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Abstract

Given a known radial magnetic field distribution on the Sun’s photospheric surface, there exist well-established
methods for computing a potential magnetic field in the corona above. Such potential fields are routinely used as
input to solar wind models, and to initialize magneto-frictional or full magnetohydrodynamic simulations of the
coronal and heliospheric magnetic fields. We describe an improved magnetic field model that calculates a magneto-
frictional equilibrium with an imposed solar wind profile (which can be Parker’s solar wind solution, or any
reasonable equivalent). These “outflow fields” appear to approximate the real coronal magnetic field more closely
than a potential field, take a similar time to compute, and avoid the need to impose an artificial source surface. Thus
they provide a practical alternative to the potential field model for initializing time-evolving simulations or
modeling the heliospheric magnetic field. We give an open-source Python implementation in spherical coordinates
and apply the model to data from solar cycle 24. The outflow tends to increase the open magnetic flux compared to
the potential field model, reducing the well-known discrepancy with in situ observations.

Unified Astronomy Thesaurus concepts: Solar corona (1483); Solar wind (1534); Solar physics (1476); Solar
coronal streamers (1486); Solar magnetic fields (1503)

1. Introduction

The magnetic structure of the Sun’s corona has historically
been difficult to model. A variety of methods have been used,
ranging from simple potential field models to full magnetohydro-
dynamic simulations (see the reviews by Mackay & Yeates 2012;
Gombosi et al. 2018). One of the most popular and well-
established models is the potential field source surface (or PFSS)
model, first used by Altschuler & Newkirk (1969) and Schatten
et al. (1969). This seeks to calculate a potential magnetic field that
satisfies a lower boundary condition at the base of the corona,
usually provided by magnetogram data. Such a magnetic field is
current-free and takes the form

B , 1( )= F

for some scalar field Φ. Combined with the solenoidal condition
∇ ·B= 0, we find that Φ is a solution to Laplace’s equation.

There are many advantages to using the PFSS model, not least
that it is comparatively simple to compute and requires less
boundary data compared to more physically accurate models. In
fact, despite the enormous increases in computing capability since
their inception, PFSS solutions of the corona are still widely used
for a number of applications, albeit with various additions and
modifications to the original models (e.g., Luhmann et al. 2002;
Badman et al. 2020). In particular, models based on a PFSS
framework are among the most widely used bases for space
weather prediction (MacNeice et al. 2018).

In order to calculate a potential field, an upper boundary
condition must be chosen. PFSS models specify that the magnetic
field lines are purely radial at a given radius, often taken to be
2.5 Re. The justification for this is that the solar wind opens out
the potential arcades such that they become radial at around this
altitude. However, there are significant discrepancies between this
assumption and physical observations of the corona. Various
attempts have been made to address this problem, such as
experimenting with a nonspherical source surface (e.g., Levine
et al. 1982), or allowing the source surface height to vary over
time (Virtanen et al. 2020). The latter authors showed that the

PFSS open magnetic flux derived from two magnetogram data
sets can match observations at 1 au, but this cannot be used for
prediction since the optimum source surface radius varies in an
irregular and unpredictable manner. In general, the predicted
amount of open magnetic flux in PFSS models does not match
observations, both at 1 au and closer to the Sun. This is the so-
called “open flux problem” (Linker et al. 2017), whereby the
heliospheric magnetic flux is often measured at twice or more than
the value predicted by PFSS models. There is still a considerable
difference in the open flux even quite close to the Sun, as
measured by the Parker Solar Probe (Badman et al. 2021), and the
precise origin of this discrepancy remains unclear (Viall &
Borovsky 2020).
We also consider that the corona is not everywhere current-

free, as is assumed in potential field models. In the lower
corona small-scale structures are far from current-free, but in
general these do not greatly affect the global magnetic
structure. However, at higher altitudes the solar wind can
induce currents that can greatly affect the structure even in a
steady equilibrium. This is not captured accurately by PFSS
models and leads to unrealistic streamer shapes in the upper
corona when compared to eclipse observations or full
magnetohydrodynamic (MHD) simulations (Riley et al. 2006).
As the most widely used alternative to PFSS models, full

