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Tracing load-displacement paths in structural mechanics problems is complicated in the presence of
critical points of instability where conventional load- or displacement control fails. To deal with this,
arc-length methods have been developed since the 1970s, where control is taken over increments of load
at these critical points, to allow full transit of the load-displacement path. However, despite their wide
use and incorporation into commercial finite element software, conventional arc-length methods still
struggle to cope with non-zero displacement constraints. In this paper we present a new
displacement-controlled arc-length method that overcomes these shortcomings through a novel scheme
of constraints on displacements and reaction forces. The new method is presented in a variety of serving
suggestions, and is validated here on six very challenging problems involving truss and continuum finite
elements. Despite this paper’s focus on structural mechanics, the new procedure can be applied to any
problems that involve nonhomogeneous Dirichlet constraints and challenging equilibrium paths.
� 2021 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

In structural mechanics, the modelling of complex non-linear
load-displacement paths poses difficulties in passing critical
points, associated with instabilities found in practical engineering
problems, such as buckling. These events can manifest themselves
as a snap-through (non-unique displacement for a given force) or a
snap-back (non-unique force for a given displacement) response in
the global force-displacement behaviour of a physical problem,
both of which are shown schematically in Fig. 1. Snap-through
responses, shown schematically in Fig. 1a, can be captured via
monotonic displacement-controlled solution advancement meth-
ods, however, monotonically increasing load-controlled simulation
advancement techniques will typically fail to converge beyond
point A (as shown in Fig. 2a, where there is no intersection
between the top dashed line and the equilibrium path). Snap-
back problems are more challenging and it is not possible to apply
monotonically increasing displacement-controlled methods to
problems involving snap-back, as shown in Fig. 1b, due to the
non-unique nature of the displacement variation.1 In particular,
at point B of the load-displacement response in Fig. 1b,
displacement-controlled schemes that monotonically increase the
displacement would: (i) fail to converge or (ii) fail to capture the
complex behaviour of the structure and continue along the (or an
alternative) equilibrium path missing the snap-back loop. The issues
associated with using monotonically increasing displacement-
controlled boundary conditions for problems involving snap-back
are highlighted in Fig. 2c, where for the second vertical dashed line
there are three potential solutions, shown by the red markers.

The most well-known strategy in finite element analysis to
trace complex non-linear paths which include critical points is
the use of arc-length methods, first introduced by Riks [33,34]
and Wempner [40] in the 1970s, indeed, when implemented in
commercial software these strategies are typically referred to as
‘Riks’ Solvers. The method allows iterative solution procedures to
converge even at critical points where snap-back or snap-
through behaviours occur [12,14], and is shown schematically in
Fig. 2b where the arrows to the left of the figure illustrate how
the force varies over the pseudo-time steps2 to trace the equilib-
rium path. Reviews of different arc-length methods can be found
in books, e.g. [14,15] and papers, e.g. [22,23], amongst others, how-
ever, to the best of the authors’ knowledge, existing arc-length meth-
ods are limited to Neumann boundary conditions, that is they
impose constraints on the displacement (cylindrical methods), a
combination of displacement and internal force (spherical methods)
teps. The
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sake of
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Fig. 1. Classes of unstable behaviours, where path following techniques are necessary to track the equilibrium response.

Fig. 2. Comparison of analysis methods available in the literature (a), (b) and (c), and the new method (d). The green markers indicate an intersection between the
equilibrium path and the controlled parameter, whereas the red markers represent an issue in finding the equilibrium solution due to multiple intersections.
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or on energy dissipated [39] by imposed nodal forces. The only
boundary conditions that can be applied when adopting Riks solvers
are tractions or body forces which, when integrated over the
2

boundary of volume of the domain, manifest themselves as
equivalent nodal forces. This limits the physical problems that can
be modelled using arc-length methods to those where it is
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appropriate to load the analysed structure via nodal forces, however
non-zero displacement constraints3 are often more appropriate
especially when analysing the response of experimental tests where
rigid constraints are imposed on the boundary of loaded specimens.
While the initial literature on arc-length techniques is quite old,
there is much evidence of their recent use in many new structural
areas such as the following.

� Thin-walled structures in the post-buckling regime, e.g. Ning
and Pellegrino [31], and White and Weaver [41];

� Shape morphing structures that present multiple equilibrium
configurations, e.g. Diaconu et al. [17], and Arena et al. [2];

� Meta-materials whose mechanical characteristics depend on
their unstable behaviour, e.g. Turco et al. [38], and Findeisen
et al. [20]; and

� Brittle materials suffering damage (e.g. May et al. [30], and Gao
and Bower [21]) , bones [9], laminated composites [1],and gra-
phene kirigami [3].

However, all of the above use force-controlled arc-length solu-
tion methods. Here we propose a new approach that controls pre-
scribed displacements to follow challenging equilibrium paths that
cannot be traced with existing techniques.

This paper proposes a new arc-length method that enforces
constraints on the resulting nodal displacements and boundary
reaction forces due to imposed nodal displacements. The method
is shown schematically in Fig. 2d, where the direction and magni-
tude of the displacement within each time step is shown by the
arrows beneath the figure. Unlike monotonically increasing
displacement-controlled methods, where the direction and magni-
tude of the displacement is set a priori, in the proposed method the
sign and magnitude of the imposed displacement are determined
at each step based on an arc-length constraint. It is important to
highlight that the proposed method controls the imposed displace-
ment, rather than the imposed force as with existing arc-length
methods, as shown in Fig. 2b. This allows physical problems to
be modelled, and their associated equilibrium paths to be traced,
that are not possible with existing arc-length methods that rely
on the specification of nodal forces. The choice between a force-
and a displacement-controlled solution scheme is driven by the
boundary conditions of the physical problem being analysed.
Hence, the new arc-length solution scheme should be seen as a
complementary tool to solve unstable problems under displace-
ment control, rather than as an alternative force-driven arc-
length scheme. As expected when changing boundary conditions,
force- and displacement-controlled equilibrium paths must gener-
ally differ. Indeed, they represent diverse solutions of the same PDE
with different boundary conditions applied (Neumann in the force-
driven case, Dirichlet in the displacement-driven case).

This focus here is on strong enforcement of Dirichlet boundary
conditions. An alternative is to weakly enforce these boundary con-
ditions and there are a number of different approaches in the liter-
ature, for example see [28] for a recent critique. They can be
broadly split into penalty and Lagrange multiplier -type
approaches. Penalty approaches require the specification of a
required displacement at the controlled degrees of freedom and
this is enforced by an arbitrarily specified penalty parameter which
adds stiffness to the Jacobian as well as introducing an additional
force component into the linear system of equations. This force
could potentially be controlled using a conventional arc-length
method, however care would be needed regarding the choice of
3 It is important to highlight that zero displacement boundary condition can be
included within conventional arc-length solvers as these boundary conditions do not
feature in the arc-length constraint equations, which are based on non-zero nodal
displacement/force values.

3

the penalty parameter to maintain coercivity and reasonable con-
ditioning of the system of equations. Lagrange multiplier
approaches and arc-length methods are perhaps a more natural
combination as the Lagrange multiplier is effectively a reaction
force to enforce the required displacement, and this could be con-
trolled via an arc-length method provided that these forces are
included in the equilibrium equations. However Lagrange multi-
plier approaches introduce an additional unknown degree of free-
dom for every displacement constraint, whereas our method only
introduces a single additional unknown via the arc-length con-
straint. We therefore consider that the method described in this
paper has significant advantages due to the issues associated with
combining force controlled arc-length methods with penalty and
Lagrange multiplier approaches discussed above and the fact that
our method provides strong enforcement of the Dirichlet
constraints.

This paper will focus on showing how to allow for the variation
of Dirichlet boundary conditions in a finite element formulation of
quasi-static equilibrium for stress analysis. The differences
between the proposed displacement-controlled arc-length method
and conventional load-controlled arc-length methods are high-
lighted by several numerical examples in Section 4 for problems
involving non-linear truss and continuum elements. However, it
should be appreciated that the procedures described in this paper
are of wider applicability beyond structural mechanics and can be
applied to any method based on a weak form, where the equations
are evaluated at discrete nodal/point locations. Furthermore, it
should be noted that the approach proposed here is new and does
not appear in the library of schemes presented in Leon et al. [27],
which unifies all of the arc-length approaches previously available
in the literature. Finally, it is worth also emphasising that the cur-
rent displacement-controlled arc-length method differs from the
technique under the same name presented in Verhoosel et al.
[39], as will be explained below.

2. Governing equations

This section outlines the governing equilibrium equations, finite
element discretisation and non-linear solution method before
detailing the constraint equations that can be applied to the non-
linear problem to make it computationally tractable in the pres-
ence of critical points. It should be noted that most of the logic
and considerations in Sections 2.1 and 2.2 differ from the classical
finite element formulation, even though the final non-linear weak
equilibrium equation (Eq. (8)) looks similar.

