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Abstract

The evaluation of probabilistic forecasts plays a central role both in the interpretation and

in the use of forecast systems and their development. Probabilistic scores (scoring rules) pro-

vide statistical measures to assess the quality of probabilistic forecasts. Often, many probabilis-

tic forecast systems are available while evaluations of their performance are not standardized,

with different scoring rules being used to measure different aspects of forecast performance.

Even when the discussion is restricted to strictly proper scoring rules, there remains consid-

erable variability between them; indeed strictly proper scoring rules need not rank competing

forecast systems in the same order when none of these systems are perfect. The locality prop-

erty is explored to further distinguish scoring rules. The nonlocal strictly proper scoring rules

considered are shown to have a property that can produce “unfortunate” evaluations. Particu-

larly the fact that Continuous Rank Probability Score prefers the outcome close to the median

of the forecast distribution regardless the probability mass assigned to the value at/near the

median raises concern to its use. The only local strictly proper scoring rules, the logarithmic

score, has direct interpretations in terms of probabilities and bits of information. The nonlo-

cal strictly proper scoring rules, on the other hand, lack meaningful direct interpretation for

decision support. The logarithmic score is also shown to be invariant under smooth trans-
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formation of the forecast variable, while the nonlocal strictly proper scoring rules considered

may, however, change their preferences due to the transformation. It is therefore suggested

that the logarithmic score always be included in the evaluation of probabilistic forecasts.

Keywords : scoring rule; forecast evaluation; skill score.

1 Introduction

Forecast evaluation has a long history of being a crucial topic for model development and deci-

sion support. The outputs from a stochastic model can be naturally interpreted in the form of

probabilistic forecast. Given a deterministic model, uncertainty in the initial state due to the ob-

servational noise; limited computational power; and model discrepancy prevent one from making

a perfect deterministic forecast of the future or even identifying the Truth in the past. In order

to account for all sorts of uncertainties, the model outputs are often interpreted as probabilistic

forecasts with the aim of providing useful information for decision support. Probabilistic forecasts

have been widely adopted in various fields including meteorology, social science, pharmacology,

economics and finance; and have become common in operational forecasting over the last quarter

century.

The evaluation of probabilistic forecasts plays a central role both in the interpretation and in

the use of forecast systems and their development. Such evaluation has not yet been standard-

ized, with many different probabilistic scoring rules [14, 20, 36, 51] being used. As probabilistic

forecasts become more common, the need to select (probabilistic) scoring rule(s) for construct-

ing probabilistic forecasts, calibrating forecast systems, ranking competing forecast systems and

quantifying forecast improvement has led to the research work presented in this paper.

The importance of using strictly proper scoring rules has been noted in the literature [6], as

only strictly proper scoring rules encourage the forecaster to be honest, i.e. reporting a forecast

probability distribution gives an optimal expected score only when the verification is, in fact,

drawn from that probability distribution. When the discussion is restricted to strictly proper

scoring rules, however, there remains considerable variability between scoring rules (there are, in

fact, an infinite number of strictly proper scoring rules). And strictly proper scoring rules need

not rank competing forecast systems in the same order when none of these systems are perfect.

The locality property is explored to further distinguish various strictly proper scoring rules. A
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property that reflects “unfortunate”1 evaluations is introduced. Nonlocal strictly proper scoring

rules considered are shown to have a mathematical property, named implausible, that could

produce “unfortunate” evaluations. A few striking examples of the potential issues that result

from the use of nonlocal scoring rules are presented. The only local strictly proper scoring rule, the

logarithmic score (also known as Ignorance), has direct interpretations in terms of probabilities and

bits of information. The nonlocal strictly proper scoring rules are found to lack meaningful direct

interpretation. The logarithmic score is also shown to be invariant under smooth transformation

of the forecast variable, while the nonlocal strictly proper scoring rules considered may, however,

change their preferences due to the transformation.

This paper emphasizes the fact that being strictly proper is not sufficient in decision support

when measuring the difference between imperfect forecast systems and suggests that the only local

scoring rule, Ignorance, should always be included in the evaluation of probabilistic forecasts.

The definition of a scoring rule for probabilistic forecast and the importance of using strictly

proper scoring rules are presented in Section 2. A number of strictly proper scoring rules are

defined in Section 3. A common example of strictly proper scoring rules ranking forecast systems

differently without the presence of True underlying distribution is given in Section 4. The locality

property is defined and discussed in Section 5. Section 6 introduces a mathematical property

that reflects “unfortunate” evaluations and shows nonlocal scoring rules considered have such

property. The interpretation of local and nonlocal scoring rules are discussed in Section 7. Section

8 investigates the behavior of proper scoring rules when smooth transformation is applied to the

forecast variable. Section 8 provides discussion and conclusions.

2 Probabilistic Scoring Rules and Importance of Being Strictly

Proper

While the true value of a forecast is most clearly reflected in its utility to the end user, proba-

bilistic scores are fundamental to the performance analysis of probabilistic forecasts. Ideally they

provide a general measure of future forecast quality, independent of any specific end user [6].

