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We discuss a gauged XY model a θ-term on an arbitrary lattice in 1þ 1 dimensions and show that the
theory reduces exactly to the 2d Ising model on the dual lattice in the limit of the strong gauge coupling,
provided that the topological term is defined via the Villain action. We discuss the phase diagram by
comparing the strong and weak gauge coupling limits and performMonte Carlo simulations at intermediate
couplings. We generalize the duality to higher-dimensional Ising models using higher-form U(1) gauge
field analogs.
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I. INTRODUCTION

The Ising model is one of the most important statistical
mechanical models. Its simplicity, universality and exact
solvability in 1d and 2d are just some of the reasons in its
pervasiveness in physics. On the other hand, gauge theory
is best known as the theory of light, which can be described
by a gauge field space-time vector field Aμ. We will be
concerned here with U(1) gauge theories. The fundamental
principle underlying U(1) gauge theories is gauge invari-
ance, i.e., the statement that all observables are invariant
under the gauge transformation Aμ → Aμ þ ∂μφ, where φ is
an arbitrary angle-valued function of space-time coordi-
nates [i.e., the space of gauge transformations is a circle,
which is the same as the U(1) group, hence the name].

Crucially the k-charge Wilson loops eik
H
C
dxμAμ , with a

closed space-time contour C are invariant under gauge
transformations only if the charge k is an integer. The
space-time contour C has an interpretation of a probe
particle worldline, carrying k units of U(1) charge.
In ð1þ 1Þd the connection of the gauge theory with the

Ising model can be made evident by considering a single
scalar field coupled to the U(1) gauge field and was noted
before (see e.g., [1,2]). The phenomenology of this model
was discussed by Coleman before still [3]. Firstly there
exist two, potentially different, regimes1: the confining
regime and the Higgs regime (see also [4]). In the deep

confining regime, the mass-squared M2 of the scalars is
positive and large, and the theory is very nearly a pure
gauge theory. Such a theory has massive excitations of ϕ,
which can be related to worldlines coupling to the gauge

field via the Wilson loop ei
H

dxμAμ , wrapping in the
Euclidean compact time direction. However the gauge
field fluctuations impose a confining potential on these
excitations, and the excitations have to pay the energy price
of the string attached to the worldline. In addition the
ensemble can be thought of as consisting of tiny loops
of scalar matter, which renormalize the string tension
(see Fig. 1).
One can then think about placing the system in the

external electric field, which is equivalent to inserting
a nonzero θ-term [3]. This setup corresponds to the
Euclidean action2

Sθ ¼ i
θ

2π

Z
d2xF; ð1Þ

where F ¼ ϵμν

2
Fμν ¼ F01 is the (Euclidean) field strength.

As θ moves from zero to 2π, the vacuum pair of positive
and negative particles can move to infinity, exactly cancel-
ing the background electric field. When θ ¼ π, the back-
ground electric field corresponds to exactly half of the
electric-string flux. For large and positive scalar M2 the
vacuum is twice degenerate, corresponding to the positive
and negative directions of the half-electric flux, and hence
breaks the charge-conjugation symmetry C spontaneously.
Charged particles can be thought of as changing the electric
flux by one unit, so half of the electric flux directed to
the right can be absorbed by a negative charge, leaving the
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1The two regimes are in fact not separated by a phase
transition, unless the θ angle is set to π.

2We will be interested only in the Euclidean formulation of
quantum field theories here.
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left-pointing half-electric-flux vacuum on the right. Such a
particle is a domain wall connecting the two vacua.
However if the charge was positive, it would produce a
3=2 electric flux on the right, which would correspond to an
excited vacuum—i.e., a string. The presence of the string is
energetically penalized by the electric charge e2 and the
length of the string. In the limit of e2 → ∞, only domain-
wall excitations remain, whose statistical weight is penal-
ized only by the length of their worldlines and not the area
they enclose. AsM2 is decreased, the domain walls become
more common in the ensemble, mixing the two vacua and
causing C to be restored. The nature of the transition is the
Ising transition [1,2,5].
But the ensemble picture, in the limit e2 → ∞, looks

