevant SL(2,Z) properties). Here U(1)Y , which was called

1Here Yi is a SO(6) null vector, encoding the R-symmetry information of N = 4 SYM. This dependence
in the correlator can be factored out and is described in appendix A.
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the ‘bonus U(1)Y ’ in [17], is the holographic image of the U(1) R-symmetry in type IIB
supergravity and breaks to Z4 when stringy corrections are turned on.

The U(1)Y charge of a correlation function of operators in the stress tensor super-
multiplet is the sum of the charges of the individual operators in the correlator. Any of
these super-descendent operators has the form δnδ̄n̂O2, where δ is a chiral supersymmetry
transformation carrying U(1)Y charge +1/2 and δ̄ is an anti-chiral supersymmetry trans-
formation with U(1)Y charge −1/2. Since the superconformal primary, O2(x, Y ) has zero
U(1)Y charge these descendants δnδ̄n̂O2 possess a charge equal to (n− n̂)/2. Furthermore,
the stress tensor supermultiplet is ultra-short so that n+ n̄ ≤ 4.

Super-descendent operators of particular significance in the following are the chiral and
anti-chiral Lagrangian operators, Oτ = δ4O2 and Ōτ̄ = δ̄4O2, which carry U(1)Y charge
+2 and −2, respectively. The N = 4 SYM Lagrangian can be expressed as the sum of two
complex conjugate parts

L =− i

2τ2

(
τOτ − τ̄Ōτ̄

)
, (1.3)

where the chiral and anti-chiral Lagrangians are defined by

Oτ = τ2
4π tr

(
−1

2FαβF
αβ + . . .

)
, Ōτ̄ = τ2

4π tr
(
−1

2 F̄α̇β̇F̄
α̇β̇ + . . .

)
, (1.4)

where Fαβ , F̄α̇β̇ are the self-dual and anti self-dual Yang-Mills field strengths and “. . . ”
indicates terms involving fermion and scalar fields in the Yang-Mills supermultiplet.

The pattern of U(1)Y symmetry breaking in the low energy expansion of type IIB
superstring amplitudes was discussed in [18] and in the large-N expansion of N = 4 SYM
in [17] (see also [19]). In either case, this symmetry is broken so that in general the U(1)Y
charge is violated by the n-point correlator with n > 4. The magnitude of the modular
weight of any such correlator has an upper bound given by |w| ≤ n− 4. This means that
the maximum U(1)Y charge violation is given by

|qU | = 2|w| = 2n− 8 . (1.5)

Maximal U(1)Y -violating correlators. Maximal U(1)Y -violating (MUV) correlators
are n-point correlation functions with maximal U(1)Y charge, i.e. qU = 2n − 8, that have
modular weights (w,−w), where w = n − 4. General features of such correlators were
considered in [20] where particular emphasis was placed on those terms in the large-N
expansion that correspond to the BPS protected terms in the low energy expansion of the
holographic dual type IIB string theory studied in [21]. A characteristic feature of such
MUV string amplitudes is that they do not possess massless poles in any channel.2 This

2“Next-to-MUV” (NMUV) n-point correlators were also defined in [21]. These are dual to type IIB
string theory amplitudes that have a massless pole in one channel with a residue that is the product of a
(n−1)-point MUV amplitude and a three-point supergravity vertex. Furthermore, “Next-to-next-to-MUV”
(NNMUV) n-point correlators were defined to be correlators that are dual to string amplitudes in which a
massless pole either has a residue proportional to the product of a n1-point and a n2-point MUV amplitude
(with n1 + n2 = n − 2 and n1, n2 ≥ 4) or into the product of a three-point supergravity amplitude and a
NMUV (n− 1)-point amplitude.
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extended the analysis of the large-N expansion of the correlators in [3, 5, 6, 10, 11] to
n-point MUV correlators.

There is a convenient harmonic superspace description which packages MUV correla-
tors together [22, 23]. In this approach the operators in the stress-tensor super-multiplet,
T (Ψ), are functions of the superspace variables Ψ = (x, y, ρ, ρ̄), where the y-dependence
determines the dependence on Y (the R-symmetry SU(4))3 and ρ, ρ̄ are Grassmann coor-
dinates in the (2,1)1 and (1,2)−1 representations of SU(2)×SU(2)′×U(1) ⊂ SU(4).4 The
n-point correlators of interest to us are the coefficients in the expansion of the correlator
of n T ’s in powers of ρi and ρ̄i,5

〈T (Ψ1)T (Ψ2) · · ·T (Ψn)〉=
4∑

{kr,¯̀r}=0
|
∑n

r=1(kr−¯̀r)|≤4n−16

Ĝ
(w)
N (j1, j2, . . . , jn)ρk1

1 ρ̄
¯̀1
1 · · ·ρ

kn
n ρ̄

¯̀
n
n , (1.6)

where the variables denoted by each label are ji = (xi, yi, ki, ¯̀
i) and the superscript (w)

indicates the modular weight of the correlator, which equals to w =
∑n
r=1(kr − ¯̀

r)/4. The
fact that the stress-tensor multiplet is ultra-short implies that the sums are subject to the
restrictions

kr + ¯̀
r ≤ 4 , (kr, `r) 6= (1, 3) or (3, 1) , where 1 ≤ r ≤ n, (1.7)

and furthermore, as explained in [23], supersymmetry and superconformal symmetry imply

that
∣∣∣∣∑n

r=1 kr −
∑n
r=1

¯̀
r

∣∣∣∣ ≤ 4n − 16. The correlator Ĝ(w)
N (j1, j2, . . . , jn) is a correlator of

super-descendants of the form

Ĝ
(w)
N (j1, j2, . . . , jn) = 〈Ok1,¯̀1(x1, Y1)Ok2,¯̀2(x2, Y2) · · · Okn,¯̀n(xn, Yn)〉 , (1.8)

where (kr, ¯̀
r) label the components of the stress tensor super-multiplet (for example, O2 ≡

O0,0, Oτ ≡ O4,0 and Ōτ̄ ≡ O0,4). For the MUV correlators, we have
∑n
r=1 kr −

∑n
r=1

¯̀
r =

4n− 16, or equivalently w = n− 4.
For much of the following we will restrict our considerations to MUV correlators of

chiral operators, which have the form δnO2 (with n ≤ 4), in which case ¯̀
r = 0 in (1.8). One

example of such a correlator, which is particularly relevant in the following discussion, is

〈O2(x1, Y1) · · · O2(x4, Y4)Oτ (x5) · · · Oτ (x4+m)〉 , (1.9)

which is the four-O2 correlator with m insertions of Oτ . Each insertion increases the modu-
lar weight w by 1, so that the total weight of the correlator is w = m. This correlator is re-
lated by superconformal symmetry to other MUV correlators with the same modular weight
(or equivalently the same number of operators). For example, when m = 12 (1.9) is related

3The coordinate yaa′ is related to the SO(6) null vector YI by YI = (ΣI)ABεabgaAgbB/
√

2, where gbA =
(δba, yba′ ), which implies (Yi)I (Yj)I = (yi − yj)2.

4The U(1) factor is a subgroup of the SU(4) R-symmetry and should not be confused with the U(1)Y
bonus symmetry, which is an automorphism of PSU(2, 2|4), and which is broken to Z4.

5We have introduced a small change in the notation used in [20].
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to the product of sixteen fermionic operators of the form 〈Λ(x1, Y1)Λ(x2, Y2) · · ·Λ(x16, Y16)〉,
where the descendent Λ ∼ δ3O2 = O3,0 has U(1)Y charge 3/2 so this correlator has U(1)Y
charge 24 (w = 12). This is the holographic dual of the sixteen-dilatino interaction in type
IIB superstring theory.

An important property of chiral MUV correlators is that they can be written in the form

Ĝ
(n−4)
N (j1, j2, . . . , jn) = Ik1,...,kn

n (x1, . . . , xn; y1, . . . , yn)G(n−4)
N (x1, . . . , xn; τ, τ̄) , (1.10)

and so the dependence on the operator content of the correlator (including the SU(4)
quantum numbers) is contained in the pre-factor Ik1,...,kn

n (x1, . . . , xn; y1, . . . , yn), which is
fixed by the symmetries and independent of the coupling. This is the generalisation of
the factor of I4(U, V ;Y ) in the case of the four-point function in (A.3). The remaining
factor, G(n−4)

N (x1, . . . , xn; τ, τ̄) is the “reduced correlation function” that has the same form
for any MUV n-point correlator, and is the analogue of TN (U, V ) in (A.3). The explicit
expression for Ik1,...,kn

n (x1, . . . , xn; y1, . . . , yn) was determined in [23] and is reproduced in
section 2 of [20] (where references to the original observations can be found). The fact that
MUV correlators of a given modular weight are explicitly related by supersymmetry is the
analogue of the property of MUV superamplitudes in type IIB string theory. There, the
n-point amplitudes possess an overall pre-factor of δ16(

∑n
i=1Qi), where Qi is the sixteen-

component supercharge acting on the ith particle.6 The challenge is to determine properties
of the reduced correlation function, G(n−4)

N (x1, . . . , xn; τ, τ̄).
General properties of G(n−4)

N (x1, . . . , xn; τ, τ̄) and its large-N expansion at finite cou-
pling τ were studied in detail in [20]. A key result is obtained by applying the SL(2,Z)
covariant derivative, Dw, to a correlator. This acts on the factor of e

∫
d4xL(x) in the defi-

nition of the expectation value (A.5), thereby inserting an integrated chiral lagrangian,∫
d4xOτ (x). Care must be taken to include the contributions of the integrated con-

tact terms arising from this insertion, which have the form
∫
d4xOτ (x)Owr(xr) ∼ −(1 +

wr)Owr(xr), for each operator Owr(xr) in the correlator with modular weight (wr,−wr) (as
discussed in [20, 25, 26]). The derivative also acts on the factor of τ2 in the normalisation
of each of the operators in the correlator. The net result is the recursion relation

DwG(n−4)
N (x1, . . . , xn; τ, τ̄) = 1

2

∫
d4xn+1G

(n−3)
N (x1, . . . , xn, xn+1; τ, τ̄) , (1.11)

which expresses the content of a soft dilaton condition in the dual holographic superstring
theory. Here w = n− 4 and the covariant derivative Dw is defined as

Dw = i
(
τ2
∂

∂τ
− iw2

)
, (1.12)

which acts on a modular form of weights (w, ŵ) and changes it to be a modular form with
weights (w + 1, ŵ − 1). Thus, the application of Dw to a correlator of weight (w,−w)
results in the insertion of

∫
dxOτ (x), which shifts w to w + 1. Detailed properties of Dw

are discussed in appendix B.
6See [24] for a recent application of this observation in the study of low-energy expansion of superam-

plitudes in type IIB superstring theory in AdS5 × S5.
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We are here interested in the integrated MUV correlators that generalise GN (τ, τ̄) ≡
G(0)
N (τ, τ̄) by the insertion of multiple factors of the integrated chiral Lagrangian,

∫
dxOτ (x).

