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Abstract
Background: Previous simulation studies have found that starting with high degree
seeds leads to faster and more complete diffusion over networks. However, there are
few studies and none have used networks that are relevant to a school setting.

Methods: We construct 17 networks from friendship nominations in schools and
simulate diffusion from a seed group of 15% of the students. That seed group is
constructed with seven different approaches (referred to as interventions). The
effectiveness of the intervention is measured by the proportion of simulated students
reached and the time taken.

Results: Seed groups comprising popular students are effective compared to other
interventions across a range of measures and simulated contagions. As operationalised,
selecting persuasive students is also effective for many simulation scenarios. However,
this intervention is not strictly comparable with the others tested.

Conclusions: Consistent with previous simulation studies, using popular students as a
seed group is a robust approach to optimising network interventions in schools. In
addition, researchers should consider supplementing the seed group with influential
students.

Keywords: Network interventions, Behaviour change, Agent-based modelling,
Adolescents

Background
Behaviour adoption is an important application of diffusion of innovations over networks,
for which there is a rich literature (Valente 2005). In public health, the term ‘network
interventions’ specifically refers to using social networks or information about the net-
work to enhance the effectiveness of interventions to encourage healthy behaviour or to
discourage unhealthy behaviour (Valente 2012).
Four broad approaches have been described (Valente 2012; Hunter et al. 2017). The

first two approaches identify people to promote or participate in the intervention based
on their network properties. For the ‘Individuals’ approach, such identification is based
on node level properties, such as degree, that could be expected to increase adoption by
other individuals. In contrast, ‘Segmentation’ selects initial participants based on a shared
higher level property such as membership of the same community. ‘Induction’ interven-
tions encourage greater relevant use of the network by all participants, for example by
trying to stimulate discussion. Finally, ‘Alteration’ interventions are intended to change
the network, for example discouraging links with role models of undesirable behaviour.
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Focusing on the first approach, a key question for public health researchers is identi-
fying the network properties to be used to select change agents, the people to promote
or initially participate in the intervention. The objective is to select the change agents
to maximise overall behaviour adoption. In computer science, there is extensive liter-
ature developing the ‘best’ algorithm (however defined) to select the smallest set of
starting individuals for a given network and diffusion mechanism to achieve a target dif-
fusion level, or the set of given size that maximises diffusion [originating with Kempe
et al. (2003)]. For health behaviour interventions, however, the network and diffusion
mechanism may not be known. The research question is therefore identifying network
interventions (or change agent selection rules) that are robust; that is, they result in
relatively high adoption levels across varied networks and diffusion rules.
Previous research using simulations has found that selection methods that preferen-

tially recruit high degree seed participants lead to greater or faster adoption over several
assumed behaviour adoption mechanisms and networks (Aral et al. 2013; Badham et al.
2018). The relative effectiveness of interventions with highly central seeds in these studies
is consistent with evidence that indicates that spread is correlated with centrality of seed
(de Arruda et al. 2014; Jalili and Perc 2017) under different mechanisms over different
networks.
The evidence from real world behaviour change interventions is limited. A recent sys-

tematic review found strong evidence of behaviour change with interventions that select
popular individuals to lead peer education activities (Hunter et al. 2017). However, in
almost all studies reviewed, the control intervention for comparison does not involve peer
led interventions; that is, the effect arising from use of popular leaders cannot be sepa-
rated from the effect of peer led delivery. One empirical study using tickets for access to
water purification or vitamin supplements in villages in Honduras specifically compared
seed selection methods (Kim et al. 2015). This study found that high degree selection was
no more effective than randomly selecting seeds and less effective than asking random
individuals to nominate a friend to be the seed.
There are many plausible explanations for the differences between results from simu-