MHD codes solve the magnetic and fluid equations, and a
realistic stationary magnetic field can be found by allowing the
simulation to relax to an equilibrium. Compared to the PFSS
model, MHD codes are very expensive to run and require more
boundary data than line-of-sight observations can provide.
Gombosi et al. (2018) discuss the history of MHD applications,
which have only relatively recently been able to accurately
model the corona in full spherical coordinates, using realistic
lower boundary data (e.g., Mikić et al. 1999; Usmanov 1993).
The coronal topology of these models compares favorably with
PFSS equivalents, and more realistic streamer shapes are
observed. Thus, despite MHD models being too expensive for
many applications, they can be used as a more reliable
reference point to test the accuracy of other variations on the
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PFSS model. For example, Linker et al. (1999) modeled the Sun
using MHD simulations for a whole month during 1996, and
found that the simulated coronal structures agreed very closely to
images collected from ground-based telescopes and spacecraft.
With appropriate thermodynamics, more recent developments of
the model are found to produce coronae that agree well with
eclipse observations (Mikić & Downs et al. 2018). The MHD
scheme developed originally by Powell et al. (1999) has also been
extensively used in space weather predictions, being used to
model specific events such as coronal mass ejections, which
cannot be captured in a PFSS or similar model. Other applications
of MHD to space weather predictions include the EUHFORIA
project (Pomoell & Poedts 2018).

The aim of this paper is to improve the accuracy of the PFSS
model without the significant added computational expense and
additional boundary data required by full MHD models.
Specifically, we seek to include the effect of a solar wind outflow
near the upper boundary. For simplicity, in our model we must
assume that the solar wind is radial and has only radial
dependence. This is quite a restrictive assumption given the solar
wind speed does vary depending on latitude. In the future it may
be possible to generalize the method to account for more realistic
solar wind flows. One approach would be to solve directly for a
steady MHD equilibrium that satisfies the full MHD equations
with the time derivative terms removed. For an axisymmetric
helmet streamer, this was done by Pneuman & Kopp (1971) using
an iterative numerical approach. Recently, Wiegelmann et al.
(2020) have developed an optimization method for finding such
equilibria in three dimensions. This is less computationally
expensive than the standard method of allowing full MHD
simulations to relax, but is still more complex and less
mathematically well-defined than the PFSS model.

Our work is motivated by another simplified approach that has
been developed for global modeling of the solar coronal magnetic
field: the magneto-frictional (MF) model (e.g., Mackay &
Yeates 2012). On a global scale, this technique has been applied
with time-dependent lower boundary conditions from either
surface flux transport models (e.g., Yeates et al. 2008;
Yeates 2014) or more direct assimilation of magnetogram data
(Weinzierl et al. 2016; Hoeksema et al. 2020). In the MF model
(more details in Section 2), the fluid equations in a full MHD
system are removed and in their place the system is closed by
specifying an explicit form of the plasma velocity in terms of the
magnetic field, along with an additional radial outflow to represent
the effect of the solar wind. It has been observed (Yeates et al.
2010) that when using this model the open flux at the top
boundary increases compared to a potential field, and indeed
when left to run the system will relax to a new equilibrium in a
day or so, taking into account the effect of the solar wind. The
price to pay for MF being a purely magnetic model is that the
radial outflow is simply an imposed function, unlike in the more
physically complete model of full MHD, which includes density
and temperature so as to determine a self-consistent velocity field.
It is important to note that the currents in the upper corona caused
by the solar wind do not appear to have any effect on the behavior
of the small-scale structures (e.g., flux ropes) near the solar surface
(Yeates & Mackay 2009) and so the currents in the two regions
can be regarded as independent. The idea in this paper is to
account for the currents in the upper corona, while neglecting
those in the low corona whose origin is more difficult to capture.
By neglecting these currents, when modeling the lower corona our
method does not provide any improvement over standard PFSS

models. If this region is of interest, an alternative approach (either
MF or MHD) that accounts for time-dependent driving at the
photosphere should be used.
The equilibrium solutions of these MF models show

qualitatively more realistic streamer shapes than a PFSS field
(for example, Figure 10 of Mackay & Yeates 2012). But again,
the MF model requires time integration to reach a steady
equilibrium. In this paper, we aim to calculate equilibrium
solutions of the MF model, without the need for time evolution.
The calculation is direct and does not require any optimization
techniques, such as those used in Wiegelmann et al. (2020), and
with some refinement should be similarly cheap as traditional
PFSS models. We show that these “outflow” solutions appear to
exhibit more accurate streamer shapes than PFSS models and
avoid an unrealistic boundary layer at 2.5 Re. They also result in
higher open flux than PFSS equivalents, which perhaps could
provide a partial solution to the open flux problem.
We begin in Section 2 by briefly describing the MF model.

When the solar wind is not taken into account, potential fields are
equilibrium solutions to this model, but we generalize the long-
standing method of finding potential solutions to allow for the
currents generated in the upper corona by the outflow. The
outflow velocity is required to be radial, and a function of radius
only. An approximation to the original Parker solar wind solution
(Parker 1958) is the example we use in this paper, but any suitable
function will suffice. A modified eigenfunction expansion
provides an equilibrium solution to this model, similarly to the
method used by most PFSS codes. However, there are various
numerical challenges that must be overcome, which we describe
in Section 3 along with their resolutions. The result is a numerical
method designed for a staggered grid in modified spherical
coordinates, although it can easily be adapted for other coordinate
systems. The resulting magnetic field is divergence-free to
machine precision on this staggered grid.
The code can calculate PFSS fields by setting the outflow

velocity to zero, as illustrated in Section 4. This allows us to easily
compare the outflow field and potential field for a series of
magnetograms, measured throughout solar cycle 24 (Section 5).
We observe a significant change in the shape of streamers and the
structure of the upper corona, such that the structures appear to be
more similar to MHD solutions and eclipse observations than an
equivalent PFSS solution. There is also a significant increase in
the open flux measured at 2.5Re. This goes some way toward
addressing the discrepancies discussed by Linker et al. (2017).