Such insertions are obtained by applying multiple covariant derivatives Dw to GN (τ, τ̄). The
resulting expression is a (w,−w) modular form given by

G(w)
N (τ, τ̄) = 2w Dw−1Dw−2 · · · D0 GN (τ, τ̄) , (1.13)

which is in accord with the soft dilaton properties of the holographically conjugate type
IIB amplitudes [21, 27], as argued in [20].

The leading terms in the large-N expansion of the MUV correlators that were studied
in [20] have a holographic correspondence with the BPS protected terms in the low energy
expansion of the MUV amplitudes in type IIB superstring studied in [21]. These are terms
with dimension up to 14, i.e. up to the dimension of the d6R4 interaction in the w = 0
sector. In the following we will generalise the lattice expression (A.8) to the expression
that describes MUV correlators and determine their behaviour in various limits.

1.2 Outline of paper

In section 2 we will consider features of integrated n-point MUV correlators for general
values of N , which extend the results of the n = 4 case. For example, in section 2.1 we
will show that the correlator G(w)

N (τ, τ̄) (w = n − 4) defined in (1.13) satisfies a Laplace-
difference equation, which follows directly from the equation satisfied by the four-point
correlator GN (τ, τ̄). We will demonstrate in section 2.2 that a weight-w MUV correlator
can be expressed as a two dimensional lattice sum, extending the analysis of the w = 0
case given in [1, 2]. This lattice sum can also be expressed as an infinite sum of Eisenstein
modular forms (which are defined and summarised in appendix B). The structure of the
perturbative expansion of G(w)

N (τ, τ̄) in powers of λ = g2
YM

N is determined to any desired
order for any value of N . As in the w = 0 case the perturbation series contains non-planar
contributions, which start at (4− w)-loop order when w < 4 and at free theory if w ≥ 4.

Instanton and anti-instanton contributions are extracted from the exact expression for
the correlator in section 2.3. Unlike in the w = 0 case, when w > 0 the systematics of the
perturbation expansion around an instanton is different from that around an anti-instanton.
This will be seen to be in accord with semi-classical arguments concerning the fermionic
zero modes contained in the profile of the operators in the correlator in an instanton or
anti-instanton background.

The large-N expansion of G(w)
N (τ, τ̄) is discussed in section 3 where we will determine

both the fixed λ and fixed g2
YM

expansions and demonstrate the similarities and differences
from the w = 0 case. At small λ we find a convergent perturbative expansion for |λ| <
π2, while for λ � 1 perturbation theory produces an asymptotic, factorially growing,
divergent series. This strong coupling series is not Borel summable and its non-perturbative
completion, which behaves as O(λw/2e−2

√
λ), is determined using resurgence techniques.

In section 4 we will briefly discuss the insertion of
∫
d4xOτ (x) in the non-integrated

correlator 〈O2(x1, Y1) · · · O2(x4, Y4)〉, and its application for constructing perturbative loop
integrands [23, 28]. We will argue that it is important to use the covariant derivatives

– 6 –
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(rather than the ordinary derivatives with respect to gYM ) in this procedure of determining
perturbative loop integrands of the 4-point correlator.

We end with a conclusion and discuss some future directions in section 5.

2 Exact properties of MUV correlators

We will now consider properties of the MUV correlators that are obtained from (1.13) using
the exact expression for G(0)

N (τ, τ̄) ≡ GN (τ, τ̄) in (A.8).

2.1 The Laplace-difference equation

It is straightforward to determine the Laplace equation satisfied by G(w)
N (τ, τ̄) given the

Laplace difference equation for the w = 0 case in (A.16), which was derived in [1, 2] and
we rewrite here for convenience:

(∆τ − 2)GN = N2(GN+1 − 2GN + GN−1)−N(GN+1 − GN−1) , (2.1)

where G(0)
N (τ, τ̄) ≡ GN (τ, τ̄). As described in appendix B, the hyperbolic Laplacian ∆τ act-

ing on GN (τ, τ̄) can be identified with the SL(2) Casimir operator Ω(0,0), defined in (B.7),
when restricted to the space of modular functions, i.e. modular forms M(w,ŵ) with holo-
morphic and anti-holomorphic weights (w, ŵ) = (0, 0).

From equation (1.13), we know that G(w)
N is obtained by repeated applications of the

covariant derivative to G(0)
N . Furthermore, the covariant derivative changes the modular

weights according to Dw : M(w,ŵ) 7→ M(w+1,ŵ−1), and since the Casimir operator Ω com-
mutes with Dw, using (B.7) it follows that

Ωw,−w G(w)
N = Ωw,−w

[
2wDw−1Dw−2 · · · D0 GN

]
= 2wDw−1Dw−2 · · · D0

[
Ω0,0 GN

]
= N2(G(w)

N+1 − 2G(w)
N + G(w)

N−1)−N(G(w)
N+1 − G

(w)
N−1) + 2G(w)

N , (2.2)

where Ωw,−w denotes the restriction of the Casimir operator to the vector space of modular
forms M(w,−w) with weights (w,−w). The second line follows from the Laplace-difference
equation (2.1) satisfied by GN (τ, τ̄), and the fact that Ω0,0 = ∆τ .

Given the explicit forms of Ωw,−w in (B.10) and (B.11) (2.2) can be expressed in either
of two ways:(

4Dw−1D̄−w +[w(w−1)−2]
)
G(w)
N = N2(G(w)

N+1−2G(w)
N +G(w)

N−1)−N(G(w)
N+1−G

(w)
N−1) , (2.3)

or equivalently(
4D̄−w−1Dw +[w(w+1)−2]

)
G(w)
N = N2(G(w)

N+1−2G(w)
N +G(w)

N−1)−N(G(w)
N+1−G

(w)
N−1) . (2.4)

Just as in the w = 0 case described in [1, 2], this equation determines G(w)
N (τ, τ̄) for

N > 2 in terms of the N = 2 MUV integrated correlator, G(w)
2 (τ, τ̄). It is easy to see

that in the perturbative sector, where there is no dependence on τ1, the operator on the
left-hand side of (2.3) reduces to

4Dw−1 D̄−w + [w(w − 1)− 2]→ τ2
2 ∂

2
τ2 − 2 (2.5)

– 7 –
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which is identical to the differential operator of the w = 0 case. The same is true for
the operator on the left-hand side of (2.4). In other words, the perturbative part of the
Laplace-difference equation is not sensitive to the value of w. This does not mean that the
perturbative part of G(w)

N (τ, τ̄) is identical to that of GN (τ, τ̄), since the inputs from the
SU(2) cases are different (G(w)

2 (τ, τ̄) is different from G2(τ, τ̄) for w > 0). In the following
section, we will explicitly discuss the perturbative expansion of G(w)

N (τ, τ̄).

2.2 Yang-Mills perturbation theory

The expression for G(w)
N (τ, τ̄) can be obtained by substituting the expression for GN (τ, τ̄)

in terms of non-holomorphic Eisenstein series (A.14) into (1.13), giving

G(w)
N (τ, τ̄) = N(N − 1)

8 δw,0 + 1
2

∞∑
s=2

c(N)
s 2w Dw−1Dw−2 · · · D0E(s; τ, τ̄)

= N(N − 1)
8 δw,0 + 1

2

∞∑
s=2

c(N)
s

1
τw2
∇w E(s; τ, τ̄) ,

(2.6)

where δw,0 denotes the Kronecker delta and ∇ = 2iτ2
2 ∂τ is the Cauchy-Riemann derivative

discussed in appendix B. Using the relation τ−w2 ∇w E(s; τ, τ̄) = (s)w E(w)(s; τ, τ̄), where
E(w)(s; τ, τ̄) is the Eisenstein modular forms that is discussed in appendix B (and defined
by (B.25)), one can further express the integrated correlator as

G(w)
N (τ, τ̄) = N(N − 1)

8 δw,0 + 1
2

∞∑
s=2

c(N)
s (s)w E(w)(s; τ, τ̄) . (2.7)

Now, using the Lattice sum expression of E(w)(s; τ, τ̄) given in (B.30) together with (A.15),
we find that the weight-w integrated correlator can be further expressed as

G(w)
N (τ, τ̄) =

∑
(m,n)∈Z2

d2w

dα2w

[∫ ∞
0

exp
(
−πt|m+ nτ |2

τ2
+ α

√
π (m+ nτ̄)
√
τ2

)
twBN (t) dt

]
α=0

.

(2.8)
This lattice sum representation is a well-defined analytic modular form for all values of τ
with τ2 > 0. If the rational function BN (t) is expanded around the origin, as in (A.15), and
if we restrict our attention to a single monomial term of the form ts−1 we obtain the same
integrand as that of E(w)(s; τ, τ̄) in (B.30). In other words, (2.8) can formally be expanded
as an infinite sum of E(w)(s; τ, τ̄) modular forms with rational coefficients. However, the
sum of Eisenstein series in (2.7) does not have well-defined convergence properties, whereas
the lattice sum representation (2.8) converges for all τ and N . Indeed G(w)

N can be well
approximated by cutting off the lattice sum at suitably high values of m and n.

2.2.1 The relationship between weak and strong coupling

The perturbative terms in the small-g2
YM

limit can be extracted by proceeding as in the
w = 0 case considered in [1, 2]. Recall that the perturbative terms come from the zero
mode of non-holomorphic Eisenstein series as in (A.14), which is given by the sum of two
pieces shown in (A.18). The sum of the τ1−s

2 = (g2
YM

/4π)s−1 terms is denoted G(i)
N,0(τ2);
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the other piece is G(ii)
N,0(τ2), which is given by the sum of the τ s2 = (g2

YM
/4π)−s terms. After

Borel summation we saw that G(ii)
N,0(τ2) = G(i)

N,0(τ2) and both parts of the zero mode sum
contribute equally.

We will now see how this extends to MUV correlators starting from the expression (2.8)
and following closely the procedure used to analyse the modes of E(w)(s; τ, τ̄) in appendix B.
When w > 0 the term (m,n) = (0, 0) is absent since it is killed by the α derivative in (2.8).
The Fourier expansion of (2.8) is again obtained by performing a Poisson resummation in
m (and later changing n→ −n), resulting in

G(w)
N (τ, τ̄) =

∑
(m̂,n)∈Z2

√
τ2e

2πim̂nτ1 (2.9)

d2w

dα2w

[∫ ∞
0

exp
(
−
(
2n√πτ2t+iα

)2
4t −

(
2m̂√πτ2−iα

)2
4t −α

2

4t

)
tw−1/2BN (t)dt

]
α=0

,

where the integers k = m̂n labelling these modes are interpreted as instanton numbers. As
in the analysis of the w = 0 case the perturbative terms (the k = 0 terms) arise from two
classes of terms:

(i) the terms with n = 0 with a sum over all m̂;

(ii) the terms with m̂ = 0 with a sum over all n.

The n = 0 case. In this case we can rewrite the contribution as

G(w)(i)
N,0 (τ2) =

∑
m̂∈Z

√
τ2

d2w

dα2w

[∫ ∞
0

exp
(
−

(2m̂√πτ2−iα)2

4t

)
tw−1/2BN (t)dt

]
α=0

. (2.10)

The m̂ = 0 case. In this case we can rewrite the contribution as

G(w)(ii)
N,0 (τ2) =

∑
n∈Z

√
τ2

d2w

dα2w

[∫ ∞
0

exp
(
−

(2n√πτ2t+iα)2

4t

)
tw−1/2BN (t)dt

]
α=0

. (2.11)

Although it appears that the (m̂, n) = (0, 0) term has been double counted, it is fairly
simple to show that this actually vanishes thanks to (A.12).