2.1. Strong and weak forms

In the case of zero body forces, let us consider the momentum
balance equations applied to a body B, which occupies a volume
X in the Euclidean three-dimensional space E. Let u be the defor-
mation map between the original and current configurations. On
this configuration uðXÞ, the Dirichlet boundary conditions are
defined over the surface uð@XuÞ, whereas the homogeneous Neu-
mann boundary conditions are given elsewhere on the boundary
of the domain uð@X n @XuÞ. The above equations and conditions
are classically sufficient to define the strong form of the problem
as follows:

Given �u on u @Xuð Þ andthezeroprescribedtractionson u @X n @Xuð Þ;
find u : u X [ @Xð Þ � E ! R suchthat
divxr ¼ 0; on uðXÞ;

ð1Þ
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where r is the Cauchy stress tensor. To clarify some of the later
developments, the Dirichlet boundary conditions will be explicitly
included both in the strong form and weak form of the problem. To
this end, the prescribed Dirichlet boundary conditions are not only
implicitly considered in the statements, but they are also unam-
biguously included in the forms by involving some related and
unknown Neumann boundary condition values, which, in the case
of stress analysis, can be physically interpreted as reaction forces.
These forces are defined on the same boundary of the domain
uð@XuÞ, and, because of their relationship with the prescribed dis-
placements �u, they will be denoted as �tð�uÞ. Moreover, as usual for
prescribed Neumann conditions in stress analysis, such forces sat-
isfy the Cauchy theorem

�tð�uÞ ¼ rð�uÞn on u @Xuð Þ;
with n being the outward normal vector on the considered surface.
Therefore, in this method, reaction forces are not treated as they
usually are in the Galerkin-based discretisation approaches (see,
for instance, in the case of the finite element method, Bathe [4]).
In the classical methodology, reaction forces are unknown correc-
tions to concentrated loads that appear in the discretised (in space
and time) and linearised equilibrium equations. Owing to the cur-
rent methodology choice, the strong form in the above box can be
stated in an alternative form as follows:

Given �u on u @Xuð Þ and the zero prescribed tractions on
u @X n @Xuð Þ, find u : u X [ @Xð Þ � E ! R and find �tð�uÞ : uð@XuÞ !
R such that

divxr ¼ 0 on uðXÞ; ð2aÞ

�tð�uÞ ¼ rð�uÞn on u @Xuð Þ: ð2bÞ
As per practice in defining the weak form, two sets of functions are
needed; these are the trial functions, which belong to the kinemati-
cally admissible displacements set K of B, defined by

K ¼ uju u @Xuð Þð Þ ¼ �uf g;
and the weighting functions, which belong to the set

V ¼ gjg u @Xuð Þð Þ ¼ 0f g:
It can be noticed that, while the trial functions are built to satisfy
the prescribed Dirichlet boundary conditions on uð@XuÞ, the
weighting functions fulfil the homogeneous conditions on the same
domain. The introduction of the above-mentioned functions allows
expression of the weak form in the following manner:

Given �u on u @Xuð Þ and the zero prescribed tractions on
u @X n @Xuð Þ, find u 2 K and �tð�uÞ such thatZ
uðXÞ

r : rxgdv �
Z
uð@XuÞ

�tð�uÞ � gds ¼ 0; 8g 2 V: ð3Þ

In continuum mechanics, this weak form is often derived from and
referred to as the Principle of Virtual Work (see, for instance, Malvern
[29]), where the physical meaning of the weighting functions g is
related to the virtual displacements du, which are selected to satisfy
the homogeneous Dirichlet boundary conditions on the part of the
domain where these are prescribed (d�u ¼ 0 on uð@XuÞ). Hence,
the virtual work caused by reaction forces �tð�uÞ is zero for all the
weighting functions belonging to V and for all the kinematically
admissible virtual displacementsZ
uð@XuÞ

�tð�uÞ � gds ¼
Z
uð@XuÞ

�tð�uÞ � d�uds ¼ 0;

but the reaction forces themselves are generally non-zero.
4

2.2. Bubnov-Galerkin approximation method

Let us introduce a canonical isoparametric finite element dis-
cretisation. Moreover, let �m denote the number of nodes on the
discretised surface where prescribed displacements are given and
m the remaining number of nodes such that the global number

of nodes is nðgÞ
nds ¼ �mþm. The interpolated trial and weighting func-

tions (denoted by the superscript h) are given by

huðxÞ ¼
Xm
i¼1

uf
� �i

NðgÞ
i ðxÞ þ

X�m
j¼1

�ujNðgÞ
j ðxÞ ¼

Xmþ �m

k¼1

ukNðgÞ
k ðxÞ; ð4aÞ

hgðxÞ ¼
Xm
i¼1

giNðgÞ
i ðxÞ; ð4bÞ

where NðgÞ are the shape functions and uf denotes the free nodal
displacements, that is the displacements which are not prescribed.
It can be observed that (4a) satisfies the Dirichlet boundary condi-
tions and (4b) fulfils the homogeneous conditions on the same
boundary. The number of degrees of freedom—associated with
nodes where prescribed displacements are given—is �M ¼ ndim � �m,
and the remaining number is M ¼ ndim �M. The introduction of the
global interpolation matrix NðgÞ and the global linear strain-

displacement matrix BðgÞ enables the expression of Eqs. (4) and the
gradient of (4b) as follows

huðxÞ ¼ NðgÞðxÞu;
hgðxÞ ¼ NðgÞðxÞg;
rhgðxÞ ¼ BðgÞðxÞg;

having introduced the notation

u ¼ ½ðuf Þ11; . . . ; ðuf Þ1ndim �; . . . ; ½ðuf Þm1 ; . . . ; ðuf Þmndim �;
h

½�u1
1; . . . ; �u

1
ndim

�; . . . ; ½�u �m
1 ; . . . ; �u

�m
ndim

�
iT

¼ uf ; �u
� �T

;

ð5aÞ
g ¼ ½g1

1; . . . ;g
1
ndim

�; . . . ; ½gm
1 ; . . . ;g

m
ndim

�; ½0�; . . . ; ½0�
h iT

: ð5bÞ

Therefore, the discrete boundary value problem formulation of Eq. (3)
can be stated as

Z
uðhXÞ

BðgÞ
� �T

rdv �
Z
uð@hXuÞ

NðgÞ
� �T

�tð�uÞds
 !T

g ¼ 0 8g2hV:

Since the above equation holds for each weighting function, it can
be expressed as

f int þ f rct ¼ 0; ð6Þ
where the internal force vector and the reaction force vector are

f int ¼
Z
uðhXÞ

BðgÞ
� �T

rdv ; ð7aÞ

f rct ¼ �
Z
uð@hXuÞ

NðgÞ
� �T

�tð�uÞds: ð7bÞ

The above equations are assumed to be non-linear in displacement,
u, and therefore an incremental form of Eq. (6) is considered. Fur-
thermore, if a backward Euler scheme is introduced to discretise
the time interval, Eq. (6) becomes
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Z
uðhXÞ

BðgÞ
� �T

rnþ1 dv �
Z
uð@hXuÞ

NðgÞ
� �T

�tð�unþ1Þ

¼ f int unþ1ð Þ þ f rct unþ1ð Þ � 0: ð8Þ
Beyond this point, the subscript nþ 1 has been omitted for conve-
nience and to keep the equations that follow as compact as possible.
(See Fig. 3)
4 The quantity d �m expresses both the magnitude and the orientation of the vector
d�u —not only the former feature—since it can be a negative value. On the other hand,
�u describes the direction of d�u.
2.3. Newton-Raphson scheme

The adoption of a backward Euler scheme leads Eq. (8) to be
implicit. That is, all of the values appearing in that equation are a
function of the unknown nodal displacement vector evaluated at
the end of the step, u. Therefore, an iterative process is necessary
to solve Eq. (8) and, in the current work, a Taylor expansion is
applied to adopt a Newton-Raphson scheme, which continues iter-
ating until the out-of-balance force residual

r uð Þ ¼ f int þ f rct � 0 ð9Þ
converges to a given tolerance. As stated above, the reaction force
vector is defined only at the degrees of freedom belonging to the
discretised domain where prescribed displacements are defined.
Owing to this, we can split Eq. (9) by separating the rows related
to the given displacement degrees of freedom (denoted by sub-
script p ¼ 1 . . . �M) from those where displacements are free (indi-
cated by subscript f ¼ 1 . . .M). Accordingly, Eq. (8) can now be
expressed as

rp uð Þ ¼ f int
p þ f rct

p � 0; ðaÞ
rf uð Þ ¼ f int

f � 0: ðbÞ

8<
: ð10Þ

The linearisation of Eqs. (10) is performed with respect to the
unknown u. However, as indicated by Eq. (5a), this linearisation
can be carried out by considering the prescribed displacements �u
and the free displacements uf as two variables. Hence, the applica-
tion of the Newton-Raphson scheme to Eqs. (10) leads to

rðkÞp �u;uf
� � ¼ rðk�1Þ

p þ @f int
p

@�u

����
ðk�1Þ !

d�uþ @f int
p

@uf

����
ðk�1Þ !

duf ðaÞ

þ @f rct
p

@�u

���ðk�1Þ	 

d�uþ @f rct

p

@uf

���ðk�1Þ	 

duf � 0;

rðkÞf
�u;uf
� � ¼ rðk�1Þ

f þ @f int
f

@�u

����
ðk�1Þ !

d�uþ @f int
f

@uf

����
ðk�1Þ !

duf � 0; ðbÞ

8>>>>>>>>>>><
>>>>>>>>>>>:

ð11Þ

where dð�Þ ¼ ð�ÞðkÞ � ð�Þðk�1Þ represents the difference between the
current iteration ðkÞ and the previous iteration ðk� 1Þ. To further
simplify Eq. (11), the tangential stiffness matrix KT can be intro-
duced as

