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Abstract

Numerical solutions of wave problems are often influenced by uncertainties generated by a lack of knowledge of the

input values related to the domain data and/or boundary conditions in the mathematical equations used in the modeling.

Conventional methods for uncertainty quantification in modeling waves constitute severe challenges due to the high

computational costs especially at high frequencies/wavenumbers. For a given accuracy and a high wavenumber it

is necessary to perform a mesh convergence study by refining the discretization of the computational domain with

an increased resolution, which leads to increasing the number of degrees of freedom at a much higher rate than the

wavenumber. This effect also known as the pollution error often limits the computations to relatively small values of

the wavenumber. To estimate the uncertainties, many model evaluations are required, but only a single surrogate model

is created in the process. In the present work, we propose the use of a non-intrusive spectral projection applied to a

finite element framework with enriched basis functions for the uncertainty quantification of waves at high frequencies.

The method integrates (i) the partition of unity finite element method for effectively computing the solutions of waves

at high frequencies; and (ii) a non-intrusive spectral projection for effectively propagating random wavenumbers that

encode uncertainties in the wave problems. Compared to the conventional finite element methods, the proposed

method is demonstrated to reduce the total cost of accurately computing uncertainties in waves with high values of the

wavenumber. Numerical results are presented for two sets of numerical tests. First, the interference of plane waves

in a squared domain and then a wave scattering by a circular cylinder are studied at high wavenumbers. Comparisons

to the Monte Carlo simulations and the regression based polynomial chaos expansion confirm the computational

effectiveness of the proposed approach.
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1. Introduction

Numerical simulation of wave problems has a vast range of applications in several fields such as acoustics and

electromagnetics. However, these applications are severely restricted by the accuracy of the numerical methods used

in the modeling. Although, the models can accurately replicate the physics of the wave propagations [1, 2], the

uncertainties that are involved in different design parameters can render the models unrealistic. Indeed, numerical

simulations can be very convincing to the extent that they may easily mislead the design study. For instance, the

iPhone 4 antenna design is a very well known case in this regards, where the uncertainty in the user’s grip position

caused a major design failure [3]. Therefore, it is of prominent importance to try and evaluate uncertainties in these

models. In the current work, we mainly focus on acoustic problems modeled with a deterministic approach namely, the

finite element method. The need for Uncertainty Quantification (UQ) in numerical simulations has been highlighted

in many studies for different applications such as computational hydraulics [4] and gas dynamics [5] among others.

In applied acoustics, the compliance with noise regulations often involves evaluating a range of uncertainties related

to the noise source and the conducted measurements [6]. For example, the compliance with a noise criterion in a

standard building involves levels that must never be exceeded and levels that can be exceeded for some of the time

say 20% of the time. In wave problems, different studies have shown that the uncertainty in computations is mainly

due to the inaccurate calibration of wavenumbers [7, 8]. In [9], the authors compute an adjoint model on which it is

possible to perform Monte Carlo simulations at a lower computational cost. This method was specifically designed

to estimate the risk of instabilities in thermo-acoustic simulations. In order to reduce the computational cost further,

some surrogate models were built using few simulations of the adjoint model in [7]. Different approaches were also

tested, especially for thermo-acoustic problems ranging from simple linear regression to the more advanced methods

including the active subspace method coupled with the linear regression, see [8] among others. Although these works

have led to interesting results in the application context, they present two main drawbacks: first adjoint models are

needed in their formulations which are very challenging from a computational point of view. Second, these methods

are stable for a limited range of uncertainty, compare for example [7] and further reference are therein. Consequently,

if the Helmholtz equation is coupled with hydrodynamic models for example, these methods could be of limited use.

One way to alleviate these limitations is achieved by using powerful surrogate models that do not need the computation

of the adjoint model.

The Polynomial Chaos Expansion (PCE) is very well suited for this class of models with stochastic inputs. The

PCE relies on the spectral projection of the model response on a space spanned by an orthogonal polynomial basis with

respect to the assumed probability distribution of the uncertain parameter. This surrogate model has been successfully

implemented for different applications, see [10, 11, 12] among others. In general, there exist many different ways

to develop a PCE for a given problem. The first way consists on computing the polynomial surrogate intrusively for

which the whole numerical model needs to be modified, see for example [13, 5]. However, its applicability remains

limited due to the fact that the numerical model needs to be modified. On the other hand, non-intrusive methods
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to build the PCE also exist. These methods are well known, and have proven the ability to quantify uncertainty

accurately even for complex numerical models, see for instance [14]. One of the methods widely used to build the