If we redefine the variable α in (2.11) by setting α = −t α̃ so that d/dα = −t−1d/dα̃,
and then change variable from t to 1/t, (2.11) becomes

G(w)(ii)
N,0 (τ2) =

∑
n∈Z

√
τ2

d2w

dα̃2w

∫ ∞
0

exp
(
−
(
2n√πτ2−iα̃

)2
4t

)
tw−1/2

BN
(

1
t

)
t

dt


α̃=0

, (2.12)

which is identical to G(w) (i)
N,0 (τ2) using the inversion property BN (t) = t−1BN (t−1) in (A.11).

We conclude that G(w) (ii)
N,0 (τ2) = G(w) (i)

N,0 (τ2), which extends the result previously found
when w = 0.
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2.2.2 Some features of the Yang-Mills perturbation expansion

Making use of (2.6) and the identity in (B.15) as well as the definition of the holomorphic
Eisenstein series Gk(τ) in (B.16) it is easy to see that for all s ≤ w

1
τw2
∇wE (s; τ, τ̄) ∼ 1

τw2
∇w−s

(
τ2s

2 G2s (τ)
)
∼ 1
τw2
∇w−s

(
τ2s

2

)
∼ τ s2 . (2.13)

Consequently the τ1−s
2 term in the zero mode of the Eisenstein series with s ≤ w does

not contribute to the perturbative expansion. Therefore the first contribution comes from
E(w + 1, τ, τ̄) so that

G(w)
N (τ, τ̄) ∼ O

( 1
τw2
∇w(τ−w2 )

)
∼ O(τ−w2 ) . (2.14)

Therefore we conclude that the perturbation expansion of G(w)
N (τ, τ̄) begins at order τ−w2 ,

i.e. at order (g2
YM

)w.
In the w = 0 case (the four-point correlator) the leading term is of order τ0

2 , which is
the free-field contribution that arose in (A.3). However, following [3] this term cancels out
of the supersymmetric localization calculation and the interacting part, which is described
by TN (U, V ), begins with the one-loop contribution of order τ−1

2 . If, however, we were to
explicitly integrate the free-field contribution in (A.3) (appropriately normalised) with the
measure (1.1), this would produce a divergent τ0

2 coefficient, which can be interpreted as a
rational multiple of ζ(1). This is formally consistent with uniform trascendentality as we
will shortly see in (2.15).

On the other hand, for MUV correlators with w > 0, we need to include the free-field
contributions, which are of order τ−w2 . Indeed, as will be explained in section 4, the free
part of a n-point MUV correlator can also be interpreted as the (n− 4)-loop correction to
the four-point correlator, which provides an efficient method for constructing perturbative
loop integrands [23].

Using (2.9) and/or (2.11) it is straightforward to determine the perturbative expan-
sion of GN (τ, τ̄) to any order and for any value of N . The following expressions for the
perturbative expansion of correlators in the SU(2) theory with different weights (including
w = 0, 2, 4) illustrate the general structure,

G(0)
2,0 (τ2) =G2,0 (τ2) = 9ζ (3)

y
− 225ζ (5)

2y2 + 2205ζ (7)
2y3 − 42525ζ (9)

4y4 +O
(
y−5

)
,

G(2)
2,0 (τ2) =−225ζ (5)

y2 + 6615ζ (7)
y3 − 127575ζ (9)

y4 + 8575875ζ (11)
4y5 +O

(
y−6

)
, (2.15)

G(4)
2,0 (τ2) =−255150ζ (9)

y4 +25727625ζ (11)
2y5 −1660133475ζ (13)

4y6 +22347950625ζ (15)
2y7 +O

(
y−8

)
,

where y = πτ2.
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It is of interest to exhibit the N -dependence of the SU(N) Yang-Mills perturbation
expansion for generic N , which takes the form

G(w)
N,0 (τ2) =

(
N2 − 1

) [3 (−1)w ζ (3) a
2 − 75 (−2)w ζ (5) a2

8 + 735 (−3)w ζ (7) a3

16

−
6615 (−4)w ζ (9)

(
1 + 2

7N
−2
)
a4

32 + 114345 (−5)w ζ (11)
(
1 +N−2) a5

128

−
3864861 (−6)w ζ (13)

(
1 + 25

11N
−2 + 4

11N
−4
)
a6

1024

+
32207175 (−7)w ζ (15)

(
1 + 55

13N
−2 + 332

143N
−4
)
a7

2048 +O
(
a8
) , (2.16)

where a = g2
YM

N/(4π2) = N/(πτ2) and arbitrary N ≥ 2. Since the Pochhammer symbol
(−n)w, with n ∈ N, vanishes when n < w perturbation theory starts at order aw ∼ τ−w2
for any N . As anticipated earlier for w = 0 the a0 term, which would correspond to a
divergent ζ(1) free-field theory contribution, does not appear. So we see that although in
the case of the w = 0 correlator, non-planar terms enter the perturbative expansion at four
loops, when w > 0 non-planar corrections start earlier. For example, for w = 2 the first
non-planar correction enters at three loops,

G(2)
N,0 (τ2) =

(
N2 − 1

)−75 ζ (5) a2

4 + 2205 ζ (7) a3

8 −
19845 ζ (9)

(
1 + 2

7N
−2
)
a4

8

+571725 ζ (11)
(
1 +N−2) a5

32 −
57972915 ζ (13)

(
1 + 25

11N
−2 + 4

11N
−4
)
a6

512

+
676350675 ζ (15)

(
1 + 55

13N
−2 + 332

143N
−4
)
a7

1024 +O
(
a8
) . (2.17)

When w ≥ 4 the first non-planar correction enters at leading order (tree-level).7 For
example, for w = 4:

G(4)
N,0 (τ2) =

(
N2 − 1

)−19845 ζ (9)
(
1 + 2

7N
−2
)
a4

4 + 1715175 ζ (11)
(
1 +N−2) a5

16

−
173918745 ζ (13)

(
1 + 25

11N
−2 + 4

11N
−4
)
a6

128

+
3381753375 ζ (15)

(
1 + 55

13N
−2 + 332

143N
−4
)
a7

256 +O
(
a8
) . (2.18)

2.3 Instanton and anti-instanton contributions

We will now study the non-zero Fourier modes of G(w)
N (τ, τ̄), by using its expression in terms

of non-holomorphic Eisenstein modular forms given in (2.6). The k-instanton contribution
7Note the leading order term arises from Wick contractions of the free theory.
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to a single non-holomorphic Eisenstein modular form E(w)(s; τ, τ̄) (the kth positive Fourier
mode with k > 0), behaves as e2πikττw2 as τ2 →∞, while the k anti-instanton contribution
(the kth Fourier mode with k < 0) vanishes for s ≤ w and behaves as e2πikττ−w2 when s > w.
We will see that the MUV integrated correlator (2.6) has the same general properties.

It follows from (A.15) that the kth Fourier mode for the weight-w integrated correlator
can be expressed as

G(w)
N,k (τ, τ̄) =

∑
(m̂,n)∈Z2

n 6=0

√
τ2e

2πim̂nτ1 (2.19)

d2w

dα2w

[∫ ∞
0

exp
(
−
(
2n√πτ2t+ iα

)2
4t −

(
2m̂√πτ2 − iα

)2
4t − α2

4t

)
tw−1/2BN (t) dt

]
α=0

.

where k = m̂n and again if we expand the rational function BN (t) around the origin we
find that the integrand can be written as an infinite sum of integrands for E(w)(s; τ, τ̄)
in (B.34).

Given the definitions of BN (t) in (A.9)–(A.10), this integral can be explicitly evaluated
for fixed mode number k and fixed number of colours N . Alternatively, these non-zero
modes of the weight-w integrated correlator can be determined by applying the Cauchy-
Riemann derivative (B.17) to the w = 0 integrated correlator, GN (τ, τ̄).

To illustrate the generic features of the instanton terms we will now present some
simple explicit examples. These are the k = ±1 (charge-one instanton and charge-minus
one anti-instanton) sectors of the weight-2 and weight-4 correlators in the SU(2) theory.
In each case we will present the exact expression together with the first few terms in its
perturbative expansion around the y = πτ2 →∞ limit,

G(2)
2,1(τ, τ̄) = e2πiτ

[
99y2 − 15

4
√
πe4yy3/2 (3 + 56y) erfc (2√y)

]
= e2πiτ

(
−6y2 + 15

2 y −
135
32 + 45

16y +O
(
y−2

))
, (2.20)

G(2)
2,−1 (τ, τ̄) = e−2πiτ̄

[
3y2 (8y + 3) (8y + 11)

− 3
4
√
πe4yy3/2

(
512y3 + 960y2 + 360y + 15

)
erfc (2√y)

]
= e−2πiτ̄

(
− 135

256y2 + 945
512y3 −

42525
8192y4 +O

(
y−5

))
, (2.21)

G(4)
2,1 (τ, τ̄) = e2πiτ

[3
4y

2 (2895 + 32y (15− 4y))− 945
16
√
πe4yy3/2 (3 + 88y) erfc (2√y)

]
= e2πiτ

(
−96y4 + 360y3 − 855

2 y2 + 945
4 y − 14175

128 +O
(
y−1

))
, (2.22)

G(4)
2,−1 (τ, τ̄) = e−2πiτ̄

[3y2

4 (2895 + 128y (165 + 2y (147 + 8y (11 + 2y))))− 3
16
√
πe4yy3/2

×
(
945 + 37800y + 201600y2 + 322560y3 + 184320y4 + 32768y5

)
erfc (2√y)

]
= e−2πiτ̄

(
− 42525

4096y4 + 1403325
16384y5 −

127702575
262144y6 +O

(
y−7

))
. (2.23)
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The general structure of these contributions is in accord with expectations from the analysis
of semi-classical instanton contributions to MUV correlators in special cases treated in the
literature, see, for example, [29–31]. These references were all restricted to the holograph-
ically related leading low-energy expansion of superstring amplitude, or to leading orders
in the 1/N expansion of N = 4 SYM correlators, and only considered the semi-classical
approximation. Our present results go far beyond the semi-classical approximation and
apply to any value of N ≥ 2, but nevertheless some general features are explained by the
leading order calculations.

For example, the fact that the leading power of g2
YM
∼ τ−1

2 in the instanton background
is of order τw2 is a direct reflection of the presence of 16 superconformal zero modes. The
counting of powers of τ2 to leading order in 1/τ2 is as follows. The instanton profile of each
operator insertion involves the product of (2∆ − 4w) fermionic zero modes (where ∆ is
the dimension of the operator), each contributing a power τ−1/4

2 , in addition to the power
of τ2 in the normalisation of each operator. The leading order instanton contribution to
the n-point correlator necessarily absorbs all 16 superconformal fermion zero modes and is
therefore of order τn−16×1/4

2 = τw2 as τ2 → ∞, as in G(2)
2,1 and G(4)

2,1 exhibited above. More
explicitly, the instanton profile of the operator O2(x) (∆ = 2, w = 0) has four fermionic
zero modes, while Oτ (x) (∆ = 4, w = 2) has no fermionic zero modes, and so G(w)

N,k(τ, τ̄)
behaves as

〈O2(x1, Y1) · · · O2(x4, Y4)Oτ (x5) · · · Oτ (xw+4)〉 ∼ e2πikττw2 . (2.24)

The contributions to the profiles of operators in an anti-instanton background acquire
more powers of τ−1

2 from two distinct sources.