compellingly similar to the Ising model itself, which can be
thought of as the ensemble of domain walls connecting the
two Ising vacua. Indeed we will see that there is a lattice
gauge formulation of the gauged XY model where this
identification becomes exact. The spirit of our discussion is
much in the vein of lattice dualizations to worldline and
world sheets, which found recent applications for solutions
of the numerical sign problem (see [6] for a review).
Moreover the formulation allows for a higher-dimensional
generalization in terms of higher-form lattice gauge theo-
ries. We focus on the 2d model first for simplicity, which
will render the higher-dimensional generalizations straight-
forward. We discuss these at the very end.

II. THE 2D GAUGED XY MODEL
AS AN ISING MODEL

Let us consider a 2d lattice Λ which is made out of sites
x, the bonds or links l and faces or plaquettes p. The XY
model can be defined by the phases φx ∈ ½0; 2πÞ living on
lattice sites. It is useful to define the derivative living on the
oriented link lðx; yÞ as

ðdφÞlðx;yÞ ¼ φy − φx: ð2Þ

We can write the partition function of the XY model as

Y
x

�Z
2π

0

dφx

�
eJxy

P
l
cosððdφÞlÞ; ð3Þ

where the sum in the exponent is over links of fixed
orientation. To gauge the model we introduce a link gauge
field Al ∈ R. We further define

Fp ¼ ðdAÞp ≡ Al1 þ Al2 þ � � � þ Ali ; ð4Þ

where the links l1; l2;…li make the boundary of the
plaquette p.
We take the action for the gauge fields to be

Sgauge ¼
β

2

X
p

ðFp þ 2πnpÞ2 − iθ
X
p

np; ð5Þ

where np are integer variables on plaquettes and where the
orientation of the plaquettes is fixed in advance. The first
term of the action is the famous Villain action [7] which has
a long history and found much application in studies of
Abelian gauge theories and spin systems (see e.g., [8–12]).
Recently it also found some modern application relating to
the θ-terms, anomalies and formulations of generalized
electromagnetic theories [5,13–16].
The coupling to the XY model is made by promoting

ðdφÞl → ðdφÞl þ Al in the exponent of (3), so the partition
function is now

Z ¼
�Y

x

Z
dφx

��Y
l

Z
dAleJxy cosððdφÞlþAlÞ

�

×

�Y
p

X
np

e−
β
2
ðFpþ2πnpÞ2þiθnp

�
: ð6Þ

Noting that
P

p Fp ¼ 0, we can perform the Poisson
resummation for each plaquette

X
np∈Z

e−
β
2
ðFpþ2πnpÞþiθðnpþ Fp

ð2πÞÞ

¼ 1ffiffiffiffiffiffiffiffi
2πβ

p
X
mp∈Z

e−
ðmp− θ

2π
Þ2

2β þiFpmp : ð7Þ

The rhs above is nothing but the Fourier expansion of the
lhs, given that the lhs is periodic in Fp → Fp þ 2π. Upon
summing over all plaquettes, it is not difficult to show thatP

p Fpmp ¼ P
l AlðδmÞl, where

ðδmÞl ¼ mp1
−mp2

; ð8Þ

with p1 and p2 being the plaquettes which share the link l
(the sign indicates that the plaquettes sharing the same link
have opposite orientations).

