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Abstract
Growing penetration of Electric Vehicles (EV) and Distributed Generation (DG) is
driving sharper peaks in demand and supply, which, if poorly managed, manifest as over‐
or undervoltage and disrupt grid service quality. Smart charging schemes reschedule EV
charging load according to factors such as grid stability, price signals, etc. It remains
unclear how to do this while meeting the diverging needs and expectations of multiple
concerned participants. This paper proposes two smart charging schemes for secondary
voltage control in the distribution network and analyses performance‐cost tradeoffs
relating to key players in the Smart Grid. To support these schemes, a distributed
communications architecture is designed that jointly minimises traffic burden, compu-
tation load and investment in Information and Communications Technology (ICT)
hardware. Scheme I (Smart Curtailment), curtails load and DG for peak shaving. Scheme
II (Smart Correction) optimises cost‐efficiency for subscribing users by maximising
power transfer during off‐peak hours or when renewable energy is high. Performance of
both schemes is consolidated statistically under almost 6 months of practical input
profiles. Dramatic improvements in EV & DG capacity are demonstrated and key
performance‐cost tradeoffs relating to Voltage Control, Peak Shaving, User Inconve-
nience, CO2 Emissions and ICT Deployment Cost are identified.

1 | INTRODUCTION

The United Kingdom (UK) government plans for all cars sold
to be purely electric by 2030 [1]. Owning an Electric Vehicle
(EV) will cause a significant increase in household energy
consumption. Typical UK households consume roughly 5–
20 kWh/day [2], while a typical EV battery capacity ranges 20–
100 kWh [3–6]. Further, synchronised driving patterns are
plausible, for example numerous EVs require immediately
charging upon returning home from work. All this points to
sharper peaks in consumer power demand. Predicted effects of
random uncoordinated charging in the power network range
from significant to disastrous [7–9].

Meanwhile, increased environmental awareness has moti-
vated a surge in renewable Distributed Generation (DG), fed
directly into the distribution network alongside consumers. In
2019, the share of renewable generation in annual electricity
supply reached a record high of 37% in the UK [10]. By 2050,
the National Grid expects that 42% of all generation will be

connected at the distribution level [11, 12]. Unlike traditional
electric power sourced from municipal power plants, renew-
able energy is highly dependent on weather conditions and is
non‐synchronised with consumer demand. Changes in
weather can lead to sudden peaks or troughs in power con-
ditions for which the distribution network is not necessarily
designed [13–15].

If poorly managed, sharp peaks in supply and demand
manifest as over‐ or under‐voltage conditions that can trigger
passive protection elements, mandatory load shedding and
blackouts. They can also lead to grid congestion, increased line
losses, overloading of transformers, feeders and protection
equipment as well as high harmonic distortion that is invisible
to the network operator. For this reason, limits are placed on
DG, typically 15%–20% of peak load [16].

Smart charging techniques seek to mitigate localised im-
balances by exploiting the discretionary power requirement of
EVs: it does not matter exactly when charging takes place, so
long as it is charged when the consumer requires. Thus it is
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possible, within certain timing constraints, to adjust net de-
mand according to grid stability requirements.

There has been some work in this field. In [17], a smart
charging approach using the assigned phase of loads is pre-
sented to achieve superior loss minimisation performance. In
[8], an EV charging scheme with distributed wind power cost‐
efficiently meets consumer charging requirements based on
real‐time pricing. Peak shaving under EV load curves incor-
porating distributed solar power is analysed in [18]. A fuzzy
logic based EV charging strategy in [19] keeps minimum bus
voltage within operating limits. A fast‐converging distributed
demand‐response method is proposed in [20] to minimise peak
demand. In [21], two independent compensation mechanisms
for LV feeder voltage control with EVs and solar DG are
compared. An algorithm based on charging time zone prior-
ities in [7] improves the voltage profile, where 63% EV
penetration could be tolerated with no peak load increase. A
bi‐directional EV and DG control concept is presented in [22]
for grid support services. The impact of various EV charging
strategies on distribution grids with wind generation is studied
in [9], and excellent reviews on infrastructural challenges of
smart charging are presented [23, 24].

The literature exposes three critical areas for research.
First, smart charging can be sought from two optimisation
objectives:

(A) For peak shaving in the network [7, 17–20]. Power
equipment, which is sized according to the peak load, can
then be minimally supplemented to accommodate the
rising demand. Equipment can be operated closer to its
limits and power efficiency more effectively optimised,
reducing technical losses and operating costs.

(B) To maximise power transfer when it is cheap, that is
during non‐peak times or when renewable generation is
high [8, 22].

However, these two objectives A and B can be mis-
aligned [9]. High renewable generation can lead to cheap
electricity during peak loading hours. In this case, when
smart charging demand reacts to the cheaper energy prices it
can lead to a very high peak load in the network. In this case,
the operator desires peak shaving, while consumers/genera-
tors desire peak charging. This paper explicitly answers this
dichotomy.

Second, it remains unclear how to guarantee satisfaction
for the multiple concerned power network participants. In [20],
EV owners input a deadline before which a certain amount of
charge must be stored in their EV batteries. In [7], users select
a priority band within which their vehicle will charge. Practi-
cally, smart charging is possible via user subscription, where
EV owners are compensated for potential charging delay with
cheaper energy prices. User inconvenience must be correctly
matched with compensation to maintain high subscription
numbers. Further, costs relating to infrastructure investment
and scheme implementation must be balanced against overall
benefits. DG curtailment reduces return on investment in
renewable generation, disincentivising its instalment. Smart

Grid services stand to uproot the conventional economic
structure of power distribution. This paper explicitly models
key performance‐cost tradeoffs relating to diverse expectations
of all concerned participants.

Third, practical Information and Communications Tech-
nology (ICT) constraints inherent in the operation of any
Smart Grid system are routinely overlooked in smart charging
research. Perfect knowledge of grid status, energy prices,
driving patterns and loading is generally assumed everywhere
in the network, and that any actuating device can act with zero
latency. Where delay is mentioned, for example [25, 26], it
refers to convergence time and/or control action period of the
optimisation scheme, not that of sensor hardware, bandwidth
and traffic constraints due to practical ICT investment bud-
gets. Cost of data collection is a key constraint. This paper
designs an underpinning control and communications archi-
tecture such that traffic burden, computation at the central
controller and investment in ICT hardware are all jointly
minimised.

The contributions of this paper are as follows:

� Two smart charging schemes are designed relevant to
divergent design objectives of operator and consumer/
generator. Both achieve secondary voltage control in the
distribution network and simultaneous increase in EV &
DG capacity. Scheme I for peak shaving. Scheme II to
maximise cost‐efficiency for consumers and DG investors.