(i) Firstly, they involve more fermionic modes, which are quasi-zero modes — these are
classical zero modes in the ADHM construction, that arise with non-zero coefficients
in the moduli space action when interactions are taken into account (see, for exam-
ple, [30]). The contributions of such modes to various correlators is discussed in [31].

(ii) Secondly (as is also discussed in detail in [31]), there are perturbative corrections to
the anti-instanton contribution that arise by Wick contractions of fields inside the
operators in the correlators. Such contractions appear as propagators joining oper-
ators, where the propagator in an instanton background is rather complicated [31],
but has the same power of τ−1

2 as the propagator in a trivial background.

Instead of considering the correlator (2.24) in a k-anti-instanton background with k > 0 we
may consider the complex conjugate correlator in a k-instanton background with k > 0,

〈O2(x1, Y1) · · · O2(x4, Y4) Ōτ̄ (x5) · · · Ōτ̄ (xw+4)〉 . (2.25)

Since the operator Ōτ̄ is related to Oτ by the action of eight supercharges, its profile
contains the product of eight fermionic zero modes, which may be a mixture of true zero
modes and quasi-zero modes. In general the evaluation of the semi-classical contribution to
the correlator involves the sum of both types of contributions, (i) and (ii), described above,
together with the contribution of the 16 true superconformal zero modes. For illustrative
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purposes we can consider the contribution in which all the fundamental fields in Ōτ̄ are
contracted by propagators in the instanton background and the 16 true fermionic zero
modes are soaked up by the four O2 operators. In this contribution the counting of the
powers of τ2 has the form

〈O2(x1, Y1) · · · O2(x4, Y4) Ōτ̄ (x5) · · · Ōτ̄ (xw+4)〉 ∼ e2πikτ τ−2w
2 τw2 = e2πikττ−w2 , (2.26)

where the factor τ−2w
2 arises from 2w propagators contracting the fields in Ōτ ’s.8 The

factor of τw2 arises from the normalisation factor Ōτ̄ ∼ τ2.
This counting extends to all possible terms involving both integration over quasi-zero

modes in the profiles of the operators as in item (i) above, and propagator contractions as
in item (ii) above. All terms contribute the same net power of τ−w2 .9 By taking the complex
conjugate of equation (2.26) we then deduce that the correlator (2.24) in a k-anti-instanton
background, k > 0, behaves as e−2πikτ̄τ−w2 . We have thus seen that the leading behaviour
of G(w)

N,−k with k > 0 at large τ2 is of order τ−w2 , which in the cases G(2)
2,−1 and G(4)

2,−1 is in
accord with the τ2-dependence in (2.21) and (2.23).

3 Large-N expansion

We will now study large-N expansion of the integrated correlators. We begin by considering
the standard ‘t Hooft limit, in which λ = g2

YM
N is fixed and Yang-Mills instantons are

suppressed by factors of e−cN/λ for some finite value of c. In this limit G(w)
N (τ, τ̄) is expressed

as a power series in 1/N , which has the standard interpretation as a genus expansion of
the form,

G(w)
N (τ, τ̄) ∼

∞∑
g=0

N2−2gG(w,g)(λ) , (3.1)

where g denotes the genus. The expressions for G(w,g)(λ) and their small-λ and large-λ
expansions are discussed in sections 3.1.1 and 3.1.2 for the cases with g = 0, 1.

In order to exhibit the SL(2,Z) covariance of the correlator it is necessary to consider
the large-N limit with fixed g2

YM
(sometimes called the “very strong coupling limit”), in

which Yang-Mills instantons play an essential rôle. This will be the subject of section 3.2.

3.1 Large-N and fixed-λ

Applying the relation (1.13) to the perturbative contributions, while ignoring the instanton
contribution (which is equivalent to ignoring the τ1 dependence), the covariant derivative
reduces to

Dw = i

(
τ2
∂

∂τ
− iw2

)
→ 1

2

(
τ2

∂

∂τ2
+ w

)
, (3.2)

leading to the relation,

G(w)
N,0(τ2) = (τ2∂τ2 + (w − 1)) · · · (τ2∂τ2 + 1) (τ2∂τ2)GN,0(τ2)

= τ2 ∂
w
τ2

(
GN,0(τ2) τw−1

2

)
. (3.3)

8Each Ōτ̄ contains four fundamental scalar fields, and each propagator contracts two of them, and so
2w propagators are needed to contract for w factors of Ōτ ’s.

9Although this is not demonstrated explicitly here, closely related examples are given in detail in [31].
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Transforming from τ2 to the ‘t Hooft coupling λ = 4πN/τ2 and substituting in (3.1) implies,

G(w,g)(λ) = 1
λ
∂wλ−1

(
G(0,g)(λ)λ1−w

)
. (3.4)

We may now consider the series expansions of G(w,g)(λ) at small λ or large λ. Note
that if we apply the differential operator (3.4) to a general function F (λ) that has a small-λ
expansion of the form F (λ) =

∑
n anλ

n the result is a new Taylor series with coefficients
given by

1
λ
∂wλ−1

(
F (λ)λ1−w

)
=
∑
n

an
Γ(−n+ w)

Γ(−n) λn . (3.5)

The quantity Γ(−n + w)/Γ(−n) is the Pochhammer symbol (−n)w that vanishes when
n < w, while for n ≥ w it can be replaced by the regular expression (−1)w(n + 1 − w)w.
Similarly, the action of the differential operator (3.4) on the large-λ expansion, which has
the form F (λ) =

∑
n bnλ

−n−1/2, gives rise to an expansion of the form

1
λ
∂wλ−1

(
F (λ)λ1−w

)
=
∑
n

bn
Γ(n+ 1/2 + w)

Γ(n+ 1/2) λ−n−1/2 . (3.6)

So the coefficient for any value of g is determined in terms of the corresponding coefficient
in the w = 0 case. The factor Γ(n + 1/2 + w)/Γ(n + 1/2) = (n + 1/2)w is non-vanishing
so, in contrast to the small-λ expansion, the coefficients in the large-λ expansion do not
automatically vanish for any value of n.

3.1.1 Small-λ expansion and resummation

We will now apply the above general discussion to concrete examples to obtain explicit
results for G(w,g)(λ). To illustrate the structure of these expressions, in the following we
will present the results for the first two genera, g = 0 and g = 1. Let us consider the
w = 0 case discussed in [2] and define G(g)(λ) := G(0,g)(λ). At leading order in the large-N
expansion (i.e. g = 0), we have

G(0)(λ) =
∞∑
n=1

4(−1)n+1ζ(2n+ 1)Γ
(
n+ 3

2

)2

π2n+1Γ(n)Γ(n+ 3) λn , (3.7)

which converges for |λ| < π2, and can be resummed leading to

G(0)(λ) = λ

∫ ∞
0

dt t3
1F2

(
5
2 ; 2, 4| − t2λ

π2

)
4π2 sinh2(t)

. (3.8)

Applying the relation (3.5) to (3.7), the resulting series is again convergent for |λ| < π2,
and after again performing the resummation, the result is

G(w,0)(λ) = λ

∫ ∞
0

dt t3
6(−1)w 1F̃2

(
5
2 ; 2− w, 4| − t2λ

π2

)
4π2 sinh2(t)

, (3.9)

where 1F̃2 is the regularised hypergeometric function, defined by

1F̃2(a; b, c|z) = 1
Γ(b)Γ(c) 1F2(a; b, c|z) , (3.10)
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with 1F2 the usual generalised hypergeometric function. It is easy to see that
G(w,0)(λ)

∣∣
w=0 = G(0)(λ).

The g = 1 contribution to the w = 0 correlator considered in [2] takes the form

G(1)(λ) =
∞∑
n=1

(−1)n(n− 5)(2n+ 1)ζ(2n+ 1)Γ
(
n− 1

2

)
Γ
(
n+ 3

2

)
24π2n+1Γ(n)2 λn , (3.11)

which converges for |λ| < π2 and can be resummed to

G(1)(λ)=−λ
∫ ∞

0
dtt3

22F3
(

1
2 ,2;1,1,1|− t2λ

π2

)
−51F2

(
1
2 ;1,2|− t2λ

π2

)
−9J0

(
t
√
λ
π

)
2

48π2 sinh2(t)
. (3.12)

For non-zero w, we find that this result generalises to

G(w,1)(λ) = −λ
∫ ∞

0
dt

t3

48π2 sinh2(t)

[
2 3F̃4

(
1
2 , 2, 2; 2− w, 1, 1, 1| − t2λ

π2

)

−5 1F̃2

(
1
2; 1, 2− w| − t2λ

π2

)
− 9 2F̃3

(
1
2 , 2; 2− w, 1, 1| − t2λ

π2

)]
, (3.13)

which reduces to (3.12) in the w = 0 limit, noticing that 1F̃2
(

1
2 ; 1, 1| − t2λ

π2

)
= J0( t

√
λ
π )2.

Higher-genus terms can be obtained in a similar fashion, and the results have analogous
structures to those of G(w,0)(λ) and G(w,1)(λ).

3.1.2 Large-λ expansion and resurgence

In this section, we will consider properties of the integrated MUV correlators in the large-λ
limit. Using (3.8) we can straightforwardly obtain the series expansion, for G(w,0)(λ) and
G(w,1)(λ) from the known results in the w = 0 case [2]. Equivalently, one may perform
the large-λ expansion directly using the integral expressions given in (3.9) and (3.13) and
the Mellin-Barnes representations of hypergeometric functions. Either way, we find the
factorially growing expansion for the g = 0 coefficient in (3.1),

G(w,0)(λ) ∼
Γ
(
w + 1

2

)
4
√
π

+
∞∑
n=1

Γ
(
n− 3

2

)
Γ
(
n+ 3

2

)
Γ(2n+ 1)Γ

(
n+ 1

2 + w
)
ζ(2n+ 1)

22n−2π Γ(n)2Γ
(
n+ 1

2

)
λn+1/2

,

(3.14)
and similarly, for the g = 1 term

G(w,1)(λ) ∼
Γ
(
w − 1

2

)
32
√
π

λ1/2

−
∞∑
n=1

n2(2n+ 11)Γ
(
n+ 1

2

)
Γ
(
n+ 3

2

)2
Γ
(
n+ 1

2 + w
)
ζ(2n+ 1)

24π
3
2 Γ(n+ 2)Γ

(
n+ 1

2

)
λn+1/2

. (3.15)

We see that the large-λ expansion is asymptotic and not Borel summable for any value
of w and at each order in 1/N . We will now see that a resurgence analysis, following closely
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the techniques of [2, 32], leads to the non-perturbative completion of these asymptotic
series. As in [2] this involves understanding the singularities of the asymptotic series after
Borel summation. One may also obtain the same result by acting on the w = 0 expression
of [2], with appropriate differential operators as discussed earlier.

