
A surrogate model for efficient quantification of uncertainties in
multilayer shallow water flows

Alia Al-Ghosoun∗ Nabil El Moçayd† Mohammed Seaid‡

Abstract

In this study, we investigate the implementation of a Proper Orthogonal Decomposition (POD) Poly-
nomial Chaos Expansion (PCE) POD-PCE surrogate model for the propagation and quantification of
the uncertainty in hydraulic modelling. The considered model consists of a system of multilayer shallow
water equations with a mass exchange between the layers and over stochastic beds. As a numerical
solver, we propose a finite volume characteristics method that does not require eigenstructure of the
system in its implementation. The method is fast, accurate and can be used for both slowly and rapidly
hydraulic simulations. The propagation and influence of several uncertainty parameters are quantified
in the considered numerical methods for multilayer shallow water flows. To reduce the required number
of samples for uncertainty quantification, we combine the proper orthogonal decomposition method with
the polynomial Chaos expansions for efficient uncertainty quantification of complex hydraulic problems
with a large number of random variables. Numerical results are shown for several test examples including
a dam-break problem over a flat bed, and a wind-driven recirculation flow on flat and non-flat bottoms.
Results are also presented for the case study of a recirculation flow problem in the Strait of Gibraltar. The
results demonstrate the robustness of the uncertainty quantification method compared to the standard
Monte-Carlo simulations. The results presented in this study suggest that the use of surrogate modelling
may save a considerable amount of the necessary computational cost for all the considered cases.

Keywords. Uncertainty quantification; Polynomial Chaos expansion; Proper orthogonal decomposition;
Multilayer shallow water equations; Stochastic beds; Finite volume methods

1 Introduction

Modeling and numerical simulation of water flow at places such as the Mediterranean sea are of utmost
importance, especially at the Strait of Gibraltar. At this place, an exchange between denser water from
the Mediterranean sea and fresher water from the Atlantic Ocean occurs. Moreover, under the impact
of the topography and wind forces, the hydrodynamics can be very complex [43]. Therefore, monitoring
activities such as maritime transportations, management of pollution spills [34] and fishery [29] could be
very challenging. Numerical modelling of such hydrodynamics would require the use of the full three-
dimensional Navier-Stokes equations. As many studies reported, the transport and the occurrence of some
eddies and small scale surface waves are driven by the longitudinal gradient of pressure, temperature and
density. These hydraulic features can not be captured using the standard shallow water equations. However,
with the introduction of multilayer shallow water equations, the use of computationally efficient numerical
models is possible. This class of multilayer shallow water equations avoids the computationally demanding
methods needed to solve the three-dimensional Navier-Stokes equations, but at the same time, they provide
stratified flow velocities since the pressure distribution is still assumed to be hydrostatic. In the current
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study, the free-surface flow problem is approximated as a layered system made of multiple shallow water
systems of different water heights but coupled through mass-exchange terms between the embedded layers.
Recently, multilayer shallow water equations have been subject of various research studies [30, 7, 40] and
have been used for modelling a variety of free-surface flows where water flows interact with the bed geometry
and wind stresses. While general efforts have been concentrated to present efficient numerical tools that
allow solving the deterministic problem, to the best of our knowledge, uncertainty quantification of these
models has not been considered. In the present work, we consider these methods to model the exchange
flow occurring at Strait of Gibraltar and quantify the uncertainty of the numerical response. Especially that
many heterogeneous observational data are available at this Strait based on GPS, radar, remote sensing and
in-situ measurements [43, 41, 36]. Furthermore, it has already been established that monitoring this area
using numerical models coupled with altimetry observations could be very effective using data assimilation
methods [20].

When using numerical algorithms such as data assimilation, the forecast of the model is predicted based on
reduced dynamic model uncertainty. Therefore, uncertainty is ubiquitous to the results of these simulations
for different reasons, see for example [56]. One of the major sources of uncertainty especially in hydraulic
computations comes from calibration [72, 47]. In fact, the friction coefficient is a proxy that represents the
hydraulic energy dissipation. This occurs on a molecular scale. Therefore, in fluid dynamic computations,
it is generally estimated using empirical equations with some coefficients to be estimated. Moreover, the use
of multilayer shallow water equations introduces a viscosity coefficient which models the numerous exchange
of information between layers. This coefficient is purely used for modelling purposes and in practice, these
parameters are estimated by means of calibration (or inverse problem) where data for a specific event is
used, see for example [44, 62, 67]. Indeed, exact estimations are not possible for all ranges of variation
in hydraulics for which modelling uncertainties is required. Many studies showed that uncertainty in the
estimation of the mentioned parameters can lead to high uncertainty in the hydraulic states for some flow
configuration [59, 28, 15, 37]. Furthermore, there is also a natural variability due to the imperfect description
of boundary conditions which lead to stochastic uncertainties [57]. This has been demonstrated in the case of
hydraulic simulations over unknown topography [23]. For instance, the description of the Strait topography
could not be known everywhere. This lack of information due to measurement limitations could lead to
uncertain hydraulic simulation, as reported by [18]. With the high availability of remote sensing data, the
possibility to reduce the uncertainty of hydraulic simulation propagated from uncertain bathymetry is now
possible, we refer the reader to [73, 8] for more details.

One major problem when tackling uncertainty quantification (UQ) with hydraulic computations is the curse
of dimensionality. The topography of the Strait, the river, or the lake is often presented as a stochastic
process regarding its space dependency. Moreover, the computed results for the water velocity and water
height also depend on space and time. Therefore, using classical methods for uncertainty quantification
could be very time consuming. Note that in uncertainty quantification, it is very common to use surrogate
models also known as meta-models or response surfaces. Their purpose is to mimic the behavior of the true
model while being less time consuming. Such methodology was successfully used in the context of hydraulic
computations using polynomial Chaos expansion [28] or Kriging [59]. However, these studies in [28, 59] have
considered only single value parameters (random variables) such as Manning Coefficient to be responsible
for uncertainty in the model simulation, see for example [35] among others. The bathymetry, given its
space dependency, has rarely been considered for an uncertainty quantification problem. In fact, one needs
to reduce the dimensionality of the field before using any surrogate model in [32, 51] as the problem of
dimensionality could be very challenging when using surrogate models. This is mainly the reason why
only a few works have been dedicated to quantifying its uncertainty [38]. In the present work, we consider
a Karhunen-Loéve decomposition in order to reduce the dimensionality of the bathymetry. This method
relies on a spectral decomposition of the spatial correlation matrix of the bathymetry to approximate the
real stochastic process in the mean-square sense. Another advantage of this method resides in the fact that
it is very easy to sample once the decomposition is achieved. This method has been widely used in the
context of a random process, see [60] for a review. Reducing the space of the input variables makes it very

2



Wind

uM

uM−1

u2

u1

H

Z

hM

hM−1

h2

h1

1

Figure 1: Illustration of the multilayer shallow water system.

easy to build surrogate models. In the present work, we consider the polynomial Chaos expansion, given
its success rate for quantifying the uncertainty in hydraulic simulations, see [35, 27, 54]. Furthermore, in
order to reduce the dimensionality of the output results (water height and velocity in each layer) we use
Proper Orthogonal Decomposition (POD). This method avoids building a single surrogate model for each
numerical component of the vector. Instead, a spectral decomposition is carried out and we suppose that
the eigenvalues yield the uncertainty that ought to be propagated. Therefore, the surrogate model is built
only on the eigenvalues. Such methods have been successfully used in uncertainty quantification since they
allow to reduce the output dimension and yield some high accuracy given the uncertainty quantification,
see for example [12, 55, 52].

In the present study, we evaluate the uncertainty of the hydraulic states such as the water height and the
water velocity resulting from the bathymetric forces which include bed topography, Manning coefficient,
wind friction and viscosity between the layers. The purpose here is to assess the UQ methodology over
a real complex case. Moreover, as the sensitivity analysis of the uncertainty towards each parameter is
performed, especially in locations where data measurements are available. It should also be pointed out
that the considered multilayer shallow water model has a considerable impact on the reduced-order method
compared to the computationally demanding Navier-Stokes equations for free-surface flows. The rest of this
paper is organized as follows. The equations for the multilayer shallow water flows are presented in Section
2. The formulation of the finite volume modified method of characteristics for the numerical solution of
multilayer models is also presented in this section. The general methodology used to address the uncertainty
quantification problem is described in section 4. Section 5 is devoted to numerical results for several test
examples for free-surface water flows over stochastic topography. Our new approach is shown to enjoy the
expected accuracy as well as robustness. Section 6 contains concluding remarks.

