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In this study, we carry out large eddy simulation (LES) of incident flow around polygonal cylinders of side
number N = 5− 8 at Reynolds number Re= 104. In total, six incidence angles (α) are studied on each
cylinder ranging from face to corner orientations, thus covering the entire α spectrum. Special focus is put
on the time-mean aerodynamic forces including lift, drag and vortex shedding frequencies as well as the
near wake flow features. It is found that because of y-plane asymmetry of polygonal cross sections at most
incidence angles, the flow separation characteristics and hence the induced base pressure distribution and the
aerodynamic forces exhibit unique and complex dependence on α and N. While the general inverse relation
of drag coefficient and Strouhal number previously proposed from experimental observations at principal
orientations still holds at arbitrary α, the variation of the two is found to be non-monotonic on both α
and N. We also found that compared to the absolute time mean shear layer length measured from the final
separation point, the extent of them stretched to the wake, measured from the cylinder centre, is a powerful
scaling factor for all the quantities investigated, including the wake characteristic length scales. In particular,
the difference between the top and the bottom shear layer (due to geometrical asymmetry at arbitrary α)
describes the variation of the non-zero time mean lift coefficient reasonably well, whose sign varies with N
non-monotonically.

I. INTRODUCTION

The phenomenon of Kármán vortex shedding is a ma-
jor concern in design of slender and bluff-body structures
exposed to the wind and ocean current flows. Flow past
a circular cylinder has been extensively studied in both
experimental and numerical approaches and is one of the
most canonical problems in fluid mechanics for its geom-
etry is a fundamental element underlying many practical
engineering structures.

Polygonal cylinders deviate from circular cylinders in
the sense that they have geometry asymmetry at arbi-
trary incidence angles with an integer number N of equal
length edges. Flow past polygonal cylinders partially re-
sembles the flow around circular cylinders in terms of
the formation of Kármán vortex streets1 for Reynolds
number Re> O(102). However, because of their quasi-
axisymmetric shape, the local boundary layer separation
behaviour exhibits significant N dependent variations
compared to the circular cylinder (effectively N → ∞).
If N is not large, flow typically separates from corners
(one on the top half and the other on the bottom half)
due to discontinuous change of local pressure, which is
insensitive with respect to oncoming flow speed, hence
Re. For small N, locally the flow behaves similarly to
that over a convex corner. Even though the deflection
angle and the length of the edge are both monotonic func-
tion of N, the detailed pressure gradient in the local free
stream and the associated reattachment behaviour ren-
ders the overall aerodynamic performance strongly non-
monotonic against N. It is thus plausible that the aerody-
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namic forces not only varies remarkably on the principal
orientations (namely corner oriented or face oriented) as
demonstrated by Xu et al. 2 , but also is expected to be
a strongly non-linear function of their arbitrary angle of
attack α wrt the direction of the uniform oncoming flow
U . Noting that corner orientation refers to a case where
a corner of the polygon is on the centreline upstream
and face orientation refers to a case where the middle of
a face lies on the centreline upstream. As N increases
to N ≥ 10, the flow dynamics starts to approach the cir-
cular cylinder asymptotically. The number of corners
becomes larger with their relative height being smaller,
which could be treated as roughness elements on the sur-
face of a circular cylinder. For instance, Cheng, Pullin,
and Samtaney 3 studied the effect of sinusoidal-shaped
grooves on a circular cylinder in various Reynolds num-
bers in subcritical regime. In theses cases, Re dependence
becomes important, similar to the critical Re effect on a
circular cylinder2.

Flow around polygonal cylinders of small N, viz.
square (N = 4) and triangular (N = 3) cylinders has been
studied extensively but rather individually. To men-
tion a few recent works among many others about a
standalone stationary cylinder, Sohankar 4 studied wake
structure of flow past a square cylinder using Smagorin-
sky (SMG) and dynamic-one Large Eddy Simulation
(LES) for 103 <Re< 5× 106, and found that global be-
haviours are largely Re-independent for Re> 2 × 104.
They concluded that in general, the sharp-edged bod-
ies, which tend to cause flow separation regardless of the
boundary layer characteristics, are Re insensitive, espe-
cially at large Re. Hu et al. 5 studied flow fields and aero-
dynamic characteristics of rigid inclined square cylinders
with yaw angles at Re= 4 × 104 using LES and found
that CD decreases with increasing yaw angle magnitude.
They also found that cellular structures with lower shed-
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ding frequencies than the Kármán vortex shedding fre-
quency are generated in the wake due to the interference
of the free-end vortex pair or the base vortex pair. Yag-
mur et al. 6 studied a corner oriented equilateral triangu-
lar cylinder using Particle Image Velocimetry (PIV) and
LES. They found that increasing Re leads to a shrunk
wake and backside approached stagnation points. Bai
and Alam 7 studied flow around a face oriented square
cylinder using 2D laminar simulation and 3D LES for
Re≤ 103 as well as PIV, hot wire and force measurements
in an open circuit wind tunnel at 103 <Re< 4.5× 104.
They identified five flow regimes namely steady flow
(Re< 50), laminar flow (50 <Re< 1.6×102), two to three
dimensional transition (1.6×102 <Re< 2.2×102), shear
layer transition I (2.2× 102 <Re< 103) and shear layer
transition II (103 <Re). Jiang and Cheng 8 studied flow
past a face oriented square cylinder using direct numer-
ical simulations (DNS) for Re< 400. They showed that
the viscous drag decreases to negative values for Re≥ 154,
which is due to the increasing coverage of the backward
flow on the upper and lower surfaces of the cylinder. Ku-
mar and Tiwari 9 carried out three-dimensional numer-
ical investigations for flow past surface mounted finite
height prisms of equilateral triangle, square and circular
cross sections in laminar shear flow of 60 <Re< 200 us-
ing DNS. They found that for all the cases, St decreases
with increasing shear strength for fixed Re. Moreover,
with an increase in the shear intensity, drag decreases
corresponding to each Re for all the tested cross sec-
tions. They also quantified the extent of nonlinear fluctu-
ations in the wake in terms of ‘degree of stationarity’ and
showed that it confirms that multiple frequencies are re-
sponsible for the wake non-linearity at 150 < Re < 200 for
the triangular cross section alone. Jiang 10 studied wake
transition for flow past a square cylinder in corner ori-
entation (as called diamond-shaped cylinder) using DNS
at Re≤ 300. They found that the wake becomes three-
dimensional at Recr ≈ 121 with a swap in vortex shedding
mode accompanied by the disappearance of global vortex
dislocation which changes monotonically with increasing
Re.