� A multi‐tier hierarchical distributed control architecture is
designed to support these schemes. This alleviates compu-
tation load on the central controller as well as traffic load on
the ICT system, and is compatible with existing open smart
charging and demand‐response communications standards
such as Open Charge Point Protocol (OCPP) and Open
Automated Demand Response (OpenADR). Therefore the
schemes are scalable and adaptable to a wide variety of
network sizes and asset arrangements, and are readily
applicable to the industrial environment.

� Practical operational latency constraints are analysed and
modelled, and multiple latency‐mitigation strategies are
identified for each smart charging scheme.

� Performance of both schemes is consolidated statistically
for 172 days of 1s wind power input. Key performance‐cost
tradeoffs are identified relating to Voltage Control, Peak
Shaving, User Inconvenience, CO2 Emissions and Cost of
ICT Deployment.

The rest of this paper is laid out as follows. Section 2
describes the testbed system model, outlining key inputs and
the underpinning communications architecture. Scheme I is
described in Section 3 along with critical operation elements
under ideal and practical latency. Scheme II is described in
Section 4. In Section 5, four control variables are identified
that determine voltage control performance under practical
latency, and a case study for each is provided. Key
performance‐cost tradeoffs are evaluated statistically from
simulation in Section 6, before Section 7 concludes the
topic.
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2 | SYSTEM MODEL

The system model and its inputs are described as follows.

2.1 | EV charging, household load and CO2
emissions

The charging behaviour of EVs is statistically quantified in
[27], which gathers data from 31,765 EV trips and 16,229
charging events. With this data, a probability distribution for
the expected number of active charging EVs throughout the
day is constructed, as shown in Figure 1. The expected load per
vehicle PEV(t) is then constructed for random uncoordinated
charging.

The electric power demand of 251 selected households
with and without electric heating in the UK is presented in
[28]. Approximately 10% of households use electric heating
[29]. With this data, the expected load per household PH(t) on
a cold winter day is constructed.

The average number of vehicles per household was 1.21 in
the UK, 2017 [30]. When EV and household load profiles are
combined, as shown in Figure 2 for 100 households, the peak
load increases to 83%. However, off‐peak times are well
matched.

MyGridGB [31] logs and analyses power production in
real‐time across Great Britain. With this data, hourly CO2

emissions per kWh averaged over 30 days is shown Figure 2,
which correlates strongly with loading patterns. Negating
marginal carbon emissions, by charging an EV between 3 and 5
AM instead of 7–8 PM, CO2 emissions are reduced to almost
30%. This demonstrates the huge potential for smart charging
to reduce carbon emissions alongside the peak load.

2.2 | Power network

A distribution network of B buses is modelled as in [32]. The
power demand Sb½n� ¼ Pb½n� þ jQb½n�; j ¼

ffiffiffiffiffiffi
−1
p

at each bus
b ∈ B = {1, 2, …, B} at time t ¼ nΔt; n ∈ Zþ is defined

Pb½n� ¼ Hb PH ½n� þ ηEV PEV ½n�ð Þ

Qb½n� ¼ 0

�

∀ 0 ≤ n <
24
Δt
ð1Þ

Hb is the number of houses supplied at each bus b, ηEV is
the network‐wide EV penetration, PH and PEV are average
expected household and EV charging load profiles per
household and per EV, respectively. Perfect power factor
correction is assumed at each bus, so the reactive power input

F I GURE 1 Daily variation in active charging
events [27]

F I GURE 2 The average household in the UK
has 1.21 vehicles. If all vehicles were electric,
household load profile increases dramatically. EV,
electric vehicles

HERON ET AL. - 3



Qb is negligible. Time interval Δt ¼ 1
60 (1 min). Power flow

between sequential nodes a, b, c ⊂ B, a ≠ b ≠ c in the network
is then defined by the Branch Flow Model [33].

XC

c¼1
Sb;c½n� ¼ Sa;b½n� − Za;bjIa;b½n�j

2 − Sb½n� ð2Þ

V b½n� − V c½n� ¼ Zb;cIb;c½n� ð3Þ

Sb;c½n� ¼ V b½n�I*
b;c½n� ð4Þ

where c ∈ [1, 2, …C] are child nodes of node b, which is in
turn child of a. Along branch b → c: Sb,c = Pb,c + jQb,c is the
sending end complex power transfer, Ib,c is the current phasor
and Zb,c = Rb,c + jXb,c is the line impedance. Sb is the net power
drawn from bus b and Vb is the voltage phasor. This model
allows complex power flow and voltage deviation at each link
and bus to be calculated iteratively for each time step n.

This is simulated for the IEEE 33‐bus 12.66 kV distribu-
tion network shown Figure 3, adapted from [34]. Each bus
connects to a Low Voltage (LV) 240 V residential feeder with
Hb households. The real power demand at each LV node

F I GURE 3 IEEE 33 bus 12.66 kV distribution network

(a)

(b)

F I GURE 4 Adding distributed generation
(DG) only increases volatility of voltage deviation.
(a) Gb: DG wind power input at bus 18, (b)
Maximum Vhigh

b

� �
and minimum V low

b
� �

worst bus
voltages
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follows PH(t) and PEV(t). The line impedance in the LV feeders
is negligible, that is the only reactive load is from capacitive and
inductive effects on the 12.66 kV lines.

Expected load under 0% and with 40% EVs is applied for
zero DG, and voltage deviation at each bus derived using
Matpower [35]. The lowest bus voltage in the network V low

b
(regardless of which specific bus) is shown by dotted lines in
Figure 4b. In European normal grid operations, voltage devi-
ation at any bus should not exceed the statutory limit of
1 ± 0.1p.u. [36]; however, this range can be redefined without
loss of generality. The number of houses (Hb) is chosen here
such that this lower limit is reached under household load only.
Thus the network can be considered to have zero EV Capacity
under random uncoordinated charging. EVs bring V low

b well
outside of its acceptable range.

2.3 | Renewable DG

It is desirable to increase deployment of renewable DG due to
various social, economic and environmental goals. However,
excessive DG can cause overvoltage, thermal overloading of
equipment and high‐frequency distortions. To avoid this, DG
curtailment is often necessary. To maximise return on invest-
ment in renewable systems, DG curtailment must be
minimised.

DG is equivalent in the system to negative load. However,
to differentiate from demand, power generation at bus b is
denoted Gb. DG Capacity (a.k.a Hosting Capacity) is defined
as the upper limit of DG beyond which overvoltage occurs [16,
37], that is V high

b should not exceed 1.1 p.u.
Wind power generation profile is modelled using wind

speed sensor readings gathered at 1s intervals over 172 days
from an offshore wind farm in [38]. Power is derived using the
Vestas V164‐8.0 wind turbine power curve [39].