We will now consider the convergence properties of the large-λ expansion that defines
G(w,0)(λ) in (3.14). We start by defining a modified Borel transformation [32]

B :
∞∑
n=1

bnλ
−n−1/2 →

∞∑
n=1

2πbn
ζ(2n+ 1)Γ(2n+ 2)(2x)2n+1 := φ̂(x) , (3.16)

which, when applied to the asymptotic series (3.14), produces the modified Borel transform

φ̂(w,0) (x) = −16
√
πΓ
(
w + 3

2

)
x3

2F1

(
−1

2 , w + 3
2; 1|x2

)
. (3.17)

Using the key identity
22s−2

Γ(2s)

∫ ∞
0

dx
x2s−1

sinh2(x)
= ζ(2s− 1) , (3.18)

we can then provide an analytic continuation of the formal expansion (3.14) in terms of
the directional Borel resummation

SθG(w,0)(λ) =
Γ
(
w + 1

2

)
4
√
π

+
√
λ

π

∫ eiθ∞

0

dx

4 sinh2(x
√
λ)
φ̂(w,0)(x) , (3.19)

which defines an analytic function for
√
λ > 0 when θ ∈ (−π/2, π/2). Although (3.19) pro-

vides an analytic continuation for G(w,0)(λ) it is neither unique nor is it real for
√
λ positive

for any value of integration direction θ. This is due to the presence of the branch-cut in the
Borel transform φ̂(w,0)(x) along [1,∞]. As anticipated, G(w,0)(λ) is non-Borel summable
and standard resurgence arguments suggest that we are missing exponentially small non-
perturbative terms. These terms are encoded in the discontinuity of the Borel transform
and can be determined in terms of the so-called Stokes automorphism, which gives

lim
θ→0+

(S+θ − S−θ)G(w,0)(λ) := ∆G(w,0)(λ) =
√
λ

π

∫ ∞
0

dx
1

4 sinh2(x
√
λ)

Disc0 φ̂
(w,0)(x) .

(3.20)
The discontinuity of the Borel transform can easily be computed for generic w using the
known discontinuity for the hypergeometric function arriving at

Disc0 φ̂
(w,0) (x) = φ̂(w,0) (x+i0)−φ̂(w,0) (x−i0) = 16iπ x3

(x2−1)w 2F̃1

(3
2 ,−w−

1
2;1−w|1−x2

)
,

(3.21)
with 2F̃1 again denoting a regularised hypergeometric function. Following the discussion
in [2], we can evaluate (3.20) using (3.21), which results in the non-perturbative completion
∆G(w,0)(λ). Alternatively, we can apply (3.4) to the non-pertubative completion ∆G(0)(λ)
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derived in [2]. Either method results in

∆G(w,0) (λ) = i

λ
∂wλ−1

λ1−w
(

8Li0
(
e−2
√
λ
)

+
18Li1

(
e−2
√
λ
)

λ1/2

+
117Li2

(
e−2
√
λ
)

4λ +
489Li3

(
e−2
√
λ
)

16λ3/2 + . . .

) . (3.22)

It is easy to see that ∆G(w,0)(λ) behaves as O(λw/2e−2
√
λ). For instance, for w = 1, 2, the

non-perturbative completions take the following forms,

∆G(1,0) (λ) = i

8Li−1
(
e−2
√
λ
)
λ1/2+18Li0

(
e−2
√
λ
)

+
153Li1

(
e−2
√
λ
)

4λ1/2 +
957Li2

(
e−2
√
λ
)

16λ +. . .

 ,
∆G(2,0) (λ) = i

8Li−2
(
e−2
√
λ
)
λ+22Li−1

(
e−2
√
λ
)
λ1/2+

225Li0
(
e−2
√
λ
)

4 +
1875Li1

(
e−2
√
λ
)

16λ1/2 +. . .

 .
(3.23)

Similarly, for the g = 1 coefficient in the large-N expansion, the non-perturbative term is
given by

∆G(w,1) (λ) =− i
λ
∂wλ−1

λ1−w

127Li0
(
e−2
√
λ
)

28 −
927Li1

(
e−2
√
λ
)

212λ1/2 +
3897Li2

(
e−2
√
λ
)

214λ
+. . .

,
(3.24)

which again behaves as O(λw/2e−2
√
λ). Let us also take w = 1, 2 as examples,

∆G(1,1) (λ) =−i

127Li−1
(
e−2
√
λ
)

28 λ1/2−
927Li0

(
e−2
√
λ
)

212 +
2043Li1

(
e−2
√
λ
)

214λ1/2 +. . .

 ,
∆G(2,1) (λ) =−i

127Li−2
(
e−2
√
λ
)

28 λ1/2−
89Li−1

(
e−2
√
λ
)

212 −
1665Li0

(
e−2
√
λ
)

214λ1/2 +. . .

 .
(3.25)

Using an argument that closely follows appendix D of [2], it is easy to prove that the
median resummation

SmedG(w,g) (λ) := lim
θ→0+

(
S±θG(w,g) (λ)∓ 1

2∆G(w,g) (λ)
)

(3.26)

gives a real expression when
√
λ > 0, and the analytic continuation is unambiguous and

coincides with the small-λ analytic continuation in (3.9)–(3.13). As seen in an analogous
problem in [32], this implies the uniqueness of the non-perturbative completion ∆G(w,g)(λ).

As in [2], making use of the AdS/CFT dictionary we can translate these
non-perturbative terms into string language, where they should arise from world-sheet
instantons. Presumably these would come from a string world-sheet pinned to the n op-
erators in the correlator on the AdS5 × S5 boundary and stretching into the interior.
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However, such a semi-classical picture of these configurations is presently missing. It is
also worth mentioning that similar exponentially suppressed terms have been found [33]
in the large-λ expansion of the cusp anomalous dimension in N = 4 SYM. The strong
coupling expansion of this physical quantity, requires a non-perturbative completion with
similar, but slightly different, exponentially suppressed terms of order λ1/4 e−

√
λ/2. The

cusp anomaly resurgence structure is considerably more complicated than in the present
case and was discussed in [34, 35]. Finally, we notice that the “anomalous dimension”
associated with the six-point MHV amplitude in N = 4 SYM studied in [36], behaves as
e−
√
λ. It would be of interest to understand the semi-classical origin of the interesting

similarities and differences of all these exponentially suppressed terms.

3.2 Large-N with fixed-g2
Y M

To study the non-perturbative instanton effects, which are vital for understanding the
SL(2,Z) symmetry, we will consider the large-N limit with g2

YM
fixed. In this “very strong

limit”, when w = 0, as worked in [6] and furthered extended in [2], the integrated correlator
is expanded in terms of non-holomorphic Eisenstein series with half-integer indices,

GN (τ, τ̄)

∼ N2

4 −
3N 1

2

24 E
(3

2 ;τ, τ̄
)

+ 45
28N

1
2
E
(5

2 ;τ, τ̄
)

+ 3
N

3
2

[1575
215 E

(7
2 ;τ, τ̄

)
− 13

213E
(3

2 ;τ, τ̄
)]

+ 225
N

5
2

[441
218 E

(9
2 ;τ, τ̄

)
− 5

216E
(5

2 ;τ, τ̄
)]

+ 63
N

7
2

[3898125
227 E

(11
2 ;τ, τ̄

)
− 44625

225 E
(7

2 ;τ, τ̄
)

+ 73
222E

(3
2 ;τ, τ̄

)]
+ 945
N

9
2

[31216185
231 E

(13
2 ;τ, τ̄

)
− 41895

226 E
(9

2 ;τ, τ̄
)

+ 1639
227 E

(5
2 ;τ, τ̄

)]
+O

(
N
−

11
2

)
. (3.27)

Using the relations (B.25) and (1.13), it is straightforward to see that the integrated MUV
correlators with the U(1)Y -weight w can be expressed in terms of non-holomorphic Eisen-
stein series, E(w)(s; τ, τ̄),

G(w)
N (τ, τ̄)

∼−
3
(

3
2

)
w
N

1
2

24 E(w)
(3

2 ;τ, τ̄
)

+
45
(

5
2

)
w

28N
1
2
E(w)

(5
2 ;τ, τ̄

)
+ 3
N

3
2

[
1575

(
7
2

)
w

215 E(w)
(7

2 ;τ, τ̄
)
−

13
(

3
2

)
w

213 E(w)
(3

2 ;τ, τ̄
)]

+ 225
N

5
2

[
441
(

9
2

)
w

218 E(w)
(9

2 ;τ, τ̄
)
−

5
(

5
2

)
w

216 E(w)
(5

2 ;τ, τ̄
)]

+ 63
N

7
2

[3898125
(

11
2

)
w

227 E(w)
(11

2 ;τ, τ̄
)
−

44625
(

7
2

)
w

225 E(w)
(7

2 ;τ, τ̄
)

+
73
(

3
2

)
w

222 E(w)
(3

2 ;τ, τ̄
)]

+ 945
N

9
2

[31216185
(

13
2

)
w

231 E(w)
(13

2 ;τ, τ̄
)
−

41895
(

9
2

)
w

226 E(w)
(9

2 ;τ, τ̄
)

+
1639

(
5
2

)
w

227 E(w)
(5

2 ;τ, τ̄
)]

+O
(
N
−

11
2

)
.

(3.28)
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A few comments are in order. Firstly, the leading large-N term (i.e. the N2 term) in
G(w)
N (τ, τ̄) now disappears due to the action of derivatives. This is consistent with the fact

that the N2 term is associated with the supergravity amplitudes, which cannot violate the
U(1)Y bonus symmetry (or correspondingly the U(1) R-symmetry of type IIB supergrav-
ity). Secondly, the results are in accord with the α′-expansion of the MUV superamplitudes
in type IIB superstring [20, 21]. In particular, the non-holomorphic modular Eisenstein
series E(w)( 3

2 ; τ, τ̄) and E(w)( 5
2 ; τ, τ̄) are associated with the higher-derivative terms R4Zw

and d4R4Zw (here Z is the dilaton), respectively. Finally, the result may also be obtained
directly from the lattice-sum representation (2.8). This is done by expanding the integrand,
especially BN (t), order by order in 1/N , as in [2].