A probabilistic score (scoring rule) is a function S(p(x), Y ), where p(x) is a probability density

1Fortuna was the goddess of fortune (luck) in Roman religion. “Unfortunate” in this paper refers to bad advice,

which is a disaster in terms of decision support.
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function and Y is the outcome. In this paper, probabilistic forecasts in the form of probability

density functions (PDFs) p(x) are considered2. The notation p(x) denotes the entire function,

while p(Y ) always denotes the value of the function at the particular outcome Y . By convention,

a lower score is taken to reflect a better forecast. Analytically, the expected score,

E(S(p(x), Y )) =

∫

S(p(x), Y )Q(Y )dY, (1)

which takes the expectation of the scoring rule under the True underlying distribution Q from

which the outcome Y is drawn, quantifies the quality of a forecast system. In practice, an archive

of forecast-outcome pairs is required to evaluate the quality of a forecast system. It contains a

large number N of forecasts {pi(x), i = 1, . . . , N} and corresponding outcomes {Yi, i = 1, . . . , N}.

The forecast system yields an empirical score:

Semp =
1

N

N
∑

i

S(pi(x), Yi). (2)

Note the size of the forecast archive can play a major role in determining the significance of the

result [26], regardless of which scoring rule is employed [6].

Several scoring rules are widely used for the evaluation of probabilistic forecasts [5, 11, 14, 16,

20, 27, 39, 51]; different scoring rules might quantify different attributes of the forecast. Note,

however, that Good (1952)’s logarithmic score, also known as Ignorance, (defined below in Section

3d.) is the only scoring rule consistent with the use of (log) likelihoods to evaluate assessors or

Bayesian inference [52, 53].

Since any functional form based on p(x) and Y could be considered as a scoring rule, one may

introduce and use a scoring rule that favors to particular forecast system which might lead to

dishonest and misleading evaluations where the scoring rule encourages the forecaster to select

a probabilistic forecast distribution that the forecaster knows is not correct (For example the

well-known Finley (1884) tornado forecasts [33, 44]). To avoid such dishonest evaluation, strictly

proper [35, 47] scoring rules (defined in the following) are preferred. The term, proper, was first

introduced by [54], while the general idea goes back to [5] and [16]. A scoring rule, S(p(x), Y ), is

said to be proper if inequality (3) holds for any pair of forecast PDFs, and strictly proper when

equality implies p = q:
∫

q(z)S(p(x), z)dz ≥
∫

q(z)S(q(x), z)dz. (3)

2Results and conclusions presented in this paper also apply to probabilistic forecasts in the form of probability

mass functions in the context of categorical variables.

4



For a given forecast p, a scoring rule evaluated at the outcome is a random variable with values

that depend on the outcome Y . Note being strictly proper is a property of the functional form

of the scoring rule alone, not of the particular distribution p(x) or q(x). Strictly proper scoring

rules give a probabilistic forecast distribution an optimal expected score only when the outcome

is, in fact, drawn from that probability distribution [6]. In expectation, a strictly proper scoring

rule does not judge any other forecast p to score better than q as a forecast of q itself. Note

that the interpretation of strictly proper does not, however, require one to believe that the True

underlying distribution Q exists. Strictly proper is a property of the scoring rule; it is neither

necessary to assume that Y is drawn from any kind of True distribution nor that any kind of data

is to hand.

The question of whether the employed scoring rule is strictly proper or not can be an-

swered independently of any data being considered [6]. Although concerns of hedging are often

mentioned[39], strictly proper scoring rules are preferred even when there is no human involve-

ment, as in parameter selection [9].

While the importance of using strictly proper scoring rules is well recognized [6, 7, 12], re-

searchers often face requests to present results under a variety of scoring rules, both proper and

nonproper scoring rules. The fact that nonproper scoring rules like Root Mean Squared Error

(RMSE) are still widely used in forecast evaluation often leads to confusion and poorly optimized

forecast systems. There have been many discussions regarding the evil of RMSE in the literature

(see [6, 30, 41, 51]), therefore RMSE, which is in fact not a strictly proper scoring rule, will not

be considered in this paper.

3 Strictly Proper Scoring Rules

A variety of strictly proper scoring rules have been introduced since the 1950s. Some of those

widely used are listed below:
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3.1 Energy Score Family

[14] introduced the Energy Score family based on [45] statistical energy perspective. The Energy

Score family SES, is defined as follows3:

SES(p(x), Y ) = Ep‖x− Y ‖β − 1

2
Ep‖x− x′‖β, (4)

where β ∈ (0, 2) is a real number; x and x′ are independent copies of a random vector with

distribution p; and ‖ · ‖ denotes the Euclidean norm. [45] and [14] show that the Energy Score

is strictly proper relative to the class Pβ, where Pβ denotes the class of the Borel probability

measures p such that Ep‖x‖β is finite. When β = 1, one obtains:

SCRPS(p(x), Y ) = Ep‖x− Y ‖ − 1

2
Ep‖x− x′‖. (5)

This is equivalent to the well-known Continuous Ranked Probability Score4 (CRPS) [28, 49] (and

see [1, 14, 46] for the proof of equivalence), where it is the integral of the square of the L2 distance

between the cumulative distribution function (CDF) of the forecast p and a step function at the

outcome [11],

SCRPS(p(x), Y ) =

∫
(
∫ x

−∞
p(z)dz −H(x− Y )

)2

dx, (6)

where the Heaviside (step) function H is defined as follows:

H(x) =















0 if x < 0

1 if x ≥ 0

(7)

The CRPS was to our knowledge first published by [8]. It can also be considered as a generalization

of the Brier Score [5] (the Brier Score only applies to binary outcomes [28, 34]). For a point

forecast, the CRPS is equal to the mean absolute error. In the past decade, the CRPS has been

widely used by the atmospheric sciences community [15, 38, 55].