Studies of cylinders with N > 4 are sparse. Tian and
Li 11 studied a polygonal cylinder of N = 24 in a low-
speed wind tunnel to find a low drag solution for their
prototype supporting frames. They found a much lower
critical Reynolds number and 40% lower drag with a low
level fluctuation compared to a circular cylinder under
similar flow conditions. Tian and Wu 12 investigated in-
viscid flow and low-Reynolds number (Re< 200) viscous
flow around two-dimensional (2D) polygonal cylinders at
corner orientation for even values of N. Using confor-
mal mapping, they showed that for the inviscid flow, the
global pressure difference along the surface is inversely
proportional to a sufficiently large value of N. For the
viscous flow, however, they derived the relation between
the first critical Re and N, and found that this Re mono-
tonically decreases as N increases for both unsteady and
steady flows. Khaledi and Andersson 13 studied flow past

hexagonal (N = 6) cylinders in face and corner orienta-
tions using DNS at Re= 100,500,1000. They concluded
that St is slightly higher in face orientation. They also
explained that the Kármán vortices roll up closer to the
body in the case of a face orientation and thus results
in a shorter formation region and a higher St. Recall-
ing the wake characteristics of a face and corner oriented
square cylinders, they suggested that the wake of a face
oriented and corner oriented hexagons resembles to the
square cylinder of the same orientation respectively and
therefore the after body plays a minor role.

In a recent wind tunnel experiment, Xu et al. 2 for the
first time systematically studied the aerodynamic char-
acteristics of polygonal cylinders for 2 ≤ N ≤ 16 over
104 ≤ Re ≤ 105 using a combination of force measure-
ment, smoke flow visualisation and planar PIV. They
showed that given polygons of N ≤ 8, the flow eventu-
ally separates (could reattach and separate again) at so-
called maximum width points, which is insensitive to the
Re range tested and as a result, no appreciable change
is observed on the drag coefficient CD and St. They also
showed that similar to circular cylinders, at the two prin-
cipal orientations, the St and CD values are inversely
related. Later, Wang et al. 14 showed that the mech-
anism of vortex formation from the polygon surface is
correlated with some length scales describing the near
field wake. These scaling factors include the length of
the reversed flow zone L∗

r , the recirculation bubble width
D∗

b, the vortex formation length L∗
f and the character-

istic wake width D∗
w. The empirical relations between

these scaling factors and various kinematic and dynamic
quantities suggest that the understanding of the polygo-
nal cylinder wake could be unified to that of the circular
cylinder wake. That is, the shape and the orientation
information of the polygons could be made irrelevant as
long as appropriate longitudinal and transverse length
scales are used to scale the quantities in question.

In a continuing wind tunnel PIV experiment, Wang
et al. 1 presenting detailed data of the wake of the polyg-
onal cylinders 3≤N ≤ 16 with face and corner orientation
at Re= 1.6× 104, studied the dependence on N and the
cylinder orientation of the mean velocity, the Reynolds
stresses, and the coherent vortex structures in the near
wake. They showed that the circulation of individual
shed vortex grows to its maximum value at the vortex
formation length (L∗

f ) and then decays downstream due
to the combined effect of viscosity and vortex cancella-
tion. They also found that cases of N = 8 at corner ori-
entation and N = 5 at face orientation show the smallest
L∗

f , D∗
w and the lowest Reynolds stress magnitude, with

the smallest velocity deficit and fastest velocity recovery
in the near wake. On the other hand, cases of N = 6 at
corner orientation and N = 4 at face orientation are found
to have the largest vortex strength and adverse pressure
gradient in the reverse flow zone, which results in the
smallest velocity recovery rate in the near wake.

In the present study, we focus on polygonal cylinders
of N = 5,6,7,8, using three-dimensional LES to investi-
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gate the effect on the aerodynamic forces and near wake
flow subjected to the complete range of angle of attack
α wrt U . The simulations were performed at Re = 104,
which is within the range tested experimentally by Xu
et al. 2 . This experimental work suggests that flow does
not undergo transition for N ≤ 8 cylinders, at least for
Re ≲ 106 (no transition is likely to occur at even higher
Re). Therefore our result should be valid for a wide Re
regime. Furthermore, according to the measurements at
their principal orientations, extreme aerodynamic forces
and strong non-linearity were observed on N ≤ 8 poly-
gons. Polygons of larger N tend to have less extreme re-
sponses and behave asymptotically to circular cylinders.

In this manuscript, we will also focus on the time-mean
aerodynamic quantities and their correlations with the
characteristic length scales extracted from the mean ve-
locity field.

II. COMPUTATIONAL MODELING AND NUMERICAL
SETUP

A. Computational domain and boundary conditions

The computational domain is sketched in Fig 1. Rc
and Ri denote the circum-circle and in-circle radius and
the corresponding diameters are Dc and Di, from which
Re defined by different diameters are denoted as Rec and
Rei respectively. In this study, constant Rei = 104 based
on Di is utilised, which is α independent. The cylinder
axis is aligned with z-axis and the incoming free stream
flow velocity U is set at the desired α wrt the x′-axis.
A body-fitted O-type structured grid is applied to en-
sure grid orthogonality, which is commonly used for flow
around cylinder problems15–23. In x′−y′ plane, the grids
are hexahedral shaped. The x− y plane is aligned with
incoming flow direction (U). The number of cells in the
radial and circumferential directions are denoted as Nr
and Nθ . The grid size grows exponentially in the ra-
dial direction (r) from the body surface and is uniformly
spaced in the circumferential direction (θ) and the span-
wise direction (z). The growth rate in the r direction is
set such that the maximum y+ is below unity; y+ = yuτ/ν
with uτ =

√
τ0/ρ, where τ0 being the wall shear stress.

Following previous 3D LES studies at various Re17,22–28,
a spanwise length Lz = πDc with Nz ≈ 48×Dc/Di cells
and periodic boundary conditions at both ends are used
to minimise the unrealistic topology associated with the
application of the periodic boundary conditions, prevent
periodic artifacts and achieve satisfactory accuracy of
aerodynamic forces and the wake flow patterns. The in-
let/outlet surfaces are indicated in Fig 1. At the inflow
surface, uniform free stream flow velocity U resolved into
x′ and y′ directions is imposed. At the outflow surface,
a Neumann boundary condition is imposed to avoid the
flow reflection. No-slip condition is applied at cylinder
surface. The domain outer boundary is set at 20× cylin-
der diameters (20Di) from cylinder centre.