4 Perturbative loop integrands

Apart from the interpretation of (1.13) in terms of SL(2,Z)-covariant MUV correlators,
this equation also leads to a construction of the w-loop contribution to the four-point cor-
relator in a manner reminiscent of [23]. To demonstrate this we will consider w insertions
of
∫
d4xOτ (x) in the unintegrated four-point correlator 〈O2(x1, Y1) · · · O2(x4, Y4)〉. This de-

fines a partially integrated (4+w)-point MUV correlator, which has a form given by (1.13),
but without the integration over x1, . . . , x4. The perturbative expansion may be extracted
by ignoring the dependence on τ1. In other words, by replacing the covariant derivative
Dw (defined in (B.2)) by 1

2(τ2 ∂τ2 + w), as given in (3.2). With this change the partially
integrated correlator based on (1.13) reduces to,∫

d4xw+4 · · · d4x5〈O2(x1, Y1) · · · O2(x4, Y4)Oτ (x5) · · · Oτ (xw+4)〉

= (τ2∂τ2 + (w − 1)) · · · (τ2∂τ2 + 1) (τ2∂τ2) 〈O2(x1, Y1) · · · O2(x4, Y4)〉 . (4.1)

This equation can be used to determine the perturbative contributions to any MUV
correlator, starting from the lowest order contribution to the four-point correlator. This
follows by considering the perturbative expansion of 〈O2(x1, Y1) · · · O2(x4, Y4)〉 in powers
of g2

YM
(i.e. powers of τ−1

2 )

〈O2(x1, Y1) · · · O2(x4, Y4)〉 =
∞∑
L=0
〈O2(x1, Y1) · · · O2(x4, Y4)〉L τ−L2 , (4.2)

where L denotes the number of loops in the perturbative expansion, and so the L-loop
contribution to the correlator is written as 〈O2(x1, Y1) · · · O2(x4, Y4)〉L.

As discussed in section 2.2 the product of SL(2,Z) covariant derivatives annihilates
the perturbative terms up to order τ−w2 . Indeed, substituting (4.2) into (4.1), leads to

∞∑
L=w

(−1)w Γ(L+ 1)
Γ(L+ 1− w)〈O2(x1, Y1) · · · O2(x4, Y4)〉L τ−L2

=
∫
d4xw+4 · · · d4x5〈O2(x1, Y1) · · · O2(x4, Y4)Oτ (x5) · · · Oτ (xw+4)〉 . (4.3)

– 20 –



J
H
E
P
1
1
(
2
0
2
1
)
1
3
2

It is easy to check that the lowest-order contribution to the correlator on the right-hand
side of this equation is also of order τ−w2 , as follows from Wick contractions of the free
theory and the fact that each Oτ (x) is proportional to τ−1

2 . More generally, at L loops
in perturbation theory, the correlator on the right-hand side behaves as τ−w−L2 . This is
obviously consistent with the left-hand side of the equation.

We can then redefine L = `+w, with ` ≥ 0, and by matching the powers of τ−`−w2 on
both sides of (4.3) we obtain

〈O2(x1,Y1) · · ·O2(x4,Y4)〉`+w (4.4)

= (−1)w Γ(`+1)
Γ(`+w+1)

∫
d4xw+4 · · ·d4x5〈O2(x1,Y1) · · ·O2(x4,Y4)Oτ (x5) · · ·Oτ (xw+4)〉` .

The ` = 0 case is of particular interest, in that case the right-hand side of this equation is
a partially integrated free MUV correlator. The integrand is a rational function of x2

ij with
known analytical properties. It is then identified with the integrand of the w-loop contribu-
tion to the four-point correlator 〈O2(x1, Y1) · · · O2(x4, Y4)〉. The ` = 0 combinatorial factor
1/Γ(w + 1) accounts for the symmetry factor of the loop integrand. By further taking
out the overall factor Iw+4 as in (1.10), the integrand in fact enjoys a Sw+4 permutation
symmetry. All these facts lead to an efficient construction of the correlator to high orders
using graph theory [23]. The idea has been utilised for constructing the loop integrand to
a high number of loops [23, 28, 37–39] in the planar limit and beyond.

An important point is that it is crucial to use the covariant derivative in (4.1), rather
than the ordinary derivative τ2∂τ2 , which was the suggested prescription made in [23]. The
problem is that a product of ordinary derivatives does not annihilate any low-order terms
in the 1/τ2 expansion and therefore (τ2∂τ2)w 〈O2(x1) · · · O2(x4)〉 cannot be identified with
the left-hand side of (4.1), whose lowest order is O(τ−w2 ) as was discussed earlier. In fact,
operating with τ2∂τ2 = 1

2 [(τ2∂τ2 + w) + (τ2∂τ2 − w)] on the correlator inserts the sum of∫
d4xOτ (x) and

∫
d4xOτ̄ (x). Therefore (τ2∂τ2)w 〈O2(x1, Y1) · · · O2(x4, Y4)〉 is related to a

linear combination of correlators with insertions of Oτ (x) and Oτ̄ (x).

5 Conclusion and discussion

In this paper, we have extended the results of [1, 2], which concerned properties of an
integrated four-point correlator in N = 4 SU(N) SYM, to general n-point integrated MUV
correlators. In the earlier papers, which were based on the application of supersymmet-
ric localisation techniques [4] to the integrated four-point function described in [3], the
integrated correlator GN (τ, τ̄) was recast as a two-dimensional lattice sum, which made
its modular properties manifest and from which it was simple to analyse its dependence
on N and the coupling constant, τ . Similarly, the n-point MUV integrated correlators,
G(n−4)
N (τ, τ̄) are non-holomorphic modular forms of weight (n− 4, 4− n), which can again

be expressed as two-dimensional lattice sums. They satisfy a Laplace difference equation
that is a simple generalisation of the equation satisfied in the n = 4 case discussed in [1, 2].
The dependence of G(n−4)

N (τ, τ̄) on N and τ is straightforward to analyse and we presented
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expansions at weak and strong coupling in the finite-N and large-N limits. Various sys-
tematic features of the dependence of these expansions on the modular weight w were
demonstrated in sections 2 and 3.

The results of section 3 reproduce terms in the 1/N expansion in the large-N , fixed
g2
YM

limit of MUV integrated correlators that were considered in [21], and which have a
close holographic connection to the leading terms in the low energy expansion of the MUV
amplitudes in AdS5 × S5 in accord with leading terms in the expansion of the flat-space
type IIB superstring amplitudes discussed in [20]. Integration over the operator positions
is crucial for ensuring supersymmetry, which is an essential feature of the localisation
arguments. In this paper, as in the w = 0 case studied in [1, 2], our focus was on the
integrated correlator defined with the measure in (1.1). A second measure (A.7) that was
introduced in [10] can be used to define a different class of integrated n-point correlators
of the form

Dw−1Dw−2 · · · D0 ∂
4
m logZN (m, τ, τ̄)|m=0 . (5.1)

The first few leading terms in the large-N expansion of these correlators, both at fixed
λ = g2

YM
N and at fixed g2

YM
, were determined in [11]. It remains a challenge to formulate

such correlators as lattice sums, which would lead to a more thorough elucidation of their
properties.

It would also be of interest to apply these ideas to study exact properties of two-point
functions of BPS operators in N = 2 supersymmetric theories10at finite coupling and finite
N , making use of the methods of supersymmetric localisation as, for example, in [44–54].
These two-point correlators are functions of complexified couplings τ and τ̄ , which also
transform properly under the modular transformation. Most of the study has been focused
on perturbative expansions.

Finally, we would like to emphasise the arguments in section 4, which pointed impor-
tant differences between partially integrated MUV correlators and the expressions obtained
from the Lagrangian insertion method of determining the `-loop integrand of the four-point
correlator of O2’s as formulated in [23]. We find that the L = (n − 4)-loop correction to
〈O2(x1) · · · O2(x4)〉 follows by inserting (n − 4) factors of

∫
dxiOτ (xi), which corresponds

to applying (n − 4) covariant derivatives to the four-point correlator, (as in (4.3)). By
contrast, the procedure advocated in [23] is to apply (n − 4) ordinary derivatives of the
form g2

YM
∂/∂g2

YM
, which do not contain inhomogeneous terms. This results in the inser-

tion of (n − 4) factors of
∫
d4x(Oτ (x) + Ōτ̄ (x)), which is not of the form (4.4). However,

since in [23] the L-loop correlator was assumed to be of the form (4.4), their expressions
are correct.
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A Brief review of the integrated four-point correlator

In this appendix we will summarise properties of the integrated four-point correlator [3, 10]
and in [1, 2]. These integrated correlators are defined in a manner that preserves certain
amount of supersymmetry and have the general form

∫ 4∏
i=1

dxi µ({xi}) 〈O2(x1, Y1)O2(x2, Y2)O2(x3, Y3)O2(x4, Y4)〉 , (A.1)

where O2(xi, Yi) is a superconformal primary in the 20′ of SU(4) R symmetry. This is
defined by O2(x, Y ) := g−2

YM
Tr(ϕIϕJ)YIYJ , where ϕI (I = 1, . . . , 6) is the scalar field

in the N = 4 Yang-Mills multiplet and YI is a SO(6) null vector that takes care of the
R-symmetry indices. The dependence on the complex coupling constant

τ := τ1 + iτ2 := θ

2π + 4π2

g2
YM

, (A.2)

is hidden in the action that enters in the definition of the expectation value and in the
overall normalisation of O2(xi, Yi). The precise form of the integrated correlator depends
on the measure µ({xi}), which is defined in such a manner that it preserves supersymmetry.

Following standard conventions the correlator can be expressed in the form

〈O2(x1, Y1) · · · O2(x4, Y4)〉 = 1
x4

12x
4
34

[TN, free(U, V ;Yi) + I4(U, V ;Yi)TN (U, V )] , (A.3)

where TN, free denotes the free correlator, which can be computed by a simple Wick con-
traction (see, for example, equation (2.11) of [23]) and will be ignored in the following.
The factor I4(U, V ;Yi) encodes the dependence on the R-symmetry quantum numbers and
it is independent of τ and N (see [55, 56]). The factor TN (U, V ) is the nontrivial part
of the correlator. It is independent of the R-symmetry and is the main consideration in
the following. In these expressions the cross-ratios U and V are defined in the standard
manner by

U = x2
12x

2
34

x2
13x

2
24
, V = x2

14x
2
23

x2
13x

2
24
, (A.4)

and xij = xi − xj . The expectation value in (A.3) and 〈. . . 〉 is defined by the functional
integral

〈
4∏
i=1
Oi(xi, Yi)〉 =

∫
[dΦ] e

∫
d4xL(x)

n∏
r=1
Oi(xi, Yi) . (A.5)

where e
∫
d4xL(x) = e

− i
2τ2

∫
d4x(τOτ (x)−τ̄Ōτ̄ (x)) and Oτ (x), Ōτ̄ (x) are the chiral and anti-chiral

Lagrangians.
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Using the conventions in (A.3) the first example of an integrated four-point correlator
can be expressed as

GN (τ, τ̄) := − 8
π

∫ ∞
0

dr

∫ π

0
dθ
r3 sin2(θ)

U2 TN (U, V ) , (A.6)

where U = 1 + r2 − 2r cos(θ) and V = r2. As discussed in [3] this expression arises by
considering (1.1), when the R-symmetry charges of the four operators are chosen in a
manner that sets I4(U, V ;Yi) = V . The second example of an integrated correlator of the
product of four O2(x, Y )’s that preserves supersymmetry was presented in [10] where it
was shown to arise from

∂4
m logZN (m, τ, τ̄)|m=0 = −96

π

∫ ∞
0

dr

∫ π

0
dθ
r3 sin2(θ)

U2 D̄1111(U, V )TN (U, V ) , (A.7)

instead of (1.1). The function D̄1111(U, V ) is the so-calledD-function appears in the context
of AdS/CFT duality. This corresponds to a choice of measure that was described in [10].11

However, in this paper we will only consider properties of correlators that are based on the
first integrated correlator, GN (τ, τ̄), defined by (1.1) or, equivalently, by (1.1).