KT ¼ @f int

@u

�����
ðk�1Þ0

@
1
A: ð12Þ

The same approach cannot be adopted to consider the linearised
parts of the reaction force vector; in this case, building a matrix
associated with this vector is not possible, since the reaction
forces in Eq. (11) are not known. Instead the quantities related
to the reaction forces will be considered as a unique linearised
unknown, that is
5

@f rct
p

@�u

�����
ðk�1Þ0

@
1
Ad�uþ @f rct

p

@uf

�����
ðk�1Þ0

@
1
Aduf ¼ df rct

: ð13Þ

Eqs. (12) and (13) allow (11) to be rewritten as

rðkÞp �u;uf
� � ¼ rðk�1Þ

p þ df rct þ KT;ppd�u þ KT;pf duf ¼ 0; ðaÞ
rðkÞf

�u;uf
� � ¼ rðk�1Þ

f þ KT;fpd�uþ KT;ff duf ¼ 0: ðbÞ

(
ð14Þ

In the above equations, the subscripts of the stiffness matrix terms
refer to the submatrices whose rows and columns are respectively
identified by the prescribed displacements p or by those that are
free f. That is, the stiffness matrix has been partitioned into the fol-
lowing format

It is important to note that Eq. (14) are not directly solvable. Recall-
ing the sizes of the unknowns

dim �uð Þ ¼ dim f rct
� �

¼ �M ¼ ndim � �m; ð15aÞ
dim uf

� � ¼ M ¼ ndim �m; ð15bÞ

it can be observed that Eq. (14) have 2 �M þM unknowns but only
�M þM equations. One way of solving this problem is to define the
prescribed displacement vector as follows

d�u ¼ d �m �u with d �m 2 R; ð16Þ

where the quantity d �m is a scalar unknown which expresses the
magnitude and the orientation4 of d�u. By this modus operandi, the
number of unknowns decreases to �M þM þ 1. The missing equation,
which will be added to Eq. (14), will be provided by the so-called arc-
length constraint equation, which will be discussed in Section 2.4.
Besides, it is worth saying that Eq. (16) can be seen as the dual coun-
terpart of the classical arc-length method, where the external force
vector is varied via a scalar parameter (often referred to as a load
factor).

2.4. Arc-length constraints

The main idea behind the constraint equation is to force the final
equilibrium solution to be within a certain distance of the initial
position along the equilibrium path. In this fashion, one of the prin-
cipal drawbacks of the Newton-Raphson scheme, i.e. non-
convergence due to the inaccuracy of the initial guess, is avoided,
and solutions can be successfully found. It also allows the method
to follow both snap-back and snap-through equilibrium paths.

As pointed out in SubSection 2.3, one scalar equation is neces-
sary to complete the number of equations which, together with
Eq. (14), allow the linear system of equations to be solved. As
reported by Carrera [10], one of the most successful forms of con-
straint is that proposed by Crisfield [13] and the present work



Fig. 3. Continuum problem defined by the Strong Form (1) (on the left) and discretised problem (on the right), where the reaction force vector is given by Eq. (7b).

Fig. 4. Graphical representation of the cylindrical and spherical constraint for the
case of �M ¼ M ¼ 1.
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adopts this with a minor modification. In its most general form,
this constraint can be expressed as

g Du;Df rct
;Dl

� �
¼ g D�u;Duf ;Df rct

;Dl
� �

¼ 0; ð17Þ

where the quantities Dð�Þ ¼ ð�Þnþ1 � ð�Þn are the differences
between the current time interval and the previous one, and Dl is
the arc-length.

2.4.1. Spherical constraint
Even though Crisfield’s modified constraint has been adopted in

this work, different forms of Eq. (17) exist, depending on the quan-
tities which are considered to contribute to the length of the arc.
One particular form of constraint equation, that includes both force
and displacement contributions to the arc-length, is known as a
spherical constraint

gsph D�u;Duf ;Df rct
� �

¼ D�uð ÞTD�uþ Duf
� �T

Duf

þ b2 Df rct
� �T

Df rct � Dl2 ¼ 0: ð18Þ

In Eq. (18) , b is a scalar value used to scale the magnitude of the
reaction force vector with respect to the displacements. This value
can be chosen as a constant, however in problems where the global
stiffness varies significantly during the analysis this may not be
appropriate. Therefore, in this work the approach of Belytschko
et al. [7] has been adapted to make it compatible with the proposed
displacement controlled arc-length solution scheme and b is deter-
mined via

b ¼ 1
�M

XM
i¼1

Kðk�1Þ
T;pi pi

 !�1

; ð19Þ

where KT;pi pi is the i-th diagonal element of the submatrix KT;pp. It
can be observed that Eq. (19) connects b to the trace of the tangen-
tial stiffness submatrix. In this fashion, by computing b at each iter-
ation, we scale the external force vector with a value which is
representative of the considered problem.

2.4.2. Cylindrical constraint
The cylindrical constraint can be seen as a particular case of the

spherical constraint where the scalar b is set to zero, that is the arc-
length is only dependent on the nodal displacements, and can be
expressed as

gcyl D�u;Duf
� � ¼ D�uð ÞTD�uþ Duf

� �T
Duf � Dl2 ¼ 0: ð20Þ
6

The graphical difference between spherical and cylindrical con-
straints are shown in Fig. 4, where the constraint equations are plot-
ted in the three-dimensional axes of the prescribed displacements,
the free displacements and the scaled reaction forces (in the hypo-
thetical case of �M ¼ M ¼ 1), and it can be observed that the inter-
section between the equilibrium path and the constraint is more
severe in the spherical case. Fig. 4 also shows that there are two
intersection points between the equilibrium curve and the con-
straint, this point, and methods for choosing the appropriate inter-
section, will be discussed in Section 3.2.
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3. Solution schemes

There exist several ways of applying arc-length solution
schemes. In the present work, the previously established schemes
for the force-controlled method have been reformulated so that
they can be used with the proposed displacement-controlled arc-
length method. A first distinction among the methods proposed in
this paper is between consistent (Section 3.1) and non-consistent
(Section 3.2) schemes. In addition to this, the former category of
algorithms can be applied in non-partitioned and partitioned man-
ners. The following sections explore each of the combinations.
5 The scalar value a has to be positive to ensure that the initial prescribed
displacements D�uð1Þ

0 have the same orientation of �u.
3.1. Consistent schemes

The following schemes are labelled consistent (following the ter-
minology used by Schweizerhof and Wriggers [37]) to emphasise
that linearisation takes place for both equilibrium equations and
constraint equation through the Newton-Raphson procedure. The
linearised constraint form of Eq. (17) is therefore required and
can be expressed as

gðkÞ D�u;Duf ;Df rct
� �

¼ gðk�1Þ þ @g
@�u

����
ðk�1Þ !

d�u þ @g
@uf

����
ðk�1Þ !

duf

þ @g

@f rct

����
ðk�1Þ !

df rct � 0: ð21Þ

In particular, if the constraint equation is spherical as in Eq. (18), the
linearised quantities in Eq. (21) become

@gsph

@�u

����
ðk�1Þ !

¼ 2 D�uð ÞT ; ð22aÞ

@gsph

@uf

����
ðk�1Þ !

¼ 2 Duf
� �T

; ð22bÞ

@gsph

@f rct

����
ðk�1Þ !

¼ 2b2 Df rct
� �T

: ð22cÞ

In the case of the cylindrical constraint as in Eqs. (20), (22a) and
(22b) remain the same, while (22c) is equal to zero as b ¼ 0.

3.1.1. Non-Partitioned Scheme (NPC)
In these consistent schemes, a non-partitioned solution (NPC) is

applied so that the Jacobian matrix of the Newton-Raphson proce-
dure consists of both the stiffness submatrices and the linearised
quantities expressed by Eqs. (22). The resulting linear system can
be expressed as

I KT;pf KT;pp �u
0 KT;ff KT;fp �u

@g
@f rct

���ðk�1Þ	 

@g
@uf

���ðk�1Þ	 

@g
@�u

��ðk�1Þ� �
�u

2
6664

3
7775

df rct

duf

d �m

2
64

3
75 ¼ �

rðk�1Þ
p

rðk�1Þ
f

gðk�1Þ

2
664

3
775;
ð23Þ

where I is the unit matrix. The sizes of the submatrices appearing in
the above system are computable by the use of the dimensions
given in Eq. (15).

It is important to stress that Eq. (23) is pivotal in the new
method. While some papers, for instance [39,27], present tech-
niques which look similar to a displacement-controlled arc-length
technique, there are substantial differences between these methods
and that proposed here. None of the above-mentioned approaches
take into account the equilibrium equations at prescribed nodal
degrees of freedom, these being Eq. (10) Therefore they fail to con-
7

sider the reaction forces as unknowns in Eq. (23) and do not explic-
itly consider equilibrium at the prescribed degrees of freedom. This
omission leads in the above-mentioned papers to the need to apply
a monotonic increase of prescribed displacement at the first itera-
tion and to fix the displacement at these degrees of freedom for all
the following iterations. This approach is similar to the monotoni-
cally increasing displacement-controlled analysis shown in Fig. 2c,
with the difference being that the free displacements are con-
strained by Eq. (17) without the inclusion of the reaction forces.
As a consequence, and as pointed out in [27] itself, these methods
fail when trying to model snap-through. These points will be
explored as part of the numerical examples in Section 4.