lations and real world intervention trials. Most obviously, the small evidence base may
simply bemisleading; any general patternmay be obscured by differences in the behaviour
adoption mechanisms (Centola 2010; Aral et al. 2013), specific implementation details
of the studies or stochastic effects in the diffusion. In addition, it is well established that
the structure of the network influences diffusion (Valente 2005), and differences in struc-
ture may therefore confound any attempt to compare studies conducted on substantially
different networks.
Each of these explanations may be more or less salient for particular intervention appli-

cations. Comprehensive simulation studies allow competing explanations to be tested.
To investigate these potential explanations, we assess differences in intervention effec-
tiveness across aspects of implementation, specifically ease of diffusion and measures of
effectiveness.
We frame our analysis with school based interventions, which are popular for diverse

public health behaviours (Jepson et al. 2010; Kriemler et al. 2011; Hale et al. 2014; Das et
al. 2016) and also as a setting for network interventions (Hunter et al. 2017). The only net-
work of friendship nominations in existing simulation studies was collected in a prison
setting, with the other networks including a large online messaging service, networks



Badham et al. Applied Network Science            (2019) 4:70 Page 3 of 14

constructed with common algorithms, and observed interactions between adults
(Aral et al. 2013; Badham et al. 2018). We therefore use school based friendship networks
for the simulation and restrict the seed selection methods to those that are particu-
larly popular in school based network interventions or practical in a school context
because they do not require full network analysis. This approach is intended to balance
the methodological strengths of simulations with the needs of real-world public health
interventions, enhancing the relevance of this study.

Methods
Network construction

The networks used in this simulation study were adapted from data collected in the 2016
wave of the Wellbeing in Schools Survey (WiSe) (Davison et al.: Longitudinal overview
of adolescent wellbeing: findings from the Wellbeing in Schools Survey, in preparation),
when participants were 13–14 years old. All post-primary schools in Northern Ireland
(N = 181)were invited to participate whenWiSe commenced in 2013, and approximately
half agreed (N = 102). The survey asks students in participating schools about their
health and wellbeing, including physical activity, nutrition, drug use and other topics. It is
a longitudinal cohort study, surveying one randomly selected class in each participating
school every two years.
The social network element of the survey in 2016 asks participants to nominate up to

10 friends in their class, and a checkbox is available for the student to indicate that their
friends are not in their class. The respondent is encouraged to fill in their friend’s full
name. The friendship nomination is recorded in the WiSe dataset using the nominee’s
study identifier, with a separate code used to indicate that a name was provided but could
not be identified for coding. In total, 1603 students participated from 87 schools. Of these,
1369 (85.4%) nominated at least one friend. There were 9144 friend nominations (mean
of 6.7 per student), of which 8124 (88.8%) were identifiable.
Of the 87 participating schools, 17 networks satisfied three conditions and were

used in this study: (1) the school had at least 20 participating students; (2) at least
80% of the students nominated at least one identifiable friend; and (3) at least 80%
of the total school nominations were identifiable. These conditions were set so as
to limit missing edges to 36% of the network, at which level the observed network
is expected to have similar structural properties as the underlying network (Costen-
bader and Valente 2003; Kossinets 2006; Smith and Moody 2013), and 80% completion
provides an acceptably reliable measure of friendship nominations in a full network
(Marks et al. 2012).
These 17 friendship nomination networks were modified for the simulation. Although

friendship is a directed relationship, the simulation networks used undirected edges,
so adoption influence can be exerted in either direction. In addition, isolates were
removed as their adoption status cannot be changed by diffusion mechanisms. The prop-
erties of the final networks are summarised at Table 1 and reported individually at
Table 2.
Network extraction was undertaken in R (R Core Team 2015, version 3.5.0), with net-

work functionality provided by the ‘igraph’ package (Csardi and Nepusz 2006, version
1.1.0). The constructed networks were exported into separate gml formatted files for use
in the simulation.
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Table 1 Properties of 17 networks used in simulations: Summary