Problems of excessive DG are most noticeable when
concentrated at end of long and lightly loaded feeders [40].
Figure 4 shows a 20 MW wind power profile input at bus 18.
Maximum V high

b and minimum V low
b voltage deviations are

shown in Figure 4b. All other bus voltages fall between V high
b

and V low
b .

First, since V high
b touches the upper limit 1.1 p.u., this is

considered the DG Capacity of the unconstrained network.
Second, voltage now spans the full range of its acceptable
limits and minimum voltage remains unchanged. Uncon-
strained DG aggravates volatility since it is non‐synchronised
with consumer demand. This paper proposes two schemes
to synergise DG and EV charging such that capacity of both is
improved simultaneously.

2.4 | Control architecture

The proposed scheme uses the three‐tier hierarchical network
topology common in emerging Smart Grid and Internet of
Things (IoT) environments [41], shown Figure 5. There are
three node types:

1. Central Control Unit (CCU): This is the main network
coordinator, for example the Distribution System Operator
(DSO). It is connected via data link to Intermediary Control
Units (ICUs) permeated throughout the network. It receives
periodic status beacons from each ICU and based on these,
transmits control instructions.

2. Intermediary Control Unit (ICU): These are mid‐tier
nodes which coordinate regionally co‐located demand‐
response assets via Smart Devices (SDs). This alleviates
computation load on the Central Control Unit (CCU) as well
as traffic load on the ICT system [41]. Every update period,
the ICU broadcasts ‘Status Request’ to its SDs and receives
their replies. If a control signal from the CCU is received,
actuation instructions are transmitted to relevant SDs. In this
study there is one ICUb for each distribution bus b, but in
practice an ICU could exist anywhere, numerous demand‐
response assets must be managed.

3. Smart Device (SD): These are bottom‐tier nodes that
conduct measurements and/or actuations. Practically, they
may be home or building Energy Management Systems

F I GURE 5 Three‐tier hierarchical communications topology for the proposed Smart EV Charging scheme. CCU, central control unit; DGC, distributed
generation controllers; EMS, energy management systems; ICU, intermediary control unit; SD, smart device
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(EMSs), networked Charging Stations (CSs) and Distributed
Generation Controllers (DGCs). These will be numerous
and pervasive, so operation is kept simple. The SD receives
control commands (e.g. curtailment limits) from its ICU,
and replies with status messages. Upon receiving a curtail-
ment limit, the SD ensures its overall power does not
exceed this limit.

This architecture is in line with recent open smart charging
and Demand‐Response communications standards OpenADR
(now IEC 62746‐10‐1) [42] and OCPP [43]. Upper‐tier
communication (CCU‐ICU) can be achieved with Open-
ADR, where the CCU is Virtual Top Node (VTN) and ICUs
are Virtual End Node (VEN) with PUSH protocol enabled.
Status beacons are sent via EiReport service, and control
commands via EiEvent. Lower‐tier communication (ICU‐SD)
is also configured using OpenADR, however is easily exten-
sible to any OCPP‐ready device via External Smart Charging in
OCPPv2.0. All SDs are VEN of the ICU. Curtailment limits
are sent via OpenADR EiEvent, and status information via
EiReport service.

Practical update interval is subject to two systematic con-
straints. First, ICT infrastructure represents large investment
for a system as ubiquitous as the power network. Using a short
update interval with fast sensor readings increases data volume
and system traffic, which raises bandwidth requirements and
cost of ICT hardware. A tradeoff ensues between granularity of
control and cost of data collection.

Second, operating bodies in the power network are
traditionally unaccustomed to latency‐critical ICT

applications, and update interval is far from homogenised
across the industry. OCPP has scope for charging limit
duration in seconds, as well as rapid demand‐response times
due to transaction and billing requirements; however, Su-
pervisory Control and Data Acquisition (SCADA) is nor-
mally collected from wind turbines at 10 min intervals. Any
control scheme is subject to the slowest interval available.
There will inevitably be a transition period during which
slower‐than‐desired update interval must be tolerated.

Latency can be reduced in the system, but this comes at a
cost. Understanding key tradeoffs between practical update
period and smart charging performance is vital.

3 | SCHEME I: SMART CURTAILMENT

Power infrastructure is normally sized according to peak load.
By curtailing charging load and DG, peak load can be
reduced. This achieves minimal power hardware replacement
as EV & DG penetrations rise, reducing costs for the system
operator.

To do this, load is categorised as flexible or non‐flexible.
Non‐flexible load must be delivered on demand. Flexible
load can tolerate a reasonable delay. Priority is decided by
user input: ‘High priority’ users are non‐flexible load, and
‘low priority’ flexible users are compensated for potential
charging delay with cheaper energy prices. Conceivably, many
users are willing to charge their EV overnight instead of early
evening to save money. This renders the scheme economi-
cally viable.

F I GURE 6 Smart EV Charging algorithm at
ICUb (P‐CUR only). CCU, central control unit; ICU,
intermediary control units; P‐CUR, P‐curtailment;
SD, smart device
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This paper treats household energy demand as non‐flexible
and all EV charging as flexible, although these definitions may
be rearranged without loss of generality. It is assumed that the
distribution network has been designed to accommodate all
non‐flexible load. Then only flexible load need be curtailed to
keep voltage within bounds.

To prevent undervoltage, EV charging load is curtailed
(P‐curtailment, P‐CUR). To prevent overvoltage, DG is cur-
tailed (G‐curtailment, G‐CUR).

P‐CUR for each ICUb is shown Figure 6. Every update
interval mtu, tu = kΔt, k;m ∈ Zþ, each ICU requests status
information from its SDs to gather bus voltage Vb[m], power
demand Pb[m] and DG input Gb[m], and forwards this to the
CCU. It also gathers available flexible load from each SD and
stores this locally. The CCU then receives three status vectors
every update interval

V
⇀
½m� ¼

V 1½m�
⋮

V B½m�

2

4

3

5; P
⇀
½m� ¼

P1½m�
⋮

PB½m�

2

4

3

5;G
⇀
½m� ¼

G1½m�
⋮

GB½m�

2

4

3

5 ð5Þ

3.1 | P‐curtailment

P‐CUR is triggered at interval m = mP by any bus voltage
below the limit Vmin. ICUb begins curtailment at bus b and
notifies the CCU. Due to the radial topology of the distribution
network, V low

b is affected by load changes in any other bus.
Therefore, all buses must curtail simultaneously, with
maximum power corresponding to the last received power
vector at CCU before the trigger.