Predictor solution at the first interval: In order to start the
analysis via Eq. (23), one arbitrary value among the three
unknowns needs to be chosen a priori, from which the remaining
unknowns can be evaluated using Eq. (23). Since the problem is
solved under displacement control, it seems appropriate to set
the predictor of the given displacement vector to be scaled by a
positive5 parameter a

D�uð1Þ
0 ¼ a�u () a ¼ d �m ð1Þ

0 ¼ D �m ð1Þ
0 : ð24Þ

As can be seen from the above equation, all the incremental quan-
tities match their corresponding iterations in this particular case
ðd� ¼ D�Þ, since no previous step has been computed for the consid-
ered problem. Owing to the setting of the initial prescribed dis-
placements, the second line of system (23) leads the initial free
displacements to be

Duf ð1Þ
0 ¼ �a KT;ff

� ��1KT;fp�u:

Accordingly, the initial reaction force vector, which is obtained from
the third line of (23), becomes

Dfreact ð1Þ0 ¼ þa KT;pf KT;ff
� ��1KT;fp � KT;pp

� �
�u:

As suggested by Crisfield [12], the initial arc-length value can be
computed by using non-linearised constraint Eq. (18), giving

Dlsph0 ¼ a �uk k2 þ KT;ff
� ��1 KT;fp�u
��� ���2 þ b2 KT;pf KT;ff

� ��1 KT;fp � KT;pp

� �
�u

��� ���2	 
1
2

;

ð25Þ
in the case of the cylindrical system, b ¼ 0 and the third term van-
ishes. In the above, �k k is the Euclidean norm of �. A summary of the
NPC method and its application in the context of finite element
analysis is given in Algorithm 1.3.1.2. Partitioned (PC) Scheme

As can be seen from Eq. (23), the Jacobian matrix is not banded, a
feature that is generally useful when inverting the stiffness matrix.
Therefore it can be convenient not to invert the whole Jacobian
matrix (23) and instead solve the equations in a different way. This
procedure is called the partitioned consistent (PC) scheme. The
method is devised to solve equilibrium Eqs. (14) and the linearised
constraint Eq. (21) by substitution. From Eqs. (14a) and (16) it fol-
lows that

df rct ¼ � rðk�1Þ
p þ d �m KT;pp �uþ KT;pf duf

� �
; ð26Þ

whereas Eq. (14b) can be divided—as first suggested by Batoz and
Dhatt [5] for the classical arc-length method—into two parts: the
first being known and the latter being a function of the scalar d �m

duf ¼ duNR þ d �m dug ; ð27Þ
where the displacement components are



Algorithm 1. Non-partitioned consistent (NPC) displacement-controlled arc-length pseudo-code.
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duNR ¼ � KT;ff

� ��1 rðk�1Þ
f ; ð28aÞ

dug ¼ � KT;ff

� ��1 KT;fp �u
� �

: ð28bÞ
Given Eqs (26,27,28a,28b), the linearised constraint Eq. (21)
becomes

gðk�1Þ þ d �m @g
@�u

��ðk�1Þ� �
�uþ @g

@uf

���ðk�1Þ	 

duNR þ d �m dug
� �

� @g
@f rct

���ðk�1Þ	 

rðk�1Þ
p þ d �m KT;pp�uþ KT;pf duNR þ d �m dug

� �� �
¼ 0

d �m is the only unknown in the above equation and this quantity can
be expressed as

d �m ¼ �
gðk�1Þ þ @g

@uf

���ðk�1Þ	 

duNR � @g

@f rct

���ðk�1Þ	 

KT;pf duNR þ rðk�1Þ

p

� �
@g
@�u

��ðk�1Þ� �
�uþ @g

@uf

���ðk�1Þ	 

dug � @g

@f rct

���ðk�1Þ	 

KT;pp�uþ KT;pf dug
� � : ð29Þ
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Predictor solution at the first interval: Eq. (29) provides the
direct calculation of the unknown d �m in terms of quantities from
the previous iteration within the same load (or time) step.
Because of this dependency, all terms at the numerator of (29)
are null when the predictor solution is evaluated at the first
step. This issue can be overcome be adopting Equations from
24,25 as predictors in the PC scheme. Algorithm 2 provides the
algorithm for the PC scheme. However, it is worth noting that
since the algorithm for the consistent partitioned scheme is very
close to Algorithm 1, only the grey-boxed part has been explic-
itly changed in Algorithm 2.
3.2. Non-Consistent (NC) Scheme

Both the methods described in Sections 3.1.1 and 3.1.2 make
use of the linearised constraint Eq. (21) and, as such, they are called
consistent. The so-called non-consistent scheme combines the lin-
earised equilibrium Eq. (14) and non-linearised constraint (18).



Algorithm 2. Partitioned consistent (PC) displacement-controlled arc-length pseudo-code.

6 The selection of the most appropriate root has received considerable attention in
the arc-length literature, for example see Crisfield [14], and Ritto-Corrêa and
Camotim [36] amongst others, as the correct choice of the solution direction is
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In this case, only the spherical constraint is considered to illustrate
the method. As stated above, the cylindrical constraint case can be
obtained by setting b ¼ 0.

To proceed, the unknown quantities Dð�Þ evaluated at the k� th
iteration are computed via their previous iteration plus their rela-
tive iterative quantity dð�Þ, obtained from Eqs. (26) and (27), giving

D�uðkÞ ¼ D�uðk�1Þ þ d �m �u; ð30aÞ
Duf ðkÞ ¼Duf ðk�1Þ þ duf ¼ Duf ðk�1Þ þ duNR þ d �m dug ; ð30bÞ
Df rct ðkÞ ¼ Df rct ðk�1Þ þ df rct ¼

¼ Df rct ðk�1Þ � rðk�1Þ
p þ d �m KT;pp �u

�
þ KT;pf duNR þ d �m dug

� �
s; ð30cÞ

where the only unknown in Eq*s. (30) is d �m. The substitution
of the quantities defined by (30) into the constraint Eq. (18)
leads to

a d �m2 þ b d �mþ c ¼ 0; ð31Þ

where

a ¼ �uk k2 þ dugk k2 þ b2 KT;pp�uþ KT;pf dug
�� ��2; ð32aÞ

b ¼ 2 D�uðk�1Þ� �T
�uþ Duf ðk�1Þ þ duNR

� �T
dug

�
þb2 Df rct ðk�1Þ � rðk�1Þ

p � KT;pf duNR
� �T

KT;pp�uþ KT;pf dug
� �


; ð32bÞ

c ¼ D�uðk�1Þ�� ��2 þ Duf ðk�1Þ þ duNR
�� ��2

þ b2 Df rct ðk�1Þ � rðk�1Þ
p � KT;pf duNR

��� ���2 � Dl2: ð32cÞ
9

If a comparison of the above coefficientswith those calculated for
the force-controlled arc-length method (see, for instance, de Borst
et al. [15]) is drawn, it can be noticed how the former resemble the
latter. This should not be surprising, as Eq. (31) is obtained very sim-
ilarly for both methods. Furthermore, Eq. (31) is quadratic in terms
of d �mwith two roots as can also be observed in Fig. 4, since the equi-
librium path intersects the constraint at two different points. In the
previous consistent methods illustrated in Sections 3.1.2 and 3.1.1,
only one root could be selected and it was performed according to
the tangent direction given by the Jacobian in Eq. (23). This is one
of the key differences when compared to a non-consistent scheme.
To choose the more suitable root, a modification of the approach
proposed by Crisfield [12] is adopted in this paper.6 In particular,
the root d �m is selected whichminimises the angle between the previ-
ous iteration of the displacement vector Duðk�1Þ and the current one
DuðkÞ, that is
d �m ¼ argmin
d �m

ðDuf ðk�1Þ þ duNR þ d �mdugÞDuf ðk�1Þ�
þ ðD�uðk�1Þ þ d �m �uÞD�uðk�1Þ�: ð32dÞ
However, the value of Duðk�1Þ is not available at the first iteration
per each time step. Hence, for the non-consistent method, an ad
hoc technique is necessary to overcome this issue.
essential in order to trace the full equilibrium path of a problem, especially those
involving snap-back/through.
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Predictor solution: At the start of each load/time step (apart
from the very initial load/time step which is covered below) the
quadratic Eq. (31) becomes

að1Þd �m2 þ cð1Þ ¼ 0: ð34Þ
The above equation has these two solutions
Algorithm 3. Non-consistent (NC) displacement-controlled arc-length pseudo-code.
d �m ð1Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffi
� cð1Þ

að1Þ

r

¼ � Dlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�uk k2 þ dugk k2 þ b2 KT;pp�uþ KT;pf dug

�� ��2q : ð35Þ

However, the appropriate root cannot be selected in the same man-
ner as for Eq. (32d). Instead, following the idea of the secant path
procedure proposed by Feng et al. [18,19], the sign is chosen accord-
ing to the following expression

signðdm� ð1ÞÞ ¼ sign ðDuf
nÞ

T
dug þ D�unð ÞT �u

� �
: ð36Þ

According to Riks [35], bifurcation locations are defined as points
where the determinant of the tangent matrix is zero. For this rea-
son, and as previously pointed out by [16], the secant path method
does not rely on quantities which are related to the tangent matrix,
being therefore insensitive to the existence of bifurcations. For fur-
ther details and for an explanation of the secant path scheme, the
10
reader is referred to the original papers [18,19].