3.2 Power Score Family

Let α be a real number with α > 1. The Power Score family [39] SPS, is defined as follows:

SPS(p(x), Y ) = −αp(Y )α−1 + (α− 1)

∫

pα(z)dz, (8)

3Negative orientation is applied to the original Energy Score defined by [14] so that it is consistent with the

convention that a lower score reflects a better forecast.
4The Continuous Ranked Probability Score is generalized from the Ranked Probability Score (RPS) [11, 31]

which is widely used to evaluate discrete (categorical) probabilistic forecasts.
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The Power Score family is also strictly proper; this can simply be derived from the derivatives of

the expected score [39]. When α = 2, one obtains the Proper Linear Score (PLS) (also called the

Quadratic Score [5]):

SPLS(p(x), Y ) = −2p(Y ) +

∫

p2(z)dz, (9)

PLS derives from the (Naive) Linear Score [43], SLS(p(x), Y ) = −p(Y ), which is not a proper

scoring rule as the (Naive) Linear Score favors a p(x) featuring a very small spread and which is

centered at the point x⋆ for which Q(x⋆) is very large [6].

3.3 Pseudo-spherical Score Family

[17] introduced the Pseudo-spherical Score family SPSS (β is a real number with β > 1), defined

as follows:

SPSS(p(x), Y ) = − p(Y )β−1

(
∫

pβ(z)dz)1/β
. (10)

The Pseudo-spherical Score family is strictly proper; this can be derived using Hölder and

Minkowski inequality. When β = 2, one obtains the traditional Spherical Score (SPS):

SSPS(p(x), Y ) = − p(Y )

(
∫

p2(z)dz)1/2
. (11)

3.4 Ignorance

[16] introduced the logarithmic score (also known as Ignorance [36]) given by5:

S(p(x), Y ) = −log2(p(Y )), (12)

where p(Y ) is the density assigned to the outcome Y . Ignorance (IGN) is a strictly proper scoring

rule; this can be derived using Kullback-Leibler inequality [24]. The expected (with respect to p)

IGN is also a famous information measure, Shannon entropy. In addition, the expected IGN of p

relative to a distribution q becomes the classical Kullback-Leibler divergence [23].

5Note that defining the logarithmic score in terms of log2 is equivalent to the alternative definition in terms of

ln up to the factor 1/ln2 which does not affect rankings of different forecast systems.
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4 Different Strictly Proper Scoring Rules Rank Forecast Systems

Differently

Obviously the Energy Score family, Power Score family and Pseudo-spherical Score family contain

an infinite number of strictly proper scoring rules. [50] have introduced weighted scoring rules by

blending the Power Score with the Pseudo-spherical Score; the weighted scoring rule is shown to

be strictly proper too. Furthermore, [47] proved that a linear transformation of a strictly proper

scoring rule is also strictly proper. Given a strictly proper scoring rule, a forecast system providing

Q will always be preferred whenever it is included amongst those under consideration. When none

of the competing forecast systems are perfect, then even strictly proper scoring rules may rank two

forecast systems differently, making it impossible to provide definitive statements regarding the

relative merit of imperfect forecast systems without considering an additional measure of forecast

quality.

Consider the case where outcomes are independent random draws from a standard Gaussian

distribution. Two forecast systems are constructed, where forecast system A uses N(0, σ2) and

forecast system B uses N(0, 1/σ2) where σ > 1. Obviously neither of the forecast systems is

perfect; forecast system A represents a wider distribution around 0 with larger standard deviation

while forecast system B represents a narrower distribution with smaller standard deviation. Figure

1 shows the expectation (under the True distribution, N(0, 1)) of various scoring rules (Ignorance6,

Continuous Rank Probability Score, Proper Linear Score and Spherical Score) of forecast system

A relative to forecast system B as a function of σ. If the relative score (also known as skill score) is

negative, it indicates forecast system A outperforms forecast system B. Both IGN and PLS prefer

wider7 forecast distribution (forecast system A) than narrower forecast distribution (forecast

system B). The CRPS, on the contrary, ranks forecast system B higher than A. Interestingly SPS

considers both imperfect forecast system as having the same forecast quality with the expected

relative score being zero. (Note given any finite sample of forecasts, there is a 50% chance that

the empirical SPS prefers forecast A (or B) to the other.) A more thorough investigation in

contrasting how certain scoring rules would rank competing forecasts of specified departures from

6Ignorance is downscaled by a factor of 20 in order to have a similar scale with other scoring rules in Figure 1.
7This particular example, based on Gaussian distributions, is designed to show that different scoring rules may

rank forecast systems differently and not to indicate whether each of the scoring rules considered here prefers wider

or narrower forecast distributions in general, which is not true either.
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the target distribution can be found in [25].
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Figure 1: The expectation of various scoring rules of forecast system A, N(0, σ2), relative to

forecast system B, N(0, 1/σ2), where the outcome is drawn from a standard Gaussian distribution.

A negative relative score suggests system A outperforms system B.

5 Locality

To distinguish between strictly proper scoring rules, the locality property is explored here. A

scoring rule is local if the probabilistic forecast is evaluated only at the actual outcome, which

means that the scoring rule depends solely on the probability assigned to the outcome, rather

than being rewarded for other features of the forecast distribution, such as its shape. [10] and [2]

show that every local, smooth and proper scoring rule for continuous variables is equivalent to

(an affine function of) IGN, which makes IGN the only proper local scoring rule for continuous

variables. Thus all other proper scoring rules, including those listed in Section 3, are nonlocal.