PCE is the regression method which relies on minimizing the square error i.e. the square of the distance between the

model and the surrogate using the Least-square (LS) method, see for example [15]. These techniques are well suited

for problems with high stochastic dimensions (number of uncertain parameters) for which a higher-interpolation level

is required to achieve a satisfactory accuracy [16, 17]. Another advantage of these methods is the fact that they can

easily be coupled with other methods such as proper orthogonal decomposition (POD) [18], principal component

analysis (PCA) [19], and principal generalized decomposition [20] among others. This is especially appealing when

the dimension of the model simulation is very large. This has been recently investigated in the context of acoustic

waves in [21]. The results reported in this study have shown a great potential of this non-intrusive method to be

adopted for modeling stochastic acoustics. However, when the stochastic dimension is not very large, the projection

methods are more attracting as very few simulations are enough to correctly build the PCE with a high accuracy.

The Non-intrusive Spectral Projection (NISP) method uses the orthogonality propriety of the PCE basis to project the

simulation results. This allows one to use some deterministic design of experiment instead of the one based on crude

Monte Carlo simulations. This method has been successfully applied to different research areas such as hydraulics [4],

aerodynamics [22], and mechanics [23] among others. In the context of acoustic waves, the NISP method has been

implemented in many studies. For instance, in [24] the NISP method is used to assess the propagation of uncertainty

in coupled hydrodynamic and acoustic models. The NISP has also been applied for the uncertainty quantification of

aeroacoustic waves in cavity flows in [25]. In both studies reported in [24, 25], the projection method has allowed to

quantify the uncertainty with high accuracy and using few number of simulations compared to the classical methods.

In [26], the authors have also demonstrated the convergence of the NISP method applied to acoustic waves with

uncertain shape deformations.

It should be stressed that, the deterministic solution for the wave problem requires a considerable simulation time

which can be a serious limitation when using standard stochastic methods for the uncertainty quantification. In com-

putational acoustics, often several degrees of freedom are required per-wavelength in order to achieve a meaningful

result. As high wavenumbers/frequencies are considered, the number of required degrees of freedom per-wavelength

must be increased to retain the same accuracy. This phenomenon is usually referred to as the pollution error and has

been investigated in the literature, see for instance [27, 28]. Indeed, due to the pollution error, evaluating one sample

at high frequencies can easily become prohibitively demanding in terms of computational costs, not to mention evalu-

ating hundreds or even thousands of samples [29]. To reduce the computational efforts of modeling wave problems at

high frequencies, different approaches have been studied in the literature. In general high-order spatial discretizations

are more efficient and suffers less pollution, see for example [29]. This is true in the context of the standard finite

element methods with high-order polynomials as well as in the context of high order oscillatory functions [30, 31, 32].

However, a main advantage of the oscillatory functions can be achieved by directly injecting them into the approx-

imation without having to change the meshing procedure while high-order polynomials may also require remeshing
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with high order elements. Injecting the oscillatory functions into the approximation can be easily achieved using the

Partition of Unity Finite Element (PUFE) method [33]. Different types of oscillatory functions were studied for wave

problems, see for instance [34, 35]. The method was also implemented for acoustic problems [36, 37, 38, 39], elastic

problems [40, 41], and electromagnetic waves [42] as well as for vibro-elasticity [43]. Extension of the method to

time-domain applications was investigated in [44, 45] and it was adopted in [46] for solving the inverse problem in

acoustics. Oscillatory functions are used to enrich the finite element method using a discontinuous Galerkin formu-

lation or Trefftz-type elements [47, 48]. A comprehensive literature review on Trefftz methods for the Helmholtz

equation can be found in [49].

In the present work, we aim to investigate the implementation of the NISP method in the UQ for wave problems

at high frequency. We seek to develop a robust method that allows for high accuracy and significantly reduces the

computational cost required for the UQ. This goal is achieved by combining the advantages of the NISP method and

the partition of unity method. Here, the deterministic simulations are obtained at a low computational cost thanks

to the introduction of partition of unity finite element method. The use of polynomial chaos as a surrogate model is

motivated by the results of our previous work [21], where we have assessed the quality of the PCE to quantify the

uncertainty in acoustic waves using standard finite element methods for plane wave and scattering wave problems

at very low frequency. In the present study, the emphasis is on acoustic waves at high frequency for which very

fine meshes are required to capture their acoustic features. It is well known that in the case of acoustic waves at

high frequency, the conventional finite element methods are computationally very demanding for the deterministic

case. The aim of the current study is on the implementation of a class of partition of unity methods for uncertainty

quantification in acoustic waves at very high frequency. These problems being already computationally demanding

and because only the wavenumber is considered to be stochastic, the sampling strategy could also be improved in

order alleviate further the needed number of simulations. For this reason we compare the results computed using

the PCE and the standard Monte Carlo method to those obtained using the NISP based on the quadrature method.