2. Modeling Approach

2.1. Magneto-frictional Equilibria with Outflow

In magnetohydrodynamic models, the velocity field is
determined by the momentum equation

v
B B

D

Dt
p

1
, 2

0

( ) ( )r
m

r=  ´ ´ -  - Y

coupled to the ideal induction equation

B
v B

t
, 3( ) ( )¶

¶
=  ´ ´

along with additional fluid equations to close the system. In the
magneto-frictional method, pressure gradients and gravity are
neglected, and instead a frictional velocity is imposed as

v B B, 4( ) ( )n =  ´ ´

2
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so that the induction equation leads to monotonic relaxation
toward a stationary force-free field with (∇×B)×B= 0. The
friction coefficient ν is typically given the form ν= ν0|B|

2 (with
some minimum value imposed) so that the overall evolution is
independent of the magnitude of B and relaxation is not unduly
slow near to magnetic null points (Yang et al. 1986).

In the outer corona, the solar wind outflow prevents the
magnetic field from being force-free, but this effect can be
approximated in the magneto-frictional model by relaxing
toward an equilibrium with a specified outflow vout, thus
choosing v according to

B B
vv . 5out

( ) ( )
n

=
 ´ ´

+

This ad hoc approach was introduced by Mackay & van
Ballegooijen (2006), and has subsequently been used in global
magneto-frictional models of solar and stellar coronae (e.g.,
Yeates 2014; Gibb et al. 2016; Mackay et al. 2018; Meyer et al.
2020). When a potential field is chosen to initialize the model,
there is an initial period of up to a few days’ evolution during
which the system adjusts itself into the new equilibrium state.
In this paper, we propose to solve directly for equilibria of this
model, avoiding this initial unphysical period of adjustment.

It is critical to note that the equilibria are not given by v= 0
but rather by v× B= 0, thanks to the form of the induction
equation. Thus to calculate such equilibria directly, the
equation we need to solve is

⎛
⎝

⎞
⎠

B B
v B 0, 6out

( ) ( )
n

 ´ ´
+ ´ =

for specified vout. For simplicity, we will assume that the
outflow velocity is purely radial, depends only on radius, and is
constant in time, so vout= vout(r)er. In reality the solar wind
speed does vary with latitude, and it may be possible to
generalize our method to take this into account in the future.
We choose the wind speed in general to match Parker’s solar
wind solution (Parker 1958), which for altitudes below the
critical radius rc (around 10 Re for typical coronal tempera-
tures) is approximately

v r v
r e

r e
. 7

r r

r rout 1
1
2 2

2 2

c

c 1
( ) ( )=

-

-

This function follows from the well-known implicit equation
for the solar wind
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⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

v r

v

v r

v

r

r

r
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4
3, 8

c c c

c
2( ) ( ) ( )- = + -

after neglecting the v2 term, and scaling as appropriate so that
v(r)= v1 at the top boundary r= r1. This approximation
matches the exact solution of the implicit equation very closely
throughout the computational domain if r1= 2.5Re, but not at
altitudes significantly higher than this. Thus in order to
calculate accurate fields higher in the corona a more realistic
solar wind approximation must be used.

The shape of a solution to Equation (6) is determined by the
product ν0v1, such that altering the value of ν0 is equivalent to
scaling the outflow velocity function by a constant. We can
take the flow speed v1 from the Parker solution, which for
an isothermal corona at 2 MK gives v1≈ 157 km s−1 at

r1= 2.5 Re. However, it is difficult to determine an a priori
value for the constant ν0, as it does not directly correspond to a
physical quantity. Previous magneto-frictional simulations of
the global corona have used ν0 values of the order
ν0∼ 5× 10−17 s cm−2 (see Yeates & Hornig 2016), so we
will adopt this value for our computations in this paper.