The partition function of N = 2∗ SYM on S4 was determined in [4] in terms of
SU(N) gaussian matrix model integrals over the elements of the Lie algebra su(N), which
reduce to (N − 1)-dimensional integrals over eigenvalues of SU(N) matrices. The N -
dependence is therefore encoded in the dimensionality of the integrals, which obscures the
analysis of GN (τ, τ̄) for general values of N and τ . However, the considerations in [3, 10]
emphasised the large-N expansion. This led to interesting patterns in the properties of
the expression for integrated correlator in the large-N expansion at fixed ‘t Hooft coupling,
where instanton contributions are suppressed exponentially in N . In the large-N limit with
fixed gYM considered in [6, 11], Yang-Mills instantons are an important element in ensuring
the SL(2,Z) duality of the correlator.

The lattice sum description of the integrated correlator. The N -dependence of
GN (τ, τ̄) was made explicit for all values of N by the reformulation of the integrated
correlator in terms of a lattice sum as suggested in [1, 2]

GN (τ, τ̄) = 1
2

∑
(m,n)∈Z2

∫ ∞
0

exp
(
− tπ |m+ nτ |2

τ2

)
BN (t) dt , (A.8)

where BN (t) has the form

BN (t) = QN (t)
(t+ 1)2N+1 , (A.9)

and where QN (t) is a polynomial of degree 2N − 1 that takes the form

QN (t) =−1
2N(N−1)(1−t)N−1(1+t)N+1 (A.10){
(3+(8N+3t−6) t)P (1,−2)

N

(
1+t2

1−t2

)
+ 1

1+t
(
3t2−8Nt−3

)
P

(1,−1)
N

(
1+t2

1−t2

)}
,

11Compared to the expression given in equation (2.16) of [10], here we have slightly simplified the inte-
gration measure using the crossing symmetry of D̄1111(U, V ) and TN (U, V ).
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and P (α,β)
N (z) is a Jacobi polynomial. It is significant that the function BN (t) satisfies the

inversion condition
BN (t) = 1

t
BN

(1
t

)
, (A.11)

as well as the integration conditions∫ ∞
0

BN (t) dt = N(N − 1)
4 ,

∫ ∞
0

BN (t) 1√
t
dt = 0 . (A.12)

The function GN (τ, τ̄) defined in equation (A.8) is manifestly invariant under the
SL(2,Z) transformations

τ → γ · τ = aτ + b

cτ + d
, γ =

(
a b

c d

)
∈ SL(2,Z) , (A.13)

which is in accord with the expectations of Montonen-Olive duality [7–9]. In fact, as shown
in [2], the expression (A.8) can be re-expressed as a formal infinite sum of non-holomorphic
Eisenstein series with integer indices,

GN (τ, τ̄) = N(N − 1)
8 + 1

2

∞∑
s=2

c(N)
s E(s; τ, τ̄) , (A.14)

where the coefficients c(N)
s are defined from BN (t) via the expansion

BN (t) =
∞∑
s=2

c(N)
s

ts−1

Γ(s) . (A.15)

The definition and properties of non-holomorphic Eisenstein series are reviewed in ap-
pendix B.

It was also shown in [1, 2] that the integrated correlator satisfies the Laplace-difference
equation

(∆τ − 2)GN = N2(GN+1 − 2GN + GN−1)−N(GN+1 − GN−1) , (A.16)

which connects the integrated correlators for SU(N) gauge group with those of SU(N + 1)
and SU(N − 1). One consequence is that the expressions for GN (τ, τ̄) with N > 2 can be
determined iteratively in terms of G2(τ, τ̄).

As will be reviewed in appendix B, each non-holomorphic Eisenstein series E(s; τ, τ̄)
contains two perturbative zero mode terms, proportional to τ1−s

2 and τ s2 , respectively.
Using (A.14), this leads to power-behaved terms in 1/τ2 ∼ g2

YM
and in τ2 ∼ 1/g2

YM
for

GN (τ, τ̄). The series of terms proportional to τ1−s
2 is Borel summable, resulting in a per-

turbative contribution denoted G(i)
N,0(τ2),

G(i)
N,0 (τ2) =

∑
n>0

∫ ∞
0

exp
(
−tπn2τ2

)√
τ2 tBN

(1
t

)
dt

t2
. (A.17)

The other series of terms proportional to τ s2 and denoted G(ii)
N,0(τ2), is evidently ill-defined

term by term in the g2
YM
→ 0 limit. However, it has a well-defined Borel sum which is the

same expression as (A.17), so that the full perturbative expansion is given by

GN,0(τ2) = G(i)
N,0(τ2) + G(ii)

N,0(τ2) = 2G(i)
N,0(τ2) . (A.18)
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The Yang-Mills perturbation theory of GN (τ, τ̄) can be obtained for any SU(N) group
by expanding (A.17) in powers of g2

YM
= 4π/τ2. The results agree with those that have been

obtained directly from perturbative N = 4 SYM once their contributions to the correlator
are integrated with the appropriate measure. In fact, explicit results in N = 4 SYM are
only available up to three loops [57]. However another feature of exact results in [1, 2]
is that they demonstrate that non-planar contributions first enter at four loops, which is
also a known feature of N = 4 SYM [28, 39]. It also predicts the pattern of non-planar
contributions at higher loops.

The large-N expansion of the correlator was also considered in the ‘t Hooft limit in
which λ = g2

YM
N is fixed and instantons are suppressed. The results confirm and extend

the results in [3]. In particular they confirm the results of summing the expansion in
powers of 1/λ at large values of λ. However, in [1, 2] it was found that this expansion is
not Borel summable and requires a resurgent completion that is of order e−2

√
λ. This may

be interpreted in the holographic string theory dual as the effects of world-sheet instantons.
The results obtained in [3] concerning the large-N expansion with fixed g2

YM
in which

instanton contributions play a vital rôle, were also extended in [1, 2]. In fact the Laplace-
difference equation (A.16) determines all the terms of higher order in 1/N in the large-N
expansion once the first two lowest order terms are given.

B Non-holomorphic Eisenstein modular forms

In order to discuss properties of maximal U(1)-violating correlators we will here review
some features of the particular class of modular forms that arise in this context, which are
extensions of the standard non-holomorphic Eisenstein series, E(s, τ, τ̄).

Modular covariant derivatives. The vector space of modular forms, M(w,ŵ), with
holomorphic and anti-holomorphic weights (w, w̄) is defined by

f(τ) ∈M(w,ŵ) =⇒ f(γ · τ) = (cτ + d)w(cτ̄ + d)ŵf(τ) , (B.1)

for all γ=
(
a b
c d

)
∈SL(2,Z).

Covariant derivatives can be defined to act on this space by changing the modular
weights in the following manner,

Dw = i
(
τ2
∂

∂τ
− iw2

)
:M(w,ŵ) 7→M(w+1,ŵ−1) , (B.2)

D̄ŵ = −i
(
τ2
∂

∂τ̄
+ i

ŵ

2
)

:M(w,ŵ) 7→M(w−1,ŵ+1) . (B.3)

Denoting the abstract Chevalley basis for sl(2) by {D, D̄, H} we have the algebra[
D, D̄

]
= H/2 , (B.4)

[D, H] = D , (B.5)[
D̄, H

]
= −D̄ . (B.6)
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The operators D|M(w,ŵ) = Dw and D̄|M(w,ŵ) = D̄ŵ together with H|M(w,ŵ) = Hw,ŵ =
1
2(w− ŵ) and Hw,ŵ : M(w,ŵ) 7→M(w,ŵ) form a representation of this algebra. The Casimir
operator is given by

Ω = 2DD̄ + 2D̄D +H2 = 4DD̄ +H(H − 1) = 4D̄D +H(H + 1) . (B.7)

More explicitly, restricting to the space M(w,ŵ),

Ω
∣∣∣
M(w,ŵ)

= Ωw,ŵ = 4Dw−1D̄ŵ + 1
4(w − ŵ)(w − ŵ − 2) (B.8)

= 4D̄ŵ−1Dw + 1
4(w − ŵ)(w − ŵ + 2) . (B.9)

We will be interested in the ŵ = −w case for which the SL(2,Z) transformation in (B.1)
is a multiplicative phase. In this case (B.8) and (B.9) become

Ω
∣∣∣
M(w,−w)

= 4Dw−1D̄−w + w(w − 1) (B.10)

= 4D̄−w−1Dw + w(w + 1) , (B.11)

will play the rôle of Laplacians. In the w = 0 case these reduce to the standard Laplacian
on the hyperbolic plane,

Ω
∣∣∣
M(0,0)

= 4D−1D̄0 = −(τ − τ̄)2∂τ∂τ̄ = ∆τ . (B.12)

Another useful derivative is the Cauchy-Riemann derivative ∇ = 2iτ2
2 ∂τ . This acts by

changing the modular weights in the following manner,

∇ = 2iτ2
2
∂

∂τ
: M(w,ŵ) 7→M(w,ŵ−2) . (B.13)

If f ∈M(0,0) Bol’s identity implies

Dn−1Dn−2 · · · D0f = 1
(2τ2)n∇

nf , (B.14)

where both sides are (n,−n) modular forms. In particular, when f is a non-holomorphic
Eisenstein series we have (for n ∈ Z)

Dn−1Dn−2 · · · D0E(n, τ, τ̄) = 1
(2τ2)n∇

nE(n, τ, τ̄) = Γ(2n)
Γ(n)

(
τ2
2π

)n
G2n(τ) , (B.15)

with G2n the holomorphic Eisenstein series, which is defined (when n ≥ 2) by

G2n(τ) =
∑
p∈Λ′

1
p2n = 2ζ(2n) + 2(2πi)2n

(2n− 1)!
∑
k>0

σ2n−1(k)qk , (B.16)

where q = e2πiτ .
More generally, in order to analyse the modes of E(s; τ, τ̄) we will make use of the

relation

(π∇)`
(
yk (qm + q̄m)

)
= yk+`

[
(k)` q̄

m + qm
∑̀
s=0

(−1)s
(
`

s

)
(k + s)`−s (4my)s

]
, (B.17)

with y = πτ2.