2 Multilayer shallow water equations for free-surface water flows

In the current work, we consider M layers of water bodies bounded vertically by fixed bottom topography
and a free surface as illustrated in Figure 1. Based on the vertical P0 discretization of the horizontal
velocity, the equations for three-dimensional hydrostatic incompressible Navier-Stokes equations with free-
surface yield the so-called multilayer shallow water equations, see [6, 5] for detailed derivations of these
equations. The governing equations are similar to the single-layer shallow water equations with additional

3



terms for exchanging momentum between the layers formulated as

∂H

∂t
+

M∑
α=1

∂

∂x
(lαHuα) = 0,

(1)
∂

∂t
(lαHuα) +

∂

∂x

(
lαHu

2
α +

1

2
glαH

2

)
= −glαH

∂z

∂x
+ Suα + Sµα + Sbα + Swα ,

where z(x) is the bed topography, uα(t, x) the local water velocity for the αth layer, g the gravitational
acceleration, H(t, x) the water height of the whole flow system and lα denotes the relative size of the αth
layer with

lα > 0,
M∑
α=1

lα = 1.

The water height hα(t, x) of the αth layer is defined as a fraction of the total water height as

hα = lαH, α = 1, . . . ,M.

In (1), the source term Suα is related to the momentum exchanges between the layers which is defined
through the vertical P0 discretization of the flow as

Suα = uα+1/2Gα+1/2 − uα−1/2Gα−1/2, (2)

with the mass exchange terms Gα−1/2 and Gα+1/2 are calculated by

Gα−1/2 =


0, if α = 1,

α∑
β=1

∂ (hβuβ)

∂x
− lβ

M∑
γ=1

∂ (hγuγ)

∂x

 , if α = 2, 3 . . . ,M,

(3)

Gα+1/2 =


α∑
β=1

∂ (hβuβ)

∂x
− lβ

M∑
γ=1

∂ (hγuγ)

∂x

 , if α = 1, 2, . . . ,M − 1,

0, if α = M,

(4)

and the interface velocities uα−1/2 and uα+1/2 are evaluated using an upwind procedure following the sign
of the mass exchange terms (3) and (4) as

uα−1/2 =


uα−1, if Gα−1/2 ≥ 0,

uα, if Gα−1/2 < 0.

uα+1/2 =


uα, if Gα+1/2 ≥ 0,

uα+1, if Gα+1/2 < 0.

(5)

The vertical kinematic eddy viscosity terms Sµα in (1) account for the friction between the neighboring layers
as

Sµα =



2ν
u2 − u1

(l2 + l1)H
, if α = 1,

2ν
uα+1 − uα

(lα+1 + lα)H
− 2ν

uα − uα−1
(lα + lα−1)H

, if α = 2, 3, . . . ,M − 1,

−2ν
uM − uM−1

(lM + lM−1)H
, if α = M,

(6)
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where ν is the eddy viscosity. The external friction terms Sbα and Swα in (1) are defined by

Sbα =


−gn2b

u1 |u1|
H1/3

, if α = 1,

0, if α = 2, 3, . . . ,M,

Swα =


0, if α = 1, 2, . . . ,M − 1,

σ2sρa
w |w|
H

, if α = M,

(7)

with nb is the Manning roughness coefficient at the bed, w the wind velocity at 10 m above the water
surface, σ2s the wind stress coefficient, and ρa the air density. Note that the internal friction term Sµα
models the friction between neighboring layers in (1), the bed-friction forcing term Sbα is acting only on the
lower layer, and the wind-driven forcing term Swα is acting only on the upper layer. For simplicity in the
presentation, the multilayer shallow water equations (1) are reformulated in a compact vector form as

∂W

∂t
+
∂F(W)

∂x
= Q(W) + R(W), (8)

where W is the vector of conserved variables, F the vector of flux functions, Q and R are the vectors of
source terms

W =



H

Hu1

Hu2

...

HuM



, F(W) =



M∑
α=1

lαHuα

Hu21 +
1

2
gH2

Hu22 +
1

2
gH2

...

Hu2M +
1

2
gH2



, Q(W) =



0

−gH ∂z

∂x

−gH ∂z

∂x

...

−gH ∂z

∂x



,

R(W) =



0

1

l1

(
u3/2G3/2 − gn2b

u1 |u1|
H1/3

+ 2ν
u2 − u1

(l2 + l1)H

)
1

l2

(
u5/2G5/2 − u3/2G3/2 + 2ν

u3 − u2
(l3 + l2)H

− 2ν
u2 − u1

(l2 + l1)H

)
...

1

lM−1

(
uM−1/2GM−1/2 − uM−3/2GM−3/2 + 2ν

uM − uM−1
(lM + lM−1)H

− 2ν
uM−1 − uM−2

(lM−1 + lM−2)H

)
1

lM

(
−uM−1/2GM−1/2 − σ2ρa

w |w|
H
− 2ν

uM − uM−1
(lM + lM−1)H

)



.

It should be stressed that it is not straightforward to derive the exact expressions of the (M+1) eigenvalues
of (8) and it is also not evident that the system (8) is hyperbolic as its associated eigenvalues may become
complex. In this situation, the multilayer shallow water equations (8) yield the so-called Kelvin-Helmholtz
instability at the interface separating the water layers. In the current study, the asymptotic estimation of
these eigenvalues reported in [6] is used to adjust the timestep size in the numerical simulations. Thus, we
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suppose that all the velocities uα are closed to the mean velocity u and a first-order approximation of the
two barotropic eigenvalues gives

λ±ext = um ±

√√√√g
M∑
α=1

hα +O
(
|uβ − u|2

)
β=1,...,M

, um =

M∑
α=1

hαuα

M∑
α=1

hα

, (9)

and a zeroth-order approximation of the 2(M −1) barotropic eigenvalues associated with (M −1) interfaces
gives

λ
±,α+ 1

2
int = u±

√√√√1

2
g
M∑
α=1

hα +O (|uβ − u|)β=1,...,M , α = 1, 2, . . . ,M − 1. (10)

Notice that the eigenvalues (9)-(10) are approximations for eigenvalues of the original system using the
water heights hα instead of the total height H. This results in a system of 2M equations for which each
layer has two eigenvalues.

3 A fast and accurate finite volume method

The lack of explicit analytical expressions of the eigenvalues and eigenvectors for the multilayer shallow water
model (8) renders Riemann-solver finite volume methods inappropriate for solving these equations. These
methods include the Roe, HLL, HLLC schemes and other Godunov methods from computational fluids
dynamics, see [58, 31, 53]. In the current study, we propose a second-order Finite Volume Characteristics
(FVC) method which does not require the calculation of the eigenvalues for the multilayer system and
the selection of time steps is carried out using the asymptotic approximations (9)-(10). For the spatial
discretization of (8), we discretize the spatial domain into control volumes [xi−1/2, xi+1/2] with uniform size
∆x = xi+1/2 − xi−1/2, xi−1/2 = i∆x and xi = (i+ 1/2)∆x is the center of the control volume. Integrating
the equation (8) with respect to space over the control volume [xi−1/2, xi+1/2], we obtain the following
semi-discrete equations

dWi

dt
+
Fi+1/2 −Fi−1/2

∆x
= Q(Wi) + R(Wi), (11)

where Wi(t) is the space average of the solution W in the control volume [xi−1/2, xi+1/2] at time t, i.e.,

Wi(t) =
1

∆x

∫ xi+1/2

xi−1/2

W(t, x) dx,

and Fi±1/2 = F(Wi±1/2) are the numerical fluxes at x = xi±1/2 and time t. Here, the time integration of
(11) is performed using a second-order splitting method studied in [9]. Thus, to integrate the equations
(8) in time we divide the time interval into N sub-intervals [tn, tn+1] with length ∆t = tn+1 − tn for
n = 0, 1, . . . , N . We also use the notation Wn to denote the value of a generic function W at time tn. The
considered operator splitting method consists of three stages given by:

Stage 1:

∂W∗
i

∂t
= R(W∗

i ), t ∈ (tn, tn],

(12)
W∗

i (tn) = Wi(tn).

6



Stage 2:

∂W∗∗
i

∂t
+
∂F(W∗∗

i )

∂x
= Q(W∗∗

i ), t ∈ (tn, tn+1],

(13)
W∗∗

i (tn) = W∗
i (tn).

Stage 3:

∂W∗∗∗
i

∂t
= R(W∗∗∗

i ), t ∈ (tn, tn+1],

(14)
W∗∗∗

i (tn) = W∗∗
i (tn+1).