P
⇀max
½m� ¼

Pmax
1 ½m�

⋮
Pmax

B ½m�

2

6
4

3

7
5¼

P1½mP −1�
⋮

PB½mP −1�

2

4

3

5¼ P
⇀
½mP −1� ð6Þ

The CCU then notifies each ICUb of its maximum power
Pmax

b , which launches curtailment at every other bus.
During P‐CUR, each ICUb repetitively updates the

charging limits of all its connected flexible loads to ensure
Pb ≤ Pmax

b . Non‐flexible load is met by priority, and the
remaining available power is distributed proportionally be-
tween all active charging EVs. This limits total network load to

(b)

(a)

F I GURE 7 P ‐Curtailment only, Scheme I.
(a) Minimum Bus Voltage, (b) PT : Total Real
Power Demand P‐CUR, P‐curtailmentI
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PT ½m� ¼
XB

b¼1

Pmax
b ½m� ð7Þ

And ensures V low
b is limited to Vmin. Since the network is

designed to meet non‐flexible load requirements, it is always
possible to reduce flexible load such that V low

b is kept within
bounds. The limit Pmax

b is maintained until all delayed charging
load is satisfied. At this point, ICUb resumes normal load,
notifying the CCU of its reduced power. This continues until
all EV charging queues at all ICUs are empty.

V low
b and PT under P‐CUR is shown Figure 7. Several Key

Performance Indicators (KPIs) are visible:

� Voltage Control: Figure 7a. With no DG input, P‐CUR
ensures load is never large enough to bring V low

b below
statutory limits. Under zero latency, Pmax

b can be instantly

initiated in response to undervoltage, so perfect voltage
control is achieved.

� Peak Shaving: Figure 7b. Curtailing flexible load subject to
voltage conditions inherently reduces peak load in the
system.

� EV Charging Delay: Curtailing charging load causes delays
for subscribing EV owners during peak hours. Delay is
incurred only when unconstrained load exceeds curtailed
load. This delay period is shown in shaded orange,
Figure 7b. Daily charging delay is the ratio of mean normal
to curtailed load during this period, in this case 11% over
6.5 h. An EV charging during these peak hours takes on
average 11% longer to gain the same amount of charge.

� CO2 Emissions: Daily carbon emissions are calculated
assuming all non‐DG power input follows emissions from
Figure 2. Since P‐CUR reschedules charging load from peak

(a)

(b)

(c)

F I GURE 8 Zero Latency, Scheme I (a) Gb:
DG wind power profile at bus 18, (b) Vhigh

b V low
b ​ :

Upper & Lower Worst Bus Voltages, (c) PT : Total Real
Power Demand. EV, electric vehicles; G‐CUR,
G‐curtailment; P‐CUR, P‐curtailment; PG‐CUR,
PG‐curtailment
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hours to lower emission hours overnight, less CO2 is
emitted overall. This saving grows as ηEV increases.

� EV Capacity: Undervoltage is avoided, so EV Capacity has
increased compared to the unconstrained system.

3.2 | G‐curtailment

The same process can be used to curtail DG to avoid over-
voltage. G‐CUR is triggered at interval m = mG by any bus
voltage above limit Vmax. Any ICUb that detects overvoltage
begins curtailment to the last received values at the CCU

G
⇀max
½m� ¼

Gmax
1 ½m�

⋮
Gmax

B ½m�

2

6
4

3

7
5¼

G1½mG −1�
⋮

GB½mG −1�

2

4

3

5¼G
⇀
½mG − 1� ð8Þ

Each ICUb then issues generation limits to all subsidiary
SDs, ensuring Gb ≤ Gmax

b . This limits total DG to

GT ½m� ¼
XB

b¼1

Gmax
b ½m� ð9Þ

No DG storage is assumed. Thus, the limit Gmax
b is

maintained only while generation is available in excess.
V low

b , V high
b , GT and PT under Scheme I are shown in

Figure 8 with 60 MW wind farm input at bus 18% and 60%
EV penetration. Several observations can be made.

� Voltage Control: Figure 8b. Scheme I effectively contains
voltage deviation between statutory limits. However, since
there are now two inputs that determine bus voltage, P

⇀

and G
⇀
, curtailment in either one leads to Continuous

(a)

(b)

(c)

F I GURE 9 Practical Latency, tu = 10$min,
Scheme I (a) Gb: DG wind power input at bus 18,
(b) Vhigh

b V low
b ​ : Upper & Lower Worst Bus Voltages,

(c) PT : Total Real Power Demand. EV, electric
vehicles; G‐CUR, G‐curtailment; P‐CUR,
P‐curtailment
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Deviation (CD) about Vmin or Vmax. Variation in uncon-
strained P

⇀
during G‐CUR leads to CD about Vmax. Un-

constrained G
⇀

during P‐CUR leads to CD about Vmin.
During PG‐curtailment (i.e. both P‐ and G‐CUR simulta-
neously), there is no deviation as both are constant at their
curtailed limits.

EV charging is spread throughout the network, whereas DG
input is concentrated at a single bus. This, combined with the
inherent volatility of renewable generation, means CD is much
more prominent about Vmin (during P‐CUR) than about Vmax.

� User Inconvenience: Figure 8b. To mitigate CD, the margin
formed by Vmin and Vmax is adjusted away from statutory
limits. However, this also means PT and GT must be cur-
tailed at lower thresholds. For EVs, this means longer
charging delays for subscribing users. For DG, this means
lower average power output, reducing returns on investment
in renewable systems.

� CO2 Emissions: Greater DG penetration brings significantly
reduced carbon emissions, since a higher proportion of total
power input is renewable.

� EV & DG Capacity: Voltage stays within bounds
despite rise in EV and DG penetration, reflecting capac-
ity increase of both compared to the unconstrained system.

3.3 | Practical latency

Without perfect communications, sensor readings must be
gathered with update period tu, that is a delay up to tu may follow
over‐ or undervoltage before curtailment is triggered. Voltage
deviations during this period are termed Trigger Deviations
(TDs). Figure 9 shows Scheme I with tu = 10 min.

� Voltage Control: Figure 9b. There is striking difference in
magnitude between TD at Vmin and Vmax. For P‐CUR, TD is
comparable in size toCD. In contrast, TD forG‐CUR ismuch

(a)

(b)

(c)

F I GURE 1 0 Scheme II under Zero Latency
(a) Gb: DG wind power input at bus 18,
(b) Vhigh

b V low
b : Upper & Lower Worst Bus Voltages,

(c) PT : Total Real Power Demand. EV, electric
vehicles; G‐COR, G‐correction; P‐COR,
P‐correction; PG‐COR, PG‐correction
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larger. The amount exceeded in both depends on uncon-
strained variation during the trigger delay, so has stochastic
magnitude.