B. The LES solver

The governing equation for the current three-
dimensional (3D) constant SMG LES simulations, with
kernel G = G(x,∆) and ∆ being the grid filter width, is:

∂ ūi

∂xi
= 0, (1)

∂ ūi

∂ t
+

∂ ūiū j

∂x j
=− 1

ρ
∂ p̄
∂xi

+
∂

∂x j
[ν(

∂ ūi

∂x j
+

∂ ū j

∂xi
)+ τi j], (2)

where ν is the kinematic viscosity and ū and p̄ are the
filtered velocity and filtered pressure respectively. In
the spatially filtered Navier–Stokes equations, the stress
term τi j = uiu j − ūiū j is modelled using the eddy-viscosity
type SGS model of Smagorinsky29, which is based on
Boussineq’s assumption:

τi j −
2
3

ktδi j =−2νt(S̄i j −
1
3

S̄kkδi j), (3)

S̄i j =
1
2
(

∂ ūi

∂x j
+

∂ ū j

∂xi
), (4)

where S̄i j is the rate of strain tensor computed from the
resolved scales and νt and kt are SGS viscosity and tur-
bulent kinetic energy respectively; see Fureby et al. 30 for
a comprehensive review of all SGS models.

In the algebraic SMG model29, νt and kt are calcu-
lated explicitly under the assumption of local equilib-
rium balance between production and dissipation of kt .
The Smagorinsky coefficient Cs = 0.1 is adopted based
on several validated studies of flow around circular cylin-
ders16,17,19–21, and a near-wall damping formulation sug-
gested by Van Driest 31 is implemented18,19,21:

∆ = min
(

kv

C∆
,∆

)
y
[

1− exp
(
−y+

25

)]
, (5)

where the Von Kármán constant kv = 0.4187 and model
constant C∆ = 0.158. No wall function is used.

In this study, OpenFOAM is used to perform LES sim-
ulations. The second order scheme, backward, is used for
time integration. The predictor-corrector PISO is used to
decouple and iteratively solve the pressure and velocity
fields. The pressure is solved by a geometric agglomer-
ated algebraic multi-grid (GAMG) solver. Three PISO
corrector are used for each time step to minimise uncer-
tainty of the final results. A dynamic time step is utilised
to keep the maximum Courant number unity.

C. Validation

A grid sensitivity study was performed for a hexagonal
cylinder (N = 6) in face orientation, and the results are



4

FIG. 1. Computational domain and problem configuration for polygonal cylinders in body fitted O-type structured grids. Not
to scale.

TABLE I. Grid configuration and sensitivity study for a hexagonal cylinder in face orientation.

Case Lz/Dc Nr Nθ Nz y+max CD St
Coarse π 120 120 56 1.3 1.469 0.193
Medium π 168 168 56 1.08 1.686 0.187
Fine π 216 216 56 0.88 1.647 0.187
Very fine π 264 264 56 0.75 1.628 0.187

summarised in Table I, where the maximum y+, time-
mean drag coefficient CD and Strouhal number St. The
drag coefficient and the lift coefficient are defined in the
conventional way as

CD =
FD

1
2 ρU2 (LzDx)

, (6)

CL =
FL

1
2 ρU2 (LzDx)

, (7)

where FD and FL are, respectively, the total drag and lift
forces. ρ is the density of the working fluid; LzDx is the
projected area in the streamwise direction with Dx being
the projected width of the cylinder, which is a function
of α.

The time-averaged aerodynamic forces are calculated
over an appropriate interval of t∗ = tU/Di, after the tran-
sient time period when the flow becomes quasi-steady.
This time interval is equivalent to a minimum of 30 vor-
tex shedding cycles. St is defined as:

St =
fvsDx

U
, (8)

where the vortex shedding frequency fvs is determined
from the CL spectrum. A distinctive and unique peak is

identifiable in the spectrum of all the cases, confirming
the classical Kármán vortex shedding in the wake.

Table II lists the results of CD and St comparing with
the experimentally measured quantities in Xu et al. 2 for
face and corner oriented cylinders at similar Re. Note
that Re in Xu et al. 2 is defined based on Dx, which is
slightly different from Rei. The small difference between
Di, Dc and Dx decreases for larger N, and for some poly-
gons and orientations. In general, the simulation results
are comparable to experimental results with reasonable
accuracy. Analysis also shows that the adopted ‘Fine’
mesh in table II resolves more than 90% of the turbulent
kinetic energy (kt) (except near the separation points, in
which it is roughly 80% ) and therefore the current LES
is considered well resolved32.

III. RESULTS AND DISCUSSION

A. Force coefficients and Strouhal number

In order to study the effect of incidence angle α on
flow characteristics, 6 equal-spaced αs are studied for
each cylinder between the corner and the face orienta-
tions, which effectively cover all possible orientations.
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TABLE II. CD and St compared to experimental results in Xu et al. 2 . ‘F’ and ‘C’ stand for face and corner orientation,
respectively. Nθ varies slightly for different N to ensure equal number of meshes on each surface.

Case Present Xu et al. 2

Rei = 1.0×104 Re= 1×104

CD St CD St
5F 0.96 0.245 1.146 0.202
5C 2.25 0.152 1.627 0.140
6F 1.65 0.187 1.375 0.178
6C 2.11 0.145 1.866 0.138
7F 1.66 0.172 1.663 0.155
7C 1.48 0.162 1.228 0.169
8F 1.84 0.159 1.566 0.148
8C 1.34 0.199 0.95 0.195

Note that the absolute step size ∆α varies for different
polygons. We define incidence angle α∗ = α/αT , where
αT = 180◦/N. In this respect, α∗ = 0 corresponds to cor-
ner orientation, α∗ = 1 face orientation and cylinder ro-
tates clockwisely in between; ∆α∗ is thus fixed at 0.2. For
easier comparison, Strouhal number and force coefficients
are redefined using Di to be Sti and CDi , instead of using
Dx, which is α dependent. The maximum discrepancy
∆Dx occurs for the N = 5 cylinder at α∗ = 0,1, which is
1.176Di, and is smaller for larger N, e.g. ∆Dx = 1.082Di
for N = 8 at α∗ = 0.