Predictor solution at the first interval: To start the analysis,
Eq. (35) is chosen with the plus sign. In this way, d �mð1Þ will have
the same direction of the given displacement vector �u and the
equilibrium path is not allowed to proceed in the direction oppo-
site to the prescribed displacements for the first load/time step.

The non-consistent pseudo-code is presented in Algorithm 3,
where, as previously described, only the grey-boxed part has been
changed compared to the algorithms already presented in this
paper.

3.3. Arc-lengths

To speed up the arc-length algorithms and to ensure faster con-
vergence, the arc-lengths can vary between time intervals. The fol-
lowing choice comes from an extension of Crisfield’s idea [12,11]
and can be expressed as

Dlnþ1 ¼ max min
kdes

kn

 !
Dln; Dl0

" #
;
Dl0
c

" #
; ð37Þ
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where kdes is the specified desired number of Newton-Raphson iter-
ations, kn is the number of Newton-Raphson iterations required to
converge at the previous step, and c is a positive scalar which sets
the minimum size of the arc-lengths. In this fashion, a minimum
and maximum value of the arc-lengths is fixed a priori. Moreover,
both the minimum and the maximum arc-lengths are a function
of the initial values given by Eq. (25). The purpose of setting a min-
imum value is to balance the number of iterations and the number
of time steps (see Fig. 5b). As can be seen in Fig. 5a, if this value is
not used, the arc-length can keep decreasing constantly in the prox-
imity of highly non-linear behaviour. This situation can be avoided,
as graphically illustrated in Fig. 5b, by adopting Eq. (37). After
reaching the peak of the projection of the equilibrium path in the
uf � �u plane, the arc-length can start to increase again as approxi-
mately linear behaviour occurs, where the number of iterations at
the previous step kn decreases.
4. Numerical analysis

In this section, the methods described in Sections 3.1.1, 3.1.2
and 3.2 are applied to six examples to demonstrate the relative
performance of the different approaches. Whenever possible, the
displacement-controlled solutions have been compared to analyti-
cal results. The analysis parameters used are listed in Table 1,
where a distinction is drawn between those related to the
Newton-Raphson procedure and those necessary for the new
model. In this study, geometric non-linear behaviour is considered
for the finite element code cast within a Total Lagrangian formula-
tion. Linear elastic constitutive models have been adopted, but,
since they vary from example to example, the material parameters
are specified in each of the cases below.

4.1. Single degree of freedom truss

The first validation example is the single Degree of Freedom
(DoF) truss, as shown in Fig. 6, chosen because an analytical solu-
tion exists (see Bonet and Wood [8]). The problem has been solved
both via the classical arc-length scheme—where the external force
Fig. 5. Variations of arc-len

11
vector is allowed to vary—and via the current method—where the
prescribed displacement can evolve. Both of the arc-length tech-
niques adopt the non-consistent procedure with a cylindrical con-
straint. The truss element consists of a Hencky material, with the
stress and strain variables as detailed in Table 2, a Young’s modu-
lus of Eð1Þ ¼ 210 GPa and a cross sectional area of A ¼ 10 cm2. The
initial values, which have been employed to start the simulation,
are �uv ;0 ¼ 3 m and f v ;0 ¼ 10 MN, for the displacement and force
controlled arc-length methods, respectively.

Fig. 7a shows that both numerical methods perfectly follow the
analytical solution, without any issue in tracking the equilibrium
path after the sharp snap-through at points A and B (which repre-
sent geometrically mirrored positions with respect to the horizon-
tal direction, as shown in Fig. 7b). From points B to C, the behaviour
of the structure is approximately linear, whereas geometrical non-
linearity again starts to play a significant role after C. Point D rep-
resents another snap-through, even though this is much smoother
than A and B. Since this example has only a single degree of free-
dom, the same results are expected for the force-controlled and
the displacement-controlled schemes. Moreover, it should be
noted that, since no snap-back takes place in Fig. 7a, the equilib-
rium path could be tracked by monotonically controlling the dis-
placements. The novelty of the new method will be emphasised
by the next example, where a distinction between the force-
controlled and the displacement-controlled analysis will be
highlighted.

However, before moving to the next example, a brief study
varying the parameter a is presented for the displacement-
controlled method using the NC scheme with the cylindrical con-
straint. The results are summarised in Table 3, with all the equilib-
rium paths tracing that represented in Fig. 7a and the analyses
being stopped after the vertical displacements had exceeded 4 m.
It is noticeable that the maximum number of iterations max knþ1,
when equal to or higher than 6, leads to a continuous change in
the number of different arc-lengths used (No – lnþ1), 10 for
a ¼ 0:1 and 6 for a ¼ 0:05 respectively. These constant oscillations

comply with the choice of kdes ¼ 5. The lowest number of iterations
min knþ1 is 4 for most simulations, with the exception of a ¼ 0:001,
gths with �m ¼ m ¼ 1.



Table 1
Convergence criteria and displacement-controlled arc-length scheme parameters.

Parameter Settings

Convergence Parameters tol 1	 10�9

kdes 5

kmax 20

Model Parameters a 10�2

c 4

Fig. 6. Single DoF truss geometry and features in case of load control and in case of
displacement control.
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where this value is 3. Nonetheless, in this last case, it can be seen
from the mean value of iterations per step �knþ1 � 3:96 that the
minimum value of 3 iterations happens once in the whole simula-
tion. A qualitative relationship appears to exist between the order
of magnitude of a, the mean value of iterations �knþ1, the total num-
ber of iterations

PT
nþ1knþ1, and the number of time steps T. a ¼ 0:1

and a ¼ 0:05 give a mean value of iterations close to 5, between 84
and 93 total iterations, and from 16 to 18 time-steps. The mean
value of iterations decreases for a ¼ 0:01 (�knþ1 � 4:85) and for
a ¼ 0:005 (�knþ1 � 4:15). Moreover, for these values of a, there is
an expected net growth in the number of total iterations
(
PT

nþ1knþ1 ¼ 165;199) and in the number of time steps
(T ¼ 34;48) respectively. The same trends can be seen for
a ¼ 0:001, with a further increase in the total value of iterations
(
PT

nþ1knþ1 ¼ 420) and the number of time-steps (T ¼ 106). Overall,
a ¼ 0:01 appears to be a good compromise between performance
and stability. Nonetheless, the authors acknowledge that this value
is highly problem-dependent and should be tailored to the
circumstances.
4.2. Two-member truss

The two-member truss in Fig. 8a has been previously studied by
Pecknold et al. [32] and by Yang and Shieh [42], where the analyses
Table 2
Different material assumptions, with respective stress-strain relationships, used in the nu

Material Name Stress Tensor

Hencky Kirchhoff

Saint Venant-Kirchhoff Second Piola-Kirchhoff

12
were run under force control. To permit direct comparison, impe-
rial units have been adopted here. As can be observed from
Figs. 8b and c, two degrees of freedom are allowed to vary in these
analyses, with the horizontal values of displacement or force being
a fixed ratio of the respective vertical ones. Since the structural
behaviours are dependent on more than a single degree of free-
dom, the equilibrium paths will be significantly different when
considering either force-controlled or displacement-controlled
analyses (see Figs. 9 and 11, and corresponding deflection shapes
in Figs. 10 and 12)). In the latter cases, the results have been com-
pared to their respective analytical solutions (reported in Appendix
A), which, to the authors’ knowledge, are not available in the liter-
ature. Even in this case, it should be stressed that a rigorous assess-
ment of the new methodology is provided by the analytical
formula, leading to the perfect overlap of the equilibrium paths
shown in Figs. 9 and 11.

The initial values for starting the analyses are �uv ;0 ¼ 39:37 in
and f v ;0 ¼ 180 lb In this case, the cylindrical constraint has been
used along with the non-consistent scheme. Two constitutive rela-
tionships, i.e. Hencky and Saint Venant-Kirchhoff materials (see
Table 2) are used and the structural behaviours are shown in Figs. 9
and 11, Young’s moduli Eð1Þ and Eð2Þ having the same numerical
value (see Fig. 8a). The choice of different stress-strain relation-
ships has been made both to underline the differences in force-
controlled and displacement-controlled analyses, and to prove
the effectiveness of such techniques in different tests.

Considering the Henckymaterial, the equilibrium path traced by
the force-controlled analysis contains several snaps-through and
snaps-back (Fig. 9b and d), whereas the path resulting from a
displacement-controlled method has only snap-through points.
Fig. 9a shows that the structural behaviours expressed in the
uv � f v plane are practically similar, with slightly higher peaks
(points A and C) in the displacement-controlled analysis. As can
be noted from all of the plots in Fig. 9 for the force-controlled
approach, there exists a configuration (slightly before point B0)
with null internal forces and zero horizontal displacement. This
configuration originates when the vertical displacement is pre-
cisely the same as the height of the structure uv ¼ l ¼ 25:85 in,
leading the top pin to be at the same level of the supports. If a small
step forward of the same vertical displacement is considered for
the displacement-controlled analysis, a peak of horizontal reaction
force is obtained (shortly after point B in Figs. 9c and d).

In the Saint Venant-Kirchhoff model, the equilibrium paths
traced in Fig. 11 present several snap-throughs for both analyses,
whereas there are some snap-backs only when the test is run
under force control. In the latter case, the equilibrium path hap-
pens to be remarkably convoluted if compared to the monotoni-
cally increasing one resulting from a displacement-controlled
test. Unlike the Hencky material, the Saint Venant-Kirchhoff model
leads to different magnitudes of the vertical force peaks (A for
displacement-controlled and A0 for force-controlled analysis, see
Fig. 11a). Nonetheless, the equilibrium paths illustrated in
Fig. 11a show that there are some overlays between the points A
and C for the displacement-controlled analysis and the points D0

a C0 for the force-controlled case in the uv � f v plane. Overall, when
the displacement-controlled method is applied, the structural
response includes two mirrored peaks A and C, and a zero vertical
merical examples.