The results are presented for an interference problem at a square domain and for a scattering wave problem. The

combined NISP and partition of unity methods allow to assess the impact of stochastic high wavenumbers on the

propagation of uncertainties in the wave problem under study. Numerical results are presented for waves interference

in a squared domain and wave scattering by a circular cylinder at high wavenumbers. In order to assess the robustness

of the proposed method, comparisons to the full crude Monte Carlo simulations and the regression based PCE are

carried out. The present work is among the first to quantify uncertainty in wave problems at high frequencies thanks

to the double combined efficiency of NISP and the partition of unity method. The rest of the paper is organized in the

following way. In Section 2 we formulate the partition of unity finite element method for acoustic waves. The non-

intrusive spectral projection for uncertainty quantification is presented in Section 3. Section 4 is devoted to numerical

results for two examples wave problems. Our concluding remarks are given in Section 5.
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2. Partition of unity finite element method for acoustic waves

For time-harmonic wave propagation the wave equation can be reduced to the Helmholtz equation which in two-

dimension can be written as

∆u + k2u = 0, in D. (1)

Here,D ⊂ R2 is the spatial domain, u(x, y) the time-independent wave field at the point x = (x, y)>, k the wavenumber

and ∆ the Laplace operator. Although waves can propagate to infinity, it is necessary to truncate the domain at some

artificial boundary ∂D so that the computation can be performed on a finite domain. Furthermore, to avoid introducing

errors through this truncation we choose to impose analytical solutions on the boundary ∂D, which is achieved using

a mixed boundary condition
∂u
∂n

+ iku = g, on ∂D, (2)

where n is a unit normal vector on ∂D, g(x, y) is a source term and i is the unit imaginary number with i=
√
−1. To

solve the boundary value problem defined by (1)-(2) we multiply the Helmholtz equation with a weighting function

v(x, y) and integrate overD. Thus, the following weak formulation is obtained∫
D

(
∆u + k2u

)
v dx = 0,

(3)∮
∂D

(
∂u
∂n

+ iku
)

v dx =

∮
∂D

gv dx.

Using integration by parts and substituting the boundary conditions, the weak formulation (3) can be rewritten as∫
D

(
∇u · ∇v − k2uv

)
dx + ik

∮
∂D

uv dx =

∮
∂D

gv dx. (4)

To solve this formulation with the finite element method the domain is meshed into a set of Ne conforming, intersecting

and not overlapping elements Ti with i = 1, 2, . . .Ne. We then redefine the computational domain Dh ⊆ D to be the

union of all these elements. Using the PUFE method, the wave field u(x) at any given point can be approximated in

term of the nodal values ui

u(x) ≈ uh(x) =

Nn∑
i=1

Ni(x)ui, (5)

where Ni(x) are the conventional polynomial shape functions at a node i and Nn the total number of nodes in the

computational domain. Using the partition of unity approach the nodal values are expanded into a linear combination

of a sum M of enrichment functions so that the approximation (5) can be rewritten as

uh(x) =

Nn∑
i=1

M∑
j=1

Ni(x)φi, j(x)U(i−1)M+ j, (6)

with φi, j(x) being the jth order enrichment function at node i and U(i−1)M+ j the amplitude of this enrichment function.

Similarly, we chose the weighting function v(x, y) to also be formulated in terms of the nodal values Vi as

v(x) =

Nn∑
i=1

M∑
j=1

Ni(x)φi, j(x)V(i−1)M+ j. (7)
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Usually for wave problems oscillatory functions are chosen for the enrichment which enables approximating the wave

field with multi-wavelengths sized elements. In this work we chose a basis of plane waves for the enrichment which is

a common choice for Helmholtz problem [34]. To evaluate the integrals in (4) for the oscillatory enrichment functions

over such large elements a high-order quadrature scheme is usually needed. Here, all the integrals are evaluated

numerically using Gaussian quadrature. The weak formulation then results in the following linear system

[K] {u} = {f} . (8)

It should be stressed that the number of degrees of freedom at each mesh node is expanded by the number of en-

richment functions M in the partition of unity approximation compared to the conventional finite element methods.