Figure 2 (a) and (b) show the dependence of α∗ on CDi
and Sti. As it can be seen, orientation has a strong ef-
fect on the two quantities. For N = 5, Sti and CDi behave
monotonically with increasing α∗, and the change is more
substantial over α∗ ≥ 0.6. For other polygons, the change
is not monotonic, i.e. they display maximum/minimum
values not at the principal orientations. For N = 6, Sti
starts to increase from α∗ = 0.4 and reaches the largest
value at α∗ = 0.8. CDi shows a similar but opposite
behaviour, which experiences a drop in 0.4 ≤ α∗ ≤ 0.6.
N = 7 and N = 8 cylinders display large variation at small
α∗, which is in contrast to the other two cylinders. The
CDi behaviours are very similar, but the Sti displays ap-
preciable differences for α∗ ≤ 0.6. The general behaviour
of CDi and Sti, which agrees with the findings of most
cylinder shaped bodies. We will return to this point later.
It is plausible that higher vortex shedding frequency fvs
corresponds to less stable shear layer which results in
shed vorticies with smaller circulation and therefore lower
CDi . It is confirmed by the pressure distribution to be
discussed later.

Figure 2 (c) and (d) present the variation of separation
angles from both the upper surface θU

s and the lower sur-
face θ L

s , as α increases. Zero separation angle θs = 0◦ is
defined as a vector from the cylinder centre pointing to
the −U direction and θs is defined as the angle between
θs = 0◦ and the vector from the cylinder centre to the
boundary separation point. θs is determined from ex-
amining the time mean velocity field and the associated
streamlines and they are marked geometrically in Fig-
ure 3. Both the primary separation point (PSP) and the

secondary separation point (SSP) are marked in Figure 2
(c-d) and 3, and they always occur at corners. The PSP is
the corner at which the boundary layer separates for the
first time, and the SSP is the corner at which the flow sep-
arates eventually. Whenever SSP appears, it always lo-
cate at the downstream corner on the same edge as PSP.
Boundary layer separation is confirmed from the time-
resolved shear layer (instantaneous vorticity) behaviour,
as well as the mean vorticity field (opposite signed vor-
ticity layer attach to the surface). The latter will be
discussed in §III C. In Figure 2 (c-d), for each N, there
are two values of θs at a given α∗ over a range depend-
ing on N. Between the two θs, PSP is always the one
with smaller magnitude |θs|. Note that SSP is different
from boundary layer re-attachment point, which usually
locates on an edge downstream of PSP and is highly os-
cillatory, in agreement with the flow visualisation2 at the
present Re. Boundary layer re-attachment behaviour is
not the focus of the current work and will be discussed
in a separate paper.

Examination of Figure 2 (c) and (d) and Figure 3
reveals some separation phenomena which perhaps are
not so obvious. The separation mechanism can be cat-
egorised into two groups, viz N = 5,6 and N = 7,8. As
expected, there is at least one PSP on each of the upper
and lower surface. As α∗ increases from zero, SSP starts
to appear on N = 5,6, which then end with both PSP
and SSP symmetrically at α = 1. In contrast, N = 7,8
start with both PSP and SSP and end with PSP only.
In other words, the total number of separation points
PSP+SSP is an increasing function of α∗ for N = 5,6,
and a decreasing function for N = 7,8. PSP+SSP varies
between 2 and 4 for all cases, which suggests that there
are 2 unique critical α∗s for each N at which the the
separation behaviour changes appreciably. The critical
α∗ seems to be a necessary condition for discontinuous
changes of CDi and Sti.

Comparing PSP+SSP to the overall trend of CDi and
Sti in Figure 2 (a) and (b) also suggests that increasing
the total number of separation points results in an overall
decrease in CDi and an overall increase in Sti. It is plau-
sible that the number of separation points is directly as-
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FIG. 2. Dependence of CDi (a), Sti (b) and the separation angle θs on α∗. Superscript U and L on θs stand for the upper (c)
and lower surfaces (d) respectively. In (c) and (d), both the primary separation angle and the secondary separation angle are
indicated.

FIG. 3. Separation point at different α∗. The primary sep-
aration points (PSP) are labelled with big circles and the
secondary separation points (SSP) with small circles. Free
stream flow comes from the left.

sociated with the the stability of the boundary layer and
therefore has a significant impact to the wake. Roughly
speaking, appearance of SSP means that re-attachment
occurs between PSP and SSP. The instability in the re-
attachment region results in higher frequency unsteadi-
ness and then to lower drag. This instability is reflected
in a dynamic flapping behaviour of the detached shear
layer and is reflected by higher Sti. The shear layer flap-
ping also leads to transient attachment to and detach-
ment from SSP in some cases.

While there is always a single PSP on each of the
upper and the lower surface, because of their quasi-

axisymmetric geometry, the distribution of SSP is un-
balanced. For instance, the only SSP is on the upper
surface on N = 5 cylinder but is on the lower surface on
N = 6 cylinder for α∗ < 1. This discrepancy is related
to the mean lift direction, which will be discussed later.
As N is larger, both the deflection angle between succes-
sive edges and the edge length become smaller and the
separation and reattachment behaviour gets very subtle
and sensitive to α. For instance, for the case N = 8 at
α∗ = 0.4, the time-averaged separation bubble appears to
be very thin on the lower surface upstream of the labelled
PSP.

At the present Re, pressure is the dominant contribu-
tor of the aerodynamic force over skin friction. It then
makes sense to investigate the pressure distribution vari-
ation over the α spectrum. Figure 4 illustrates the time
mean pressure coefficient defined as:

Cp =
p− p∞
1
2 ρU2

, (9)

where p the time mean pressure and p∞ is the constant
free stream pressure. Here we also take the spanwise
averaged p. In all the simulated cases, no spanwise vari-
ation can be observed for all the time mean quantities
presented in this article.

For illustration purpose, in figure 4 the cylinders are
fixed in position while the incoming flow angle is set at
different α. In this way the positions of the corners are
fixed. Here the polar angle θ is used to describe the co-
ordinates of the cylinder surface, where θ = 0◦ is along
the horizontal direction pointing to the right, as marked.
The range of θ is chosen to be −180◦ ≤ θ ≤ 180◦, where
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positive and negative θ directions are also marked, to-
gether with the tested incidence angles α∗. The corners
are labelled and also marked on the θ axis. It should
be noted that the range of windward/leeward surfaces
changes with respect to the incidence angles. Windward
surface is defined from the top SSP (or PSP if SSP does
not exist), through the windward stagnation point, to
the SSP on the bottom surface. For instance, in N = 5
windward surface is B-C-D for α∗ = 0, and B-C-D-E for
α∗ = 1.