The locality property itself does not suggest whether local or nonlocal scoring rules should be

preferred, although it might seem unreasonable that features of the forecast other than the value

it assigned to the outcome should matter at all. In the following sections, the preference of a

local scoring rule is supported based on both mathematical properties and interpretation of the

scoring rule.
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6 Implausible

A mathematical property called implausible is introduced in this section. Nonlocal scoring rules

listed in Section 3 are shown to have such undesirable property; striking “unfortunate” evaluation

examples that result from the use of nonlocal scoring rules are presented below.

A scoring rule is implausible8, if for ANY r > 1, r ∈ R, there exist two forecast systems

p1(x) and p2(x), and Y , where p1(Y )/p2(Y ) = r while S(p1, Y ) > S(p2, Y ). In other words, an

implausible scoring rule means that for all r > 1 it is possible to find p1(x), p2(x) and Y (which

may all vary with r) such that p1(Y )/p2(Y ) = r and S(p1, Y ) > S(p2, Y ). Ignorance is clearly

not implausible as given p1(Y )/p2(Y ) = r, S(p1, Y ) would always be smaller than S(p2, Y ) by

log2 r. The Energy Score family is implausible; this can be shown via investigating an undesirable

mathematical property of the Energy Score. Take the derivative of the Energy Score respect to

the outcome Y (where Y is a realization of the random variable x):

∂SES(p(x), Y )

∂Y
=

∫ Y

−∞
β(Y − x)β−1p(x)dx−

∫ ∞

Y
β(x− Y )β−1p(x)dx (13)

The zero solution of the RHS of Eq. 13 only relies on the location of Y regardless the value of

p(Y ). For the CRPS, where β = 1, min
Y

S(p, Y ) is achieved when
∫ Y
−∞ p(x)dx −

∫∞
Y p(x)dx = 0

which gives Y as being the median of p(x). Such mathematical property may lead to “unfortunate”

results as illustrated in Figure 2.9 The blue line and red line represent two forecast systems A and

B (each based on a Bimodal distribution with the same shape but different centers). Intuitively,

one would expect that if the outcome lands between -0.5 and 0.5 (or more generally that the

outcome is drawn from some PDF which is bounded between -0.5 and 0.5) forecast system B shall

be preferred as system B would assign significantly more probability mass to the outcome than

system A (especially when the outcome lands around 0); similarly if the outcome lands between

0.5 and 1.5 forecast system A shall be preferred. The green line represents the CRPS of system

A relative to system B, a negative (below the dotted zero line) relative score suggests system A

outperforms system B according to the CRPS. It appears that if the outcome lands between -0.5

and 0.5, the CRPS would prefer system A over B even when system B assigns significantly more

8[41] defined “perverse” scoring rules to be those which systematically prefer forecasts which place a lower

probability on the outcome. [29] considered a scoring rule to be “not feasible” when a probable event scores worse

than an improbable one. These definitions are elevated here.
9It is usual to analyze how scores change as the forecast varies, while this and the following examples investigate

how the values of scores change as the outcome varies.
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probability mass to the outcome than system A. This is due to the fact that the CRPS prefers the

outcome to be close to the median of the forecast distribution no matter how much probability

mass is around the median. Obviously the CRPS is implausible, as shown in Figure 2, when

Y = 1, pA(Y )/pB(Y ) = ∞ while SCRPS(pA, Y ) > SCRPS(pB , Y ) (similar examples can be found

to show all members of the Energy Score family are implausible). Ironically, if the forecast system

A is delivered to the user, the developer of forecast system A would hope the outcome lands at 0

in order to achieve the best CRPS despite the fact the forecast system A assigns 0 probability to

the outcome. Considering a parameter estimation scenario, if the observed outcomes are drawn

from a delta function or a sharp Gaussian distribution centered at 0 and the forecast distribution

is a Bimodal distribution with its center to be tuned, tuning the parameter based on the CRPS

would converge to a Bimodal distribution centered at 0 where the probability mass assign to the

outcome would always be near 0.

The example shown in Figure 2. contradicts the claim [4, 22, 48] that the CRPS/RPS gives

credit for assigning high probabilities to the values near but not identical to the outcome. This

kind of claims is mostly originated from [42], where Staël von Holstein shown that the RPS is

“sensitive to distance” from the “true” outcome. Actually the “sensitive to distance” defined

by Staël von Holstein is based on his definition of “more distant from the true event” (P360 of

[42]), which is, however, NOT equivalent to assigning high probabilities to the values near but not

identical to the outcome. It was, in fact, noted by Staël von Holstein himself (section 6 of [42])

that his definition of “more distant from the true event” is rather restrictive and changing the

definition to an alternative definition [32] will lead to the RPS not being “sensitive to distance”,

which is consistent with the example shown in Figure 2.

The Power Score and Spherical Score are also implausible. This can be shown in the case,

where p1(x) and p2(x) are both Gaussian distributions.