FIG. 1. A cartoon of the 1þ 1 gauge theory ensemble. The
circle is the compact Euclidean time, and spatial direction extends
from left to right. The blue areas are the “vacuum,” while the red
areas are vacuum excitations (i.e., strings) costing finite energy
per area due to the electric field between the sources. If the
external electric field is introduced (i.e., the θ-term), the vacuum
energy goes up, while the string tension, for appropriately
oriented electric dipoles, it goes down. At θ ¼ π they become
degenerate, and the elementary charges are no longer confined.
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If we ignore the coupling to the XY model, integrating
over Al will impose a constraint thatmp ¼ m is constant for
all plaquettes.
On the other hand, we have that

eJxy cosððdφÞlþAlÞ ¼
X
kl∈Z

IklðJxyÞeiðdφlÞklþiAlkl ; ð9Þ

which is just a Fourier expansion of the lhs. IkðJÞ is the
modified Bessel function. Upon doing this for every link,
the first term in the exponent can be “partially integrated,”
i.e.,

X
l

ðdφÞlkl ¼ −
X
x

φxðδkÞx; ð10Þ

where

ðδkÞx ¼ kl1 þ kl2 þ kl3 þ � � � þ kli ; ð11Þ

with l1; l2;…; li being the links oriented away from
the vertex x. Integrating over φx, we have that
ðδkÞx ¼ 0; ∀ x ∈ Λ. This is nothing but the current
conservation law, demanding that the net current kl flowing
out or in of x is zero.
The partition function is now made out of closed loops of

current kl. By integrating over Al, we further impose the
constraint

kl ¼ ðδmÞl: ð12Þ

Note that ðδkÞx is automatically satisfied given the above
constraint because δ2 ¼ 0. The partition function is

Z ¼
�

1

2πβ

�
P=2X

fmg

�Y
l

IðδmÞlðJxyÞ
�

×

�Y
p

e−
e2
2
ðmp− θ

2πÞ2
�
; ð13Þ

where we have labeled e2 ¼ 1
β,
P

fmg indicates the sum over
all plaquette variables mp, and P is the total number of
plaquettes on the lattice.
Now consider the limit of e2 → ∞, and θ ¼ π. The

exponent in the second line above suppresses all configu-
rations for which mp is not equal to 0 or 1. Therefore, up to
exponentially small corrections in e2, the only allowed
plaquette variables are mp ¼ 0, 1. These will play the
role of Ising spins. Let us label σp ¼ 2mp − 1. Moreover,
note that since InðxÞ ¼ I−n, the dependence on ðδmÞl ¼
ðδσÞl
2

¼ ðσp1−σp2 Þ
2

, where p1 and p2 are plaquettes which share
a common link l. Further, since σp only take values �1, we
can write

Iðσp1−σp2 Þ=2ðJxyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I0ðJxyÞI1ðJxyÞ

q
e
−
σp1 σp2

2
logðI1ðJxyÞI0ðJxyÞÞ: ð14Þ

Since the plaquettes p are dual to the dual lattice sites x̃, the
identity above reveals that the model in question is really
the Ising model on the dual lattice, with the coupling

JI ¼ −
logðI1ðJxyÞI0ðJxyÞÞ

2
: ð15Þ

Moreover one can see that h ¼ π−θ
2πβ plays the role of the

magnetic field. To get the Ising model at finite h, one must
take the double scaling limit θ → π, β → 0 such that h is
finite.
Several comments are in order.
(i) If in (15) we take Jxy > 0, then JI > 0, so the model

maps the ferromagnetic gauged XY model to the
ferromagnetic Ising model. If Jxy < 0, we can shift
Al → Al þ π to transform Jxy → −Jxy. Now if the
original lattice Λ consists of only plaquettes which
have an even number of links in their boundary (e.g.,
a square or a honeycomb lattice), then the shift can
be absorbed by the shift of the integers np in (6). If,
on the other hand, there exist plaquettes which have
an odd number of links in their boundary, it is not
difficult to see that the resulting ferromagnetic Ising
model partition function contains a term ei

σpπ
2 , which

can be interpreted as the imaginary magnetic field
h ¼ i π

2
.

(ii) What about antiferromagnetic Ising model on a
frustrated lattice? Does there exist a U(1) gauge
theory, whose dual lattice is frustrated (e.g., a
honeycomb lattice), which is dual to an antiferro-
magnetic Ising model? For real Jxy of the XYmodel,
the answer is no. However one can always come up
with a complex value of Jxy in (15) which would
produce a negative value of JI, so that the analytical
continuation of the U(1) gauge theory to complex
Jxy corresponds to an antiferromagnetic Ising model.