A distinct characteristic of Cp distribution is its abrupt
change of value at corners where separation event occurs.
The extent of Cp change is labelled as ∆CP in figure 4 (a).
For instance, corner D is always a separation point on
N = 5 and N = 8 cylinders and corner C for N = 6 and
N = 7. PSP typically exhibits the most abrupt and the
strongest ∆CP, while those at SSP is weaker, similar to
that at the corner closest to the base point near the lee-
ward surface stagnation point - corner A in most cases.
∆CP at other corners in the separated region is typically
insignificant, barely visible in some corners on N ≥ 6,
leading to relatively constant pressure distribution along
the edges inside this region (the range of small |θ | in all
the cases). This is similar to the CP distribution at the
back surface over a circular cylinder. It reassures the
more important dynamic role played by PSP than SSP.
In this respect, the relative ∆CP magnitude is a charac-
terisation of the nature of a corner, and reflects the tran-
sition of separation point as α∗ changes, for instance, the
transition of PSP from B to C at α∗ = 0.4 (to α∗ = 0.6)
on N = 5. Another example is the disappearance of SSP

at B from α∗ = 0 to 0.2 on N = 7.
The drag coefficient CDi has intrinsic relation with Cp,

especially over the leeward surface inside the separated
region (the small |θ | range), as the distribution Cp over
the windward surface in the vicinity of the windward
stagnation point is fairly universal. The distribution of
Cp over the leeward surface has strong dependence on
both N and α∗.

The dependence on N is mainly reflected by the min-
imum pressure Cpmin, which occurs at corner A. Among
the N case studied, N = 5 cylinders shows the lowest
Cpmin ≈ −2, which is significantly lower than the value
on a circular cylinder measured at similar Re experimen-
tally33, which is Cpmin ≈−1.2. As N increases, this value
increases accordingly, but all <−1.2. On N = 5 cylinder,
Cpmin occurs at α∗ = 0.2, which equals the value in be-
tween corner E and A at α∗ = 0. On N = 6,7,8 cylinders,
Cpmin occurs at α∗ = 0,0.6,0.6, respectively, all at corner
A. Comparing to the maximum CDi values in each N pre-
sented in figure 2 (a), the α∗ values match. Considering
the maximum pressure coefficient Cpmax over the leeward
surface, it can be observed that this value decreases from
N = 5 (figure 4 a, over EB) to N = 8 (figure 4 d, over
GC). Therefore the difference

(
Cpmax −Cpmin

)
decreases

monotonically as N increases. It is then reasonable to
deduce that as N further increases and N → ∞, Cpmax
and Cpmin would collapse on to the line Cp ≈ −1.2, i.e.
asymptotically to the circular cylinder case.

Dependence of Cp on α∗ is more complex. Perhaps
expected, Cp on the main windward surface (viz surface
CD, DE, DE, EF, on N = 5−8 respectively) is an increas-
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ing function of α∗ in all cases, as they gradually becomes
perpendicular to U . However, the magnitude change is
mild. Larger change of Cp magnitude occurs on the sur-
face next to this windward surface on the upper part of
the cylinder but is a monotonically decreasing function
of α∗. On N = 7,8 cylinders, an additional surface dis-
plays significant dependence of Cp on α∗, viz surface EF
and FG. These two surfaces are next to the windward
surface on the lower part of the cylinder. The other sur-
faces without dashed line arrows marked do not follow
a monotonic trend strictly. Over these surfaces Cp vari-
ation is relatively small and they are mostly the back
surfaces. Those back surfaces hence all the surfaces on
the N = 5 cylinder are monotonic in terms of Cp distri-
bution or marginally so, which explains the behaviour
of CDi . On the other cylinders, the Cp distribution is
non-monotonic, which makes it tricky to relate to their
CDi behaviour. Nevertheless, if we sort Cpmin (at A) or
the average Cp over these back surfaces for a given N in
ascending order, and CDi in descending order, the corre-
sponding α∗ approximately match. It thus suggest that
the (fairly constant) pressure distribution on the back
surface has an important impact on the drag. The exact
relation to CDi is of course an integration effect of the Cp
distribution on all the surfaces. Pressure drag obeys a
strong linear relationship to the total drag CDi for each
cylinder at various incident angles (figure not shown). It
typically contributes to ≳ 96% of CDi .

It is not difficult to deduce that because of their quasi-
axisymmetric geometry, Cp distribution at intermedi-
ate α∗, i.e. at non principal orientations, will result
in non-zero mean lift coefficient CL. This is shown in
figure 5. The lift coefficient is also redefined here as
CLi =CL ×Dx/Di. The distribution of Dx based lift coef-
ficients is very similar, therefore not shown. The magni-
tude of CLi is about 10% of CDi, but it shows an interesting
behaviour, which perhaps is not predictable immediately.
That is, N = 5 and N = 8 show a positive lift whilst N = 6
and N = 7 show a negative lift, even through the tested
α range is positive, in the sense that they all start from
the corner orientation and step to the face orientation
clockwisely. It also means that if we keep rotating the
cylinders beyond the face orientation, CLi will become op-
posite signed, hence the ‘overall’ aerodynamic response
is converged. The direction of CLi and α∗ at which the
maximum magnitude occurs can be inferred more clearly
by the mean shear layer behaviour, which we will discuss
in §III C. For N = 6,7,8 the maximum lift magnitude
occurs when CDi is minimum. For N = 5 however, since
the minimum drag occur at α∗ = 1 which a symmetric
condition, lift is approximately zero and the maximum
lift occur at α∗ = 0.4.

B. Near wake asymmetry

Since Cp distribution over the back surfaces is likely to
have an important impact on the aerodynamic forces as

FIG. 5. Dependence of the time mean lift coefficient CLi on
α∗

discussed above, it makes sense to have further investi-
gation of the near field wake in terms of their time mean
characteristics. Figure 6 (a) demonstrates the asymmet-
ric distribution of the time mean streamwise velocity U
about x−axis. The contour pattern, as well as the lo-
cation of the stagnation point, qualitatively reflect the
degree of asymmetry. To quantify the asymmetry, we
examine the U distribution along the y direction going
through the point where the strongest reversed flow oc-
curs, and between the two points of the local maximum
velocity Umax. The two end points of the line (xmx1,ymx1)
and (xmx2,ymx2) are just outside the two mean shear lay-
ers, which will be discussed later. The U distribution
of all the cases studied are presented in figure 6 (b),
which displays the classical bell shape if being offset by
Umax and is reasonably symmetric about y = 0. How-
ever, closer inspection does reveal non-trivial asymmetry
near the location of Umax (the tail region) and inside the
recirculation bubble (the top region).