Let p1(x) be a Gaussian distribution with mean u1 and standard deviation σ1, then

∫ ∞

−∞
pα1 (z)dz =

∫ ∞

−∞
(

1√
2πσ1

e
− (z−u1)

2

2σ2
1 )αdz

= (2π)
1−α
2 α− 1

2σ1−α
1

(14)

Let p2(x) be a Gaussian distribution with mean u2 and standard deviation σ2. To prove the

Power Score family is implausible, one needs to find p1(·), p2(·) and Y so that p1(Y ) = rp2(Y )

11
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Figure 2: Example showing that the Continuous Rank Probability Score produces “unfortunate”

results. The blue line and the red line represent PDFs of forecast systems A and B based on

Bimodal distributions with the same shape but different centers. The green line represents the

CRPS of system A relative to system B. A negative relative score suggests system A outperforms

system B. The dashed vertical lines enclose the regions where “unfortunate” results occur.

but SPS(p1(x), Y ) > SPS(p2(x), Y ), which requires:

− αp1(Y )α−1 + (α − 1)

∫ ∞

−∞
pα1 (z)dz > −αp2(Y )α−1 + (α − 1)

∫ ∞

−∞
pα2 (z)dz

− αp1(Y )α−1 + (α − 1)(2π)
1−α
2 α− 1

2σ1−α
1 > −αp2(Y )α−1 + (α− 1)(2π)

1−α
2 α− 1

2σ1−α
2

(15)

Note that even if p2(Y ) = 0, it is still possible that SPS(p1(x), Y ) > SPS(p2(x), Y ), as long as

SPS(p1(x), Y ) > 0, as one can always find σ2 large enough so that (α− 1)
∫∞
−∞ pα2 (z)dz is smaller

than SPS(p1(x), Y ). To have SPS(p1(x), Y ) > 0:

p1(Y ) < (α− 1)
1

α−1α
− 3

2(α−1)
1√
2πσ1

p1(Y ) < (α− 1)
1

α−1α
− 3

2(α−1) p1(u1) (16)

This condition also defines a vulnerable subspace where the evaluation using Power Scores might

be misinformative. Figure 3 gives an example where PLS may produce “unfortunate” results.

The blue line and red line represent the PDFs of two forecast systems A and B. Intuitively one

would expect that if the outcome is less than −4 (or between −2 and −1), system A shall be

preferred as system A would assign significantly more probability mass around the outcome than

12



system B. On the contrary, the relative PLS (the green line) prefers system B instead as positive

relative PLS would be observed as shown in Figure 3. Ironically, if the forecast systems A and B

are delivered to the user, the developer of forecast system B would hope for the outcome being

smaller than -4 in order to “outperform” forecast system A by achieving better PLS despite the

fact that forecast system B assigns ∼ 0 probability to the outcome.

-4 -2 0 2 4 6

Random variable Y

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

PDF of Model A

PDF of Model B

PL Score of Model A
relative to Model B

Figure 3: Example showing that the Proper Linear Score produces “unfortunate” result due to

the fact it is implausible. The blue line and the red line represent PDFs of forecast system A

(N(−3, 0.52)) and B (N(3, 12)). The green line represents the PLS of system A relative to system

B. A negative relative score suggests system A outperforms system B. The left side of the dashed

vertical line at −4 and the region between dashed vertical lines at −2 and −1 define the regions

where “unfortunate” results occur.

Similarly to prove the Pseudo-Spherical Score family is implausible, one needs to find p1(·),

p2(·) and Y so that p1(Y ) = rp2(Y ) but SPSS(p1(x), Y ) > SPSS(p2(x), Y ), which requires:

− p1(Y )β−1

(
∫∞
−∞ pβ1 (z)dz)

1/β
> − p2(Y )β−1

(
∫∞
−∞ pβ2 (z)dz)

1/β

− p1(Y )β−1

(2π)
1−β

2β β− 1
2β σ

1−β

β

1

> − p2(Y )β−1

(2π)
1−β

2β β− 1
2β σ

1−β

β

2

− (rp2(Y ))β−1

σ
1−β

β

1

> −p2(Y )β−1

σ
1−β

β

2

σ2 > rβσ1

(17)

Note the condition in Eq. 17 also places a restriction onto Y , as σ2 gets larger, the maximum

13



value of p2(x) can be smaller than p1(Y )
r . Therefore Y has to be chosen so that p1(Y )

r ≤ p2(u2),

i.e. p1(Y )
r ≤ 1√

2πσ2
and as σ2 > rβσ1, it requires p1(Y ) < 1√

2πσ1
r1−β. This condition also defines a

vulnerable subspace (given r > 1) where the evaluation using the Pseudo-Spherical Score might

be misinformative.

Figure 4 gives an example where SPS may produce “unfortunate” results. Consider two

forecast systems based on Gaussian distributions, where the PDF of system A (blue line) is

standard Gaussian and system B (red line) being N(0, 52). Intuitively, one would expect that if

the outcome lands in the two regions bounded by the black dashed vertical lines, system A shall

be preferred as system A would assign significantly more probability mass around the outcome

than system B. On the contrary, the relative SPS (the green line) prefers system B instead as

positive relative SPS would be observed in both regions.
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Figure 4: Example showing that the Spherical Score produces “unfortunate” result due to the fact

it is implausible. The blue line and the red line represent PDFs of forecast system A (standard

Gaussian) and B (N(0, 52)). The green line represents the SPS of system A relative to system

B. A negative relative score suggests system A outperforms system B. The dashed vertical lines

enclose the regions where “unfortunate” results occur.

7 Score Interpretation

The difference between two forecast systems is reflected by the difference between their scores.

This provides a rank ordering, and thus a preference. Without any reference, a single score of

a forecast system hardly provides any evaluation information, which is why score interpretation
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should be considered base on the relative score between forecast systems. It is also helpful if the

relative score has some meaningful interpretation that relates to the benefit of the users. Otherwise

it only indicates which forecast system is better, without answering the question of how much

better one is in a meaningful way that adds value to decision support. For example, Figure 1

does show the IGN, PLS and CRPS’ preferences between the two forecast systems; however, the

interpretation of the relative score (the y-axis in Figure 1) is also important to decision-makers.