Network property Mean SD Range

Nodes 23.7 3.9 17 to 331

Edges 97 26 58 to 157

Components 1.2 0.5 1 to 3

Communities 2.9 0.7 2 to 4

Density 0.37 0.09 0.2 to 0.5

Degree: Mean 8.1 1.6 5.0 to 10.7

Degree: Gini 0.19 0.05 0.10 to 0.28

Degree: Assortativity 0.18 0.23 -0.15 to 0.71

Clustering Coefficient: Mean local 0.70 0.09 0.52 to 0.91

Mean shortest path2 1.8 0.3 1.4 to 2.7

Diameter2 4.1 1.2 2 to 6
1While at least 20 contributing students were required for the school to be included, removal of isolates can reduce the
corresponding network to fewer than 20 nodes
2Calculation of the mean shortest path excluded two networks that were not connected

Simulation model

An agent-based model was used to simulate behaviour adoption through the network.
The model imports one of the networks, selects seed nodes (initial participants) for
immediate behaviour adoption, and then simulates diffusion of the behaviour throughout
the remainder of the network. The model was developed in NetLogo (Wilensky 1999), a
specialist agent-based modelling platform.
Seven different network interventions, or seed selection methods, were available in the

model. The operationalisation of the interventions is summarised in Table 3. Note also
that these interventions are presented in the same order in all tables and figures.
A common real world network intervention selects opinion leaders to be trained as peer

educators, with those leaders selected because of their high degree or other centrality

Table 2 Properties1 of 17 networks used in simulations: Individual networks

Network Nodes Edges Comp Comm M Degree G Degree M Clustering M Geodesic Diameter

0 22 84 1 4 7.6 0.22 0.61 1.7 4

1 27 132 1 2 9.8 0.14 0.71 1.8 4

2 21 94 1 3 9.0 0.19 0.63 1.5 3

3 22 115 1 2 10.5 0.13 0.72 1.5 3

42 24 77 2 3 6.4 0.20 0.82

5 21 112 1 2 10.7 0.12 0.70 1.4 2

6 22 81 1 3 7.4 0.22 0.74 1.9 5

7 33 157 1 3 9.5 0.19 0.65 2.0 5

8 28 112 1 3 8.0 0.17 0.69 1.9 5

9 17 64 1 2 7.5 0.10 0.91 1.7 3

10 24 89 1 3 7.4 0.21 0.52 1.9 4

11 20 89 1 2 8.9 0.13 0.69 1.6 3

122 23 58 3 4 5.0 0.26 0.75

13 26 106 1 4 8.2 0.28 0.64 2.3 6

14 20 61 1 4 6.1 0.19 0.77 2.2 5

15 24 111 1 2 9.3 0.15 0.68 1.7 3

16 29 101 1 3 7.0 0.26 0.68 2.7 6
1Comp and Comm refer to the number of components and communities respectively. Where nodal (or nodal pair) properties are
summarised, M indicates Mean and G indicates Gini coefficient. Geodesic is the shortest path between a pair of nodes
2Networks 4 and 12 are disconnected and geodesics are not calculated
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Table 3 Network interventions simulated

Name Descriptiona

Random Uniform (RU) Each node has an equal chance of selection

Random by Degree (RD) Nodes selected with probability proportional to degree

Friend of Random (FR) A ‘nominator‘ set is randomly selected with equal probability, and each node in
that set randomly selects one of their network neighbours to be included in the
seed set.

High Degree (HD) Descending order by degree - number of edges to other nodes

Community Leaders (CL) Highest degree from each community

Persuasive (P) Random (uniform) selection, but those selected have greater effect then other
nodes during contagion (additional 0.2 transmission probability for simple, or
count as two neighbours for complex)

Community (C) Randomly selected from largest community found by the Louvain optimisation
of modularity.