The extent of the near wake skew-symmetry is quanti-
fied and presented in figure 7. In (a), the asymmetry of
ymx1 and ymx2 to the wake centreline y = 0 is calculated.
Recall that they characterise the lateral distance to the
outer edge of the shear layer at x = xr. As such, they
are also proportional to the recirculation bubble width.
The sign of (ymx1 + ymx2) indicates the skew direction, If
(ymx1 + ymx2) > 0, the upper half of the bubble is fatter,
otherwise it is thinner. As the cylinders rotate unidirec-
tionally from the same corner orientation, N = 5 shows
a fatter lower bubble for all α∗, whilst N = 6,7 show a
fatter bubble on the upper part. This is in consistence
with the CL variation shown in figure 5 and the asym-
metric number of separation points PSP+SSP shown in
figure 3. On N = 8 cylinder, the fatter side switches at
α∗ = 0.4, but the difference is fairly small, which is also
in line with the small CL magnitude and the symmetric
PSP+SSP.

A better quantification for the degree of asymmetry of
Umax distribution about y = 0, as that shown in figure 6,
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FIG. 6. (a) U in the near wake behind N = 5 cylinder at α∗ = 0.2. Point (xr,yr), marked by ∗ is where maximum reversed
velocity, i.e. minimum U , occurs; Point (xst ,yst), marked by + is the stagnation point; Points (xmx1,ymx1) and (xmx2,ymx2), marked
by ×, are maximum U denoted by Umax occurring along the y direction going through (xr,yr). (b) Distribution of

(
Umax −U

)
along the line between (xmx1,ymx1) and (xmx2,ymx2) for all the 24 cases studied.
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(b)

FIG. 7. Near wake asymmetry quantification. (a) Asymmetry
of ymx1 and ymx2 to the wake centreline, (ymx1 −|ymx2|); ymx2 is
negative. (b) Degree of

(
Umax −U

)
asymmetry about y = 0,

as shown in figure 6 (b), quantified by µ.

is by calculating µ, defined as:

µ2 =

∫
[ψ(y)−ψ(−y)]2 dy∫
[ψ(y)+ψ(−y)]2 dy

, (10)

where ψ(y) =Umax −U ≥ 0 at x = xr and is a function of
y. µ calculates the ratio of the skew-symmetric part of
ψ to the symmetric part of it. It takes into account the
effect of offset yr about y = 0. Dependence of µ on α∗

is presented in figure 7 (b). It is clear that all α∗ be-
tween the two principal orientations display non-trivial

asymmetry about y−axis. However, firstly µ does not
generally follow a decreasing trend as N, as the degree
of axisymmetry increases. N = 7 shows larger µ values
than N = 6, which is off-trend in this sense. Secondly, µ
itself is skewed towards face orientation for N = 5,6, e.g.
ψ(y) is mostly skew-symmetric at α∗ = 0.8, more than
doubled than α∗ = 0.2 in terms of the µ value. µ is more
symmetric about α∗ for N = 7 and 8 cylinders. N = 8
has the weakest µ, as well as the weakest ymx asymme-
try, as expected. The extent of skew-symmetry continues
increasing for x > xr, up to x ∼ 10Di, beyond which the
spatial resolution becomes low.

Figure 8 (a) shows the location of xr at which ψ(y),
hence µ is measured. xr characterises the recirculation
bubble length xst , as xr ∼ (1/2)xst , where (xst ,yst) denotes
the coordinates of the wake stagnation point (see figure 6
a). It is obvious that xr increases monotonically with α∗

for N = 5, but for N = 6,7 abrupt increment of xr occurs at
intermediate α∗, where the value is approximately 50%
higher than that at other α∗, whose xr ≈ Di and are fairly
constant. Figure 8 (b) shows the correlation of xr with
the value of U at point (xr,yr), which is the maximum
reversed flow inside the recirculation bubble. It is shown
to be well correlated negatively with xr, which suggests
that the longer the recirculation bubble, the stronger the
reversed velocity intensity. The correlation can be rea-
sonably described by:

U (xr,yr)

U
≈−0.2

(
xr

Di

)
−0.05. (11)

No clear monotonic dependence of U (xr,yr) on N is ob-
served.
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FIG. 8. (a) The streamwise location xr of the maximum re-
versed velocity and (b) its correlation with the reversed ve-
locity value denoted as U(xr,yr).

C. Separated shear layers

The asymmetry of aerodynamic forces and the recir-
culation bubble can be better explained by examining
the separated shear layers, represented by the time mean
spanwise vorticity ω = ωzD/U , which is shown in figure
9. It is not difficult to observe that the shear layers ex-
hibit clear difference in terms of their length and thick-
ness, which depend on both N and α∗. Here we focus on
their length only. Shear layer thickness and intensity are
more correlated with the instantaneous shear layer flap-
ping motion. For instance, the thickest shear layer typi-
cally occurs for cases having only PSP where the flapping
motion is strong. For N = 5−8, the longest shear layer oc-
curs at α∗ = 1,0.6,0.2 and 0.2, respectively, which agree
well with the largest xr presented in figure 8 (a). The
variation of the length on α∗ is also inline with Sti and
CDi (inversely) shown in figure 2. Secondary thin shear
layers attached to the surface of the cylinder can also be
observed in all the cases. They are associated with the
boundary layer separation and reattachment, which are
of the opposite sign of the separated main shear layers in
the outer region.

Another distinguishing feature is the asymmetry of the
shear layer length on top and bottom surfaces, originated
from the asymmetric positions of the separation points;
see figure 3. Quantification of the shear layer length is
presented in figure 10. We define length Lω from the
cylinder centre to the x coordinate of the end point sub-
ject to a threshold of ω = 3. The threshold value is in-
sensitive to the trend of the results hence the conclusion.
The shear layer curvature, which is fairly small, is not
taken into account. Lω is essentially the x coordinate of
the shear layer ending point. Also shown is Lω measured
from the final separation point, viz SSP, or PSP if SSP
does not exist; see figure 3. It is denoted as LSP

ω , which

characterises the absolute length of the shear layer. The
maximum LSP

ω ≈ 1.8Di, which occurs on the bottom of
N = 5 and the top of N = 7. On N = 6,8,maximum LSP

ω
reduces to 1.5Di.