(iii) While we have assumed that the coupling Jxy is the
same for all links, we could make them different.
The relationship (3) would then be valid linkwise.

(iv) If we did not take the limit e2 → ∞, the XY model is
still dual to a kind of generalized Ising model,
with the spin σx̃ ¼ 2mx̃ − 1 being odd integers.
The action is easily obtained from (13).

(v) There is nothing particularly special about the form
for the XY model (3). Indeed we could have taken
the action to be an arbitrary periodic function of
ðdφÞl, i.e., S ¼ P

l fððdϕÞlÞ, where fðxþ 2πÞ ¼
fðxÞ. Then the Bessel functions Ik should be re-
placed by the Fourier modes fk ¼

R
2π
0

dx
2π e

−fðxÞe−ikx.
If we further demand fðxÞ ¼ fð−xÞ, then fk ¼ f−k,
with all fk real. Then Ising coupling would still be
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given by (15) with the replacement of the Bessel
functions I0 and I1 with f0 and f1.

3

(vi) Our choice of gauge action is also not unique, and
we could have instead chosen a gauge action
S ¼ P

p fðFp þ 2πnpÞ, so long as now fðxÞ
is not periodic.4 Then we can Poisson resum

X
np

e−fðFpþ2πnpÞþiθðnpþFp
2π Þ

¼
X
mp

aðmp þ θ=ð2πÞÞe−iFpmp; ð16Þ

where aðkÞ ¼ R
dx
2π e

ikxe−fðxÞ is the Fourier trans-
form5 of e−fðxÞ.

Could we imagine a generalized XY model described
above, with purely real fðxÞ which corresponds to an
antiferromagnetic Ising model? For that to happen we must
have that the first Fourier mode of e−fðxÞ is larger than the
0th mode, so that the logarithm in (15) is negative, i.e.,

Z
π

−π
dxe−fðxÞ cosðxÞ >

Z
π

−π
dxe−fðxÞ: ð17Þ

However the above can never be satisfied for real fðxÞ, and
so we conclude that the antiferromagnetic Ising model on a
frustrated lattice cannot be obtained from a gauged gen-
eralized XY model with real couplings.

III. THE FINITE COUPLING: FROM ISING
TO BEREZINSKII-KOSTERLITZ-THOULESS

(BKT) TRANSITION

As we saw when the gauge coupling tends to infinity
e2 → ∞, the ferromagnetic XY model is an Ising model.
Let us focus on the square lattice for concreteness, whose
dual lattice is also square. It is well known that the Ising
model on the square lattice has a transition at coupling [20]

JcI ¼
logð1þ ffiffiffi

2
p Þ

2
⇒ Jcxyðe2 ¼ ∞Þ ≈ 0.9117; ð18Þ

where the XY coupling at e2 ¼ ∞ was obtained with the
use of (15). On the other hand, we know that if e2 → 0, the
gauge fluctuations are completely suppressed, and we can
set6 Al ¼ 0, reducing the model to an ordinary XY model,
which has a BKT transition at

Jcxyðe2 ¼ 0Þ ¼ 1.1194: ð19Þ

The two transitions are quite close together, differing by
only ∼20%. Of course the universality class of the
transitions is different. Nevertheless in both cases the
transition can be thought of as the proliferation of loops.
In the Ising limit, the proliferation is of the domain-wall
lines, while for e2 ¼ 0 (i.e., β ¼ ∞), we see that in (13) the
proliferation is in terms of interface lines between different
values of mp variables, which are no longer constrained to
bemp ¼ 0, 1. Both of these proliferations are controlled by
the ratio of the Bessel function IðδmÞlðJxyÞ=I0ðJxyÞ, which
tends to suppress the jumps in mp for smaller values of Jxy
and lets them proliferate for large Jxy. For intermediate
0 < e2 < ∞, the typical area of a loop bounding the region
of constantmp ≠ 0 andmp ≠ 1 is exponentially suppressed
with e2, and such domains will tend to renormalize the
Ising transition, but the effect must be exponentially sup-
pressed in large coupling e−e