The time integration is complete once a time stepping scheme is applied to the above three stages. It is
clear that the nonlinear terms are dealt with in the first and third stages, whereas only linear terms are
accounted for in the second stage of the splitting. To avoid the solution of linear systems of algebraic
equations associated with implicit time stepping, we consider only explicit time integration methods for the
stages (12)-(14). To this end, we use the explicit third-order Runge-Kutta method studied in [2]. Hence,
the procedure to advance the solution of an ordinary differential equation of the structure (12) from the
time tn to the next time tn+1 can be carried out as

Wi
(1) = Wn

i + ∆tR(Wn
i ),

Wi
(2) =

3

4
Wn

i +
1

4
Wi

(1) +
1

4
∆tR(Wi

(1)), (15)

Wn+1
i =

1

3
Wn

i +
2

3
Wi

(2) +
2

3
∆tR(Wi

(2)),

where we have dropped the asterisk of the variables in (12) for ease of notation. Note that the Runge-
Kutta method (15) has been widely used for time integration of hyperbolic systems of conservation laws
mainly because it can be interpreted as a convex combination of first-order Euler steps which exhibits strong
stability properties. As a consequence, the Runge-Kutta method (15) is TVD, third-order accurate in time,
and stable under the usual Courant-Friedrichs-Lewy (CFL) condition involving the asymptotic eigenvalues
(9)-(10). The spatial discretization (11) is complete when a reconstruction of the numerical fluxes Fi±1/2 and
source terms Q(Wi) and R(Wi) are chosen. In general, the reconstruction of the numerical fluxes requires
a solution of Riemann problems at the interfaces xi±1/2, see for example [48]. From a computational
viewpoint, this procedure is very demanding and may restrict the application of the method for which
Riemann solutions are not available. On the other hand, Riemann-solver free finite volume methods such
as the canonical Lax-Friedrichs and Rusanov schemes can also be used in (11). For the Lax-Friedrichs
method, the numerical fluxes Fi+1/2 in (11) are defined by

Fni+1/2 =
1

2

(
F(Wn

i+1) + F(Wn
i )
)

+
∆x

2∆t

(
Wn

i −Wn
i+1

)
. (16)

For the Rusanov method, the numerical fluxes Fi+1/2 in (11) are

Fni+1/2 =
1

2

(
F(Wn

i+1) + F(Wn
i )
)

+
λ

2

(
Wn

i −Wn
i+1

)
, (17)

where λ is the Rusanov speed defined by

λ = max
1≤α≤M−1

(∣∣λ+ext∣∣ , ∣∣λ−ext∣∣ , ∣∣∣∣λ+,α+ 1
2

int

∣∣∣∣ , ∣∣∣∣λ−,α+ 1
2

int

∣∣∣∣) , (18)

with λ±ext and λ
±,α+ 1

2
int are the approximated eigenvalues in (9) and (10), respectively.
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3.1 Discretization of the flux gradients and source terms

Our objective in the present work is to present a class of Finite Volume Characteristics (FVC) method
that is simple, easy to implement, and accurately solves the equations (8) without relying on Riemann
problem solvers or complicated techniques for well-balancing the discretizations of the gradient fluxes and
the source terms. This objective is achieved by reformulating the multilayer system in an advective form and
integrating the obtained system along the characteristics defined by the advection velocity. To reconstruct
the numerical fluxes Fni±1/2 in (11), we consider the method of characteristics applied to an advective version

of the system (1). In practice, the advective form of the multilayer shallow water equations (8) is built such
that the non-conservative variables are transported with a velocity field associated with each layer. Here,
the multilayer shallow water equations (8), without accounting for the source term R(W), are reformulated
in an advective form as

∂H

∂t
+

(
M∑
α=1

lαuα

)
∂H

∂x
= −

M∑
α=1

lαH
∂uα
∂x

,

(19)
∂qα
∂t

+ uα
∂qα
∂x

= −qα
∂uα
∂x
− gH ∂

∂x
(H + z) , α = 1, 2 . . . ,M,

which can be rearranged in a compact form as

∂Uα
∂t

+ Uα
∂Uα
∂x

= Sα (U) , α = 0, 1, . . . ,M, (20)

where qα = Huα is the water discharge, U = (U0, U1, . . . , UM )T , S (U) = (S0, S1, . . . , SM )T with

U =



H

q1

q2

...

qM


, S(U) =



−
M∑
α=1

lαH
∂uα
∂x

−Hu1
∂u1
∂x
− gH ∂

∂x
(H + z)

−Hu2
∂u2
∂x
− gH ∂

∂x
(H + z)

...

−HuM
∂uM
∂x
− gH ∂

∂x
(H + z)


,

and the advection velocity Uα is defined as

Uα =


M∑
β=1

lβuβ, if α = 0,

uα, if α = 1, 2, . . . ,M.

(21)

Note that the case with α = 0 does not refer to any layer in the system but to the global mass equation. It
is only used here to formulate the compact advective form (20) for the whole system. The fundamental idea
of the method of characteristics is to impose a regular grid at the new time level and to backtrack the flow
trajectories to the previous time level. At the old time level, the quantities that are needed are evaluated
by interpolation from their known values on a regular grid. For more discussions, we refer the reader to
[66, 61] among others. Thus, the characteristic curves associated with the equation (20) are solutions of
the initial-value problems

dXα,i+1/2(τ)

dτ
= Uα,i+1/2

(
τ,Xα,i+1/2(τ)

)
, τ ∈ [tn, tn+1] ,

(22)
Xα,i+1/2(tn+1) = xi+1/2, α = 0, 1, . . . ,M.
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Note that Xα,i+1/2(τ) are the departure points at time τ of a particle that will arrive at the gridpoint
xi+1/2 in time tn+1. The method of characteristics does not follow the flow particles forward in time, as
the Lagrangian schemes do, instead it traces backward the position at time tn of particles that will reach
the points of a fixed mesh at time tn+1. By doing so, the method avoids the grid distortion difficulties
that the conventional Lagrangian schemes have, see for instance [66] and further references are therein.
In our simulations, we used the third-order Runge-Kutta method (15) for the solution of the initial-value
problems (22). In general Xα,i+1/2(tn) will not coincide with the spatial position of a gridpoint. Hence,
once the characteristic curves Xα,i+1/2(tn) are accurately calculated, a solution at the cell interface xi+1/2

is reconstructed as
Un+1
α,i+1/2 = Uα

(
tn+1, xi+1/2

)
= Ũα

(
tn, Xα,i+1/2(tn)

)
, (23)

where Ũα

(
tn, Xα,i+1/2(tn)

)
is the solution at the characteristic foot computed by a Lagrange-based interpo-

lation from the gridpoints of the control volume where the departure point resides. It is worth mentioning
that the proposed finite volume method is fully conservative by construction and the non-conservative
system (19) is used only to compute the intermediate states for the numerical fluxes in (11).

Applied to the equations (20), the characteristic solutions are given by

Hn
i+1/2 = H̃n

i+1/2 −
∆t

∆x
H̃n
i+1/2

M∑
α=1

lα
(
unα,i+1 − unα,i

)
,

qnα,i+1/2 = q̃nα,i+1/2 −
∆t

∆x

(
q̃nα,i+1/2

(
unα,i+1 − unα,i

)
+ gH̃n

i+1/2

(
(Hn

i+1 + zni+1)− (Hn
i + zni )

))
,

where
H̃n
i+1/2 = H

(
tn, X0,i+1/2(tn)

)
, q̃nα,i+1/2 = qα

(
tn, Xα,i+1/2(tn)

)
,

are the solutions at the characteristic foot computed by interpolation from the gridpoints of the control
volume where the departure points Xα,i+1/2(tn) belong. The numerical fluxes Fi±1/2 in (11) are calculated
using the intermediate states Wn

i±1/2 recovered accordingly from the characteristic solutions Un
j,i±1/2 in

(23). Hence, the corrector stage in the FVC method reduces to

Hn+1
i = Hn

i −
∆t

∆x

M∑
α=1

(
(lαHuα)ni+1/2 − (lαHuα)ni−1/2

)
,

(24)

qn+1
α,i = qnα,i −

∆t

∆x

((
Hu2α +

1

2
gH2

)n
i+1/2

−
(
Hu2α +

1

2
gH2

)n
i−1/2

)
− ∆t

∆x
gĤn

i

(
zni+1 − zni−1

)
,

In our FVC method, the reconstruction of the term Ĥn
i in (24) is carried out such that the discretization

of the source terms is well balanced with the discretization of flux gradients using [7]

Ĥn
i =

1

4

(
Hn
i+1 + 2Hn

i +Hn
i−1
)
. (25)

In summary, the implementation of FVC method to solve the multilayer shallow water equations (8) is
carried out following the steps in Algorithm 1.

4 Uncertainty quantification methods

In general, the purpose of uncertainty quantification is to identify the main sources of uncertainty in a phys-
ical model (e.g. parameters, external forcing, boundary conditions, initial conditions), and to quantify their
impact on the quantities of interest simulated by the numerical model (prognostic variables, probability of
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Algorithm 1 FVC method solving the multilayer shallow water equations.

Given the solution
(
Hn
i , q

n
α,i

)
at time tn, we compute the solution

(
Hn+1
i , qn+1

α,i

)
at the next time level tn+1

via:

1: Perform the first step of the time splitting in (12) to compute the solutions H∗i and q∗α,i, α = 1, 2, . . . ,M .
2: Compute the departure points Xα,i+1/2(tn), with α = 0, 1, . . . ,M by solving (22).
3: Compute the approximations

H̃n
i+1/2 = H

(
tn, X0,i+1/2(tn)

)
and q̃nα,i+1/2 = qα

(
tn, Xα,i+1/2(tn)

)
, α = 1, . . . ,M

employing an interpolation procedure.
4: Evaluate the intermediate states Hn

i+1/2 and qnα,i+1/2 from the predictor stage (24).