A number of meaningful interpretations to proper scoring rules have been identified in the

literature. IGN can be interpreted in terms of gambling returns [16, 18, 21, 36]. Under a Kelly

betting scenario10, IGN describes the rate at which the forecaster’s fortune increases with time.

A house setting fair odds [13] based on a forecast system with a lower value of a nonlocal scoring

rule is expected to lose money to a gambler who places bets based on a different forecast system

with a lower IGN. Through its close relation to Shannon’s information entropy, IGN is related to

the amount of information expected from a forecast [36]. IGN can also be easily communicated

as an effective interest rate [18]. Jose and Winkler (2008) show that the Pseudo-spherical score

and power score families can be interpreted as profits in certain decision problems. Note all the

interpretations listed above are based on some specific scenario in which one can, in fact, define a

corresponding utility function to replace the scoring rule. For example in a Kelly betting contest,

one can define a utility function that reflects the rate (at which the forecasters’ fortune increases

with time) and use such utility function to replace IGN for forecast evaluation. In practice, it is

usually not easy to define a relevant utility function based on probabilistic forecasts for the use

of decision support. It is therefore desirable for a scoring rule to have a rather direct and generic

interpretation.

The expected IGN can be written as:

E(SIGN (p(x), Y )) =

∫

[

− log2p(Y )
]

Q(Y )dY (18)

And the expected relative IGN between two probabilistic forecast system p1 and p2 is:

∫

[

− log2
p1(Y )

p2(Y )

]

Q(Y )dY (19)

Therefore the empirical relative IGN score, 1
N

∑−log2
p1(Y )
p2(Y ) , reflects the (average) increase in

10In a Kelly betting contest [21], one bets all of one’s wealth on every outcome in proportion to the forecast

probability of that outcome. More precisely, a fraction ωi of ones wealth, where ωi is the forecast probability of

event Ei occurring, should be wagered on the ith outcome.
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probability mass that the model forecast p1 placed on the outcome relative to that of the reference

forecast p2. Note that although p1 and p2 are probability density functions, −log2
p1(Y )
p2(Y ) can be

interpreted as increase/decrease in probability11, which gives the Ignorance score a meaningful

direct interpretation12. The relative IGN of two forecast systems also quantifies the information

gain (in terms of bits) the model forecast system provides over the reference system. A relative

IGN of 1 bit means that, on average, forecasts from the system assign twice the probability to

the outcome compared to the reference forecast [36].

Nonlocal scoring rules include contributions from the entire PDF; the scoring rule may be

largely determined by outcomes that did NOT occur, making a meaningful direct interpretation

somewhat challenging. For example, the empirical relative PLS between two forecast system p1

and p2 based on a large number N of forecast-outcome pairs is:

[

∫

p21(z)dz −
∫

p22(z)dz] +
2

N

N
∑

i

[p2(Yi)− p1(Yi)] (20)

The interpretation of Eq. 20 is clearly more sophisticated than that of the relative IGN. In the

second term of Eq. 20, p2(Y ) − p1(Y ), which ranges (−∞,∞), is the difference between two

probability density functions rather than two probabilities. In the context of decision support, it

is unclear how to interpret the probability density function(s) meaningfully other than by using

logp2(Y ) − logp1(Y ) to reflect the increase/decrease in probability mass placed on Y (this is in

fact the approach used by relative IGN). The first term of Eq. 20 being a function of the entire

PDF of forecast systems (not depending on the outcome Y ) clearly makes it even more challenge

for interpretation. Similar interpretation challenges applies to the CRPS and SPS. There are

better ways to interpret these nonlocal scoring rules by using True underlying distribution as a

reference.

For example, assuming the True underlying distribution Q exists then the expectation of PLS

is:

E(SPLS(p(x), Y )) =

∫

[−2p(Y ) +

∫

p2(z)dz]Q(Y )dY (21)

PLS is based on the idea that the scoring rule should reflect “nearness” of the predicted probability

distribution to the True underlying distribution. By straightforward manipulation, it comes to

11For small values of δ, one can write P (x < X ≤ x+ δ) ≈ p(X)δ.
12Note the interpretation of the empirical relative Ignorance score does NOT require the knowledge of the True

underlying distribution Q.
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the following representation:

E(SPLS(p(x), Y )) =

∫

[Q(Y )− p(Y )]2dY −
∫

Q2(Y )dY (22)

The second term in the RHS of Eq. 21 will vanish when comparing two forecast systems using the

expected relative score, which gives the expected relative PLS between two probabilistic forecast

system p1 and p2:
∫

[Q(Y )− p1(Y )]2dY −
∫

[Q(Y )− p2(Y )]2dY (23)

Therefore the expected relative PLS between two forecast systems can be interpreted with re-

gard to the mean square difference between the forecast distribution and the True underlying

distribution Q.

Similarly, the expectation of CRPS can be written as:

E(SCRPS(p(x), Y )) =

∫

[G(Y )− F (Y )]2dY −
∫

G(Y )(1 −G(Y )dY, (24)

where F (·) is the CDF of the forecast distribution and G(·) is the True underlying CDF. The

expectation of the relative CRPS between two forecast systems can be interpreted with regard to

the mean square difference between the forecast CDF and the CDF of the Truth.

The expected SPS can be written as:

E(SSPS(p(x), Y )) = (

∫

Q(Y )2dY )1/2
∫

p(Y )Q(Y )dY

(
∫

Q(Y )2dY )1/2(
∫

p(Y )2dY )1/2
(25)

It can be interpreted regarding the interior angle of deviation between the forecast distribution p

and the True underlying distribution Q.