� Peak Shaving: TD is also visible in the DG and load pro-
files, Figure 9a and 9c. At each curtailment trigger, P

⇀
and/or

G
⇀
are allowed to deviate freely before curtailment, leading to

spikes above the curtailment limit. Power equipment is sized
according to peak values, so it is desirable to limit this spike.

� User Inconvenience: Curtailment limits now depend on
where the system was tu minutes prior to the trigger. This
leads to a stochastic limit, where GT may be high (Figure 9b:
TD1, TD2) or low (TD3). Statistically, this effect tends to-
wards overcurtailment: PT and GT are on average lower than
is required. This increases EV charging delay and decreases
DG energy input.

4 | SCHEME II: SMART CORRECTION

By relaxing peak shaving requirements, Scheme II maximises
power transfer when it is cheap, that is during non‐peak times
or when renewable generation is high. Scheme II uses the same

ICT framework from Section 2.4, with curtailment triggered in
response to over‐ or under‐voltage at any bus. However,
curtailment limits in Scheme II are corrected every update
interval to optimise power flow.

Bus voltages are some function f of load and DG
vectors

V
⇀
½n� ¼ f P

⇀
½n�;G

⇀
½n�

� �
ð10Þ

where f depends on static characteristics such as number of
buses, topology, line impedances, etc. Assuming small changes
in Δt, this can be sequentially approximated via first order
Taylor series

V
⇀
½n� ¼ V

⇀
½n − 1� þ J f ½n − 1� ΔP

⇀
½n� − ΔG

⇀
½n�

� �
ð11Þ

ΔP
⇀
½n� ¼ P

⇀
½n� − P

⇀
½n − 1� ð12Þ

ΔG
⇀
½n� ¼G

⇀
½n� − G

⇀
½n − 1� ð13Þ

where Jf [n − 1] is the Jacobian evaluated at V
⇀
½n − 1�

(a)

(b)

(c)

F I GURE 1 1 Scheme II under Practical
Latency, tu = 10$min (a) Gb: DG wind power input
at bus 18, (b) Vhigh

b V low
b : Upper & Lower Worst Bus

Voltages, (c) PT : Total Real Power Demand. EV, electric
vehicles; G‐COR, G‐correction; P‐COR, P‐correction;
PG‐COR, PG‐correction
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(a)

(b)

F I GURE 1 2 Case A: reducing Vmax can
mitigate trigger deviations (TD), but extends
curtailment (shaded regions) and increases user
inconvenience (a) Gb: DG wind power input at
bus 18, (b) Vhigh

b V low
b : Upper & Lower Worst Bus

Voltages. EV, electric vehicles; G‐CUR,
G‐curtailment; P‐CUR, P‐curtailment; PG‐CUR,
PG‐curtailment

(a)

(b)

F I GURE 1 3 Case B: reducing tu can
mitigate trigger deviations (TD) and reduce
curtailment (compare shaded regions with
Figure 12) (a) Gb: DG wind power input at bus 18,
(b) Vhigh

b V low
b : Upper & Lower Worst Bus Voltages.

EV, electric vehicles; G‐CUR, G‐curtailment; P‐CUR,
P‐curtailment; PG‐CUR, PG‐curtailment
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J f ½n − 1� ¼

δV 1
δP1

δV 1
δP2

… δV 1
δPB

δV 2
δP1

δV 2
δP2

… δV 2
δPB

⋮ ⋮ ⋮
δV B
δP1

δV B
δP2

… δV B
δPB

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

�
�
�
�
�
�
�
�
�
�
�
�
V
⇀
½n − 1�

ð14Þ

To correct voltage conditions in the network, a change ΔP
⇀

can tailor a desired voltage vector V
⇀0

based on sensor readings
of V

⇀
½m� and ΔG

⇀
½m�. Using Equation (11), this is

ΔP
⇀
¼ J −1

f ½m� V
⇀0

− V
⇀
½m� þ J f ½m�ΔG

⇀
− ½m�

� �

ð15Þ

The matrix Jf[m] can be computed in the interval
(m − 1) < n < m by temporarily changing Pmax

b at each bus by
a small increment and noting the small change in V

⇀
½n�.

How to optimally allocate ΔP
⇀
and V

⇀0
is flexible to various

power allocation algorithms. Computational effort is a strong
concern. Equation 15 involves complex B � B matrix opera-
tions which can become overly intensive for large B. Fairness is
another. Simply maximising

PB
b¼1P

max
b during curtailment may

lead to disproportionate power concentration at specific low‐
sensitivity buses, with large charging queues occurring else-
where in the network. Scheme II achieves both computational
savings and user fairness.

4.1 | P‐correction

If only undervoltage is detected, only EV charging is curtailed

and DG is unconstrained. During P‐correction (P‐COR), P
⇀max

is adjusted every update interval by correction vector ΔP
⇀max

.

P
⇀max
½m� ¼ P

⇀max
½m − 1� þ ΔP

⇀max
ð16Þ

ΔP
⇀max

must maximise overall power delivery incumbent to
variable DG, while keeping all V

⇀
within bounds. Fairness must

(a)

(b)

F I GURE 1 4 Case C: separating the trigger
margin Vtrig from continuous margin Vmax

effectively limits trigger deviations (TD) without
extending curtailment (a) Gb: DG wind power
input at bus 18, (b) Vhigh

b , V low
b : Upper & Lower Worst

Bus Voltages. G‐COR, G‐correction; P‐COR,
P‐correction; PG‐COR, PG‐correction

TABLE 1 Six subschemes for voltage control in Exp. 1

Subscheme Vmin Vmax Vtrig

Scheme I (i) 0.9 1.1 ‐

(ii) 0.92 1.095 ‐

(iii) 0.93 1.09 ‐

Scheme II (i) 0.9 1.1 1.04

(ii) 0.92 1.095 1.03

(iii) 0.93 1.09 1.02
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also be maintained, distributing available power evenly between
buses. To do this, a fairness condition enforces that
ΔPT ¼

P
ΔPmax

b is implemented proportionally on each bus

ΔP
⇀max

¼

k1
⋮
kB

2

4

3

5ΔPT ;
XB

k¼1

kb ¼ 1 ð17Þ

where kb are constants proportional to power demand at
each bus on the trigger mP. Load correction is then
formulated.

max ΔPT ð18aÞ

s: t: V
⇀
½m� ≥ Vmin ð18bÞ

(a)

(b)

F I GURE 1 5 Voltage effects of the six test systems in Exp. 1, shown Table 1

F I GURE 1 6 Peak Shaving performance of
Scheme I and II
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This is achieved by reformulating Equations (10) and (11)