5: Update the solutions Hn+1
i and qn+1

α,i using the corrector stage (24).

exceeding the threshold). This allows to associate every forecast with a level of confidence since the accuracy
of a simulation significantly depends on the quantity and the quality of the input data. Therefore, to better
understand the results of numerical simulations it is necessary to take into account these uncertainties in
the simulations. In addition, a problem of uncertainty quantification is a problem which aims at estimating
uncertainty on the outputs of a numerical simulation according to the uncertainties on knowledge of its
input parameters. Because of the random nature of uncertainty, the probabilistic approach to deal with a
problem of uncertainty quantification is to consider the uncertain data of the model as random variables
or random processes and to reconsider the real deterministic numerical model as a stochastic model. This
section presents the methods used in the current study for uncertainty quantification. First, the methods of
generating different independent realizations of the bathymetric field are presented. Therefore, the classical
method of Polynomial Chaos Expansion (PCE) is used as surrogate tools to alleviate the computational
cost. Finally, as the hydraulic state is also considered as a stochastic process, we suggest to reduce the
dimension of the problem using the Proper Orthogonal Decomposition (POD) and to compute a PCE only
for the associated nonphysical variables.

4.1 Karhunen-Loève expansion for stochastic process

The Karhunen-Loève expansion (KL) allows to model a random process [69] based on a spectral decompo-
sition of its spatial covariance matrix C(x, x′), see for example [42, 49]. Hence, a stochastic process can be
defined as

z(x,ω) = z(x) +

∞∑
i=0

ωiliφi(x), (26)

where x is the curvilinear abscissa, z the mean of the random process, ω = {ω1, . . . , ω∞} a set of independent
random variables, li (i = 0, 1, . . . ) the set of the eigenvalues of the covariance function, and φi(x) (i =
0, 1, . . . ) the set of the eigenfunctions. In practice and for computational reasons, the equation (26) is
truncated at a certain degree d. The choice of this latter is often determined by a threshold ε from which
the eigenvalues could be neglected i.e.

d∑
i=0

li

∞∑
i=0

li

> 1− ε.

Thus, the expansion (26) is replaced by

z(x,ω) = z(x) +
d∑
i=0

ωiliφi(x). (27)

10



It should be stressed that the major limitation of the KL decomposition is the a priori knowledge of the
covariance matrix. In the literature, this parameter is estimated empirically and therefore could be subject
to uncertainty itself. This uncertainty is not considered in the present work and the reader may be referred
to [64] for more discussions on this topic. This expansion is commonly used to model the uncertainty of a
stochastic input parameter for two reasons: firstly the mean-square error of the finite representation (27)
is minimized such that the equation (26) converges following the `2-norm. The second reason is related
to the generation of random samples. In fact, making a realization of z(x,ω) amounts to randomly draw
the different ωi following a defined probability density function. Those parameters are assumed to be
independent random variables. Therefore, the KL decomposition offers a good representation of the input
parameters when the covariance is known. In our study, the covariance matrix C(x, x′) is supposed to be
exponential. Indeed, authors in [73] showed that the uncertainty in the description of the bathymetric field
followed this spatial correlation function. Thus, the correlation matrix is defined as

C(x, x′) = σ2 exp

(
−|x− x

′|
θ

)
, (28)

where σ and θ are the hyper-parameters of the covariance function with σ is the standard deviation of the
process and θ the correlation length. Note that, calculating the eigenvalues and eigenvectors is well known
by the Fredholm problem. There exist many algorithms that aim to solve this latter given a well-defined
matrix, see for example [3] for more details. Once, li and φi(x) are known, the KL expansion is obtained in
a straightforward manner. Therefore, the bathymetry could be written as described in (27) and could be
sampled in order to consider its uncertainty in the hydraulic computations.

4.2 Polynomial Chaos expansions

The PCE has been intensively used as a surrogate model in the context of uncertainty quantification,
see [35, 28] among others. It aims to reproduce the global behavior of the considered numerical models.
Supposing that the input parameters of this model are represented by M independent random variables
ζ = {ζ1, ζ2, . . . , ζM} with finite variance well defined in a probabilistic space, the response W of this
model is also random. Note that W is a vector-valued response as it represents the spatial variability
of the hydraulic states. Considering that the expectation E[‖W‖2] is finite, the behavior of W could be
reproducible following a polynomial decomposition namely the PCE [63] as

W(x, ζ) =
∑
i∈N

αi(x)Ψi(ζ), (29)

where Ψi is the multivariate polynomials that form the basis and chosen in such way they are orthonormal
with respect to the associated probability density function of ζ, i.e. E[Ψi(ζ)Ψj(ζ)] = δij where δij is the
Kronecker symbol, compare for example [68, 71]. In (29), αi are the unknown spectral coefficients of the
decomposition to be determined. Again, the sum in (29) is truncated to a finite series as

W(x, ζ) ≈
∑
i∈I

αi(x)Ψi(ζ), (30)

where I ⊂ N is the finite set of indices. The determination of a PCE is therefore conditioned by the
estimation of the spectral coefficients αi. There are many methods used in the literature to achieve this
step and we refer to [70, 71, 46] for a review of these methodologies. In the current work, only the regression
method is used and this choice comes from the fact that these methods coupled with compressed sensing
techniques are advantageous when the stochastic dimension of the problem M is high (which is more likely
to be the case hereafter the use of the KL decomposition). The regression method is based on solving a
least-square (LS) minimization problem in some `2-norm to estimate the coefficients αi, see for instance
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[21, 10]. In practice, we begin by defining an error ε as the distance between the model and the PCE for a
finite set of randomly sampled input variables of size Nls as

ε =

∥∥∥∥∥W(x,Ξ)−
∑
i∈N

αi(x)Ψ(Ξ)

∥∥∥∥∥
2

≡W −α>Ψ, (31)

where Ξ = [ζ(1), . . . , ζ(Nls)]> is the set of considered realizations for the stochastic input variables ζ and
W = [W(1), . . . ,W(Nls)]> the vector of associated model outputs. We also define α = [α0, . . . , αNPC−1

]> as
the vector of the NPC = Card(I) unknown coefficients and Ψ is the matrix of size NPC ×Nls assembling
the values of all orthonormal polynomials at the stochastic input realizations values Ψik = Ψi(ζ

(k)), with
i = 0, 1, . . . , NPC−1 and k = 1, 2, . . . , Nls. Following the ordinary least-square (31), the estimation of the
set of coefficients α is equivalent to minimize the following function

J(α) = ε>ε =
(
W −α>Ψ

)> (
W −α>Ψ

)
, (32)

which leads to a standard well-known linear algebraic solution as

α = (Ψ>Ψ)−1 Ψ>W . (33)

Here, the input space exploration is fulfilled using a Monte-Carlo sampling-based approach [11, 28]. It is
worth mentioning that the number of coefficients NPC needed is directly affected by the stochastic dimension
M as well as the polynomial degree p. As a consequence, the Monte-Carlo size Nls will also increase
significantly with M and p. This is a classical problem of PCE also known as the curse of dimensionality.
The adaptive Least Angle Regression (LAR) method [26] has been introduced and used to overcome this
specific problem [11]. This method, introduced in the context of compressed sensing, has made it possible
to give the best polynomial representation given a fixed budget of finite simulations. It will be used in
the present work as it has been demonstrated to be very efficient in this framework. The idea behind this
method is to select with an iterative manner an optimal sparse basis among the original one and then to
compute a limited number of coefficients using a standard regression method. In the context of PCE, a
hybrid LAR method is used. The method consists on using LAR to evaluate the best set of predictors
among the full basis elements with the help of a cross-validation method. These coefficients are estimated
using the classical least square method, see [11] for more details. The infinite expansion (29) describing
PCE converges with respect to the standard `2-norm known by the mean-squared convergence, see for
example [70]. However, due to the errors of truncation and spectral coefficient estimation, the accuracy
of this expansion must be evaluated in the same error norm. There are many different error metrics that
allow to assess the accuracy of the PCE, see [28, 70] among others. In the present work, all the PCEs
are assessed using the Leave-one-out (LOO) error. This method avoids integrating the model over another
set of validation samples and therefore the computational cost is optimized. It has been introduced in
this context with the introduction of sparse PCE [10] and the LOO technique required the formulation of
several surrogates [25, 11]. Each surrogate model is built excluding one point out of the input sample and
the accuracy of the surrogate model is then quantified at this particular point. Following this theory, the
error εLOO is defined by

εLOO =

Nls∑
k=1

(
W(k) −W(−k)

)2
Nls∑
k=1

(
W(k) −W

)2 , (34)

where W denotes the sample-averaged model simulations and W(−k) stands for the evaluation of the PCE
at ζ(k) when the surrogate has been built using an experimental design in which ζ(k) was excluded. In the
present work, the determination of the optimal polynomial degree is performed using an iterative method.
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Algorithm 2 The implementation of the stochastic POD procedure.

1: Define the covariance matrix (36).
2: Expand the matrix C using an SVD algorithm to determine λi and φi(x).
3: Retain only the first k eigenvalues and eigenvectors in the expansion using the condition (35).
4: Reconstruct the stochastic solutions W(x, ζ) using (35).