2.2. Solution Technique in Spherical Geometry

Since our imposed vout depends only on the radial coordinate
r, the basic idea is to look for solutions to (6) of the form

B f r X, 9( ) ( )= 

where f (r) and X(r, θ, f) are functions to be determined. Thus a
potential field would correspond to the special case of constant
f. It follows that

B B B B B

B
e B

X f

f

f
. 10r

2

[( ) ] ( · )( )
∣ ∣ ( )

 ´ ´ ´ =-   ´

=-
¢

´

Substituting this into the equilibrium Equation (6) with
vout= vout(r)er and ν= ν0|B|

2 reduces to the ordinary differ-
ential equation

f r v r f r . 110 out( ) ( ) ( ) ( )n¢ =

(In our implementation, this equation will be slightly modified
due to the use of a stretched radial coordinate as described in
Section 2.3 below.) Notice that, in the absence of outflow
(vout= 0), Equation (11) gives f constant= , corresponding to
a potential field. The function X is then determined by the
solenoidal condition ∇ ·B= 0, which gives the partial
differential equation

f X f X 0. 12· ( )D +   =

Again, when f is constant, this reduces to the usual Laplace
equation ΔX= 0 for a potential field. Eliminating f with (11)
gives

vX X 0. 130 out · ( )nD +  =

2.3. Eigenfunction Expansion

Since Equation (13) is linear, we seek to write X in terms of
eigenmodes. Our numerical implementation in Section 3 uses a
grid equally spaced in stretched spherical coordinates (ρ, s, f)
satisfying

r sln , cos , , 14( ) ( )r q f f= = =

rather than normal spherical coordinates (r, θ, f). Thus it is
convenient to derive the equations in these coordinates. The
coordinate scale factors in this system are

h r e h
r e

s

h r e s

,
sin 1

,

sin 1 . 15

s
2

2 ( )

q

q

= = = =
-

= = -

r
r

r

f
r

Writing the unknown function as an eigenfunction expansion

X s C R Q s, , , 16
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l m l l m m
,
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we substitute into (13) to obtain the three eigenfunction
equations

R e v R l l R1 1 , 17l l l0 out( ) ( ) ( )n + +  = +r

18s Q sQ l l Q
m

s
Q1 2 1

1
,l m l m l m l m

2
, , ,

2

2 , ( )( ) ( )-  -  + + =
-

m , 19m m
2 ( )F  = - F

where l and m are integers with− l�m� l. The latitudinal and
azimuthal equations are the same as for the Laplace equation
ΔX= 0, yielding the associated Legendre polynomials Ql,m and
trigonometric functions Φm that are familiar from the potential
field model. However, the radial eigenfunctions differ from a
potential field due to the presence of vout term, and we must
additionally solve for the function f (r), using the equation

f e v f . 20out( ) ( ) ( ) ( )r r r¢ = r

Notice that this differs to (11) as the coordinate in the radial
direction has been stretched.

In the potential field case where vout= 0, Equation (17) has
the exact general solution

R Ae Be , 21l
l l 1( ) ( )( )r = +r r- -

but in the presence of outflow, the equation must be solved
numerically. In practice, we find that although we can solve
(17) for Rl, solving for the radial function f is numerically
unstable as the value for f at the top boundary is far too large to
compute. The solution to this problem is to solve for the
rescaled eigenfunctions

H e f R , 22l l( ) ( ) ( ) ( )r r r= r-

which may be shown using (17) and (11) to satisfy

H e v H
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In terms of the eigenfunctions, B has the form
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where Hl are the rescaled eigenfunctions in (22) and we define
the combination

G
f R

e
. 26l

l( ) ( ) ( ) ( )r
r r

=


r

Thus B may be calculated in a similar way to the classical
potential field, by solving the eigenfunction Equations (18), (19),
and (23). As in the potential field model, the coefficients Cl,m are
determined by matching the observed radial field distribution
Bρ(ρ0, s, f) on the lower boundary ρ= ρ0. The corresponding

lower boundary condition for Hl is determined by choosing
Gl(ρ0)= 1. This leads to quite a complex boundary condition, but
a good approximation can be used instead by making the
assumption that v 0out 0( )r¢ = (which is very nearly true for a
realistic outflow function). With this assumption, it follows that a
suitable lower boundary condition is

H e e . 27l 0
0( ( ) ) ∣ ( )r ¢ =r

r
r

A numerical approximation of this is used in the code.
As the required second boundary condition for Hl, we set

Hl(ρ1)= 0 at some outer boundary ρ= ρ1, so that B is purely
radial there. Provided ρ1 is high enough, this condition does not
have a significant influence on the shape of the magnetic field,
since the field lines tend to be radial already in the upper part of
the domain when outflow is present. This is in contrast to the
potential field where the radial field condition at the source surface
has a significant effect on the shape of the field.