aFor those interventions where nodes are selected according to rank order, random selection is used for equally ranked nodes if
they cannot all be included

measure (Valente 2012; Hunter et al. 2017). The simulated interventions High Degree and
Community Leaders reproduce this selection, with the latter ensuring that the seeds are
distributed in different communities (identified by the Louvain algorithm (Blondel et al.
2008)). While popular, these methods require prior collection of network information,
and may not always be practical.
Instead, an observer (such as a teacher) could select seeds based on their perception of

the participants. Random by Degree represents such an observer’s attempt at identifying
central students, the nodes with higher degree are more likely to be selected. Persuasive
takes a different approach, selecting those students who are expected to be able to influ-
ence others regardless of their centrality. In the simulation, all students are equally likely
to be selected, but those selected have a stronger influence in the contagion process with
either a higher transmission probability (simple), or double contribution in the calculation
of proportion of friends already adopted (complex). Another possible approach where the
network is not available is Friend of Random, which randomly selects students and then
asks each to select one of their friends, which is expected to lead to higher degree seeds
by virtue of the friendship paradox (Feld 1991) and has been used in some interventions
(such as Kim et al. (2015)).
Finally, the Community intervention selects seeds that are within the same commu-

nity, representing a desire for the seeds to be relatively close in the network so that
adopters can provide mutual support (such as Trotter et al. (1996)). Seeds may also be
selected randomly and this intervention (Random Uniform) also provides a baseline for
comparison.
Regardless of the choice of intervention, the number of seeds selected represented 15%

(rounded up) of the network. This reflects the common recruitment target to achieve
critical mass in public health interventions (Kelly and Stevenson 1995). Previous research
has found that the initial adoption level has limited impact on relative effectiveness of
interventions (Badham et al. 2018). The selected nodes were assigned as having adopted
the behaviour at the start of the simulation, with all other nodes as not adopted.
Two diffusion mechanisms were simulated. Simple contagion (Centola and Macy 2007)

has all nodes that have already adopted ‘transmit’ the behaviour to their network neigh-
bours, who then adopt with some probability. The transmission probability is a model
parameter, with value of 0.4, 0.7 or 1. These were chosen to span the informative range;
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from exploratory simulations, the differences between interventions were obscured by
randomness in the diffusion at lower probability values. For complex contagion (Valente
1996; Centola and Macy 2007), each node that has not already adopted calculates the
proportion of its network neighbours who have adopted, and then adopts if that propor-
tion meets or exceeds a specified threshold (a model parameter, with value between 0.2
and 0.7 in increments of 0.1).

Experimental design

Overall, there were 1,071 combinations of model settings available in a full factorial design
(17 networks by 7 interventions by 9 diffusion mechanisms and parameter values). The
experimental design is summarised at Table 4, requiring 317,220 simulations overall.
These simulations were managed with BehaviorSpace, the batch simulation tool within
NetLogo. Multiple simulation runs are required where there is randomness either in the
selection of seeds or the behaviour adoption mechanism. The multiple runs allows an
average outcome to be calculated, so that effects can be more appropriately compared.
Two of the interventions are deterministic, so they will select the same seeds given

the same network (except as necessary to break ties). The other five interventions are
stochastic. For the transmission process, complex contagion is deterministic as is simple
contagion with transmission probability of 1. However, to simplify the set up, the simple
contagion simulations with probability of 1 were included in the same set of experiments
as the other (stochastic) simple contagion simulations.
The deterministic simulation sets were run 5 times, to allow for some variation if

ranks are tied. Those with one source of randomness (either simple contagion, or one of
the stochastic interventions) were run 100 times. Those simulations with both potential
sources of randomness were run 1000 times.
The simulation stops when no further diffusion can occur. For each time step in the

simulation, the key measure reported is the number of nodes who have adopted the
behaviour.
Four measures were derived from the simulation output for each run. Two concern the

proportion of the network adopted after one and two time steps (‘1-hop reach’ and ‘2-hop
reach’ respectively), which estimate the potential impact of the intervention assuming that
later adopters are less likely to diffuse the intervention further. The other two concern
the status of the simulation when completed, the proportion of nodes adopted (‘pene-
tration’) and the number of time steps to achieve that level of penetration (‘duration’).