Strain Tensor Young’s Modulus

Logarithmic Eð1Þ

Green-Lagrange Eð2Þ



Fig. 7. Single DoF truss behaviour.

Table 3
Comparative study on the role of a.

max knþ1 min knþ1 �knþ1
PT

nþ1knþ1 T No – lnþ1

a ¼ 0:1 6 4 5.25 84 16 10
a ¼ 0:05 6 4 � 5.17 93 18 6
a ¼ 0:01 5 4 � 4.85 165 34 1
a ¼ 0:005 5 4 � 4.15 199 48 1
a ¼ 0:001 4 3 � 3.96 420 106 1
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force point B. However, unlike the Hencky material, this constitu-
tive relationship does not lead to a peak in the horizontal reaction
forces in correspondence of B (Figs. 11c and d).

To provide a detailed overview of the different techniques
explained in Section 3, a parametric study varying the stress-
strain relationships (Hencky and Saint Venant - Kirchhoff materials)
was run. The set-up values are in Table 1, and the analyses were
stopped after the vertical displacements had exceeded 5500. The
results, which perfectly follow the equilibrium paths illustrated
in Figs. 9 and 11, are summarised in Table 4.
Fig. 8. Two-mem

13
The general trend, indicated by the lowest values of time steps

T ¼ 88 and by the total number of iterations
PT

nþ1knþ1 ¼ 264,
shows that the NC scheme with the cylindrical constraint is the
best performing option for both materials. In addition, the percent-
ages of time steps with minimum and maximum arc sizes are the
same, i.e. % @ lmin ¼ % @ lmax ¼ 100%. This uniformity, as well as
the constant average of iterations per step (�knþ1 ¼ 3), appears to
confirm the algorithm’s stability and the NC scheme with the cylin-
drical constraint can be regarded as the most reliable when dealing
with convoluted equilibrium paths. However, when the NC scheme
is applied with the spherical constraint, the behaviour changes dra-
matically. The persistent shrinkage of the arc length, highlighted
by the convergence becoming linear (�knþ1 ! 1), makes the number
of time steps necessary to achieve the target solution uv ¼ 5500

grow to infinity (T ! 1).
On the other hand, the NPC scheme is the only case where the

spherical constraint performs better than the cylindrical. This ben-
efit is due to the spherical constraint’s positive impact on the con-
dition number of the Jacobian. This improvement does not occur in
ber truss.



Fig. 9. Two-member truss load-displacement curves for a Hencky material.

Fig. 10. Deflection shapes of the Hencky model two-member truss arch under displacement control and under force control.
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the cylindrical case, with the inversion of the Jacobian failing at the
first step for both materials.

From Table 4, it is appreciable how, in the PC scheme, the use of
both constraints leads to successful completion for either material.
However, as most of the considered parameters indicate, i.e. max-
imum number of iterations in one step max knþ1, average iterations
per time steps �knþ1, the total number of iterations

PT
nþ1knþ1, and

the number of time steps T, the spherical constraint performs
worse than its cylindrical counterpart, with higher values in all
the above.

4.3. 3D dome

In this example, the star dome shown in Fig. 13 is considered.
The same example appears in Geers [22], Kamat et al. [25], Kwok
et al. [26] and Bellini and Chulya [6], all of which used force-
14
controlled schemes. Here, in contrast, we analyse the same geom-
etry using the proposed displacement-controlled scheme. This
structure has twelve supports distributed along a perimeter with
a radius of 60 m, with a pin every 30
. Six other pins, positioned
on an internal circle with a radius of 30 m, are situated at a height
of 4:5 m. The top pin is placed at a height of 6 m and the vertical
displacement, �u, is applied at this point. All of the members have
the same cross sectional area, A ¼ 10 cm2, and adopt a Hencky

material model with Eð1Þ ¼ 210 GPa.
This example has been chosen for two practical reasons: (i)

results are presented at a single degree of freedom and, as such
can be compared between force-controlled and displacement-
controlled analyses and (ii) the complicated structural response—
presents several snaps-through and snaps-back, which the classical
monotonically increasing displacement-controlled analysis cannot
handle. Hence, all of the methods described have been applied and



Fig. 11. Two-member truss load-displacement curves for a Saint Venant-Kirchhoff material.

Fig. 12. Deflection shapes of the Saint Venant-Kirchhoff model two-member truss arch under displacement control and under force control.

G. Pretti, W.M. Coombs and C.E. Augarde Computers and Structures 258 (2022) 106674
cylindrical and spherical constraints considered in each case. The
parameters necessary to run the analyses are presented in Table 1,
with the exception of a which is set as 1. This change in the a
parameter is due to the geometry of the dome modelled. All of
the tests start with the vertical displacement value D�u0 of 3 m
and have been stopped when the vertical displacement exceeds
15 m.

As can be observed from Fig. 14, the structure has a highly non-
linear response. At first, between O and A, an initial stiffening is
immediately followed by a softening ending at A. It should be
15
noted that the vertical displacement value of A is 3 m, meaning
that the top pin is mirrored along the horizontal plane defined
by a height of 4:5 m. From A to B, the dome regains stiffness due
to the involvement of the trusses in the outer circle. However, this
part of the structural behaviour is non-linear too, with the
curvature of the load-displacement curve changing. After B, there
is a drop in the force response since the outer layer of elements
buckle (see the deflected shape C in Fig. 14). From point C to D,
the top pin is pulled up again, with the outer layer of elements
being almost horizontal. D is followed by another sharp fall (and



Table 4
Performance results for different displacement-controlled arc-length solution schemes.

Material Considered
Scheme

max knþ1 min knþ1 �knþ1
PT

nþ1knþ1 T % @ lmin % @ lmax

Hencky
NPC Sph. 8 3 � 3.60 1115 310 3

310 � 0:97% 305
310 � 98:4%

Cyl. – – – – �1 – –
PC Sph. 10 3 3.6 1116 310 2

310 � 0:65% 305
310 � 98:39%

Cyl. 6 2 � 2.04 286 140 1
140 � 0:71% 139

140 � 99:29%
NC Sph. 4 1 ! 1 ! 1 y! 1 – –

Cyl. 3 3 3 264 88 88
88 ¼ 100% 88

88 ¼ 100%

Saint Venant - Kirchhoff
NPC Sph. 8 1 � 3.11 2260 727 44

727 � 6:05% 525
727 � 72:08%

Cyl. – – – – �1 – –
PC Sph. 10 1 �3.13 2296 734 45

734 � 6:13% 521
734 � 70:98%

Cyl. 6 2 � 2.04 286 140 1
140 � 0:71% 139

140 � 99:29%
NC Sph. 4 1 ! 1 ! 1 y! 1 – –

Cyl. 3 3 3 264 88 88
88 ¼ 100% 88

88 ¼ 100%

y Arc length kept shrinking.
� Analysis failed.

Fig. 13. Dome geometry and boundary conditions.
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change in sign) in the force response, which culminates in E, the
lowest point of the structural behaviour. Then, from E to F, the
dome responds similarly to the part from A to B. After the point
F, its stiffness due to its geometrical configuration is very low
and beyond this point, as confirmed by the configuration G in
Fig. 14, the geometry of the dome has been completely reversed
compared to the original configuration shown in Fig. 13.

In Table 5, some values necessary for evaluating the conver-
gence of the different displacement-controlled schemes have been
collected. Some of these results relate to the Newton-Raphson
method, i.e. the maximum and minimum number of iterations ki
occurring within a time step, and the total number of iterations
which have been necessary to complete the analyses. Some other
data depend on the overall behaviour during the tests, for
instance,the total number of time steps T to achieve a vertical dis-
16
placement exceeding 15 m, and the percentages resulting from the
ratio between the number of time-steps where the minimum (or
the maximum) size of the arc-length has been employed by the
algorithm and the total time-steps, T. These values are enumerated
under the headings % @ lmin and % @ lmax. Moreover, the definition
of the utilisation index is introduced as
eu ¼ 1
T

XT
nþ1

Dlnþ1 � Dlmin

Dlmax � Dlmin
; with eu 2 ½0;1�:
This value is an indirect measure of algorithm performance: the clo-
ser it is to zero, the more the algorithm struggles to achieve conver-
gence, whereas a value of 1 means that the maximum arc-length
size is used in all of the iterations.



Fig. 14. Dome structural response: load-displacement curve traced by force-controlled method (on the left) and some of the relative deflection shapes (on the right).

Table 5
Performance results for different displacement-controlled arc-length solution schemes.

Considered Scheme max knþ1 min knþ1
PT

nþ1knþ1 T % @ lmin % @ lmax eu

NPC Sph. 7 4 296 67 2
67 � 2:99% 53

67 � 79:1% 89:7%

Cyl. 7 4 606 120 5
120 � 4:17% 27

120 ¼ 22:5% 47:4%

PC Sph. 7 4 291 66 1
66 � 1:52% 57

66 � 86:4% 92:2%

Cyl. 20 6 947 y87 63
87 � 72:4% 1

87 � 1:15% 2:52%

NC Sph. 5 4 266 57 0
57 ¼ 0% 57

57 ¼ 100% 100%

Cyl. – – – y1 – – –

y Analysis failed.