V
⇀
½m� ¼ f PT ½m�;G

⇀
½m�

� �
ð19Þ

V
⇀0
¼ V

⇀
½m� þ J PT

½m�ΔPT − J f ½m�ΔG
⇀
½m� ð20Þ

where J PT
is drawn from Jf via weighted row addition

J PT
½m� ¼

δV 1

δPT

⋮
δV B

δPT

2

6
6
6
6
6
4

3

7
7
7
7
7
5

�
�
�
�
�
�
�
�
�
�
�
V
⇀
½m�

XB

b¼1

kb
δV 1

δPb

⋮

XB

b¼1

kb
δV B

δPb

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

�
�
�
�
�
�
�
�
�
�
�
�
�
�
V
⇀
½m�

ð21Þ

Using J PT
eliminates the B � B matrix inverse from

Equation (15), significantly reducing required computations.
The maximum in Equation (18a) occurs when

V low
b ¼ Vmin. Which bus to choose for V low

b is important,
since ΔPT should not bring another bus voltage out of bounds.
From Equation (20), change ΔPT b can be calculated bringing
each Vb[m] to Vmin

ΔPT 1

⋮
ΔPT B

2

6
4

3

7
5¼

Vmin − V 1½m� þ
PB

b¼1
δV 1
δPb

�
�
�
V
⇀
½m�
ΔGb½n�

δV 1
δPT

�
�
�
V
⇀
½m�

⋮

Vmin − V B½m� þ
PB

b¼1
δV B
δPb

�
�
�
V
⇀
½m�
ΔGb½m�

δV B
δPT

�
�
�
V
⇀
½m�

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð22Þ

The optimum is then the smallest (most negative) correction

ΔPT ¼min
b

ΔPT 1;…;ΔPT B

� �
ð23Þ

This ensures the new V low
b is always Vmin.

These calculations are performed at the CCU every update
interval during P‐COR based on inputs V

⇀
½m�;G

⇀
½m� received

from the ICUs. Changes kbΔPT are then sent out to each ICUb
individually, who distribute this between their connected SDs.

If any ICUb has insufficient EVs to meet its power limit,
V low

b will rise above Vmin, so voltage stays within bounds. The
reduced Pb is sent to CCU on the next update interval, and
[k1, …, kB] updated such that power limits at remaining buses
can increase. Therefore the scheme is robust to non‐uniform
loading patterns and corrective within one iteration phase.

4.2 | G‐correction

If only overvoltage occurs, only DG is curtailed and EV
charging is unconstrained. During G‐correction (G‐COR),

G
⇀max

is corrected every update interval by change ΔG
⇀max

G
⇀max
½m� ¼G

⇀max
½m − 1� þ ΔG

⇀max
ð24Þ

To do this, Equations (10) and (11) are reformulated

V
⇀
½m� ¼ f P

⇀
½m�;GT ½m�

� �
ð25Þ

V
⇀0
¼ V

⇀
½m� þ J f ½m�ΔP

⇀
½m� þ J GT

½m�ΔGT ð26Þ

where J GT
is again drawn from Jf

J GT
½m� ¼

δV 1

δGT

⋮
δV B

δGT

2

6
6
6
6
6
4

3

7
7
7
7
7
5

�
�
�
�
�
�
�
�
�
�
�
V
⇀
½m�

−
XB

b¼1

lb
δV 1

δPb

⋮

−
XB

b¼1

lb
δV B

δPb

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

�
�
�
�
�
�
�
�
�
�
�
�
�
�
V
⇀
½m�

ð27Þ

and fairness condition is enforced

ΔG
⇀max

¼

l1
⋮
lB

2

4

3

5ΔGT ;
XB

l¼1

lb ¼ 1 ð28Þ

with constants lb proportional to available power generation at
each bus on trigger mG. DG correction is then formulated.

max ΔGT ð29aÞ

s: t: V
⇀
½m� ≤ Vmax ð29bÞ

This maximum occurs when V high
b ¼ Vmax. To do this, the

change ΔGT b is calculated to bring each Vb[m] to Vmax

ΔGT 1

⋮
ΔGT B

2

6
4

3

7
5¼

Vmax − V 1½m� −
PB

b¼1
δV 1
δPb

�
�
�
V
⇀
½m�
ΔPb½n�

δV 1
δGT

�
�
�
V
⇀
½m�

⋮

Vmax − V B½m� −
PB

b¼1
δV B
δPb

�
�
�
V
⇀
½m�
ΔPb½m�

δV B
δGT

�
�
�
V
⇀
½m�

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

ð30Þ
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and choosing the minimum (most negative) correction ensures
the new V high

b is always Vmax

ΔGT ¼min
b

ΔGT 1;…;ΔGT B

� �
ð31Þ

If DG at any bus falls below its limit, V high
b drops below

Vmax, so voltage stays within bounds. The reduced Gb is sent
to the CCU on the next update interval and [l1, …, lB] updated
so limits at remaining buses can increase.

4.3 | PG‐correction (PG‐COR)

If both P
⇀
and G

⇀
increase simultaneously, eventually V

⇀
spans

the full breadth of technical limits. In this case, both charging
load and DG must be curtailed simultaneously.

This is formulated by simultaneous corrections, where bus
a is corrected to Vmax and bus b is corrected to Vmin

ΔGT

a;b
¼

Vmax − V a½m� −
δV a

δPT
ΔPT

a;b
½m�

δV a

δGT

ΔPT

a;b
¼

Vmin − V b½m� −
δV b

δGT
ΔGT

a;b
½m�

δV b

δPT

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

ð32Þ

These can be solved by substitution for any paired buses
(a, b)

ΔPT

a;b
½m� ¼

δV b
δGT

Vmax − V að Þ − δV a
δGT

Vmin − V bð Þ

δV a
δPT

δV b
δGT

− δV a
δGT

δV b
δPT

ð33Þ

A B � B � 2 correction matrix is then computed

Δ ¼

∞;∞ ΔPT

1;2
;ΔGT

1;2
… ΔPT

1;B
;ΔGT

1;B

ΔPT

2;1
;ΔGT

2;1
∞;∞ … ΔPT

2;B
;ΔGT

2;B

⋮ ⋮ ⋮

ΔPT

B;1
;ΔGT

B;1
ΔPT

B;2
;ΔGT

B;2
… ∞;∞

2

6
6
6
6
6
4

3

7
7
7
7
7
5

ð34Þ

Choosing the smallest magnitude change ensures correc-
tion is made such that the new V high

b ;V low
b are always Vmax,

Vmin

ΔPT ;ΔGTð Þ ¼min
a;b
jΔj½ �; ð35Þ

where jΔj denotes absolute value of all matrix elements.

4.4 | Zero latency

Under zero latency, corrections can be applied instantly in
response to voltage events. Figure 10 shows Scheme II under
60 MW DG input.