However, the total number of degrees of freedom and therefore the size of the linear system (8) in the partition of

unity method, remains much smaller than in the standard finite element method thanks to the coarse meshes used for

this case. For the computational results presented in this study, the resulting linear systems are solved using an LU

decomposition.

3. Non-intrusive spectral projection for uncertainty quantification

In the current work, we are interested in solving stochastic wave problems at high frequency. Therefore, account-

ing for a stochastic input parameter ζ in the equations(1)-(2), the stochastic Helmholtz problem reads

∆U + k2U = 0, in D,

(9)
∂U
∂n

+ ikU = G, on ∂D,

where U(ζ, x, y) is the stochastic wave potential, k(ζ) the stochastic wavenumber and G(x, y) the boundary function.

In this section, we briefly discuss techniques used for polynomial chaos expansions and especially those used to

estimate the spectral coefficient. Details on the application of these tools for quantifying uncertainties in waves are

also presented here.

3.1. Polynomial chaos expansions

The probabilistic framework is a common approach to propagate uncertainty in the numerical models for many

applications in science and engineering. In this case, the uncertain wavenumber parameter should be considered as

a random variable. For this purpose, we assume that (Ω,F ,P) is a probabilistic space where Ω is an event space

associated with a σ-algebra F and a probabilistic measure P. Consequently, we define the random variable as k(ζ) :

Ω −→ Ri ⊂ R. Moreover, we assume that the random variable k(ζ) is of finite variance and fully defined by a

probabilistic measure. In the present work, this probabilistic measure will be considered as a Normal distribution

N(µk, σk), where µk is the mean value of the wavenumber and σk its standard deviation. When solving numerical

models subject to uncertain parameters, one can entirely assume that the model response (here the wave field u(x, y))
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is viewed as a random field (because the response depends on space) which we denote by U(ζ, x, y) and it is assumed

to be a stochastic process of finite variance. Based on the homogeneous chaos theory, the random field U(ζ, x, y)

can be decomposed into an orthogonal polynomial basis, see [50, 51] among others. In the present work, only the

Gaussian measure is considered and the optimal associated basis is identified as the Hermite polynomial basis. This

method is well known in the community by Polynomial Chaos Expansion (PCE), see for instance [52, 53]. The PCE

has been intensively used as a surrogate model in the context of uncertainty quantification. It aims to reproduce the

global behavior of a numerical simulation following a polynomial decomposition. Here, the decomposition of the

simulation response U(ζ, x, y) is given by

U(ζ, x, y) =
∑
i∈N

αi(x, y)Ψi (k(ζ)) , (10)

where αi are the spectral coefficients of the decomposition to be determined and (Ψi)i≥0 are the orthogonal polynomial

basis (Hermite polynomials in the present case). In practice, the sum in (10) is truncated to a finite series as

U(ζ, x, y) ≈
∑

i∈I⊂N
αi(x, y)Ψi (k(ζ)) . (11)

where I is a finite subset of N. Note that the truncation of the polynomial decomposition will surely introduce an error

known as the truncation error. Although the Cameron-Martin theorem [54] ensures the `2 convergence of the equation

(10) in the probabilistic sense, the truncation of the equation in the form of (11) will introduce an error which needs

to be quantified. Therefore, the determination of a PCE is conditioned by the estimation of the spectral coefficients αi

in (11).

The regression method for the estimation of coefficients is based on solving a Least-Square (LS) minimization

problem in the `2-norm to estimate the coefficients αi, see for instance [55, 15]. In practice, we begin by defining an

error {ε} as the distance between the model and the PCE for a finite set of randomly sampled input variables of size

Nls as

ε = U (Ξ, x, y) −
∑
i∈N

αi(x, y)Ψ (k(Ξ)) ≡ U − α>Ψ, (12)

where Ξ =
(
ζ1, . . . , ζNls

)>
is the set of Nls realizations for the stochastic input variables ζ using random number gen-

eration and U =
(
U1, . . . ,UNls

)> is the vector of associated model outputs. We also define α =
(
α0, α1, . . . , αNPC−1

)>
as the vector of the NPC = Card(I) unknown coefficients and Ψ is the NPC × Nls-valued matrix assembling the values

of all orthonormal polynomials at the stochastic input realizations values Ψik = Ψi(ζk), with i = 0, 1, . . . ,NPC−1 and

k = 1, 2, . . . ,Nls. Hence, the LS method to estimate the set of coefficients α in (12) is equivalent to minimize the

following function

J(α) = ε>ε =
(
U − α>Ψ

)> (
U − α>Ψ

)
, (13)

and its solution is obtained by solving the following linear system of algebraic equations

α = (Ψ>Ψ)−1Ψ>U. (14)
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It should be stressed that the input space exploration is fulfilled via a Monte Carlo sampling-based approach as

discussed in [56, 57] among others.