2ð…Þ [see Eq. (13)]. On the
other hand, let us consider the limit e2 → 0 of the XY
model in the gapped phase near the BKT transition, i.e.,
Jxy ≲ 1.1194. If we then change e2 to be nonzero, 1=e will
dictate the typical length scale of gauge fluctuations in
lattice units, and so it cannot induce a phase transition until
e is of the order of the XYmass gap, which is exponentially
small for the coupling close enough to Jxy ¼ 1.1194.
Hence we expect the phase transition line in the graph
of Jxy vs e2 to be slowly changing as e2 is lowered from
infinity, keeping close to the Jcxyðe2 ¼ ∞Þ ¼ 0.9117 line,
and then sharply shooting up when e2 is order unity to the
value Jcxyðe2 ¼ 0Þ ¼ 1.1194 at e2 ¼ 0.
To check this we performed a Monte Carlo simulation of

the system at various values of e2 on a square lattice and
for the linear system sizes L ¼ 20, 40, 60 and 80. We
define the topological susceptibility as

3We do not need to impose fðxÞ ¼ fð−xÞ, but then the dual
Ising model will in general have a nonuniform imaginary
magnetic field. Further imposing fðxÞ ¼ fð−xÞ does not guar-
antee the positivity of the Fourier mode f1, so in general Jxy may
have an imaginary π part. Note that to have a particle inter-
pretation at finite e2 we also want to demand that all Fourier
modes of fk of e−fðxÞ are positive. It is not clear to us what is the
most general class of fðxÞ satisfying this (see [17] however).

4Periodic fðxÞ would give a partition function which is
identically zero for θ ∉ 2πZ.

5Similar issues of positivity and reality of Fourier modes arise
here as well (see footnote 3). Note that one can also consider the
Wilson action with the Lüscher θ-term [18,19] in the form (16),
with the choice e−fðxÞ ¼ eβ cosðxÞΘðxÞ, where ΘðxÞ is unity for
jxj < π and zero otherwise (see discussion in [13]). However for
strong enough coupling some Fourier modes for nonzero θ will
become negative, which is an artifact the Villain form avoids.

6Actually the zero coupling condition forces ðdAÞp ¼ 0, but
there can still be a residual nonzero holonomy in case of space-
time which has incontractible loops (i.e., a nontrivial first
cohomology group), e.g., a torus. In this case the holonomies
label superselection sectors of the flat-connection gauged XY
model. These sectors are equivalent to an XY model with twisted
boundary conditions.
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χt ¼
1

L2

∂2 logðZÞ
∂θ2 þ e2

ð2πÞ2 : ð20Þ

The shift by the constant above is to match the definition of
the magnetic susceptibility in the Ising limit.7 At finite
volume we expect

χt ¼ L
γ
νFðtL1

νÞ; ð21Þ

where for 2d Ising ν ¼ 1 and γ ¼ 7=4 are the standard
critical exponents, t is the parameter driving the transition,

and F is the universal function. So if we plot L−γ
νχt against

a parameter driving the transition, we expect that at the
phase transition point t ¼ 0 the curves will cross. Indeed,
plotting L−γ

νχt against Jxy shows that all the curves
intersect pretty closely at a single point, as can be seen
in Fig. 2(b), where simulations for e2 ¼ 6 are shown for
the four volumes. We repeated the simulations for values
of e2 ranging from e2 ¼ 0.01 up to 20, to produce a phase
diagram as indicated by red data points in Fig. 2(a).
Note that we excluded the data for L ¼ 20 to minimize
power corrections to the scaling. In addition the Ising
scaling discussed above does not set in at L ¼ 20 for the
smallest values of e2. This is expected as the dominant
fixed point for small enough volumes should be of the
BKT nature.