Table 4 Experimental design: simulation parameters and number of runs

Parameter Values

Network 17 undirected, adapted from WiSe friendship nominations

Intervention 2 deterministic: High Degree, Community Leaders

5 stochastic: Random Uniform, Random by Degree, Friend of Random, Community, Persuasive

Seed group size 15% of network, rounded up

Contagion Simple, with transmission probability 0.4, 0.7 or 1

Complex, with threshold proportions of 0.2 to 0.7 by 0.1

Repetitions 5 for deterministic interventions and complex contagion

100 for stochastic interventions and complex contagion

100 for deterministic interventions and simple contagion

1000 for stochastic interventions and simple contagion
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Each measure was calculated as the mean over all simulations (5, 100 or 1000) with
the same simulation parameters: intervention, network, contagion type and transmission
probability or threshold.
For complex contagion simulations only, it is possible that no contagion occurs and the

final adoption level is simply the 15% of individuals initially selected. Therefore, addi-
tional effectiveness measures were calculated: the proportion of simulations where there
was at least one secondary adoption (referred to as a cascade), and the proportion of
the network adopted (‘1-hop reach’, ‘2-hop reach’ and ‘penetration’) given that secondary
adoption occurred.
The results were analysed using R (R Core Team 2015), particularly the dplyr package

(Wickham and Francois 2016, v 0.5.0).

Results
The question of interest is the relative effectiveness of the network interventions over the
various measures described above: proportion of simulations where secondary adoptions
occurred, adoption level achieved, and number of time steps to achieve final adoption lev-
els. Further, where there is inconsistency across different sets of simulations for a specific
measure, it is important to understand whether this variation is more attributable to the
measure of effectiveness used or associated with specific simulation parameters such as
the probability of transmission or threshold. Simple and complex contagion simulations
are reported separately.

Simple contagion: probabilistic

For simple contagion, we found limited impact of transmission probability on effective-
ness measures except for Persuasive, with similar rank patterns for all other interventions
(Additional file 1: Figure S3). For simple contagion, the Persuasive intervention selects the
seeds randomly but assigns them 0.2 higher probability of transmission; for example, in
the 0.4 transmission probability scenarios, most nodes have probability of transmission
to their neighbours of 0.4 at each time step, but seeds have probability 0.6. At baseline
transmission probability of 1, this intervention has no effect and is equivalent to Ran-
dom Uniform. At lower baseline probabilities, the additional 0.2 has a larger effect and
the ranking of Persuasive improves to second or third, shifting the other interventions to
a lower rank.
The rank pattern for each intervention is similar over different effectiveness measures

(see Fig. 1, also Additional file 1: Figure S4). Themost effective intervention isCommunity
Leaders or High Degree for all three measures in almost all simulation sets. One the other
hand, High Degree is also ranked poorly in many simulations. Apart from the low ranked
High Degree, the order of the remaining interventions over all simulations is reasonably
consistent as: Persuasive, Friend of Random, Random by Degree, Random Uniform, with
Community almost always the least effective.
While not apparent in the ranking visualisation, there is a ceiling effect for some of

the effectiveness measures. For example, of the 105 simulation sets with transmission
probability of 0.7 on single component networks (15 networks and 7 interventions), 70
simulation sets have a 2-hop reach of at least 0.95. That is, almost all the interventions lead
to adoption across the entire network in two time steps for almost all networks. In such
a situation, rankings may distinguish between very small differences in the proportion
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Fig. 1 The average of each output variable is calculated over the set of simulations with the same
intervention, network and transmission probability. The interventions are then ranked within the network
and threshold combination, with equal effectiveness assigned equal rank. The chart summarises the 51
rankings (17 networks, 3 transmission probabilities) with rank of 1 (best) at the left

of simulations that achieved complete adoption rather than a meaningful difference in
intervention effectiveness. In contrast, 1-hop reach displays a greater range of proportion
of network adopted, with only six simulation sets with reach ≥ 0.9 and nine sets with
reach ≤ 0.6. The observation of similar ranking patterns across measures (Fig. 1) suggests
that results may be generalisable despite this ceiling effect.