3. Numerical Implementation

We have written a numerical code to calculate the outflow
equilibria in spherical geometry. This Python code is open source
and freely available at https://github.com/oekrice/outflow. Our
approach is to calculate B on a staggered grid (Yee 1966), such
that ∇ ·B= 0 to machine precision in a particular discretization.
This will make our solutions suitable for initializing future
magneto-frictional simulations using our numerical code on the
same grid (e.g., Bhowmik & Yeates 2021). Imposing the discrete
solenoidal condition on a finite grid leads to discrete eigenfunc-
tions Hl, Ql,m, and Φm that are only approximations to the exact
analytical eigenfunctions, and to eigenvalues m and l that are no
longer necessarily integers. A similar approach was used by van
Ballegooijen et al. (2000) for potential fields, and implemented in
the Python potential field solver of Stansby et al. (2020) that uses
the same (ρ, s, f) grid as in this paper. In the following
subsections, we describe the numerical method in more detail. The
same approach could be implemented on other grids, including
Cartesian coordinates, by modifying the geometrical factors.

3.1. Staggered Grid

We number the cells with i, j, k indices for the ρ, s, f
directions, respectively. The indices take integer values at the
grid points, which are equally spaced in the (ρ, s, f)
coordinates and given by

i n, , 28i
0 1 0( ) ( )r r dr dr r r= + = - r

s j s s n1 , 2 , 29j
s ( )d d= - + =

k n, 2 . 30k ( )f df df p= = f

The i, j, k indices take half-integer values at the cell faces,
whose areas may be calculated from the coordinate transform
by integration of the coordinate scale factors (15). This gives

S e s 31i j k, , 2 i1
2

1
2 ( )d df=r

r+ +

S e e
1

2
32s

i j k j, , 2 2i i1
2

1
2
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S
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Figure 1. Comparison of the magnetic fields for varying outflow velocity v1. The lower boundary data use an HMI synoptic map for Carrington rotation 2130 so the
topology of the corona can be compared to the solar eclipse of 2016 March 9. We see a large difference between the potential field (top left) and the outflow fields,
illustrated for solar wind speeds up to 150 km s−1. The photographic image shows a composite of 24 processed eclipse images taken from Tidore, Indonesia, on 2016
March 9 (courtesy of C. Emmanoulidis and M. Druckmüller, http://www.zam.fme.vutbr.cz/~druck/eclipse/Ecl2016i/Tidore/0-info.htm).
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where s1j j 2( )s = - is a quantity that appears frequently.
The magnetic field components are defined on the corresp-

onding faces and denoted Bi j k, ,1
2

1
2r

+ + , Bs
i j k, ,1

2
1
2+ + , and Bi j k, ,1

2
1
2

f
+ + .

The magnetic field is expanded in a finite series of discrete
eigenfunctions, so that analogously to (25) we have
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3.2. Discrete Solenoidal Condition

On each grid cell, we impose the solenoidal condition in
integral form, which requires

B S B S

B S B S

B S B S 0.

37

i j k i j k i j k i j k

s
i j k

s
i j k

s
i j k

s
i j k

i j k i j k i j k i j k

1, , 1, , , , , ,

, 1, , 1, , , , ,

, , 1 , , 1 , , , ,

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

( )

-

+ -

+ - =

r r r r

f f f f

+ + + + + + + + + +

+ + + + + + + + + +

+ + + + + + + + + +

This translates into equations for Gl
i, Ql m

j
,

1
2+ and m

k 1
2F + , as

follows. Substituting the discrete expansions (34), (35), and
(36) into this condition leads—for a single mode l, m—to the
equation
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Since the m
k 1

2( )F + approximate trigonometric functions, we
assume the discrete approximation
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for some m that would be an integer in the limit δf→ 0 but not
necessarily so at our finite resolution. This removes the
azimuthal dependence from (38) and reduces it to the separable
form
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In order for Ql,m to approximate the analytical associated
Legendre polynomials, we choose a separation constant of the

form l(l+ 1) so that we obtain the radial equation
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Again, on our finite resolution grid, the l will no longer be
precisely integers.

3.3. Calculation of Azimuthal Eigenfunctions

Approximating m
k( )F ¢ by central differences reduces (39) to

the tridiagonal eigenvalue problem
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which determines both the eigenfunctions and the values of m,
from the eigenvalues λm=m2δf2. To ensure periodicity in the
azimuthal direction, we need to ensure that the eigenfunctions
approximate cosine or sine functions with integer coefficients.
The boundary conditions for cosine functions are m m

1
2

1
2F = F-

and m
n

m
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2
1
2F = F+ -f f . The boundary conditions for sine

functions are m m
1
2
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n
m
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2
1
2F = -F+ -f f . By avoiding

implementing the periodic boundary conditions directly, we
retain a tridiagonal eigenvalue problem that is efficiently solved
with a standard solver.
This unusual approach is used instead of a fast Fourier

transform as we need to have some flexibility in the numerical
scheme for the radial eigenfunctions. These radial functions
then specify exactly the necessary schemes used in other
directions so as to preserve (37). In contrast, in most PFSS
(potential field) codes (e.g., van Ballegooijen et al. 2000; Tóth
et al. 2011) the azimuthal eigenfunctions are calculated using a
Fourier transform and the numerical schemes in the radial and
latitudinal directions follow from this.