3.2. Non-intrusive spectral projection

The focus in the present work is on non-intrusive approaches to numerically compute the coefficients αi(x, y) in

(10) using N deterministic simulations. Here, the spectral projection relies on the orthonormality property of the

polynomial basis and the ith coefficient αi(x, y) is computed using the following scalar product

αi(x, y) =
〈
U(ζ, x, y),Ψi

〉
=

∫ ∞

−∞

U(ζ, x, y) Ψi(ζ) π(ζ) dζ, (15)

where π(ζ) refers to the probability density function of ζ considered to be a Gaussian law in the present work. Con-

sequently, the Gauss-Hermite quadrature rules are used in order to compute numerically the integral term in (15).

Following for example [58], one can approximate (15) by

αi(x, y) =
〈
U(ζ, x, y),Ψi

〉
≈

m∑
k=1

U(ζk, x, y) Ψi(ζk)ωk, (16)

where the nodes ζk are the zeros of the mth-order Hermite polynomial, ωk are the corresponding weights defined in

[59] and U(ζk, x, y) is the deterministic solution computed using a value of ζk in the Gauss-Hermite quadrature rule.

In (16), m is the number of quadrature roots required in each uncertain direction to ensure an accurate calculation of

the integral
〈
U(ζ, x, y),Ψi

〉
. Indeed, a quadrature rule with m points is exact for polynomials up to the order (2m − 1),

see for example [60]. Here, this rule is used in order to define the required number of the simulations when the NISP

method is considered. Note that this method has been proven to be very reliable in such cases, especially when the

stochastic dimension is not high (less than 5), see for instance [61, 4].

Next, to estimate the statistical moments of the reference solution we use the common method based on stochastic

approach using a large sample of simulations. Let Nmc denotes the sample size and this sample is generally generated

through a standard Monte Carlo (MC) approach based on random variable k(ζ). The random field representing the

stochastic solution can be computed by integrating the forward model such that the equation (9) is solved for each

realization value of the parameter in the design of experiment. Hence, the moments of the solution including the mean

value µU(x, y) and the standard deviation σU(x, y) for the forward model can be stochastically estimated by

µU(x, y) =
1

Nmc

Nmc∑
k=1

U(ζk, x, y), σU(x, y) =

√√√
1

Nmc − 1

Nmc∑
k=1

(
U(ζk, x, y) − µU(x, y)

)2
.

It is important to mention that, because of the spatial dependence in the model solution, the mean value and the

standard deviation are also presented as mean field and standard deviation field.

One appealing advantage of using the PCE lies on the fact that the statistical moments can be easily derived from

the spectral coefficients, see for instance [61, 62]. Indeed, thanks to the orthonormality property of the polynomial
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approximation, statistical moments of the wave field are straightforwardly derived from the coefficients as

µU(x, y) = α0(x, y), σU(x, y) =

√∑
i∈I
i,0

(αi(x, y))2, (17)

where I is the set of the polynomial indices. Note that to measure the extent of variability in a given sample, one may

be interested in computing the coefficient of variation (CV), also known as the relative standard deviation and defined

as the ratio of the standard deviation σU(x, y) to the mean µU(x, y). We also consider the root-mean-square-error

(RMSE) to assess the quality of the PCE in the present study. The main aim is to assess the PCE using both methods

to accurately quantify the uncertainty in waves at high frequency. The RMSE is computed for both the estimator of

mean and standard deviation fields as

RMSE(θ) =

∫
x∈Dx

∫
y∈Dy

(
θPC(x, y) − θMC(x, y)

)2
dxdy,

where θ represents either the mean or variance fields, θPC is the value of the estimator using the PCE, and θMC is the

value of the estimator using the MC simulations based on a very large sample.

4. Numerical results

To evaluate the performance of the non-intrusive spectral projection for UQ of waves at high frequency we consider

two different numerical tests. First an interference of plane waves in a squared domain is considered for evaluating

the performance of the method in terms of errors compared to the standard methods. In the second example, a plane

wave scattering by a circular cylinder is considered where solutions obtained using the PUFE on coarse meshes are

investigated. In both examples, we assess the proposed UQ method for numerous values of the mean wavenumber. All

the computations were performed on a cluster machine which allows to run 44 simulations in parallel with an available

RAM space of 384 GB. This platform offers also the possibility to use the openturns library for UQ developed in [63]

and to couple it with different numerical models. In the subsequent sections, we shall use the terminology MC, LS

and NISP to refer to the Monte Carlo method, the PCE built using the Least square method and the PCE built Non-

Intrusive Spectral Projection method, respectively. In addition, the deterministic solutions are computed using the

mean value of the wavenumber.