Fig. 15. Dome structural response for all of the displacement-controlled arc-length solution schemes.
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Considering the performance of the spherical constraint (where
the force-displacement response is shown in Fig. 15a), it can be
seen that all of the algorithms converge, with the NC scheme being
marginally more efficient. It can be observed that this scheme does
not exceed the number of the desired iterations, meaning that the
arc-length size does not change in the simulation, leading the over-
17
all number of time-steps to equalling that where the maximum
arc-length size has been employed. The non-partitioned consistent
(NPC) and the partitioned consistent (PC) methods behave similarly,
with utilisation values of 89:7% and 92:2% (see Table 5); this may
be predictable since the same mathematics underlies these two
methods, although the equations are solved differently.
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If the cylindrical constraint is considered instead (where the
force-displacement response can be seen in Fig. 15b), the non-
partitioned consistent scheme is the only scheme that can trace
the whole structural response, even though it takes almost twice
as many time steps as its respective spherical constraint. This trend
is confirmed by the value of the utilisation index of 47:4%, whereas
this increases to 89:7% for the spherical constraint case. Both the PC
and the NC schemes fail if the cylindrical constraint is applied, but
for different reasons: the former starts to struggle to converge and
backtracks along the equilibrium path, whereas the latter does not
even start. As the interruption in the PC analysis is a consequence
of algorithm failure, it is possible for the NC method to reproduce
some of the equilibrium path if different values of a or different
initial vertical displacement are imposed. However, it is then nec-
essary to reduce the initial arc-length size defined by Eq. (25) to
reproduce the entire equilibrium path using the NC approach.

4.4. Crisfield arch

The bi-dimensional arch in Fig. 16 was first analysed by Crisfield
[14], and appears in other papers, e.g.[24]. However, to demon-
strate the difference between a force-controlled and a
displacement-controlled arc-length scheme, the applied load/dis-
placement of the original has been moved from the centreline to
a node near the left hand support, and tilted from the vertical
direction by 31:5
 (as shown in Fig. 16). The positioning and incli-
nation of this load is rather arbitrary, but is done so that the non-
symmetry of the loading results in differing equilibrium paths for
the conventional load-controlled arc-length method and the
displacement-controlled arc-length method proposed in this
paper. The method parameters are the same as in Table 1. A cylin-
drical scheme has been used in the non-consistent way. As Fig. 16a
shows, the chosen stress-strain relationship is defined by a Hencky

material, whose axial stiffness is equal to Eð1ÞA ¼ 50 MN. The mag-
nitude of the initial values selected for the current study are
�u0 ¼ 2 m and f 0 ¼ 55 kN, and the angle of inclination of the dis-
placement/load has been kept constant throughout the analysis.
For the sake of clarity, the simulation was stopped after 750 time
steps.

As with previous examples, the equilibrium paths represented
in Fig. 17 are partial because of the complexity of the bi-
dimensional structure. As such, both deflection shapes and ani-
mations showing the whole behaviour of the arch are available;
the former are shown in Fig. 18, whereas the latter are part of
the supplementary material, which is referenced in the acknowl-
edgment section. Fig. 17a shows that the vertical displacement-
force curve is entirely different when displacement-controlled
or force-controlled analyses are carried out. In the former case,
the equilibrium path starts with a peak in force, followed by a
Fig. 16. Crisfield bi-dime
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softening, until the local maximum value in displacement is
reached at A. The force then decreases and becomes negative,
reaching a local minimum in displacement at point B. The struc-
ture regains some of its stiffness, achieving a positive force until
the local maximum in displacement C is met. This is then fol-
lowed by a sharp drop in force, with another change in sign of
this quantity, whose minimum is denoted by point D. The hard-
ening from D to E is very close to the previous softening from C
to D. The same idea applies from E to F, being this very similar to
B to C. A steep ascent in force follows point F, with a maximum
local value in displacement at G. Continuing the analysis, the
maximum value in force can be found after G. From this point,
the structure significantly loses stiffness, reaching negative values
of displacement and force at H. Another hardening takes place

after H until the study is interrupted at the 750th step. The
force-controlled analysis represented in Fig. 17a is very different.
From its starting point, positive values in force and displacements
are achieved, and the curve tends to become flat until a peak in
force is met at A0. A softening follows, initially in a gradual way,
and later in more significant fashion, reaching a local maximum
value in displacement (denoted by B0). The softening continues,
decreasing both the displacement and the force, with a local min-
imum of the latter in C0. From this point, the structure regains
stiffness, and a local minimum in displacement D0 is accompanied
by the maximum value in force, indicated by E0. After this peak,
both force and displacement decrease again, and the local mini-
mum of the latter F 0 is the starting point of a softening curve
rather similar to its hardening counterparts (i.e. from C0 to D0),
which culminates in the local minimum G0. From this point, a
gentle hardening continues until the analysis stops.

Considering Fig. 17b, which shows the horizontal force-
displacement response of the structure at the loaded/displaced
node, the displacement-controlled analysis is quite similar in
shape to that presented in Fig. 17a, the main difference being that
parts B� C and E� F have now a negative slope. However, if the
force-controlled case is considered, it can be seen from the
zoom-in in Fig. 17b that the result is radically different in terms
of the equilibrium path. The force-controlled curve starts with a
negative value of displacement. This tendency continues even after
the local maximum in force in A0. However, shortly after this point,
the horizontal displacement reverses, but cannot reach a positive
value, since the local maximum in displacement B0 is still a nega-
tive value. A softening of the structure leads to negative values
even in force with the minimum at C0. After this point, an S-
shaped hardening occurs, with D0 and E0 being the maximum dis-
placement and force respectively. An S-shaped softening follows
as far as G0, and this part of the curve intercepts the former hard-
ening part (from C0 to D0) once close to zero horizontal displace-
nsional circular arc.



Fig. 17. Equilibrium paths of the Crisfield arch.
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ment. After G0, the simulation ends with both positive values in
force and displacement.
7 Though it may seem counter-intuitive, in case of displacement-controlled
analysis, maxima and minima have to be considered in terms of x-axis values (that
is, displacement values), as this is the driven parameter.
4.5. Cantilever truss structure

In this example, the cantilever truss structure in Fig. 19, is sub-
jected to two compressive and two tensile loads/displacements.
This problem has been included to further demonstrate that struc-
tures behave differently if displacement-controlled or force-
controlled conditions are applied. The analysis parameters are
listed in Table 1, and the chosen initial values are �uz;0 ¼ 0:03m
for the displacement-controlled case and f z;0 ¼ 5kN for the force-
controlled case. Saint Venant-Kirchhoff material is used.

Before commenting on the behaviour of the structure, it should
be noticed that the equilibrium paths for this problem shown in
Fig. 20 are inevitably partial since the cantilever truss structure,
and consequently its response, are three-dimensional. Hence, to
fully understand the results, it is necessary to view the animations
of this structure’s response which can be found in the supplemen-
tary material referenced in the acknowledgement section.
19
In both cases (i.e. force-controlled and displacement-
controlled analyses), monotonically increasing behaviour—from
the beginning of the simulation until the peaks A7 and A0—is
shown for the compressed node in Fig. 20a. Nonetheless, A takes
place at a higher value of force and a lower value of displacement
than A0. Afterwards, both simulations show a drop in the forces,
even though the force-controlled analysis presents a change in
sign of this value down to B0. A hardening phenomenon follows
in each situation, with B to C being practically linear. In addition,
even though the values in forces are quite similar at C and C0, the
value of displacement for the latter is significantly higher. A sharp
snap-back occurs just after C 0, whereas the behaviour following C
is smoother. Furthermore, in the displacement-controlled analysis,
the response after C presents a tortuous path followed by a local
minimum in displacement (denoted by the letter D). In the case of
the force-controlled test, the lowest value in force (represented by
D0) is the starting point of a further hardening, which terminates



Fig. 18. Deflection shapes of the modified Crisfield arch under displacement control (top rows) and under force control (bottom rows).

G. Pretti, W.M. Coombs and C.E. Augarde Computers and Structures 258 (2022) 106674
to an asymptote following E0. On the other hand, the
displacement-controlled analysis shows a minimum in force (de-
noted by E), followed by an extremely steep part, which corre-
sponds to the whole structure’s constrained situation.

If the stretched node is considered (Fig. 20b), the maxima and
the minima of the force-controlled test match those of the com-
pressed node. The only difference is that, after peak A0, the dis-
placement starts to decrease and becomes negative. This trend is
not inverted, and continues until the simulation is stopped. In
20
the case of displacement-controlled analysis, as shown in
Fig. 20b, points A; B;C, and D are again two maxima (A and C)
and two minima (B and D). However, it can be seen that point E,
in this stretched node, appears to be at quite an arbitrary location.
This situation can be explained by the fact that E, in the com-
pressed node (Fig. 20a), is a minimum in force, and this is not
the parameter under control in this analysis. Hence, since no a pri-
ori relationship exists between these forces, they can be a minima/-
maxima at one node and not at the other.



Fig. 19. Cantilever truss geometry and parameters.