Comparing the two quantities, it can be noticed that
even when LSP

ω differs on the upper and the lower surfaces
clearly, the shear layers terminate at similar x locations,
i.e. the distance between the two solid lines, ∆Lω , is
small at the same α∗. As N increases, ∆Lω decreases as
expected, since for a circular cylinder N → ∞, it should
reduce to zero. N = 5 cases display different trend. At
small α∗, the shear layer lengths LSP

ω are similar but Lω
are different according to the separation point locations.
The relative magnitude of the two quantities also indicate
the position of the final separation point relative to the
cylinder centre. In most cases LSP

ω ≳ Lω , meaning that
the final separation point is on the windward half of the
cylinder.

Figure 10 also shows some interesting observations of
Lω in addition to the clear asymmetric pattern. N = 5
cylinders demonstrate clear increasing Lω on α∗ mono-
tonically (if the average value of top and bottom is
taken), whilst the other cylinders have clear maximum Lω
at an intermediate α∗. This behaviour matches that of
xr shown in figure 8 (a), as well as CDi and Sti in figure 2.
For a given N, α∗ at which the maximum ∆Lω occurs
matches that for the maximum CL shown in figure 5. It
therefore suggests that Lω could be a better scaling fac-
tor for the shear layer strength than the absolute shear
layer length LSP

ω when considering the asymmetry effect.
For the same cylinder, the maximum Lω change is about
0.7Di (on the bottom surface) for N = 5−7 and 0.5Di for
N = 8.

Note that since LSP
ω and Lω are time mean quantities,

they take into account the oscillation motion of the vortex
shedding in the streamwise distance hence the instanta-
neous shear layer length. This effect is clearly observable
in instantaneous vortex shedding pattern in a cycle, as
presented in figure 11 for selected cases. Here the min-
imum CDi (also the maximum Sti) in each N is chosen.
All of these cases demonstrate delayed vortex shedding
leading to large Lω compared to the same N at other
α∗. In these demonstrated cases, the shear layers are
stretched further to the wake with the upper and lower
shear layers interacting less strongly comparing to other
cases. Having less mutual interaction helps with shear
layer stability and delays vortex shedding. Oscillation of
the streamwise vortex shedding location can be observed
clearly in N = 5 case (a-d) for instance and shear layer
flapping motion can be seen in N = 7 case (i-l), more obvi-
ous towards the downstream portion of the shear layers.

In addition to the streamwise oscillation, the presented
cases all have SSP on their surface (see figure 3). Fur-
thermore, as mentioned earlier in § III A that shear layer
flapping motion can result in temporary disappearance
of SSP as shear layer detaches from that corner. This
effect typically only occurs in the present cases in fig-
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FIG. 9. Time mean spanwise vorticity ωzDi/U of different polygonal cylinders Row number increases with N (a-f: N = 5, g-l:
N = 6, n-r: N = 7, s-x: N = 8); column number increases with α∗.

FIG. 10. Definition of shear layer length and their spanwise
averaged time mean values; Lω on solid lines, and that mea-
sured from the final separation point, LSP

ω on dashed lines.

ure 11. Examples are N = 6,7 both on surface EF; N = 6
on surface BC and DE; N = 8 on surface CD. The other

case which is not presented here is N = 7 and α∗ = 0
on surface BC and EF (see figure 3). For other cases,
whenever boundary layer reattaches after PSP, it stays
attached and separates again at SSP without temporary
detachment of shear layer as a result of the flapping mo-
tion. The reattachment process fluctuates in terms of the
reattachment position between PSP and SSP.

D. Scaling parameters

Previous sections revealed some underlying connec-
tions in those time mean quantities. In this section, we
test their correlations by combining all the cases stud-
ied. It has been established previously that CD and St
are well correlated with wake formation length L f and
wake width Dw, respectively, for polygonal cylinders at
principal orientations14. Figure 12 illustrates that these
scaling laws still reasonably apply for arbitrary α∗. Here
we take L f as the x coordinate of the point at which the
maximum turbulence kinetic energy occurs, which is well
defined. The asymmetric effect is neglected as the offset
y coordinate of the point is very small. Dw is taken to be
the wake displacement width at L f . For direct compar-
ison, CD and St here are based on the projection length
Dx. The CD scaling follows the empirical linear relation
proposed by Wang et al. 14 well, whilst St has slightly
higher values in the present numerical study but also fol-
lows a 2nd order polynomial function shape. Note that
according to Wang et al. 14 , Strouhal number plotted in
(b) is based on Dw and is denoted as St+.

Figure 13 (a) displays the dependence of CDi and Sti
on Lω , which is the extent of the time mean shear layer
in the x direction. Here Lω is the average value of the
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FIG. 11. Instantaneous spanwise vorticity fields at mid span for selected cases. From the first column (a,e,i,m) to the last
(d,h,l,p), the phase angle φ = 0 (CL = 0), π/2,π and 3π/2 respectively. The first row to the last are for (N = 5,α∗ = 1),
(N = 6,α∗ = 0.6), (N = 7,α = 0.2) and (N = 8,α∗ = 0.2) respectively.
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FIG. 12. The correlation between CD and St (based on the
projection width Dx) with the wake width Dw and the for-
mation length L f . The results of Wang et al. 14 are for
Re= 1.6 ∼ 5.1× 104 and at principal orientations only. Poly-
nomial fittings are applied, 1st order in (a) and 2nd order in
(b).

two shear layers (see figure 10), viz Lω =
(

LT
ω +LB

ω

)
/2,

the superscript standing for the top and the bottom side
respectively. Evidently, both quantities scales with Lω

reasonably well, by arbitrary functions. Sti behaves like
a quadratic function similarly as figure 12 (b). CDi is
apparently a decreasing function of Lω and approaches
asymptotically to a value ≈ 1.3. Inferred by the funda-
mental relation of CDi and the base pressure, the variation
of the averaged base pressure coefficient Cp is also pre-
sented. Cp here is calculated as the area averaged value
between the last separation points on the top and the bot-
tom surfaces (see figure 3 and 4). As can be speculated,
the base pressure and CDi are well correlated negatively
(figure not shown) with the former converging asymptot-
ically to −1 for large Lω . This means that the further
the shear layer extends to the downstream distance, the
higher the base pressure and therefore the lower the drag,
since the pressure over the windward surfaces does not
depend strongly on N and α∗ as reflected by figure 4. It
then seems to suggest that the shear layer intensity (cir-
culation per unit length) is not a dominant factor here.
Comparing figure 8 and 10, it can be speculated that
Lω ∼ xr (figure not shown, data collapse well), and there-
fore Lω is also expected to be a proper scaling factor for
the maximum reversed flow velocity U(xr,yr). This is
shown in figure 13 (b). With equation 11, the relation
between Lω and xr can be approximated by