3.4. Calculation of Latitudinal Eigenfunctions

The eigenfunctions Ql m
j
,

1
2+ and possible values of l are

determined by (42), which is a discrete approximation to the
associated Legendre Equation (18). To see this, observe that
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eigenvalue problem for each m (see van Ballegooijen et al.
2000). Specifically,
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where μl,m=− l(l+ 1)δs. The eigenvalues l are different for
each eigenvalue m, and like m they are approximately integers

for small l, converging to integers for larger and larger l as

δs→ 0. In this limit the discrete eigenfunctions Ql m
j
,

1
2+ converge

to the associated Legendre polynomials.

3.5. Calculation of Radial Eigenfunctions

Having determined the values of l, we calculate Hl
i 1

2+ on the
cell faces i 1

2r + , by numerical integration of Equation (23),
subject to the boundary conditions and H 0l

n =r . The exact
scheme used to solve this ordinary differential equation is not
important, but a second-order stencil using central differences

Figure 2. The radial magnetic field at the lower and upper boundaries of the domain, using magnetogram data taken from Carrington rotation 2165.
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together with an analytical derivative of vout appears to be
adequate. The integration is carried out downward starting from
the upper boundary where Hl = 0, then the whole function is
scaled to satisfy the lower boundary condition.

For given l, Equation (41) then gives us a simple iterative

scheme to determine Gl
i from Hl

i 1
2+ , using the initial value

G 1l
0 = . We observe that this scheme is a discrete approx-

imation of the differential equation

G e l l e H
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2
1 , 47l l

2 2( ) ( ) ( ) ( )
r r
¶
¶

= +
¶
¶

r r

using central differences to approximate the derivatives. This
equation in turn follows directly from taking the divergence of
(25) for an individual mode.

3.6. Calculation of Expansion Coefficients

The final step is to calculate the expansion coefficients Cl,m in
(34)–(36), by matching B j k0, ,

r to an imposed distribution Br(s, f)

on the lower boundary. The orthogonality of eigenvectors gives
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Care must be taken to ensure that the input data Br
j k,1

2
1
2+ + are

flux-balanced, so they are adjusted to have zero sum over the
surface.

4. Comparison between Potential and Outflow Fields

In this section we discuss the differences between potential
fields and the equivalent outflow fields calculated using the
method described in this paper. All of the examples in this
paper use lower boundary data from the Solar Dynamics
Observatory’s Helioseismic and Magnetic Imager (HMI)
instrument (Schou et al. 2012). We use the radial component,
pole-filled maps in the hmi.synoptic_mr_polfil_720s
series (Sun 2018).

Figure 3. Qualitative comparison of potential and outflow fields with v1 = 150 km s−1. The upper figures show the magnetic field extrapolated from data from
Carrington rotation 2165, when the Sun was relatively active. The lower figures represent a quieter Sun, during Carrington rotation 2222.
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Figure 1 illustrates the difference in streamer shapes between
a potential field and three outflow fields with increasing wind
speeds, on the same computational domain with r1= 2.5 Re.
(For all outflow computations in this paper we fix the friction
coefficient ν0= 5× 10−17 s cm−2). For qualitative comparison,
Figure 1 includes an observed image of the solar corona taken
during the eclipse of 2016 March 9. We observe that close to the
solar surface the potential and outflow fields are very similar, but
at higher altitudes the solar wind causes quite significant
topological changes. In a potential field, the streamers are petal
shaped with a clear boundary layer near r= r1, and all reach
exactly to this source surface height. When the solar wind is
imposed, it influences the height and shape of the streamers,
which begin to change shape at speeds of around 50 km s−1. At
150 km s−1 the field lines become radial at a significantly lower
altitude than the potential field solution, and there is no boundary
layer near r= r1 where the field lines are sharply kinked. The
presence of outflow means that closed field lines extend to
different heights in different streamers, dependent on the local
magnetic field strength. This agrees with coronal observations
discussed in Boe et al. (2020), namely that the coronal field does
not become radial at a consistent height and that deviation from
the radial direction depends heavily on latitude and the overall
activity of the Sun. It is interesting to note in Figure 1 that the
west limb streamers in the outflow fields match more closely
than those in the potential field to the eclipse image. At the east
limb, the agreement is poorer (for both potential and outflow
fields), but direct comparison at this limb is difficult because of
the use of a synoptic map for the lower boundary data;
longitudes to the east of central meridian include “future”
observations taken after the time of the eclipse.