4.1. Interference of plane waves in a squared domain

In this example, we recover the interference of two plane waves. We solve the Helmholtz problem (1)-(2) in the

squared domainD = [1, 2] × [1, 2] where the analytical deterministic solution is given by

u(x, y) = eik
(
x cos(α) + y sin(α)

)
+ eik

(
x cos(2α) + y sin(2α)

)
. (18)

with α being the wave direction. The analytical solution is imposed on the boundary ∂D through the source function

g in (2). For this problem, the wavenumber k is assumed to be the stochastic parameter defined as

k(ζk) = k (1 + CVζk) , (19)
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Figure 1: Mean wave potential U(x, y, ζk) obtained for the stochastic simulation (first column), the deterministic solution U(x, y, ζ̄) computed using

the mean value of k (second column) and a cross-section of the solutions at y = 1.8 (third column) obtained for the interference of plane waves

problem using k = 20π and CV = 10 %.

where CV is the coefficient of variation associated to the physical deterministic values of the wavenumber k(ζk)

and k is the mean value of k. In (19), ζk are the corresponding random variables which are supposed to follow the

centered normal law N(0, 1). In the results presented for this test example two high values of the mean wavenumber

k are selected namely k = 20π and k = 40π. For the partition of unity, we use a uniform finite element mesh

composed of 25 square 4-nodded elements where the total number of nodes is 36. The same mesh is retained for

both considered wavenumbers but the number of enrichment functions is increased from 28 to 48 plane waves for

the higher wavenumber. A fixed value of α = 5◦ is considered in the simulations. Note that the uncertainty in this

example is assessed for the quantities of interest over the acoustic potential u(ζk, x, y).

First, we perform the UQ over the wave problem with a mean wavenumber value set to k = 20π. The uncertainty

is propagated in the model induced by stochastic wavenumber using (19). Consequently, we assume that the uncertain

parameter follow a Normal distribution N(k, σk), where k is the mean value of the wavenumber that is set to 20π and

σk refers to the standard deviation. The uncertainty supposed on the wavenumber value is set to CVk = 10% which

yields σk = CVk × k = 2π. It should be noted that, in subsurface imaging the uncertainty in the wavenumbers can

be relatively large mainly due to the uncertainties in the material properties as well as in the subsurface structure.

For example, in engineering geology the ground behavior is assumed based on limited information. Therefore, it is

a common practice to estimate the likelihood of the subsurface properties so that the impact of this uncertainty can

be evaluated from a considered engineering application [64, 65]. In the crude MC simulations, we randomly sample

N values (k1, . . . , kN) of k with respect to the distribution N(k, σk), then for each value a corresponding simulation is

performed. Finally a set of N solutions U = (U1, . . . ,UN) is obtained corresponding to these N samples. To ensure

statistical convergence of the MC method we use a large number of samples N = 100000. Here, the deterministic

solution Uk(x,y) obtained using the mean value k and the mean solution Uk(x, y) are used for comparison. The range of

uncertainty is also given by the interval
[
Uk(x, y) − 1.5σU ,Uk(x, y) + 1.5σU

]
, where σU is the standard deviation of

the wave potential field.
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Figure 2: Assessment of the Monte Carlo simulation for the estimation of the mean and the variance fields using a Bootstrap method compared to

an expensive Monte Carlo simulation (with 100000 forward simulations).

Figure 1 presents a comparison between the deterministic field and the stochastic mean field. In this figure, we

also include cross-sections of the obtained solutions at y = 1.8 along with the envelope for the range of uncertainties.

It should be mentioned that because of the high stochasticity in this problem, the uncertain envelope is constructed

of 1.5 times the standard deviation. Generally, this envelope is chosen according to the engineering problem under

consideration. Compared to the deterministic case, it is clear that the stochasticity has an effect of damping on the

mean wave field. As can be seen from the cross-sections in Figure 1, the wave amplitude obtained for stochastic

simulations decreases along the wave direction and the variance which is translated by the range of uncertainty has

a very high value. It should also be noted that the spatial mean value for the coefficient of variation for the field is

CVU = 412% which is a very high value for little perturbation introduced in the problem. Recall that the coefficient of

variation of the wavenumber for this case is set to 10%. From a numerical point of view, building a surrogate model

may be very challenging under such conditions, especially for those relying on random number generations as the

required number of model evaluations would depend on the variance of the integrand and for some specific designs

of experiment on the dimensionality, we refer the reader to [66] for more details. Needless to mention the difficulties

related to the approximation of the surrogate model, see the discussions reported in [67, 68] among others.