Complex contagion: threshold

For complex contagion, the simulations lead to unrealistically high adoption at low
thresholds (full adoption in 93% of simulations for 0.2 and 70% for 0.3); it is too easy for
a small proportion of friends who have already adopted to trigger a new adoption. At the
other extreme, with a threshold of 0.7, only 9% of simulations have any adoptions other
than the seeds, with 21% at a threshold of 0.6. Except as stated, further analysis is therefore
restricted to the simulations with thresholds of 0.4 or 0.5, for which there is the greatest
scope for differentiation between simulations with different parameters.
The pattern of intervention rankings in complex contagion simulations is consistent

over effectiveness measures but varies by threshold more substantially than the equiva-
lent analysis over transmission probability for simple contagion (see Fig. 2 and Additional
file 1: Figure S5). Broadly, the most effective intervention is Persuasive for all measures
in almost all simulation sets. Unlike the case of simple contagion, the implementation
of Persuasive confers an advantage at any threshold, as the selected individuals always
contribute double to the calculation of proportion already adopted. This is followed by
High Degree and Community Leaders. The next most effective intervention is Commu-
nity, followed by Friend of Random. Finally, Random Uniform is almost always the least
effective.
As for simple contagion, High Degree shows the greatest variation in relative effective-

ness. This intervention is relatively effective at threshold of 0.4, with mixed results for
threshold of 0.5. For example, assessed with 2-hop Reach at 0.5 threshold, High Degree
performs well (rank 1 or 2) over seven of the 17 networks and poorly (rank 6 or 7) over
five. Unlike simple contagion, Community Leaders shows a similar mixed pattern as High
Degree.
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Fig. 2 Relative effectiveness of interventions over all simulations with complex contagion. Only simulations
with threshold values of 0.4 or 0.5 are included. The average of each output variable is calculated over the set
of simulations with the same intervention, network and threshold. The interventions are then ranked within
the network and threshold combination, with equal effectiveness assigned equal rank. The chart summarises
the 34 rankings (17 networks, 2 thresholds) with rank of 1 (best) at the left

The most dissimilar result between the two types of contagion is for the Community
intervention, which is relatively ineffective in simple contagion but is generally effective
for complex contagion. That is, drawing seeds from within a group of friends is useful
where contagion is linked to the proportion of friends already adopted because those
seeds are more likely to have friends in common.

Comparing High Degree to RandomUniform

The High Degree intervention is particularly interesting. It is the intervention expected
to be relatively effective based on successful interventions (Valente 2012; Hunter et al.
2017) and previous simulation studies (Aral et al. 2013; Badham et al. 2018). However, it is
also the intervention that was relatively ineffective in the only health behaviour trial that
directly compares network seed selection methods (Kim et al. 2015), and displays consid-
erable inconsistency in simulation results in this study.We therefore report the simulation
results inmore detail forHigh Degree, directly comparing it to RandomUniform selection.
There are 153 pairs of results to compare for simple contagion: 17 networks, 3 transmis-

sion probabilities, and 3 effectiveness measures (1-hop reach, 2-hop reach, and duration).
Of these, High Degree is more effective in 80 pairs, Random Uniform is more effective in
71 pairs, with equal effectiveness in the other 2 pairs.
Part of this difference in the relative effectiveness of the two interventions is a network

effect. Of the 17 networks, High Degree is more effective for all three measures and all
three transmission probabilities over seven networks (0, 2, 4, 5, 8, 9, 11), accounting for
63 of the 153 simulation pairs. There are a further seven networks (1, 6, 7, 13, 14, 15,
16) where Random Uniform is more effective for both duration and 2-hop reach with
all three transmission probabilities (42 simulation pairs). However, Random Uniform is
consistently effective for 1-hop reach on only three of these networks. An examination
of the networks shows no clear difference in their properties (see Table 2) where each
intervention is more effective, except for a tendency for better results for High Degree on
networks with a larger diameter.
There are additional measures of effectiveness for complex contagion because of the