Fig. 20. Equilibrium paths of th
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4.6. Continuum cube

The unit continuum cube (l ¼ 1 m) represented on the left of
Fig. 21 is the final example and is included to demonstrate the dif-
ferent responses of a continuum body when distinct arc-length
schemes (displacement- and force-controlled) are applied. The
continuum problem is artificial in nature as it is overconstrained
by a poor discretisation, however these issues result in very chal-
lenging equilibrium paths in terms of instability. Higher-order
shape functions and finer meshes would likely smooth the equilib-
rium paths shown in Fig. 22, as is to be expected in a continuum
discretisation. However, such a non-ideal choice of shape functions
and of mesh represents a complex challenge for the studied path-
following techniques. Furthermore, it should be highlighted that a
monotonically increasing displacement-controlled technique
would not be able to follow the equilibrium paths (see Fig. 22)
due to the presence of snap-backs.

Three of the cube faces are restrained with roller boundary con-
ditions, one in each direction. A vertical and a horizontal force or
displacement has been applied on a free corner, as shown in
e cantilever truss-element.



Fig. 21. Original (on the left) and deformed configurations (on the right) due to the displacement-controlled (top row) and to the force-controlled (bottom row) analyses.
Letters which define the different layouts are referred to Fig. 22.

Fig. 22. Continuum cube load-displacement response.
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Fig. 21. In particular, the ratio between these quantities is f h ¼ f v
10 or

uh ¼ uv
10. The cube is made up of Hencky material, characterised by a

Young’s modulus Eð1Þ ¼ 109 MPa and by a Poisson’s ratio of m ¼ 0:2.
The discretisation of the cube consists of 8 hexahedral elements
with tri-linear shape functions and two Gauss points per direction.
The studies start with an initial vertical force f v ;0 ¼ 5 MN and ini-
tial vertical displacement �uv ;0 ¼ 1 m, and the non-consistent
scheme with cylindrical constraint has been applied in both cases.
Once again, the parameters related to the convergence and to the
adopted model are listed in Table 1.

It can be observed from Fig. 22a that the equilibrium paths
derived from a displacement-controlled or a force-controlled anal-
ysis are quite similar when the response of the cube is considered
in the uv � f v plane: the behaviour is initially linear, with a peak in
responses (A and A0), which are almost coincident, and they both
contain a sharp snap-back at B and B0. After these kinks, the
force-controlled behaviour predicts a constant force snap-
through, C0, whereas the respective snap-through C shows a
decrease in the vertical force for the displacement-controlled test.
From C to D and from C0 to D0, both of the equilibrium paths show a
drop in the force response and minimal variation of the vertical
displacement. A minimal hardening in the responses occurs from
the local minima D and D0 to the local maxima E and E0, where
other snaps-through occur.

In displacement-controlled analysis, Fig. 22a can be seen as rep-
resentative of the overall behaviour of the cube, since the response
represented in this figure is very similar to those shown in
Figs. 22d. The main differences are highlighted in Figs. 22c and d,
where point C has a higher value than B with regards to the hori-
zontal force. In the same figures, it can be seen how D and E do
not represent local minimum and maximum: in fact, they are
points located on a downward path converging to a horizontal
asymptote.

On the other hand, the equilibrium paths illustrated in Figs. 22b
and 22d are very different from those in Fig. 22a for the force-
controlled analysis. First of all, it can be seen that the initial part
of these curves predict a negative horizontal displacement.8 This
behaviour is confirmed by the deformed configurations A0

;B0 and C 0

in Fig. 21, where the corner—on which the boundary conditions
are applied—is outside the original plane projection of the cube. Sec-
ondly, even though the points A0 and B0 represent again a snap-
through and a snap-back respectively, a quasi-linear softening beha-
viour can be traced between C 0 and D0, which is entirely different
from the constant behaviour in vertical displacement shown in
Figs. 22a and b. As expected, Fig. 22b represents a 1 to 10 scaled
graph of Fig. 22a since the ratio between the vertical and the hori-
zontal loads is fixed for a force-controlled analysis.

It is worth emphasising that both of the displacement- and
load-controlled techniques struggle to converge in the sharp
snap-back defined by points B and B0, employing 8 and 9 iterations
respectively. These numbers are unusual when the Newton-
Raphson procedure is adopted, highlighting the challenging nature
of this continuum problem.
5. Conclusions

This paper presents for the first time a Dirichlet arc-length con-
trolled equilibrium path following approach that includes several
schemes in terms of how these equations are solved. The method
allows displacement constraints to be imposed on problems that
include snap-back structural behaviour, which is not possible with
8 Forces and displacements are considered as negative when they are in the
opposite directions of the ones plotted in Fig. 21.

23
conventional displacement-controlled techniques. Critically, in
multi-dimensional problems, such as the examples presented here,
controlling displacements instead of forces will result in a different
structural response. Moreover, displacement-imposed equilibrium
paths cannot be tracked without the current method as the pres-
ence of snap-backs will cause the conventional monotonically
increasing displacement-controlled technique to fail.

It has been shown that the non-consistent (NC) scheme with a
spherical arc-length constraint is the most robust and efficient
for the problems considered in this paper. However, both of the
consistent schemes are also robust provided that they are com-
bined with a spherical arc-length constraint. It is not recom-
mended that a cylindrical arc-length constraint is adopted when
solving general problems as the method does not place a constraint
on the reaction forces (or corresponding internal forces) that can
develop during a time step. The consequence of this is, at best, a
much lower utilisation index (half or less than spherical methods)
for the non-partitioned consistent (NPC) method and non conver-
gence for the non-consistent (NC) and partitioned consistent (PC)
methods when analysing more complex problems.

As for performance, Eq. (23) indicates that the NPC scheme adds
a row and a column to the Jacobian matrix, whereas the PC and the
NC schemes add two subroutines, defined by the grey-boxed parts
in Algorithms (2) and (3). Hence, the modifications introduced by
the new arc-length method can be regarded as negligible in terms
of computing time for large number of degree-of-freedom
problems.

Overall, the method proposed in this paper adds another arrow
to the digital quiver of non-linear path following techniques in
structural mechanics and opens the door to these methods being
applied to problems where displacement constraints are the most
appropriate physical choice for analysing the problem under con-
sideration. Although this paper has focused on the solution of
stress analysis problems, specifically for large deformation
mechanics with simple truss and continuum elements, the method
can be applied to other element types and physical equations
where Dirichlet constraints are required.

Furthermore, the current work could be extended to the analy-
sis of thin-walled structures, as these represent a more challenging
task for path-following techniques, and important studies and con-
siderations on slight imperfections in real truss structures could
also be a valuable avenue of further research.
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Appendix A. Analytical solutions of the two-member truss
under displacement control

For the sake of completeness, the analytical solutions for the
two-member truss (Fig. 8a) under displacement control (Fig. 8c)
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are reported here. To the authors’ best knowledge, this solution is
not available in the current literature.

For any given horizontal and vertical displacements, the current
length of the two trusses is known, that is

lðAÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l0 � �uvð Þ2 þ l0

2
þ �uh

	 
2
s

; ðA:1Þ

lðBÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l0 � �uvð Þ2 þ l0

2
� �uh

	 
2
s

: ðA:2Þ

As the problem is mono-dimensional, the deformation gradient of
the ðiÞ-th (i ¼ A; B) truss can be straightforwardly computed as

FðiÞ ¼ lðiÞ
l0
. Under the assumption of incompressibility J ¼ 1, the cur-

rent area of each truss element becomes AðiÞ ¼ l0 A0
lðiÞ

, with A0 being

the initial area. Furthermore, the angles between the trusses’ cur-
rent direction and the horizontal axis can be computed as

tan#ðAÞ ¼ l0 � �uv
l0
2 þ �uh

; ðA:3Þ

tan#ðBÞ ¼ l0 � �uv
l0
2 � �uh

: ðA:4Þ

All the above-mentioned quantities being known, the computation

of the forces acting along the axis of the beam f ðiÞ depends on the
chosen stress-strain relationship. If the Hencky model is considered,
the Kirchhoff stress sðiÞ and the logarithmic strain �ðiÞ are necessary
to compute these forces

�ðiÞ ¼ ln
lðiÞ

l0

 !
; ðA:5Þ
sðiÞ ¼ Eð1Þ�ðiÞ; ðA:6Þ
f ðiÞ ¼ sðiÞAðiÞ
: ðA:7Þ

If, on the other hand, the Saint Venant-Kirchhoff material is consid-
ered, the computation of the Green-Lagrange strain tensors EðiÞ

and of the second Piola-Kirchhoff stress tensors SðiÞ must be calcu-
lated as

EðiÞ ¼ 1
2

FðiÞ
� �2

� 1
	 


; ðA:8Þ

SðiÞ ¼ Eð2Þ
EðiÞ; ðA:9Þ

f ðiÞ ¼ SðiÞAðiÞ
: ðA:10Þ

Regardless of the choice of the materials described by Eqs. (A.5)–
(A.7) and (A.8)–(A.10), the Cartesian reaction forces (f h and f v) at
the apex node are the sum of the projections of the forces acting
along the axis of the beams

f rcth ¼
X
i

f ðiÞh ¼ �f ðAÞ cos#ðAÞ þ f ðBÞ cos#ðBÞ; ðA:11Þ

f rctv ¼
X
i

f ðiÞv ¼ f ðAÞ sin#ðAÞ þ f ðBÞ sin#ðBÞ: ðA:12Þ

The above forces are considered positive as plotted in Fig. 8c.
Appendix B. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at https://doi.org/10.1016/j.compstruc.2021.
106674.
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