Next, before the assessment of the suggested meta-model to quantify the uncertainty, the Monte Carlo skills are

first evaluated. From a numerical view point, the Monte Carlo simulations are very easy to implement as they require

only sampling the stochastic space into a set of random variables. The other major advantage of the method is that,

following the Central Limit Theorem [69], the result obtained using the Monte Carlo simulation converges to the true

statistical value in the probability sense. This means that each statistical estimation should be addressed within a

confidence interval [66]. In practice, it is very hard to obtain the upper and lower bounds of the statistical estimation.

In [70], the author introduced the bootstrap method in order to evaluate the probabilities of the Monte Carlo simulation

errors. This method consists of rerunning several times the Monte Carlo simulation, the confidence interval could be
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Figure 3: Mean wave potential (first row) and variance solution (second row) computed using the MC simulations (first column), the LS method

(second column) and the NISP method (third column) obtained for the interference of plane waves problem in a squared domain using k = 20π.

estimated then for the numerous evaluations of the method. In the present study we use a bootstrap method in order

to evaluate the required number of the forward model evaluations to have reliable statistical information. Figure 2

exhibits the results obtained using the bootstrap method for which every statistical information is compared to those

obtained with an expensive Monte Carlo simulation containing a hundred of thousand members. It is clear that the

Monte Carlo simulation depicts a high level of volatility for the RMSE for the estimation of the mean and the variance

fields. The high level of uncertainty displayed in the model increases the required number of simulations which could

be predictable. Indeed, for a high precision of the statistical estimation the required number of simulations depends

on the variance of the function, we refer the reader to the discussion in [66] for further information. Based on the

results obtained by the bootstrap method, one should consider a Monte Carlo simulation with more than ten thousand

simulations in order to achieve a reliable statistical estimation. The present results imply also that surrogate models

using methods that are based on the random number generation such as the LS would more likely fail compared

to the spectral methods because of this large volatility displayed by the Monte Carlo simulation. In addition, as

reported in [66] when using the Monte Carlo or quasi-Monte Carlo methods, the statistical estimations are bounded in

confidence interval. This interval depends on the variance of the model and therefore when the variance is high (i.e.

the uncertainty is high) this class of methods is more likely to fail compared to the spectral methods.
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y = 1.3 y = 1.5 y = 1

Figure 4: Cross-sections of the variance field at different locations obtained by the three considered methods for the interference of plane waves

problem in a squared domain using k = 20π.

Figure 5: RMSE for the mean wave potential (left plot) and variance solution (right plot) obtained by the MC simulations, LS method and NISP

method for the the interference of plane waves problem in a squared domain using k = 20π.

Next, we assess the performance of the PCE in the UQ context using both regression and projection methods. The

MC simulations are used as baseline to compute the `2-error for the surrogate model. Figure 3 compares the spatial

mean and variance fields obtained using the three considered methods namely, the MC simulations, the LS based

method to build the PCE, and the NISP method to build the PCE. It is clear that for the considered wave conditions

the projection method outperforms the regression based method. The spatial mean field is clearly approximated by

both methods with a good accuracy. However, the variance field is obviously not well represented by the LS method.

Figure 4 depicts horizontal cross-sections of the variance field at different locations. It is clear that in some locations,

both LS and NISP methods perform equally well compared to the field obtained using the MC simulations. However,

at the same locations, the LS method is struggling to correctly capture the variance field as estimated by the full MC

simulations using the large sample. As it can be seen in the spatial variance field, the regression method is particularly

noneffective in locations where the wave is rapidly varying along the space.
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Figure 6: Absolute Error in logarithmic scale for the estimation of the mean (top) and the variance (bottom) using both methods LS (left) and NISP

(right) with comparison to MC simulation for the interference problem of plane waves problem in a squared domain using k = 20π.

Table 1: Computational times obtained using the MC simulations, LS method and NISP method for the interference of plane waves problem in a

squared domain using k = 20π.