� Voltage Control: Figure 10b. During P‐COR, any change in
DG is reflected in ΔPT such that V low

b stays rigid at Vmin.
Similarly, during G‐COR, any load change is reflected in
ΔGT such that V high

b is rigid at Vmax. All unacceptable
voltage deviation is removed.

� User Inconvenience: The maximum available charging load
and DG is used at any time, while keeping voltage within
bounds. This minimises EV charging delay and maximises
renewable power input, alleviating user inconvenience.

� Peak Shaving: Figures 10a and 10c. Peak load and peak DG
tend to coincide. Peak load may rise above that of random
uncoordinated charging, which was impossible under
Scheme I.

� CO2 Emissions: DG curtailment is minimised given voltage
constraints, so CO2 emissions are also.

� EV & DG Capacity: G‐COR prevents overvoltage from
excessive DG by adjusting generation limit according to
load. Similarly, P‐COR prevents undervoltage from exces-
sive EV penetration. As a result, EV and DG penetrations
can be increased to very high levels without voltage de-
viations out of bounds.

4.5 | Practical latency

Under practical latency, corrections can only be made with
update period tu. Figure 11 shows Scheme II for tu = 10 min.

� Voltage Control: Figure 11b. CD is significantly restricted
compared to Scheme I, since repetitive correction brings
V low

b to Vmin or V high
b to Vmax every tu. TD is prominent at

the G‐COR trigger.
� Peak Shaving: Figure 11c. TD is no longer visible in the

load profile, since it is negligible compared to corrective load
changes. This means peak load is under direct control of the
CCU.

� User Inconvenience: Figure 11b. To mitigate CD, the margin
formed by Vmin, Vmax is adjusted. This reduces curtailment
limits, meaning EV charging delays are extended and DG
power input is reduced.

5 | CASE STUDIES

Four variables determine the performance of voltage control
under practical latency: Vmin, Vmax, tu and Vtrig. The first three
are common to Schemes I and II. The latter, Vtrig, is specific to
Scheme II. A case study of each is provided in turn.
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5.1 | Case A: continuous margin (Vmin, Vmax)

Figures 8, 9b and 11b showed that adjusting the limits (Vmin,
Vmax) is necessary to mitigate CD. However, overvoltage due
to TD was still prominent. In both schemes, reducing Vmax

further limits the TD spike. This is shown Figure 12 for
Scheme I, where Vmax is reduced to 1.05 pu. A similar graph
can be drawn for Scheme II.

The disadvantage of this strategy is that it also significantly
reduces the DG curtailment limit, leading to lower DG energy
input. Further, reduced DG leads to lower voltages in the
network overall. This means P‐CUR (or P‐COR for Scheme II)
is also triggered earlier and at lower power, and EV charging
delays are increased. Any reduction in the continuous margin
formed by (Vmin, Vmax) significantly increases user
inconvenience.

5.2 | Case B: Update interval (tu)

Latency effects can also be mitigated by reducing the update
interval tu. This reduces the probability of a strong voltage
deviation in between control intervals, shrinking TD in Scheme
I and both TD and CD in Scheme II. As tu is reduced, per-
formance approaches that of the zero latency system in each
scheme.

Cases A and B are the only latency mitigation strategies
available for Scheme I. For comparison, Figure 13 shows
Scheme I for tu = 3 min. Overvoltage is effectively eliminated.
Further, the reduced Trigger Deviation (TD) spike improves
peak shaving. Importantly, since limits are chosen at more
recent values, overcurtailment is reduced and curtailment limits
increase. This is visible by comparing the size of the shaded
regions in Figures 12 and 13. Reducing tu achieves improved
voltage control without the cost to user inconvenience from
Case A.

However, Case B also incurs a cost. Reducing tu from 10 to
3 min triples the data volume in the underpinning ICT system.
Hardware may need to be added or replaced to support the
additional bandwidth and processing requirement, meaning
deployment cost is increased. This represents a key
performance‐cost tradeoff between Cases A & B.

5.3 | Case C: Trigger margin (Vtrig)

Cases A and B are the only latency mitigation strategies
available for Scheme I. However, Scheme II provides an
additional parameter for voltage control. The voltage at which
correction is triggered, Vtrig, need not be the same as the limit
to which voltage is corrected, Vmax. G‐COR with Vtrig < Vmax

allows corrective limits to anticipate overvoltage, avoiding TD
without impeding on PT and GT.

This is shown in Figure 14. Any bus voltage above Vtrig will
trigger G‐corrective limits, pre‐empting a sudden peak in
generation. This effectively reduces TD, and eliminates the user
inconvenience drawbacks of Case A.

6 | SIMULATION

The performance of both schemes is consolidated statistically
under 172 days of 1 s wind power input from [38]. This is to
demonstrate that both schemes are rigorous to a variety of
practical input profiles. The schemes are tested with 40 MW
DG at bus 18%, and 80% EV penetration.

6.1 | Experiments

From Section 5, three cases of control strategy are available in
Schemes I and II (Cases A–C). Effective voltage control re-
quires these three cases to be appropriately balanced. Case A is
unavoidable, but can be alleviated with Cases B and C. Further,
Case A has knock‐on effects to other KPIs. To demonstrate
this, the simulation is run in two experiments:

� Exp. 1: To demonstrate effective balance of Cases A–C, six
subschemes are tested, each with progressively severe voltage
margins shown in Table 1 Each subscheme is simulated under
172 days of wind power profiles and tu from 2 to 10 min.

� Exp. 2: To demonstrate knock‐on effects, case A is tested
in isolation. This is done in two parts:.
a. Vmin is incremented 0.9–0.96pu with Vmax constant at

1.1pu.
b. Vmax is incremented 1.04–1.1pu with Vmin constant at

0.9pu.

For each increment, the same 172 days of windpower
profiles are simulated, tu = 10 min and Vtrig = Vmax.

Experimental findings are evaluated separately for Voltage
Control, Peak Shaving, User Inconvenience and CO2

Emissions.

6.2 | Voltage control

Exp. 1. Voltage control is assessed via peak daily values and
voltage area out of bounds. These are shown in
Figure 15 for each subscheme.

� Scheme I Case A: Figure 15a. Peak undervoltage changes
negligibly with tu, since it is dominated by CD. The only
recourse to this is increasing Vmin, shown by the under-
voltage improvement across (i)–(iii). Case B: Overvoltage is
TD‐dominated, and effectively reduced with tu. Case B is
therefore a compelling alternative to Case A for overvoltage
control.