With outflow, the magnetic field is stretched outwards,
leading to more open magnetic flux and correspondingly fewer
closed field lines within each streamer. The additional open

flux is evident in Figure 2, which compares the radial magnetic
field for potential and outflow fields with the same top
boundary height, r1. The pattern of positive/negative field
polarity at r= r1 is broadly similar in each case and depends
only on the magnetic field distribution low in the corona. But,
in general, the magnetic field strength high in the corona is
larger in the outflow field than in the potential field with the
same lower boundary data. Since more of the magnetic flux is
open, the closed field arcades in the outflow field are smaller
than if the solar wind is disregarded—this is clearly seen in
Figure 3, where we compare the effect of imposed outflow at
two stages of the solar cycle, corresponding roughly to solar
minimum and maximum. The large closed field regions evident
in the potential fields are much smaller in the corresponding
outflow solutions, while the magnetic field structure close to
the solar surface is little affected.
A significant difference between the potential and outflow

fields is the effect of varying the upper boundary height, r1. For
the potential field, increasing r1 will increase the height of the
closed field streamers. But in the outflow fields, this height is
determined by the outflow velocity rather than the imposed
condition of a purely radial magnetic field on r= r1, at least
providing that r1 is sufficiently large. With the solar wind
model that we have chosen, most streamers extend to less than
2.5 Re, but some extend further. (For comparison with the
PFSS model, we set r1= 2.5 Re in our computations for this
paper.) To illustrate the behavior of the outflow fields near to
the upper boundary, Figure 4 shows the open magnetic flux in
the outflow field as a function of altitude, for solar wind speeds
up to 400 km s−1 (which is very fast for these altitudes). The
open magnetic flux decreases rapidly as we move away from
the solar surface, as magnetic field lines curve back toward the
Sun. The outflow fields exhibit higher flux at larger radii as
more of the magnetic field is stretched out by the solar wind.

Figure 4. Unsigned open flux as a function of radius for different outflow speeds, for Carrington rotation 2165.
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We observe that for fast wind speeds, the outflow flux is
roughly constant above a radius of 2 Re. This is consistent with
the observation that the field is roughly radial above this
altitude and there are very few closed field lines. It also
indicates that the solution is not sensitive to the chosen location
of the outer boundary.

Finally, we note that the magnetic field at r= r1 is clearly
dominated by low-order modes in the azimuthal and latitudinal
directions. Thus—as for the potential field—it is possible to
obtain a close approximation to the true magnetic field at high
altitudes while only needing to calculate a relatively small
number of modes. This is illustrated in Figure 5. The total
number of modes (indexed by l and m) at this resolution (180 x
360) is 64,800, but we see that the flux measurement converges
at all heights within 4000 modes. Away from the surface, this
convergence is even faster—within 1000 modes. Thus if the
region of interest is sufficiently high in the corona, we need
only calculate several hundred modes in order to model the
magnetic field sufficiently accurately, rather than thousands.

For purposes such as space weather predictions, where the
precise magnetic field in the lower corona is unimportant, this
saving of computational cost could be useful.

5. Application to Solar Cycle 24

We now compare the open flux measurements predicted by
our outflow model to measurements of the magnetic field at 1
au extracted from NASA/GSFC’s OMNI data set through
OMNIWeb. We assume that the total amount of radial
magnetic flux at 1 au is the same as the upper corona and
scale the magnetic field strength correspondingly. The data are
averaged as in Yeates et al. (2010)—namely, an initial daily
average of the signed data to smooth out local small-scale
fluctuations, then a 27 day running average of the unsigned
data for comparison to the global open flux (Lockwood et al.
2009). A similar comparison of PFSS extrapolations with these
data (up to 2015) is undertaken by Arden et al. (2016), noting

Figure 5. Convergence of the unsigned open flux at different heights, for Carrington rotation 2165. The top panel shows the computed open flux as more modes are
included. The lower-order modes (small l and m) are calculated first as in general these contribute more than higher-order modes. The bottom panel shows the
corresponding percentage error in the open flux as the number of calculated modes increases.
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that the definition of open flux in their paper is half the quantity
used here.

Figure 6 plots the OMNI data against the flux predicted by
our model for various solar wind speeds, including the potential
field case (v1= 0). We observe that throughout solar cycle 24
the flux predicted by our potential field model with r1= 2.5 Re
is consistently an underestimate, as noted in the 1. The
potential field consistently underestimates the measured out-
flow flux by a factor of more than 2, but there is still a strong
correlation between the potential field flux and the observa-
tions, notably at the large increase around Carrington rotation
2160. Arden et al. (2016) show that the PFSS open flux can be
made to match the observational curve by lowering the source
surface height to r1≈ 2 Re, although the morphology of the
streamers is likely then unrealistic. Those authors also show
that a reasonable match to the observed open flux may be
obtained with a “horizontal-current current-sheet source sur-
face” (HCCSSS) model. As in our outflow model, the HCCSSS
open flux is inflated by the presence of horizontal currents,
although unlike in the outflow model the currents flow in the
lower part of the domain, and take an arbitrary form that is not
directly motivated by observations.