In some cases it makes sense to consider an integration over the True underlying distribution

Q. The interpretation of the expected relative score with respect to Q is cloudy in reality, for

example in weather-like forecasting scenarios, where the same Q distribution is never seen twice

over the lifetime of the system. In practice, the True underlying distribution is rarely (if ever)

available to provide such an interpretation, and were it to be the use of imperfect probabilistic

forecast is mute. Furthermore, functions of the entire forecast distribution, as in Eq 22. 24. & 25.

can hardly be interpreted in a meaningful way for decision support. Therefore, even if the True

underlying distribution were available, it is unclear the interpretations of relative scores derived

from Eq 23-25 are informative to the decision maker except providing their preference between

two forecast systems.
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8 Scoring Rules Under Transformation

In practice, it is common that the variable of interest is not the variable observed but a function

of the observed variable. For example, wind power is a function of wind speed cubed; wave power

is principally a function of wave height squared [37]. It is desirable for a scoring rule to provide

coherent evaluations before and after a smooth transformation being applied to the forecast

variable. Consider x∗ = φ(x) as a smooth one-to-one (transformation) function of a random

variable x. The forecast PDF of x, p(x), becomes p(φ−1(x∗))dφ
−1(x∗)
x∗

for the random variable

x∗ after the transformation and the scoring rule S(p(x), Y ) becomes S(p(φ−1(x∗))dφ
−1(x∗)
x∗

, Y ∗),

where Y ∗ = φ(Y ). It is almost certain that the value of a scoring rule will change after the

transformation. Note score interpretation should always based on the relative score between

forecast systems instead of a single score of a forecast system in order to provide useful information

for decision support. It is therefore of interest to investigate whether the relative score will change

after taking the transformation and if so, will the scoring rule’s preference change as well. Given

the relative score between two probabilistic forecast system p1 and p2 by:

S(p1(x), Y )− S(p2(x), Y ), (26)

after taking a transformation φ(x) it becomes

S(p1(φ
−1(x∗))

dφ−1(x∗)

dx∗
, Y ∗)− S(p2(φ

−1(x∗))
dφ−1(x∗)

dx∗
, Y ∗). (27)

Note that Y and Y ∗ are one-to-one and p(x) and p(φ−1(x∗))dφ
−1(x∗)
x∗

reflect the same information

of a forecast system. Therefore if (26) does not equal to (27) based on some scoring rule S, the

scoring rule will have a non-unique interpretation of the relative skill between two competing

forecast systems. Furthermore if (26)×(27) < 0 for some Y and φ, it indicates such scoring rule

might also change its preference due to the transformation, then the use of such scoring rule as

an evaluation tool for decision support is questionable.

Ignorance score is invariant under smooth transformation as (26) and (27) are equal for any

smooth transformation, proved in the following:

S(p1(φ
−1(x∗))

dφ−1(x∗)

x∗
, Y ∗)− S(p2(φ

−1(x∗))
dφ−1(x∗)

x∗
, Y ∗)

= − log p1(φ
−1(x∗))

dφ−1(x∗)

x∗

∣

∣

∣

∣

Y ∗

+ log p2(φ
−1(x∗))

dφ−1(x∗)

x∗

∣

∣

∣

∣

Y ∗

= − log p1(Y ) + log p2(Y ) = S(p1(x), Y )− S(p2(x), Y ).

(28)
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For nonlocal scoring rules like Proper Linear Score, Spheric Score and Continuous Rank Proba-

bility score, smooth transformation not only have impact on the value of the relative scores but

also may cause the change of their preference. Figure 5 gives an example where the CRPS may

contradict itself by changing its preference under transformation (similar examples can be found

for PLS and SPS). Following Figure 2, Figure 5(a) compares two forecast systems based on a

Bimodal distribution with the same shape but different centers. The green line represents the

CRPS of system A relative to system B, a negative relative score suggests system A outperforms

system B according to the CRPS. The black dashed vertical line in Figure 5(a) corresponds to

the threshold Y = 11.5, where the CRPS prefers forecast system A when Y < 11.5 and prefers

forecast system B when Y > 11.5. Figure 5(b) compares the same two forecast systems after cu-

bic transformation being applied to the forecast variable. Clearly the relative CRPS has changed

after the cubic transformation. Let x refers to wind speed, then x3 reflects wind power. When the

observed wind speed is 10, the relative CRPS (forecast system A relative to forecast system B) is

roughly −0.9 as in Figure 5(a). Comparing the same13 forecast system A and B in terms of wind

power under the same observation (wind speed 10 corresponds to wind power 1000), however,

the relative CRPS14 as in Figure 5(b) becomes roughly 340, which indicates the interpretation of

CRPS evaluation for comparing forecast system A and B based on a unique observed wind speed

is not unique. Furthermore, the CRPS may even change its preference after the transformation

as the threshold (the black solid vertical line in Figure 5(b)) that distinguish the CRPS prefer-

ence is Y 3 = 1700 rather than Y 3 = 11.53 = 1520.875 (dashed vertical line). If the underlying

distribution of the wind speed were bounded between the black dashed line and black solid line,

the CRPS would prefer forecast system A before the cubic transformation when the wind speed

is evaluated directly, while it prefer forecast system B after the cubic transformation when the

wind power (which corresponds to the same wind speed) is evaluated.