� Scheme II Case A: Figure 15b. Voltage deviation out of
bounds is strongly reduced compared to Scheme I. This is
due to the repetitive correction that brings ðV low

b ;V high
b Þ

back to (Vmin, Vmax) every update interval. Case B:
Figure 15a, tu reduces both peak deviation as well as spread
of peak values (seen from Inter‐Quartile Range (IQR) in
each box‐whisker plot) above and below bounds. This
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delivers more predictable system response and allows for
narrower control margins. Case C: The use of Vtrig permits
significant overvoltage improvement even at high tu.

The spread of values in each box‐whisker plot shows the
statistical range of voltage deviations due to practical variation
in wind availability. Deviations out of bounds are due to CD
and/or TD resulting from practical latency constraints.
Figure 15 shows that Vmin, Vmax, Vtrig and tu can be tweaked to
achieve any desired voltage range.

6.3 | Peak shaving

Exp. 2a. Vmin determines the EV charging curtailment limit
and peak shaving performance. Peak load in both
schemes is shown Figure 16.

By design, peak load in Scheme I is significantly less than
the unconstrained system. In Scheme II, load scales with DG,
which leads to significantly higher peak load. However, for
practical Vmin > 0.915pu, a consistent peak load decrease is

maintained compared to unconstrained loading. Further, IQR
in Scheme II is smaller, meaning equipment can be run closer
to technical limits.

6.4 | User inconvenience

EV users require high power to charge their vehicles quickly,
and investors in DG require high power to maximise returns.
Curtailment therefore impedes on these objectives.

� Charging Delay: Exp. 2a. Average charging delay per EV
during peak hours is shown Figure 17. Compared with
Figure 16, this presents a key performance tradeoff: peak
shaving must accompany increased charging delay. Further,
peak load follows a linear downward trend, while charging
delay rises exponentially.

� DG Input: Exp. 2b. A comparable effect is noticeable for
DG, shown Figure 18. Both schemes curtail DG and reduce
renewable energy supply. As Vmax decreases, DG is curtailed
more frequently and to a lower value, showing steady
downward trend. However, Scheme II delivers consistently

F I GURE 1 7 Average electric vehicle charging
delay per user during peak hours

F I GURE 1 8 Daily Energy supply from
renewable energy
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more renewable energy than Scheme I. Further, capability
for case C means that Scheme II can use a higher Vmax

under the same overvoltage constraints.

6.5 | Carbon emissions

Exp. 2b. Curtailing DG reduces the proportion of renewable
energy supply, which leads to a rise in CO2 emissions. A
graph can be drawn for this like Figure 18 but mirrored
in the y‐axis. As Vmax falls, emissions rise.

Exp. 2a. However, Figure 2 showed that delaying charging
load into off‐peak hours overnight can significantly reduce
emissions. Increasing Vmin pushes more flexible load later into
off‐peak hours, therefore reducing carbon emissions, shown
Figure 19.

Exp. 1. The net effect of these opposing relations for Vmin

and Vmax is shown Figure 20 for the six subschemes in Table 1.
As Case A grows more severe in both schemes (i)–(iii), emis-
sions reduce from unconstrained values. This effect is ho-
mogenous across tu. Therefore, both schemes effectively
reduce CO2 emissions at practical voltage margins in sub-
schemes (ii)–(iii).

7 | CONCLUSION

Growing penetration of EVs and DG is driving sharper peaks
in supply and demand. If poorly managed, these manifest as
localised over‐ or undervoltage and disrupt service quality.
Smart charging schemes address this by rescheduling EV
charging load. How to do so while meeting the diverging needs
of multiple concerned participants remains an open topic. This
paper proposes two smart charging schemes for voltage con-
trol in the distribution network that can dramatically increase
EV and DG capacity, and analyses the resulting key
performance‐cost tradeoffs.

Scheme I is optimised for peak shaving. This avoids
extensive power hardware replacement as penetrations rise,
cutting implementation and operating costs. Scheme II opti-
mises cost‐efficiency for subscribing users, that is EV owners
and DG investors.

To support both schemes, a distributed control architecture
is designed with multi‐tier hierarchical topology. This mini-
mises the computation load at the CCU and data traffic by
offloading the coordination of demand‐response assets onto
regional ICUs. It is compatible with existing open communi-
cations standards such as OCPP and OpenADR. This reduces
ICT hardware additions by harnessing the demand‐response
capability that is already rolled out across IP‐connected

F I GURE 1 9 Total daily carbon emissions

F I GURE 2 0 Mean daily CO2 emissions
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devices. Therefore the schemes are scalable and adaptable to a
wide variety of network sizes and asset arrangements, and are
readily applicable in the industrial environment.

Unconstrained EV and DG capacities are identified in the
test system as 0% and 20 MW, respectively. Voltage control of
both schemes for 80% and 40 MW is demonstrated in simu-
lation under 172 days of wind power input, showing that the
EV and DG capacity is dramatically improved. Further, key
performance‐cost tradeoffs in voltage control, peak shaving,
user inconvenience, CO2 emissions and ICT deployment are
identified:

The first key tradeoff is between voltage control and peak
shaving. Scheme II provides improved voltage control per-
formance over Scheme I, particularly in overvoltage. In
contrast, Scheme I displays a significantly lower peak load.
However, critically, Scheme II achieves better voltage control
under wide continuous voltage margins (Case A) and high
update interval (Case B), which provides strong advantages in
the other key tradeoffs. Peak load in Scheme II is also less
variable, so equipment can be run closer to its limits.

The second key tradeoff is between peak shaving and user
inconvenience. Scheme II has marked advantage in EV
charging delay, so more severe Case A can be tolerated for the
same user inconvenience requirements. Scheme II also has
higher DG energy delivery, and further gains can be achieved
since separation of trigger and continuous margins (Case C)
allow strong overvoltage reduction without severe Case A.
Finally, both schemes show reduced CO2 emissions compared
to unconstrained output. This is important, since high user
subscription is required for scheme operation, and higher DG
input promotes investment in renewable energy and helps
deliver on emissions targets.

The third key tradeoff is between ICT investment and user
inconvenience. Excessive Case B is undesirable since it may
require extensive investment in ICT infrastructure and hardware.
Excessive Case A is undesirable since it increases EV charging
delay and reduces DG energy input. In Scheme I, these are the
only latency‐mitigation options, leading to the tradeoff. Scheme
II gains strong advantage over this with Case C, and is able to
achieve voltage control with low‐severity A & B.

Scheme II can deliver better performance to the oper-
ator, users and investors without the need for a low‐latency
ICT system. Further, reduced user inconvenience encourages
subscription, which is a key functional requirement. These
offset costs to the operator from the added peak load.
Ultimately, some compromise, where correction is applied
up to a certain maximum load, may adequately marry the
interdependent performance objectives of the operator and
subscribing user.
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