Figure 6 shows that the open flux predicted by our outflow
fields also correlates strongly with the OMNI measurements.
As discussed in Section 4, the outflow fields predict a greater
open flux and as such they predict values that more closely
match the collected data. Notably, our outflow fields
consistently predict more accurate values of the open flux than
potential fields, especially for high outflow speeds. It is
probable that for sufficiently high outflow speeds the predicted
outflow flux would match the OMNI measurements to a high
degree of accuracy, but this would likely lead to unrealistic
streamer shapes. With a reasonable outflow of v1= 150 km s−1,

about 30%–40% of the discrepancy in open flux is accounted
for. It is likely that the remainder must be explained through
alternative means. These likely include both steady enhance-
ment from additional low-coronal currents not included here, as
well as episodic bursty enhancement from eruptions and
coronal mass ejections (Yeates et al. 2010; Bhowmik &
Yeates 2021). An important further possibility is that the 1 au
data may be overestimating the open flux at 2.5 Re because
some magnetic field lines double back on themselves in the
heliosphere (Owens et al. 2017).

6. Conclusion

We have described a new method for modeling the global
magnetic field in the solar corona. The numerical method is
based roughly on existing PFSS models, and in a similar
manner requires radial magnetogram data as a lower boundary
condition. Our model seeks to improve upon PFSS models by
taking into account the effect of the solar wind. We achieve this
by seeking equilibrium solutions of the magneto-frictional
model, where a radial solar wind outflow function is assumed
and specified. Computation times are comparable to PFSS
codes, although the methods could be refined further to
improve upon this. The solutions we find appear more realistic
than equivalent potential fields, exhibiting more realistic
streamer shapes, reducing the dependence on an arbitrary
source surface height, and increasing the predicted open flux to
be closer to OMNI magnetic field measurements throughout
solar cycle 24.
Compared to full MHD simulations, our model has the

limitation that the solar wind velocity is imposed in a purely
phenomenological manner, rather than determined self-consis-
tently as an equilibrium of the full MHD equations. In
particular, our method has to rely on several assumptions—

Figure 6. Variation of the open magnetic flux at r1 = 2.5 Re during solar cycle 24. The black curve represents OMNI measurements of the magnetic field at 1 au
(smoothed as described in the text), while the dashed, dotted, and dotted–dashed curves show predictions from outflow solutions with different speeds. The lowest
curve (blue) shows the result from an equivalent potential field calculated using our model with v1 = 0 km s−1. In all cases, the unsigned open flux is shown on the left
axis, while the equivalent field strength at 1 au (assuming a uniform distribution) is shown on the right axis.
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namely that the solar wind velocity is purely radial and only
has radial dependence. This is certainly preferable to assuming
there is no outflow velocity whatsoever but is still quite a
severe limitation. In the future, it may be possible to remove
these limitations by generalizing our method. Being purely
magnetic, however, our method is computationally much less
expensive and only requires line-of-sight magnetogram data, as
opposed to full vector data and initial conditions for density
and pressure/temperature. It thus represents a practical
alternative that improves on the commonly used PFSS model
at little extra cost.

For a chosen radial wind speed profile, our solution has a
single free parameter: the assumed relaxation rate ν0. The value
for this constant has been determined from experience using the
magneto-frictional model but it cannot be calculated directly.
Therefore there remains some uncertainly with regards to the
most appropriate outflow solution for a given solar wind speed.
In the future it may be possible to determine ν0 empirically
using the model we have proposed, by comparing streamer
shapes to physical observations. In turn, this would then be
informative for other magneto-frictional modeling.

In this paper we have discussed the calculation of a magnetic
field based upon a stretched spherical coordinate system.
Altering the differential equations as appropriate could produce
an outflow field in the standard spherical coordinate system
with a similar numerical scheme. We also developed a
Cartesian equivalent of the method. As such the outflow fields
could be used in place of potential fields in a variety of
situations, if so desired.

In conclusion, PFSS fields have been established as a very
useful way to model the corona. The ubiquitous use of these
fields indicates that computational simplicity is a priority. The
methods we present aim to preserve this simplicity. Potential
field models are often coupled with current-sheet models to
approximate the corona at higher altitudes (Mackay &
Yeates 2012). Outflow fields, coupled with accurate functions
describing the solar wind velocity at high altitudes, should
avoid the need for these extensions, as current sheets between
radial magnetic field lines are a natural consequence of our
equilibrium solutions. Thus for driving heliospheric models,
there is the potential to actually reduce computational
complexity by the use of this new method, while simulating
the magnetic field more realistically than a PFSS field.
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