Thus, a PCE is computed for different degrees varying from 1 to 20 and the optimal degree is determined
based on the value of the corresponding εLOO. For the same value of a given error, the lowest value of the
degree is retained.

Note that, when dealing with numerical models with spatial or temporal dependence, the classical way
used in numerical simulations is to discretize the physical domain and resolve the governing equations for
each control volume. This procedure leads to multiple decompositions to ensure numerical convergence.
As a result, uncertainty quantification becomes computationally very demanding not only because of the
stochastic dimensions but also because of the spatial or temporal dimensions of the output variables. For
these reasons, many methods have been introduced in the literature in order to reduce the dimensionality
of the output vector, see for instance [55, 14, 19, 13]. Among all these different techniques, the POD has
proven to be efficient in the context of physical fields with rapid variability as in hydraulics [55].

4.3 Stochastic proper orthogonal decomposition

The proper orthogonal decomposition (POD) is a well-established technique that allows a high-dimensional
system to be approached by a low-dimensional one, compare [22] among others. This method consists of
determining a basis of orthogonal eigenvalues representative of the simulated physics. Notice that the POD
is used in uncertainty quantifications to reduce the size of a random vector at the output of the model. The
uncertainty is therefore carried out over each direction defined by the eigenvectors φi(x). The idea is based
on projecting the solution W of the model into a finite and orthonormal basis {φi, i ∈ IPOD}, where IPOD
is a discrete finite set of indices. Thus, the process W(x, ζ) is decomposed as

W(x, ζ) =
∑

i∈IPOD

λ̂i(ζ)φi(x). (35)

The estimation of {φi, i ∈ IPOD} is performed by decomposing the covariance matrix as

C =
1

Nls
WW>. (36)

Indeed, the literature is rich in techniques that aim to decompose a covariance matrix. One of the most
known methods is the Singular Value Decomposition (SVD) algorithm [24]. Hence, we define a POD-
truncated error ε such as only the most k invaluable eigenvectors are retained as

k∑
i=0

λi

Nls∑
i=0

λi

> 1− ε, (37)

where λ̂i is the mean value of λi(ζ). In summary, the stochastic POD procedure can be implemented using
the steps described in Algorithm 2. It is worth remarking that the selection of the convergence criterion ε is
problem-dependent. The selection criterion of ε for test examples in the present investigation is discussed
in Section 5 where numerical examples are described.
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Once the stochastic POD is reconstructed, the eigenvalues are considered as stochastic independent variables
(since the eigenvectors form a basis). This means that we can define a PCE for each eigenvalue following
the same manner as described in the previous section on polynomial chaos expansions leaving the spatial
dependence described by the eigenvectors φi(x) as

λi(ζ) =

NPC∑
j=0

γjΨj(ζ), (38)

where γj are the corresponding spectral coefficients. Hence, using (38), the equation (30) reduces to

W(x, ζ) =
∑

i∈IPOD

NPC∑
j=0

γjΨj(ζ)

φi(x). (39)

Figure 2 summarizes both algorithms that we consider in the present work for quantification of uncertainties
in multilayer shallow water flows. Note that the classical way to deal with a problem of uncertainty quan-
tification using the PCE is performed when a decomposition is achieved for each node in the computational
mesh. This method is illustrated by steps 1, 2, and 3 in Figure 2. This method is computationally demand-
ing, as a surrogate model is built for each nodal point of the computational mesh. However, as mentioned
before, one method to alleviate the spatial distribution is to make the first reduction using the POD. The
eigenvalues of the POD are supposed to retrieve the stochasticity expressed by the stochastic process, while
the eigenvectors express the spatial dependence. Once the POD is carried out, only a few eigenmodes are
retained enabling to make less PCE than its conventional counterpart. This algorithm follows steps 1, 2,
4, and 5 in Figure 2.

5 Numerical results and examples

In this section we present numerical results for several test problems of shallow water flows using multilayer
shallow water equations over flat and non-flat beds. The main goal of this section is to illustrate the
numerical performance of the techniques described above for the uncertainty quantification in multilayer
shallow water flows. In our simulations, the Courant number is set to Cr = 0.85 and the time stepsize ∆t
is adjusted at each time step according to the CFL stability condition as

∆t = Cr
∆x

max
1≤α≤M−1

(∣∣λ+ext∣∣ , ∣∣λ−ext∣∣ , ∣∣∣∣λ+,α+ 1
2

int

∣∣∣∣ , ∣∣∣∣λ−,α+ 1
2

int

∣∣∣∣) , (40)

where λ±ext and λ
±,α+ 1

2
int are the approximated eigenvalues in (9) and (10), respectively. In all the computa-

tions reported herein, the total water height H and the total number of layers M are given whereas, the
water height hα at each αth layer is equidistantly calculated as

hα = lαH, with lα =
1

M
, α = 1, 2, . . . ,M.

We also present the two-dimensional velocity fields for the considered examples using the post-processing
procedure described in [4, 7]. Here, the vertical velocity v is computed using the divergence-free condition
from the incompressible Navier-Stokes equations as

∂u

∂x
+
∂v

∂z
= 0. (41)

To compute the vertical velocity v, we integrate the equation (41) for each layer assuming non-penetration
boundary conditions at the bottom, see [4, 7] for more details on this procedure. In this section, we also
compare the results obtained using the proposed FVC scheme to those obtained using the well-established
Lax-Friedrichs method and the Kinetic method investigated in [4].
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Figure 2: Schematic representation of the difference between flowcharts for the classical PCE based surrogate
model and the POD-PCE based surrogate model.

5.1 Dam-break problem over a flat bed

For this test example, the uncertainty quantification is performed for a dam-break flow problem over a
stochastic flat bed. The channel is 100 m long and subject to the following initial conditions

H(0, x) =

2, if x ≤ 0,

1, if x > 0,
uα(0, x) = 0.

At the initial time t = 0, the dam breaks and the flow problem consist of a shock wave propagating
downstream and a rarefaction wave propagating upstream. In this example, g = 9.81 m/s2, ν = 0.01,
nb = 0.05 s/m1/3, the computational domain is discretized into 100 control volumes and numerical results
are presented for 10 layers at time t = 6 s. We suppose that the bathymetry field is a Gaussian process
that could be expanded following the KL decomposition and the coefficient of variation is fixed to 30%.
The aim here is to quantify the uncertainty on the water height and the vertical mean velocity using the
considered numerical methods namely, the FVC, the Kinetic, and the Lax-Friedrich schemes.

Figure 3 illustrates the eigenvalues and eigenvectors obtained for the bathymetry process supposed to be
a Gaussian process described with an exponential spatial autocorrelation function. Under the considered
flow conditions, given a value of the threshold ε = 10−2, 14 eigenvalues are required to correctly sample
the bathymetric field. In other words, the stochastic dimension of this problem is 16 (14 representing the
bathymetry, one for the friction coefficient, and one for the viscosity coefficient). For each of the three
numerical methods considered in this study, a set of 1000 Monte-Carlo simulations are performed and
the POD is then used to reduce the output space. In this case, different modes are retained to correctly
represent the water height and the water velocity fields. An iterative procedure is used to determine the
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Figure 3: Eigenvalues (left plot) and the associated eigenfunctions (right plot) of the correlation matrix in
the KL decomposition for the dam-break problem over a flat bed.

best polynomial degree along with the LOO error which is used to assess the robustness of the considered
PCE. In order to further assess the quality of the surrogate model, its performance is compared to the full
Monte-Carlo simulations fulfilled with a design of experiment with a set size fixed to 100000.

Figure 4: RMSE in the variance and the mean fields using the Lax-Friedrichs, Kinetic and FVC schemes
for the water height and the mean velocity for the dam-break problem over a flat bed.

Table 1 summarizes the results obtained for the first and second POD modes. It is evident that a polynomial
of degree 3 is enough to correctly reproduce the uncertainty translated from errors in the bathymetry for the
three considered finite volume methods. For both output fields (water height or water velocity), the LOO
error varies from 10−12 to 10−7 which makes the surrogate model very reliable for uncertainty quantification
in this class of dam-break problems. Note that the LOO error reflects the accuracy of the polynomial Chaos
expansion to estimate the uncertainty expressed by each mode. Therefore, it should not be mistaken with
the accuracy of the surrogate model (polynomial Chaos expansion with a proper orthogonal decomposition)
to estimate the physical values. For this purpose, the accuracy of the surrogate model is assessed using
the full Monte-Carlo simulations. As each physical component has a spatial dependency, the RMSE is
estimated for the water height, the averaged velocity and for the mean and the variance fields using the
three considered numerical models. The obtained results are reported in Figure 4 and it is clear that the
RMSE value varies from 10−4 to 10−3 confirming the fact that the surrogate model has a good accuracy
to estimate the first and second statistical moments. Furthermore, a QQ-plot displaying the results from
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Table 1: Best polynomial degrees with LOO errors for the POD modes in the water height and mean
velocity using different numerical schemes for the dam-break problem over a flat bed.