– 27 –



J
H
E
P
1
1
(
2
0
2
1
)
1
3
2

Laplace eigenvalue equations. Non-holomorphic Eisenstein series are solutions of the
equation

(∆τ − s (s− 1))E(s; τ, τ̄) = 0 , (B.18)

where the hyperbolic Laplacian is defined by ∆τ = 4τ2
2 (∂τ ∂τ̄ ). The function E(s; τ, τ̄)

is a SL(2,Z) modular function that satisfies the asymptotic moderate growth condition
limτ2→∞E(s; τ, τ̄) < τa2 , where a is a real number. The solution has the form12

E(s; τ, τ̄) =
∑

(m,n) 6= (0,0)

τ s2
πs|m+ nτ |2s

=
∑
k∈Z
Fk(s, τ2) e2πikτ1 , (B.19)

where the zero Fourier mode consists of the sum of two power behaved terms,

F0 (s, τ2) = 2ζ (2s)
πs

τ s2 +
2
√
π Γ

(
s− 1

2

)
ζ (2s− 1)

πs Γ (s) τ1−s
2 , (B.20)

and the non-zero modes are D-instanton contributions, which are proportional to K-Bessel
functions,

Fk(s, τ2) = 4
Γ(s) |k|

s− 1
2 σ1−2s(|k|)

√
τ2K(s− 1

2 , 2π|k|τ2) , k 6= 0 , (B.21)

where the divisor sum is defined by

σp(k) =
∑
d|k

dp , for k > 0 , (B.22)

and we sum over the positive divisors d of k. We are generally interested in correlators
of n = 4 + w operators in the stress tensor supermultiplet, which are proportional to
non-holomorphic Eisenstein modular forms of weight (w,−w) that are defined by

Dw E(w)(s; τ, τ̄) = s+ w

2 E(w+1)(s; τ, τ̄) , (B.23)

and
D̄−w E(w)(s; τ, τ̄) = s− w

2 E(w−1)(s; τ, τ̄) , (B.24)

using the definition of modular covariant derivatives given in (B.2). The normalisation
factors on the right-hand sides of (B.23) and (B.24) are arbitrary, so we have chosen them
for later convenience. Iterating (B.23) leads to the expression

E(w)(s; τ, τ̄) = 2wΓ(s)
Γ(s+ w) Dw−1 · · · D0E

(0)(s; τ, τ̄) = 1
(s)wτw2

∇wE(s; τ, τ̄) , (B.25)

where E(0)(s; τ, τ̄) := E(s; τ, τ̄) and (s)w = Γ(s + w)/Γ(s) is the Pochhammer symbol. It
is straightforward to show that this implies

E(w) (s; τ, τ̄) =
∑

(m,n) 6=(0,0)

(
m+ nτ̄

m+ nτ

)w τ s2
πs|m+ nτ |2s

. (B.26)

12We are here following the conventions in [1, 2] for the normalisation of E(s; τ, τ̄), in which there is an
overall factor of π−s, which is absent in [21].
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This expression has arisen previously in the context of the low energy expansion of super-
string amplitudes [29] and the large-N expansion of MUV correlators [21].

These modular forms satisfy the Laplace equations

4D̄−w−1DwEw (s, τ) = (s+ w) (s− w − 1)Ew(s, τ) , (B.27)

or, equivalently,

4Dw−1D̄−wEw(s, τ) = (s− w)(s+ w − 1)Ew(s, τ) . (B.28)

We also note that making use of (B.14) and (B.15) when w ≥ s E(w)(s; τ, τ̄) can be
expressed as

E(w)(s; τ, τ̄) = 2wΓ(s)
Γ(s+ w)

1
(2τ2)w∇

wE(s; τ, τ̄)

= Γ(2s)
πsΓ(s+ w)τ

−w
2 ∇w−s

(
τ2s

2 G2s(τ)
)
, (B.29)

where G2s(τ) is a holomorphic Eisenstein series defined in (B.16).
The following integral representation for E(w)(s; τ, τ̄) is used in the main text [29],

2wDw−1Dw−2 · · · D0E (s; τ, τ̄)

= (s)w E
(w) (s; τ, τ̄)

=
∑

(m,n) 6=(0,0)
(s)w

(
m+ nτ̄√
τ2/π

)2w ∫ ∞
0

e
−πt|m+nτ |2

τ2
ts+w−1

Γ (s+ w)dt

=
∑

(m,n) 6=(0,0)

d2w

dα2w

[∫ ∞
0

exp
(
−πt|m+ nτ |2

τ2
+ α

√
π (m+ nτ̄)
√
τ2

)
ts+w−1

Γ (s) dt

]
α=0

.

(B.30)

B.1 Fourier modes of Eisenstein modular forms

The Fourier modes of E(w)(s; τ, τ̄) are defined by

E(w) (s; τ, τ̄) =
∑

(m,n) 6=(0,0)

(
m+ nτ̄

m+ nτ

)w τ s2
πs|m+ nτ |2s

=
∑
k∈Z
F (w)
k (s, τ2) e2πikτ1 , (B.31)

and can be analysed starting with the representation (B.30), following a similar procedure
to that used in determining the mode coefficients F (0)

k (s, τ2) ≡ Fk(s, τ2) in (B.19) in the
w = 0 case. This consists of dividing the (m,n) sum into two sectors:

(i) n = 0. This gives a contribution to the coefficient of the τ s2 term in the zero mode,
which will be denoted F (w)(i)

0 (s, τ2). When w 6= 0 the (m,n) = (0, 0) term vanishes and it
is useful to Poisson resum the m variable, giving

F (w)(i)
0 (s, τ2) =

∑
m̂∈Z

√
τ2

d2w

dα2w

[∫ ∞
0

exp
(
−
(
2m̂√πτ2 − iα

)2
4t

)
ts+w−3/2

Γ (s+ w)dt
]
α=0

, (B.32)
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where we have set y = πτ2 and m̂ is the variable conjugate to m that enters through
the Poisson sum. After evaluating the t integral and using Riemann’s functional equation
this gives

F (w)(i)
0 (s,τ2) =

∑
m̂∈Z

√
τ2
i(−1)s+w 21−2s−2wΓ

(
1
2−s−w

)
Γ(s+w)

d2w

dα2w (α+2im̂
√
πτ2)2s+2w−1

∣∣∣
α=0

=
∑
m̂∈Z

8−w (−1)w m̂2s−1πs−1/2τ s2 Γ(2s+2w)Γ(1/2−s−w)
Γ(s+w)Γ(2s)

= 2ζ (2s)τ s2
πs

. (B.33)

The result (B.33) is precisely as expected from the action of the Cauchy-Riemann deriva-
tive (B.14) on the coefficient of τ s2 in the zero mode (B.20) of the Eisenstein series E(s; τ, τ̄)
using (B.17).

(ii) n 6= 0. After a Poisson summation over m (and changing n → −n) the expres-
sion (B.30) becomes

F (w)
k (s,τ2) =

∑
(m̂,n)∈Z2

n 6=0

√
τ2e

2πim̂nτ1 (B.34)

d2w

dα2w

[∫ ∞
0

exp
(
−
(
2n√πτ2t+iα

)2
4t −

(
2m̂√πτ2−iα

)2
4t −α

2

4t

)
ts+w−3/2

Γ(s+w) dt
]
α=0

.

This sector gives a contribution to the sum over instantons with charges k = m̂n. This
includes the m̂ = 0 terms that contribute to the coefficient of the τ1−s

2 term in the zero
mode, which will be denoted F (w)(i)

0 (s, τ2). This has the form

F (w)(ii)
0 (s,τ2) =

∑
n 6=0

√
τ2

d2w

dα2w

[∫ ∞
0

exp
(
−
(
2n√πτ2t+iα

)2
4t

)
ts+w−3/2

Γ(s+w) dt
]
α=0

. (B.35)

In this case the integral is somewhat more complicated. After the change of variables
α→ α/(−in√πτ2) we have

F (w)(ii)
0 (s, τ2) =

∑
n 6=0

23/2−s−w(−1)wn1−2sπ1/2−sτ1−s
2

Γ(s+ w)
d2w

dα2wα
s+w−1/2eαKs+w−1/2(α)

∣∣∣
α=0

,

(B.36)
The 1/2-integral K-Bessel function is related to a polynomial in α that takes the form

αs+w−1/2eαKs+w−1/2(α) = 21/2−s−w√π
s+w−1∑
a=0

(2α)s+w−a−1 Γ(s+ w + a)
a!Γ(s+ w − a) , (B.37)

and so the 2w derivatives evaluated at α = 0 simply give

d2w

dα2w

[
αs+w−1/2eαKs+w−1/2(α)

]
α=0

= 21/2+w−s√πΓ(2s− 1)
Γ(s− w) . (B.38)
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Substituting in (B.36) results in

F (w)(ii)
0 (s, τ2) = (1− s)w

(s)w

2
√
πΓ
(
s− 1

2

)
ζ (2s− 1)

πsΓ(s) τ1−s
2 , (B.39)

from which we recognise the action of the Cauchy-Riemann derivative (B.17) on the neg-
ative power term in the zero Fourier mode (B.20) of E(s; τ, τ̄). Noting that (1 − s)w =
Γ(1 − s + w)/Γ(1 − s) = 0 when w ≥ s (with w, s ∈ N), we see that the τ1−s

2 term in
F (w)(ii)

0 (s, τ2) is absent when w ≥ s.

Non-zero Fourier modes of Eisenstein modular forms. We will now consider the
non-zero modes in the Fourier expansion (B.31). In the w = 0 case the correlator is a
real function and the mode expansion is an expansion in a series of cos(2πkτ1) functions,
so instantons and anti-instantons contribute equally. The instanton contributions are con-
tained in the m̂ 6= 0 terms in the sum in (B.34). We have to distinguish the contributions
of instantons with k = m̂n > 0, and anti-instantons with k = m̂n < 0. Performing the
integral and making a trivial change of variable α→ α̃ = in

√
πτ2α we arrive at

F (w)
k (s, τ2) = (−1)w2

5
2−s−wσ1−2s(|k|)π1/2−sτ1−s

2
Γ(s)

× d2w

dα2w


e+α(2π|k|τ2 − α)s+w−

1
2Ks+w−1/2(2π|k|τ2 − α)

∣∣∣
α=0

, k > 0

e−α(2π|k|τ2 − α)s+w−
1
2Ks+w−1/2(2π|k|τ2 − α)

∣∣∣
α=0

, k < 0 .

(B.40)

We note, in particular, that both for k > 0 and k < 0 the Bessel function will produce
the expected exponentially suppressed factor e−2π|k|τ2 which will combine with e2πikτ1 to
produce qk for k > 0 and q̄|k| for k < 0.

Secondly it is once again possible to show that the q̄ contribution vanishes identically
for all s ≤ w, while in the case s = w the q and q̄ contributions simplify dramatically to

F (s)
k (s, τ2) =

{ (−1)s22s+1(πτ2)s
Γ(2s) σ2s−1(k)qk , k > 0 ,

0 , k < 0 ,
(B.41)

as expected from (B.15).
The expression (B.40) could also have been derived from the action of the Cauchy-

Riemann derivative (B.17) on the non-zero Fourier mode of the Eisenstein series.
To illustrate this structure the following is a list of a few terms with small values of s

and w where as usual y = πτ2:∑
k 6=0
F (2)
k (2, τ2) e2πikτ1 =

∑
k>0

16
3 k

3y2σ−3 (k) qk ,

∑
k 6=0
F (2)
k (3, τ2) e2πikτ1 =

∑
k>0

{[4
3k

4y2 + 4
3k

3y + k2 + k

2y + 1
8y2

]
σ−5 (k) qk + σ−5 (k)

8y2 q̄k
}
,

∑
k 6=0
F (3)
k (3, τ2) e2πikτ1 =

∑
k>0
−16

15k
5y3σ−5 (k) qk . (B.42)
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These examples illustrate the fact that when w ≥ s the anti-instanton contributions are
absent, and when w = s the result reduces to (B.41) (using the fact that k2s−1σ1−2s(k) =
σ2s−1(k)). Furthermore, the leading 5instanton contribution is of order τw2 as τ2 → ∞,
while the leading anti-instanton contribution is of order τ−w2 .

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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