13In fact the information presented by forecast systems A and B remain the same although their pdf changed

when the forecast variable wind speed transformed to wind power.
14The relative CRPS (the green curve) in Figure 5(b) is scaled down by 1.6 × 105 in order to have similar

magnitude as the PDFs.
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Figure 5: Example showing that the Continuous Rank Probability Score changes its preference

under transformation. The blue line and the red line represent PDFs of forecast systems A and

B. The green line represents the CRPS of system A relative to system B. A negative relative

score suggests system A outperforms system B. (a) before the cubic transformation; (b) after the

cubic transformation. The black dashed vertical line and solid line in (a), where Y = 11.5 and

Y = 11.935 respectively, corresponds to those in (b), where Y = 11.53 and Y = 11.9353.

9 Discussion and Summary

Measures of skill play a critical role in the development, deployment and application of proba-

bilistic forecasts. The property of some common strictly proper scoring rules have been discussed.

Given a strictly proper scoring rule, the True forecast system will always be preferred whenever

it is included amongst those under consideration. In practice, to correctly measure the difference

between imperfect forecast schemes, being strictly proper is not enough, as strictly proper scor-

ing rules need not rank competing forecast systems in the same order when none of the forecast

systems are perfect. In general, any scoring rules can be presented with the form:

S(p(x), Y ) = s1(p(x)) + s2(p(x), Y ) + s3(p(Y )). (29)

For local scoring rules, the first two terms in the RHS of Eq. 28 are both zero with only the

presence of s3(p(Y )), for example the only local proper scoring rule, the logarithmic score (Igno-

rance). Nonlocal scoring rules contain at least one of the first two terms, for example the Energy

Scores consist of s1 and s2, the Power Scores s1 and s3 and the Pseudo-sphere Scores only s2.

The presence of s1 or s2 or both allows the scoring rule to give extra credit to the structure of the
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forecast PDF. Note such extra credit is not necessarily given for assigning high probabilities to

the values near the outcome as the examples in Figures 2-4 show. Without knowing the True un-

derlying distribution, the justification of giving such extra credit is untenable. Nonlocal strictly

proper scoring rules considered15 are shown to have property that can produce “unfortunate”

evaluations due to the fact that contributions from the entire shape of the PDF may overwhelm

that from the probability assigned to the outcome. Particularly the fact that Continuous Rank

Probability Score prefers the outcome close to the median of the forecast distribution regardless

the probability mass assigned to the value at/near the median raises concern to the use of Con-

tinuous Rank Probability Score. Ignorance has direct interpretations in terms of probabilities and

bits of information while the direct interpretation of nonlocal strictly proper scoring rules on the

other hand relies on information regarding the unknown (if it even exists) True underlying distri-

bution as a reference. The nonlocal strictly proper scoring rules considered may also contradict

themselves when a smooth transformation is applied to the forecast variable while IGN is shown

to be invariant under smooth transformation. It is suggested that Ignorance should always be

included in the evaluation of probabilistic forecasts.

One of the reasons for using nonlocal scoring rules is to address particular problems where a

local scoring rule is not considered “suitable”. For example, Ignorance is infinity if the forecast

assigns vanishing probability to an event that obtains. [39] emphasizes that the use of Ignorance

implies the value judgment that small differences between small probabilities should be taken very

seriously and that wrongly describing something extremely improbable as having zero probability

is “an unforgivable sin”. [36] pointed out that forecasters should replace zero forecast probabilities

with small probabilities based on the uncertainties in the forecast PDF. Not to do so means

reporting the improbable as the impossible. Within the Bayesian framework, Cromwell’s rule

states that the use of prior probabilities of 0 or 1 should be avoided. Assigning zero probability to

events that are possible also contradicts to Laplace’s rule of succession [19]. In the insurance sector,

the premium is inversely proportional to the probability of an event occurring; zero probability

would suggest free insurance.

In this manuscript, the value outcome is assumed to be certain. In the presence of uncertainty

15The author does believe that all non-local scoring rules are implausible, but as there is no general mathematical

function of non-local scoring rules, only the popular nonlocal scoring rules (and their families) are considered and

shown to be implausible in this manuscript.
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in the value of the outcome (for example due to measurement error), one may obtain benefit by

assigning probability to the events that do not match the outcome exactly. Note again this does

not imply one should use nonlocal scoring rules, as for nonlocal scoring rules the contributions

from the entire shape of the PDF are not designed to account for the uncertainty in the value of

the outcome. For a local scoring rule, the evaluation can still be considered over the observational

uncertainty distribution of the outcome, for example by coupling the forecast distribution with

the distribution of observational noise [6].

Scoring rules are designed to assess (probabilistic) forecast performance, which hopefully leads

to better decision making. [3] argue that a local proper score should be preferred for ‘pure

inference’ problems in which the outcome is the sole arbiter of forecast quality, yet there are other

forms of scoring rules that would typically be appropriate in more directly practical contexts (see

stock control example in [3]). Note that in such ‘more directly practical contexts’, if a utility

function based on probabilistic forecasts can be conveniently defined according to the practical

objective (which often is not the case in practice), there is no need for any kind of scoring rules

(using the utility function directly will serve the purpose of forecast evaluation sufficiently). Any

scoring rules can be directly considered as a utility function, yet the meaning of the corresponding

utility function relies on the direct interpretation of the skill of the scoring rule. It is questionable

whether nonlocal scoring rules can provide any meaningful direct interpretation. [40] claims that

interpretation is a critical aspect in accepting a scoring rule for use in practice; he uses valued

property of probabilistic forecasts to support this assertion.
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