Error and polynomial degree for water height H

Lax-Friedrich scheme Kinetic scheme FVC scheme

Number of modes 5 6 6

Error (M1) 5.764E-10 4.768E-10 2.354E-7

Error (M2) 6.684E-10 1.674E-10 2.369E-7

Error (M3) 6.442E-10 3.186E-10 2.528E-7

Error (M4) 5.456E-9 3.750E-10 3.816E-7

Error (M5) 7.562E-9 5.300E-10 4.468E-7

Error (M6) ———— 9.590E-10 1.557E-7

Polynomial (M1) 3 3 3

Polynomial (M2) 3 3 3

Polynomial (M3) 3 3 3

Polynomial (M4) 3 3 3

Polynomial (M5) 3 3 3

Polynomial (M6) ———— 3 3

Error and polynomial degree for water mean velocity u

Lax-Friedrich scheme Kinetic scheme FVC scheme

Number of modes 8 7 7

Error (M1) 1.705E-5 2.961E-5 1.621E-5

Error (M2) 8.588E-8 7.389E-8 4.110E-6

Error (M3) 1.995E-8 9.500E-8 9.001E-6

Error (M4) 2.736E-6 5.583E-6 7.860E-6

Error (M5) 4.047E-7 8.670E-8 1.111E-6

Error (M6) 4.276E-6 6.949E-6 1.339E-5

Error (M7) 1.080E-6 6.779E-7 2.960E-5

Error (M8) 1.145E-6 ———— ————

Polynomial (M1) 3 3 3

Polynomial (M2) 2 2 3

Polynomial (M3) 3 3 3

Polynomial (M4) 2 3 3

Polynomial (M5) 3 2 3

Polynomial (M6) 3 3 3

Polynomial (M7) 2 3 3

Polynomial (M8) 2 ———— ————

the surrogate model against the Monte-Carlo simulations is illustrated in Figure 5 for the water height and
the averaged velocity. As it can be seen from this figure, all points of the domain are located in the first
bisector of the QQ-plot which means that there is a good agreement between the results from the proposed
model and the surrogate model. Hence, the surrogate model requiring 100 times fewer simulations than the
Monte-Carlo simulations is able to provide accurate results for uncertainty quantification in this dam-break
problem. In addition, the proper orthogonal decomposition allowed to reduce the dimensionality of the
problem to only 8 modes for the velocity and 6 modes for the water height.
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Figure 5: The QQ-plot between the Monte-Carlo simulations and the surrogate model for the estimation
of the mean for the water height(left plot) and the velocity (right plot) for the dam-break problem over a
flat bed.

Next, we turn our attention to the estimation of the first- and second-order moments using the surrogate
model. The objective here is to present a comparison between the uncertainty displayed by each of the
considered finite volume methods. First, we compare in Figure 6 the mean field and the deterministic
solutions obtained at time t = 6 s using the considered numerical schemes. There are no significant changes
between the deterministic solutions and the mean fields. The only differences observed are those already
known from the differences between the finite volume methods for solving this class of problems. We also
report in Figure 7 the mean solution of the water height along with its Confidence Interval (CI) that we
define by taking the stochastic mean and adding and removing one standard deviation. As it can be seen
from these results, the mean fields highlight some well-established results on the accuracy of the numerical
methods such that the numerical diffusion is more pronounced for the Lax-Friedrichs method than for the
FVC method. However, these methods do not display the same uncertainty for this test problem. In fact,
the interval of confidence follows the physical feature of each variable namely, the water height and the
water velocity. One can also notice that the FVC method displays less uncertainty than the other methods,
especially around the shock area. For this reason, in the following we will consider only this method to
solve the multilayer shallow water equations.

5.2 Wind-driven recirculation flow over a flat bed

In this example, we consider a class of wind-driven recirculation flow problems in closed domains. It
should be pointed out that these recirculation features of the water flow can not be captured using the
conventional single-layer shallow water equations. Hence, the present test is served as a prototype to verify
the performance of multilayer shallow water flows to reproduce such phenomena. In this example, the
multilayer system is solved in a closed channel 16 m long with a flat bottom filled at 2 m of water subject
to a wind of speed w = 20 m/s blowing from the left to the right of the domain. In our simulations,
ρa = 1200 kg/m3, g = 9.81 m/s2, ν = 0.1, nb = 0.00001 s/m1/3, σs = 0.0015, the computational domain
is discretized into 16 control volumes and numerical results are presented for different numbers of layers at
time t = 20 s. Note that, due to the wind effects, the water flow changes the direction pointing towards the
right boundary of the lake. The aim of this test example is to study the effects of the accounted uncertainty
for the bathymetry, the bed friction, and the viscosity on the hydraulic states. We also investigate the
impact of the number of layers used to capture the physical features on the uncertainty of the different
physical variables. As in the previous example, the KL decomposition is used to sample the bathymetric
field and the associated eigenvalues and eigenvectors are shown in Figure 8. The bathymetry process is
supposed to be a Gaussian process described with 14 independent normal distributed random variables.
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Lax-Friedrich scheme Kinetic scheme FVC scheme

Figure 6: Deterministic flow fields (first row) and stochastic mean flow fields (second row) for the dam-break
problem over a flat bed using Lax-Friedrich scheme (first column), Kinetic scheme (second column) and
FVC scheme (third column). Here, the colors refer to the intensity of the velocity filed.

Figure 7: Mean solutions for water height (left plot) and mean velocity (right plot) for the dam-break
problem over a flat bed.

In addition to these variables, we add the three other random variables representing the bed friction, the
viscosity between layers, and the wind stress. Three different numbers of layers M = 4, 8, and 12 are used
in this example.

In our computations, the surrogate model is built using 1000 forward simulations of the numerical model.
Then, only a few representative modes are selected using the proper orthogonal decomposition where the
corresponding eigenvalues are supposed to contain the uncertainty displayed by the model. The PCE is
therefore built using these eigenvalues. Table 2 summarizes the steps needed for building the surrogate model
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Table 2: Best polynomial degrees with LOO errors for the POD modes in the water height and mean
velocity using different numbers of layers for the wind-driven recirculation flow problem over a flat bed.

Error and polynomial degree for water height H
M = 4 M = 8 M = 12

Number of modes 5 5 5
Error (M1) 1.365E-06 1.267E-06 1.251E-06
Error (M2) 9.059E-08 8.113E-08 8.06E-08
Error (M3) 4.012E-08 3.783E-08 3.739E-08
Error (M4) 5.095E-08 4.595E-08 4.263E-08
Error (M5) 3.596E-08 3.297E-08 3.154E-08
Polynomial (M1 - M5) 3 3 3

Error and polynomial degree for water mean velocity u
M = 4 M = 8 M = 12

Number of modes 30 30 30
Error (M1) 8.018E-06 7.453E-06 8.064E-06
Error (M2) 1.820E-05 1.870E-05 1.844E-05
Error (M3) 9.717E-05 8.930E-05 9.236E-05
Error (M4) 5.629E-05 5.156E-05 4.688E-05
Error (M5) 6.351E-05 5.950E-05 5.767E-05
Error (M6) 6.104E-05 5.735E-05 5.886E-05
Error (M7) 6.566E-05 6.5180E-05 6.497E-05
Error (M8) 6.397E-05 6.865E-05 6.628E-05
Error (M9) 7.209E-05 6.528E-05 6.198E-05
Error (M10) 8.240E-05 8.059E-05 6.966E-05
Error (M11) 9.463E-05 8.461E-05 8.699E-05
Error (M12) 11.430E-05 11.06E-05 10.62E-05
Error (M13) 14.760E-05 13.96E-05 13.86E-05
Error (M14) 20.08E-05 21.20E-05 22.08E-05
Error (M15) 19.81E-05 20.24E-05 20.47E-05
Error (M16) 66.30E-05 65.33E-05 64.24E-05
Error (M17) 70.64E-05 66.91E-05 71.38E-05
Error (M18) 81.25E-05 75.44E-05 77.41E-05
Error (M19) 73.52E-05 72.42E-05 69.00E-05
Error (M20) 74.24E-05 82.57E-05 75.28E-05
Error (M21) 73.12E-05 73.59E-05 70.81E-05
Error (M22) 66.04E-05 67.76E-05 81.09E-05
Error (M23) 82.39E-05 82.39E-05 80.61E-05
Error (M24) 82.42E-05 82.78E-05 84.72E-05
Error (M25) 72.63E-05 75.82E-05 77.95E-05
Error (M26) 82.13E-05 77.52E-05 86.38E-05
Error (M27) 86.96E-05 86.36E-05 84.49E-05
Error (M28) 86.34E-05 85.27E-05 92.65E-05
Error (M29) 86.12E-05 87.62E-05 91.32E-05
Error (M30) 88.28E-05 88.33E-05 90.98E-05
Polynomial (M1 - M30) 3 3 3
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Figure 8: Eigenvalues (left plot) and associated eigenfunctions (right plot) of the correlation matrix in the
KL decomposition for the wind-driven recirculation flow problem over a flat bed.