need to take into account whether any secondary adoptions occurred. To provide more
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evidence about such cascading, this comparison between the High Degree and Random
Uniform includes simulations with a threshold of 0.6, as well as the 0.4 and 0.5 analysed
previously. As a result, there are 357 pairs of results to compare for complex contagion: 17
networks, 3 thresholds, and 7 effectiveness measures (proportion cascading, and 1-hop
reach, 2-hop reach and penetration over all simulations and just for those where cascades
occurred).
From Table 5, it is clear that the High Degree intervention is relatively effective at the

lower threshold values, where it is easier to generate adoption cascades. In contrast, this
intervention is relatively ineffective with a threshold of 0.6 for those measures where all
simulations are included.
The proportion cascaded measure indicates the source of this reversal. With higher

thresholds, the Random Uniform intervention is more successful at triggering at least
some secondary adoptions. Restricting only to those simulations with such secondary
adoptions, High Degree seeds are able to reach a greater proportion of the network with
one or two time steps for 14 of the 17 networks. On the other hand, for 16 networks,
Random Uniform seeds eventually achieve a greater proportion of the network adopted,
even restricting to those simulations where at least one secondary adoption occurs.
These results indicate different patterns of secondary adoption. High Degree tends

toward an ‘all or nothing’ pattern where lower success in triggering any adoptions is
combined with larger numbers of such adoptions when they are triggered. In contrast,
Random Uniform tends toward a ‘slow and steady’ pattern where there are more and
longer chains of small numbers of additional adoptions.
See also Additional file 1: Figures S6, S7 and S8 for selected intervention rank sequences

that display the variation in effectiveness of High Degree and Community Leaders. The
remaining interventions maintain their relative ranks as these two interventions vary
position.

Discussion
Our longer term goal is to develop guidance concerning seed selection for health
behaviour interventions in a school setting. This study explores potential explanations
for inconsistencies in the literature about the role of degree. Previous simulation studies
(Aral et al. 2013; Badham et al. 2018) found that selecting highly central starting nodes
is generally more effective (faster or more complete adoption) than uniform random
selection, but provided limited guidance on the situations in which such selection may

Table 5 Number of networks over which High Degree (HD) or RandomUniform (RU) intervention is
more effective, complex contagion

Threshold 0.4 Threshold 0.5 Threshold 0.6

Measure1 HD RU HD RU HD RU

1-hop reach 15 2 11 6 3 14

2-hop reach 15 2 11 6 2 15

Penetration 14 3 12 5 2 15

Proportion cascaded 15 2 11 6 3 14

1-hop reach, cascaded 15 2 12 5 14 3

2-hop reach, cascaded 16 1 16 1 14 3

Penetration, cascaded 13 4 11 6 1 16
1Each effectiveness measure is calculated as the average over 5 simulations for the High Degree intervention and 100 simulations
for the RandomUniform intervention
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fail. Within the context of school friendship networks, this study supports those results
and, further, demonstrates that the increased effectiveness arises whether those seeds
are recruited across the network (High Degree) or distributed between communities
(Community Leaders).
However, there is a non-trivial risk that fewer people would adopt than would have

adopted with randomly selected seeds. For simple contagion, this risk is independent
of the transmission probability and the measure of effectiveness. While it appears to be
related to the network structure, particularly path lengths, further work is required to
understand the combination of properties that contributes to lower adoption with high
degree seeds.
For complex contagion, the risk of reduced adoption is lower but also has a more com-

plicated pattern. For those simulations where contagion is relatively easy (low threshold),
the High Degree intervention is consistently effective over different measures and net-
works. However, as the required proportion of peers increases, high degree seeds are
more likely than randomly selected seeds to fail to trigger any secondary adoptions. If
secondary adoptions are triggered, using high degree seeds results in a larger number
of these secondary adoptions initially but not over the whole of the simulation. High
Degree is therefore relatively ineffective for those simulations where contagion is difficult
to achieve. In such a situation of difficult diffusion, however, any network approach is
unlikely to be the most appropriate intervention design. There is an additional network
effect not clearly related to a specific structural property.
As operationalised, the Persuasive intervention is very effective for both contagion