Lω
Di

≈ 1.4
xr

Di
−0.36. (12)

Figure 12 and 13 (a) suggest that the three character-
istic length scales are also well correlated. This is con-
firmed in figure 13 (c). L f (as well as xr as mentioned
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FIG. 13. (a) Correlation between CD, Sti and the averaged
base pressure with the averaged Lω ; (b) correlation between
Lω and the maximum reversed flow velocity U(xr,yr); (c) cor-
relations of the length scales L f , Dw and Lω . The solid lines
are arbitrary fitting functions; the dashed lines in (b) and
(c) are linear fitting functions. The linear fitting in (c) is for
Lω/Di ≥ 1.

above) increases with Lω and the two are approximately
linearly dependent for Lω > Di. Dw, the characteristic
wake width (the length scale in the y direction), is shown
to be a much weaker function of N and α∗ than the length
scales in the x direction. The ratio of the maximum and
the minimum values is only ≈ 1.3. It varies as a decreas-
ing function of Lω and converges to Di slowly. It is worth
mentioning that Dw based on the momentum width does
not scale with CD well, as the pressure distribution along
the y direction at x = L f is a significant factor.

While the average of the top and the bottom shear
layers scales with CDi , it is found that the difference of
the two, viz

(
LT

ω −LB
ω

)
seems to be related to CLi (as

well as CL because of its similar behaviour, not shown),
as inferred by figure 5 and 10, and shown in figure 14. It
demonstrates that not only the sign of CLi and

(
LT

ω −LB
ω

)
are consistent (N = 5,8 positive and N = 6,7 negative),
but also the variation of the two variables. The solid line
represents

LT
ω −LB

ω
Di

=CLi, (13)

as the two variables vanish together because of symme-

try. Although this line is not the best linear fit of the
data, it describes the data distribution reasonably well.
In contrast, the asymmetry of the absolute shear layer
length LSP

ω does not display a clear trend with CLi (fig-
ure not shown, but it can be inferred by inspecting fig-
ure 10); the sign is not consistent at least. This seems
to be a puzzling result since CL ∼ Γ =

∫
ω ds, where Γ is

the circulation around the cylinder, s being the area el-
ement. The integration can be performed over a control
volume containing the cylinder and the near wake, out-
side which (the time mean) ω is negligible, and therefore
both shear layers are included completely. The reason
for

(
LT

ω −LB
ω

)
being the better scaling factor than the

LSP
ω difference perhaps is that the former somehow takes

into account the shear layer intensity as well as the at-
tached boundary layer and its separated region, which
might merely be a coincidence.
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FIG. 14. Correlation between CLi and the difference of Lω
between the top and the bottom shear layers.

Finally, the inverse relation between the drag coeffi-
cient and Strouhal number has been well acknowledged
following equations proposed by Hoerner 34 , Ahlborn,
Seto, and Noack 35 , Alam and Zhou 36 and Xu et al. 2

as

0.21 =C0.75
D St, Hoerner 34 (14)

k = 211/2π
CDSt

CD +1
, Ahlborn, Seto, and Noack 35 (15)

0.23 =CDSt, Alam and Zhou 36 (16)

ζ =C0.6
D St, Xu et al. 2 (17)

where k is an energy parameter which varies in general
with different bluff body shapes, ζ is an empirical con-
stant and equation 17 was proposed for polygonal cylin-
ders at principal orientations in particular. Figure 15 re-
assures that these formulas work for incident flow angles
when the universal length scale Di is used to define the



14

two variables. Among the formulas, equation 15 (k ≈ 14)
and 17 (0.20 ≲ ζ ≲ 0.22) seem to fit the data better. The
best fit ζ value agrees with the experimental findings2

well, albeit slightly different definitions are used.

FIG. 15. The correlation between CDi and Sti compared to the
empirical relations proposed by Hoerner 34 , Ahlborn, Seto,
and Noack 35 , Alam and Zhou 36 and Xu et al. 2 .

IV. CONCLUSION

In this paper, incident flow around polygonal cylinders
of side number N = 5,6,7,8 is numerically studied using
large eddy simulation (LES) at Re= 104. In total, 6 di-
mensionless angles of attack α∗ are tested, which covers
the entire spectrum. A constant Smagorinsky (SMG)
model is adopted and the simulation results are vali-
dated against the available experimental measurements.
This work only focus on the time mean aerodynamic and
wake flow quantities. Their quasi-axisymmetric and dis-
cretised geometry lead to the following observations.

Flow separates primarily at corners. In some cases, it
reattaches and then separates for the second time at sec-
ondary separation points, which are also corners. How-
ever, in these cases, shear layers may temporarily de-
tach from the secondary separation points, because of
the shear layer flapping motion. This happens in the 4
asymmetric cases displayed in figure 11 plus one symmet-
ric case of N = 7,α∗ = 0. In the 4 asymmetric cases the
shear layers tend to be stretched further into the wake
and delay vortex shedding, compared to other cases.

The location of the separation points are asymmetric
about the x axis, depending heavily on N and α∗. This
results in complex surface pressure distribution leading
to complex time mean aerodynamic responses and wake
asymmetry. In particular drag coefficient and Strouhal
number vary non-monotonically with α∗. The non-zero
lift coefficient and the wake symmetry are non-monotonic
functions of N. Their apparently random behaviours are
correlated with the features of the time mean shear lay-
ers.

By combining all the cases, we found that the extent of
the time mean shear layer stretched into the wake (Lw),
instead of the absolute length of the shear layer, seems
to be a proper parameter which scales with the aerody-
namic forces. It scales well with the base pressure of the
cylinders and hence drag coefficient and Strouhal num-
ber, as well as the maximum reversed flow velocity in
the recirculation bubble. Lw also scales with the for-
mation length, the wake width and the location where
the maximum reversed flow occurs. If Lw difference be-
tween the top and the bottom shear layers is considered,
it scales with the mean lift coefficient. Finally, drag coef-
ficient and Strouhal number for incident polygonal cylin-
ders also follow the established inverse relation well. The
detailed instantaneous dynamics of the separated shear
layers associated with the fundamental vortex shedding
mechanism will be elaborated in a separate manuscript.
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