M = 4 M = 8 M = 12

Figure 9: RMSE in the variance and the mean fields using 4, 8 and 12 layers for the wind-driven recirculation
flow problem over a flat bed.

to quantify the uncertainty of both the water height and velocity. For this case, results demonstrate that only
5 modes are needed to accurately estimate the physical variability i.e., only 5 polynomial representations
are needed instead of the 100 polynomials corresponding to the number of control volumes used in the FVC
scheme. Results in Table 2 also demonstrate that the LOO error for this problem is very low suggesting that
the polynomial Chaos expansion has accurately assessed the uncertainty given by each mode. In addition,
Table 2 suggests that a polynomial degree equal 3 is sufficient for all the eigenvalues of the POD. For the
average velocity field, results for the POD ensure that given the physical variability of the system and in
order to have an accurate proper decomposition, 30 modes are needed i.e., 30 polynomial Chaos expansions
are needed to accurately assess the uncertainty. Yet, this number is smaller compared to the number needed
without using the POD (in this case 100 expansions are needed corresponding to the number of control
volumes). Again, as suggested by the results for the velocity in Table 2, the PCE computed over the
eigenvalues converge with respect to the LOO error as all the errors are below 10−5. Note that, although
the errors in Table 2 confirm that the PCE converges, it is necessary to assess the accuracy of the whole
surrogate model as the POD is expected to add some uncertainties to the surrogate model. For this purpose,
an assessment of the accuracy of the surrogate model is performed in comparison with the Monte-Carlo
simulations using 100000 samples. We use the RMSE to quantify the errors in the estimation of the variance
and the mean solutions. Figure 9 depicts the obtained results for all the considered cases. Notice that the
RMSE errors are also estimated for velocities of all the layers. It is clear that the values of the errors are
below the LOO errors estimated previously. However, the RMSE errors are below 10−3 for all considered
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M = 4 M = 8 M = 12

Figure 10: Deterministic flow fields (first row) and stochastic mean flow fields (second row) for the wind-
driven recirculation flow problem over a flat bed using M = 4 (first column), M = 8 (second column)
M = 12 (third column).

cases which makes the use of the surrogate model very reliable to quantify the uncertainty generated by
the multilayer shallow water equations for this flow problem.

Figure 10 exhibits the velocity fields obtained using the considered numbers of layers. As can be seen,
a central recirculation has been generated in the flow domain and an increase of the number of layers in
the one-dimensional model yields a consistent convergence to the velocity profile obtained using the three-
dimensional Navier-Stokes equations, compare for example [4, 7]. These results are a clear indication that it
is possible to efficiently resolve the vertical variation in the water velocity using the one-dimensional shallow
water equations without the need for the three-dimensional Navier-Stokes equations. A comparison in com-
putational costs between the one-dimensional multilayer shallow water models and the three-dimensional
Navier-Stokes equations has been reported in [7, 39]. Furthermore, the mean solution computed by the
surrogate model shows some differences compared to the deterministic solutions for this example. This is
mainly due to the nonlinearities associated with the multilayer shallow model equations. In order to in-
vestigate further the impact of these nonlinearities, ranges of uncertainty in the water height and averaged
water velocity is included in Figure 11. One can see that all three numbers of layers yield the same behavior
in both the estimated water height and the averaged velocity. Note that there is a little difference noticed
between the stochastic and deterministic solutions in the averaged velocity profile. This suggests that the
discrepancies observed in Figure 10 are generated from the velocity between layers. Moreover, One can also
assess that the stochastic parameters considered in this recirculation flow problem are responsible for up to
5% in the uncertainty in the outputs.

5.3 Multilayer free-surface flows in the Strait of Gibraltar

Our final test problem consists of flow recirculation in the Strait of Gibraltar using the multilayer shallow
water equations with the mass exchange. Note that this flow problem presents a realistic practical test
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M = 4 M = 8 M = 12

Figure 11: Uncertainty ranges for water height (first row) and mean velocity (second row) along with
deterministic solutions for the wind-driven recirculation flow problem over a flat bed.

Figure 12: Schematic map of the Strait of Gibraltar along with relevant locations (left plot) and the
bathymetry used for the one-dimensional simulations in the present study (right plot).
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of multilayer shallow water flows for two major reasons. Firstly, the domain of the Strait of Gibraltar is
relatively large including high gradients of the bathymetry and well-defined shelf regions. Secondly, the
Strait is deep and contains two water bodies with different densities, which present a challenge in shallow
water modelling. Indeed, the basic Oceanic circulation in the Strait of Gibraltar consists of an upper layer of
cold, fresh surface Atlantic water and an opposite deep current of warmer, salty outflowing Mediterranean
water, compare for example [1, 33, 45, 65]. A schematic map of the Strait of Gibraltar along with relevant
locations is depicted in the left plot of Figure 12. The system is bounded to the north and south by the
Iberian and African continental forelands, respectively, and to the west and east by the Atlantic ocean and
the Mediterranean sea. In geographical coordinates, the Strait is 35o45′ to 36o15′ N latitude and 5o15′

to 6o05′ W longitude. Here, we consider a one-dimensional cross-section along the Strait (obtained by a
longitudinal section along the dashed line in the left plot of Figure 12) subject to a Levante wind with
speed w = 15 m/s blowing from the east to the west of the Strait. The computational domain and the
associated bathymetry are displayed in the right plot of Figure 12. This restricted domain has also been
considered in [16, 17, 50] among others. In all simulations, we have used ρa = 1200 kg/m3, g = 9.81 m/s2,
ν = 0.02, nb = 0.007 s/m1/3, σs = 0.0015, the computational domain is discretized into 50 control volumes
and numerical results are presented for 10 layers at time t = 50 s. The purpose here is to quantify the
uncertainty of hydraulic modelling using multilayer shallow water equations. This step is very important if
one wants to monitor the hydraulics linked activities such as maritime transport and fishery among others.
In addition, one of the purposes of this study is to perform a sensitivity analysis for free-surface flows in
the Strait of Gibraltar. This will help to prioritize the modelling parameters based on their contribution
to the uncertainty of the hydraulic states. This will also identify the parameters that should be controlled
once the model is used in an operational framework.

As in the previous examples, we construct our meta-model for all the physical variables (water height,
averaged water velocity, and the velocity for each layer). We begin by assessing the quality of the surrogate
model compared to the Monte-Carlo simulations using 100000 evaluations of the model. We recall here
that in order to reduce the dimensionality of the problem and to avoid the problem of reducing the number
of control volumes which will impact the numerical accuracy, we use the proper orthogonal decomposition.
Thus, the polynomial Chaos expansion is computed over the eigenvalues of the decomposition. This would
allow having less number of decompositions than the original problem which consists of computing a de-
composition for each variable at each control volume. The obtained results for the best polynomial degree
and LOO errors for the POD modes in the water height and velocity using the FVC scheme are presented
in Table 3. First, one can see that for a fixed value of the truncation error, the POD does not yield the
same number of orthogonal functions. For example, the water height needs only 3 modes whereas, the
averaged water velocity needs 15 modes. It should be stressed that this is a considerable reduction in the
dimension of the output. Moreover, using the LAR method in order to build the polynomial expansion over
the eigenvalues, Table 3 also reveals that polynomials of degree 2 to 3 are enough to correctly capture the
uncertainty generated in the eigenvalues. the LOO error estimated for each mode demonstrates that the
uncertainty of these modes is well captured by the considered polynomials with an error varying from 10−7

to 10−10.

It should be pointed out that in general assessing the accuracy of the PCE over the eigenvalues of the
POD does not guarantee the convergence of the surrogate model. For this reason, the accuracy of the
proposed surrogate model is compared to very demanding Monte-Carlo simulations composed of 100000
forward simulations. Then, the RMSE is estimated for all physical variables of the hydraulic states for the
estimation of the mean and variance solutions. The obtained results for this case are reported in Figure
13 and as for the previous case, the surrogate model allows to correctly quantify the uncertainty for all
the physical parameters as the error is less than 10−3 in both the mean and variance solutions. Since
the Monte-Carlo simulations have been performed, we also assess the ability of the surrogate model to
estimate the whole Probability Density Function (PDF) at the locations where data measurements are
often collected for hydraulics namely, Camarinal Sill, Tangier Basin, and Tarifa Narrows as shown in Figure
12. This comparison is shown in Figure 14 where the estimation of the whole PDF at these locations using
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Table 3: Best polynomial degree with LOO errors for the POD modes in the water height and velocity
using the FVC scheme for the flow recirculation in the Strait of Gibraltar.

Water height Mean water velocity

Number of modes 3 15

LOO error (M1) 6.169E-10 5.804E-08

LOO error (M2) 4.989E-09 1.320E-06

LOO error (M3) 1.588E-09 1.464E-07

LOO error (M4) ————— 5.142E-08

LOO error (M5) ————— 1.015E-07

LOO error (M6) ————— 9.949E-08

LOO error (M7) ————— 3.199E-07

LOO error (M8) ————— 6.806E-07

LOO error (M9) ————— 3.357E-07

LOO error (M10) ————— 1.868E-07

LOO error (M11) ————— 7.066E-07

LOO error (M12) ————— 7.829E-07

LOO error (M13) ————— 1.520E-06

LOO error (M14) ————— 1.957E-06

LOO error (M15) ————— 3.466E-07

Polynomial (M1) 3 3

Polynomial (M2) 3 3

Polynomial (M3) 2 3

Polynomial (M4-M11) ————— 3

Polynomial (M12) ————— 2

Polynomial (M13-M15) ————— 3

Monte-Carlo simulation are compared to those obtained using the surrogate model. It is clear that the
results demonstrate that generally there is a good estimation of the probability density function using the
tools presented in this study.