types. This intervention is not strictly comparable to the others as the contagion mecha-
nism is altered by the operationalisation. Further, the arbitrary operationalisation means
that the size of the simulated effect provides no evidence about the effect in the real world,
or how to identify suitable individuals. Nevertheless, the simulations suggest that the per-
sonal characteristics of initial seeds may be more important than their network positions.
The ASSIST intervention (Campbell et al. 2008) recruited nominated influential students
to promote smoking prevention messages within their social networks. The success of
that intervention provides evidence that the effectiveness of the simulated Persuasive
intervention can be translated to a real world school setting. An additional advantage of
this approach is that nomination of observable behaviour such as influence is more robust
to missing network data than private relationships such as friendship (Marks et al. 2012).
Finally, Community is relatively successful for complex contagion simulations, with

similar patterns as for High Degree and Community Leaders. However, it is consistently
ineffective for simple contagion. As real world interventions are likely to include aspects
of both simple contagion (such as information provision) and complex contagion (such
as social norms) and there is disadvantage associated with the Community intervention,
this study does not support its use.
A key limitation of this simulation study is its use of idealised network diffusion mecha-

nisms. Each implements behaviour adoption as the outcome of a entirely social contagion
process; exposure or awareness via social contacts (simple), or as compliance with social
norms (complex). While the fundamental mechanisms of behaviour change are not well
understood (Michie et al. 2014), it is clear that network diffusion is only one of several
factors and may have only a small influence. Other factors include individual attributes
such as attitude and environmental factors such as adoption costs.
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Several approaches have been taken to represent the contribution of multiple fac-
tors in agent-based models of health behaviour change (Yang 2019). For example, utility
functions combine the costs and benefits of each factor and the choice with the high-
est utility value is selected by the agent. Similarly, decision trees can represent a set
of factor specific conditions that are considered sequentially to reach a decision. The
choice of decision model affects how social influence is included. Further, the concept
of social influence is often underspecified and ignores aspects like personality, affect and
variable social cognition, characteristics that may have a bearing on behavioural trans-
mission. Designing the most effective interventions will need to take such mechanistic
heterogeneity into account.
A further limitation concerns the symmetrisation of the WiSe networks, with the

directed friendship relationship treated as undirected for the simulation. This approach
implicitly assumes that mechanisms of action for the behaviour change represented by
the simulation can occur in both directions, such as emulating behaviour in someone
the individual considers a friend (nominee to nominator), or enthusiastically promoting
a behaviour to others (nominator to nominee). In practice, diffusion may occur primarily
or only in one direction. Interventions that use high degree opinion leaders often select
on the basis of in-degree only but also use relationships that are more explicitly influential
than simply friendship (at least in public health (Valente 2012; Hunter et al. 2017)).

Conclusions
Ideally, detailed information about networks and the relevant diffusion mechanisms
would allow specific simulations to optimise the intervention for each specific situation.
In the absence of such information, we would recommend selecting popular students
(high degree) to act as seeds, especially if there is reason to believe that the proportion of
friends already adopted has a role in behaviour change.
While the friendship network provides support for the intervention diffusion, the effec-

tiveness of Persuasion suggests that additional network questions are warranted. Surveys
intended to provide information for health behaviour interventions could include nomi-
nation of an influential person in addition to friends. This would allow the intervention
to include both popular and influential students in the seed group.
More work is clearly needed to refine this advice, with identification of the relevant net-

work properties for differential effectiveness constituting the most substantial knowledge
gap in the idealised setting of network diffusion. For translation to real world network
interventions, greater understanding of behaviour change mechanisms is required to
assess the potential effectiveness gain available through optimal selection.
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