IV. GENERALIZATIONS TO HIGHER
DIMENSIONS

Generalization to higher-dimensional cases is now
straightforward. First we define the lattice Λ in terms of
p cells cp. A 0 cell is a vertex. We then connect vertices
with 1 cells (links) and 1 cells with 2 cells (plaquettes), etc.
In D dimensions we define a (D − 1)-form gauge field
U(1), which will naturally live on (D − 1) cells, which we
label as BcD−1

. This is the generalization of Al for the space-
time dimension D ¼ 2. In addition we introduce (D − 2)-
form gauge field AcD−2

, living on cD−2. Similar to before we
define the derivatives d and δ which map a p-form field to a
pþ 1 and p − 1 form field, respectively (see e.g., the
Appendix of Ref. [13] for details). We define the proto-
typical action

X
cD

β

2
½ðdBÞcD þ 2πncD �2 þ iθncD

− J
X
cD−1

cos½ðdAÞcD−1
þ BcD−1

�: ð22Þ

The action is just the generalization of the exponent in (3).
Note that the θ angle has a similar interpretation as before: a
D − 1-form U(1) gauge field B has a natural topological
charge in the continuum given by 1

2π

R
dB. An example of

such a gauge field is the non-Abelian Chern-Simons 3-form
in four space-time dimensions. Similar reasoning as before
leads to the dual partition function

Z ¼
�

1

2πβ

�
CðDÞ=2X

fmg

�Y
cD−1

IðδmÞcD−1
ðJÞ

�

×

�Y
cD

e−
e2
2
ðmcD

− θ
2πÞ2

�
; ð23Þ

where again e2 ¼ 1
β and CðDÞ is the number of D cells on

the lattice. Now we identify cD with the site of a dual lattice

C-broken (ordered)

C-restored 
(disordered)

BKT transition point

Ising transition line

Deconfined crtical phase
(a)Phase Diagram  

(b)

FIG. 2. (a) The phase diagram of the gauged XY model. The
diagram shows the transition line in the Jxy vs e2 plane.
The critical points were determined from the intersections of
the rescaled susceptibility L−γ

νχtðJxyÞ obtained by Monte Carlo
simulations of the model (13) on the square lattices with sizes
L ¼ 40, 60, 80. (b) An example of the rescaled susceptibility for
e2 ¼ 6 (including L ¼ 20), which clearly intersect very close to a
single point—the Ising transition point.

7Since the susceptibility diverges at the transition point, the
constant shift affects the finite volume corrections only. This
particular shift makes these corrections small.
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x̃ and define σx̃ ¼ 2mx̃ − 1 to be the spin variable. Then at
θ ¼ π, in the limit e2 → 0 only σ¼ � 1 survive, and the
model reduces to the D-dimensional Ising model with the
coupling given by (15), with Jxy replaced by J.
Let us briefly discuss the phase diagram as a function

of e2. At e2 → ∞, we have that the model undergoes a
phase transition at some value of Jc, which corresponds to
the Ising transition via the duality relation. Just like before,
as e2 is reduced, the phase transition is expected to raise to
slightly larger values of Jc, similar to Fig. 2(a). However in
the limit e2 → 0, the model in question is the (D − 2)-form
lattice gauge theory with the standard Wilson action. For
D ¼ 3, it is just the usual lattice gauge theory, which is well
known to always be in the gapped phase [21,22], because
the theory always has monopoles. However these are
expected to be suppressed exponentially with J, and so,
for very large values of J, the mass gap M will be
exponentially small. The introduction of nonzero e2, where

e again has an interpretation as the length of the B-field
fluctuations, will therefore be able to induce a transition
only when e is of the order of M, which is tiny. So the
qualitative picture is very similar to Fig. 2(a), except that
the phase-transition boundary shoots up to infinity for
e2 → 0.
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