A comparison between the deterministic and stochastic approaches is also carried out for this flow problem.
In Figure 15 we compare the deterministic and stochastic mean solutions obtained for the flow fields. It
is clear that the computed results exhibit slight differences especially downstream of the Strait. This is
resulting from the nonlinearities of the exchange terms appearing in the multilayer shallow water equations.
Next, the uncertainty ranges of the hydraulic states are displayed in Figure 16. The obtained results show
that the uncertainty ranges especially in the water height could not be negligible. The velocity profiles have
also been tracked at the three locations where data is regularly collected. The uncertainty ranges in these
velocity profiles are very narrow compared to the uncertainty in the water heights. Moreover, the same
figure also illustrates the uncertainty range for the averaged water velocity. Although there is huge physical
variability in this parameter, which can explain the need for the high number of POD model, see Table3,
the uncertainty range is very narrow. These results demonstrate that the uncertainty in the bathymetry,
the viscosity, and the friction coefficients impact mostly the water height.

Finally, sensitivity analysis is carried out for this recirculation flow problem in the Strait of Gibraltar. Since
the water height is the parameter impacted the most from the stochasticity considered in this study, the
sensitivity analysis is carried out over this parameter. Note that the KL decomposition allows sampling of
the bathymetric field by introducing 16 random variables. Therefore, we assessed first a total Sobol index
for these 16 random variables to which we add the Manning coefficient, the viscosity parameter, and the
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Figure 13: RMSE in different physical variables computed by the model for the flow recirculation in the
Strait of Gibraltar.

Camarinal Sill Tangier Basin Tarifa Narrows

Figure 14: Probability density functions obtained at three different locations using the surrogate model and
the Monte-Carlo for the flow recirculation in the Strait of Gibraltar.

wind friction coefficients. Furthermore, the sensitivity analysis is carried only at the three measurement
locations and the obtained results are presented in Figure 17. First, the results show that there are no
differences between the first and total order, suggesting that the interaction between the random variables
is negligible. Next at all considered locations, only random variables of the KL decomposition have high
values. This suggests that the simulations of the water height are very sensitive to bathymetry. Finally one
can see that reducing the uncertainty could be achieved by monitoring only four or three modes at most of
the KL decomposition.

6 Conclusions

A surrogate model has been investigated in the present study for the propagation and quantification of
the uncertainty in hydraulic modelling. The flow in such cases has usually many complex features making
the classical shallow water equations not suitable for this type of hydraulic problems. In general, one has
to consider the full three-dimensional Navier-Stokes equations which require a considerable computational
cost to be numerically solved. However, the multilayer shallow water models have proven their efficiency to
replace the full three-dimensional Navier-Stokes equations while preserving the numerical flexibility given
by the shallow water system and therefore could be considered to model the oceanic recirculation. While
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Deterministic solution Mean solution

Figure 15: Deterministic and mean solutions of the velocity fields for the flow recirculation in the Strait of
Gibraltar.

Figure 16: Uncertainty range in the water level (left plot), velocity profiles (middle plot) and averaged
water velocity (right plot) for the flow recirculation in the Strait of Gibraltar.

Camarinall Sill Tangier Basin Tarifa Narrow

Figure 17: Sensitivity analysis using the Sobol indices at three locations in the Strait where data are
measured periodically.

several previous studies demonstrated the numerical performance of the multilayer shallow water models to
accurately capture the complex pattern existing in the oceanic recirculation, to the best of our knowledge
the problem of uncertainty quantification has been investigated for the first time. The implementation of
surrogate models is a common practice for uncertainty quantification in computational fluid dynamics. The
numerical model needs to be run several times, which increases the computational cost. Through the use of
the surrogate models, the required numerous evaluation could be performed easily in a reasonable time. The
literature has reported many surrogate models that are used in the context of uncertainty quantification.
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The choice of one or another is generally done based on numerical experiences. Usually when possible the
robustness of these models is assessed with comparison to the well-established Monte-Carlo simulations
given its statistical properties. In the present work, we choose to used polynomial Chaos expansion based
on the previous results of this model in the hydraulic computations. Furthermore, the spatial dimension
of different quantities of interest (water height and velocity) are reduced thanks to a proper orthogonal
decomposition. The results are presented for three application cases: a dam-break problem, a wind-driven
circulation over a lake, and the real case of the Strait of Gibraltar.

In the first case, we performed uncertainty quantification for a dam break problem. We assumed that the
uncertainty of the simulations resulted from the stochastic bed, friction coefficient, viscosity between layers,
and the wind friction terms. Moreover, the highlight was put here on the numerical schemes used to solve the
multilayer shallow water equations. We used three different numerical schemes, namely the Kinetic, the Lax-
Friedrich, and a finite volume characteristics method. The results demonstrated that the surrogate model
performed well when compared to the Monte-Carlo simulations. The RMSE reaches an order of magnitude
up to 10−3 for the estimation of the mean and the variance solutions using all the considered numerical
methods. The results also demonstrated a good agreement in the simulation of the physical patterns in the
mean field. Finally, we concluded that the numerical schemes do not display the same level of uncertainties.
In the second, we performed uncertainty quantification for a wind-driven circulation problem. As for the
previous case, the stochastic parameters considered here include the bathymetry, the friction term, the
viscosity between layers and the wind friction terms. The results showed a good agreement between the
surrogate model and the Monte-Carlo simulations. The RMSE has an order of magnitude ranging from
10−4 to 10−3. Moreover, we compared the results of the uncertainty for a different numbers of layers in
the model. We concluded that the uncertainty in the model is not much affected by the number of layers.
However, one should be aware that the number of layers could affect the physical modelling which can yield
modelling errors. Finally, we applied our methodology to the real case of flow recirculation in the Strait
of Gibraltar. This place knows consistent economical activities over time including fishery, transport, and
tourism among others. Therefore, it is important to monitor the flow in the Strait of Gibraltar. First,
the surrogate model is compared to Monte-Carlo simulations. Results demonstrated the good agreement
represented by a value of RMSE ranging from 10−5 to 10−3. Moreover, as three stations exist in this area,
we evaluated the ability of the surrogate models to compute the probability density function. The results
were compared with a probability density function computed with Monte-Carlo simulations. The results
prove that the surrogate model performs very well for this flow problem. Finally, we were interested in a
sensitivity analysis in these locations. This could be a good indicator of what are the physical variables that
one should monitor using either data assimilation or Bayesian inference in order to reduce the uncertainty
of the numerical model. Results showed that the bathymetry is the main driver of uncertainty in the
considered three locations. In the present work, the proposed methodology has been assessed correctly in
order to quantify the uncertainty resulting from bathymetric forces on the hydraulic state. Future works
will be devoted to compare the resulting uncertainty with other hydraulic models. This comparison will
help to assess how useful this class of models is at the operational level.

Acknowledgments

This work was partly performed while the first author was visiting IWRI at University Mohammed VI
Polytechnic Benguerir. Financial support provided by IWRI is gratefully acknowledged.

References

[1] J.I. Almazán, H. Bryden, T. Kinder, and eds G. Parrilla. Seminario Sobre la Oceanograf́ıa F́ısica del
Estrecho de Gibraltar. SECEG, Madrid, 1988.

28



[2] S. Amiri, N. Talebbeydokhti, and A. Baghlani. A two-dimensional well-balanced numerical model for
shallow water equations. Scientia Irancia, 20:97–107, 2013.

[3] Kendall Atkinson. A survey of numerical methods for the solution of Fredholm integral equations of
the second kind. 1976.

[4] E. Audusse. A multilayer Saint-Venant system: Derivation and numerical validation. Discrete and
Continuous Dynamical Systems, Ser. B., 5:189–214, 2005.

[5] E. Audusse, M.O. Bristeau, M. Pelanti, and J. Sainte-Marie. Approximation of the hydrostatic Navier-
Stokes system for density stratified flows by a multilayer model: Kinetic interpretation and numerical
solution. J. Comp. Physics., 230:3453–3478, 2011.

[6] E. Audusse, M.O. Bristeau, B. Perthame, and J. Sainte-Marie. A multilayer Saint-Venant system with
mass exchanges for shallow water flows. derivation and numerical validation. M2AN Math. Model.
Numer. Anal., 45:169–200, 2011.

[7] Emmanuel Audusse, Fayssal Benkhaldoun, Saida Sari, Mohammed Seaid, and Pablo Tassi. A fast finite
volume solver for multi-layered shallow water flows with mass exchange. Journal of Computational
Physics, 272:23–45, 2014.
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ensembliste en hydraulique fluviale. PhD Université de Toulouse, INP, 2017.
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