MC simulations LS method NISP method

Number of simulations 100000 1000 9

CPU time (in minutes) 798 12 2

To quantify the results for this test example we compare the RMSE obtained for the mean and variance solutions

using the considered methods. Note that, when the PCE is achieved, the mean and variance fields can be analytically

derived from the PCE coefficients which is considered to be the main advantage of using a surrogate model based on a

spectral method such as the PCE. In Figure 5 we display the evolution of RMSE for different numbers of simulations.

This number represents the size of the design for the experiment used to build the PCE. One can see that for both
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Figure 7: Mean wave potential U(x, y, ζk) obtained for the stochastic simulation (first column), the deterministic solution U(x, y, ζ̄) computed using

the mean value of k (second column) and a cross-section of the solutions at y = 1.8 (third column) obtained for the interference of plane waves

problem in a squared domain using k = 40π and CV = 10 %.

estimators the RMSE decreases more rapidly for the NISP than for the regression method. In addition, the RMSE

for the mean estimator is always lower than the variance estimator for the considered methods. This is due to the

fact the mean requires only the first coefficient of the decomposition which can easily be obtained with few forward

simulations whereas, the variance field requires the whole set of coefficients existing in the decomposition. In the case

of the regression method, the RMSE for the variance estimator does not decrease less than 10−1. On the contrary, few

simulations of the forward model (less than a dozen) are sufficient to build a surrogate model which is able to quantify

the uncertainty with a high level of accuracy in the estimation of the statistical moments (with RMSE = 10−4 for the

estimation of the standard deviation and 10−7 for the estimation of the mean). This is also confirmed by results shown

in Figure 6 where the absolute error is plotted for the estimation of both statistical moments, namely the mean and the

variance using the most converged surrogate model according to its RMSE value. The NISP has a good estimation

of both moments fields in all the spatial domain, while the LS methods may have some wrong estimations in some

locations.

To further quantify the results for this example we summarize in Table 1 the computational cost (CPU time)

required to achieve the best value of the RMSE. Here, the NISP method needs only 2 minutes while the LS method

uses 12 minutes and the MC simulations need 798 minutes for the considered 100000 samples. It is evident that the

NISP method performs better than the regression based method as it require less number of simulations for more

accurate results compared to the MC method. Indeed, the NISP method performs better than the regression method

requiring 6 times less CPU time. In comparison with the crude MC simulations, the CPU time is 399 times higher

than the NISP method. For this wave problem with k = 20π, the NSIP method is demonstrated to be very robust as it

requires significantly less CPU time to perform the UQ with very high accuracy.

In our second run for this problem we aim to assess the robustness of the suggested methods with the mean

wavenumber k = 40π. For this situation, the standard finite element method requires a considerable amount of CPU

times and the use of the partition of unity in the present study would overcome this drawback and solves this problem
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Figure 8: Mean wave potential (first row) and variance solution (second row) computed using the MC simulations (first column), the LS method

(second column) and the NISP method (third column) obtained for the interference of plane waves in a squared domain using k = 40π.

at a reasonable computational cost. As for the previous case, we begin first by assessing the uncertainty using the MC

method using a large set of forward simulations. Here, the number of simulations used in the MC method is set to

100000 realizations. Note that for this numerical setting, the error in the deterministic simulations is kept less than

0.1%. The considered coefficient of variation on the uncertain wavenumber is set at CV = 10% i.e., the wavenumber

k follows a Normal distribution N (40π, 4π).

A comparison between the deterministic and stochastic solutions for this test case is presented in Figure 7. This

figure includes also cross-sections of the obtained solutions at y = 1.8 along with the envelope for the range of uncer-

tainties. Again, the obtained results show that the uncertainty on the wavenumber translates into damping effects in

the wave solution. Moreover, the uncertainty propagated in the numerical model indicates that the stochasticity in the

wavenumber results into a considerable range of uncertainty on the wave field. Indeed, for the considered wavenum-

ber, the spatial mean coefficient of variation is estimated over the wave field at 266%. Thus, this case highlights a

large amount of uncertainty from the propagation of stochasticity in the wavenumber. Under these circumstances,

developing a surrogate model for this test case may be very challenging as discussed above.

In Figure 8 we present comparisons between the mean wave potential and variance solutions computed using the

MC, LS and NISP methods. Notice that the MC simulations are assumed to be the most accurate method but at
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Figure 9: The RMSE for the mean wave potential (left plot) and variance solution (right plot) obtained by the quasi-Monte Carlo simulations, LS

method and NISP method for the interference of plane waves problem in a squared domain using k = 40π.

Table 2: Computational times obtained using the MC simulations, LS method and NISP method for the interference of plane waves problem in a

squared domain using k = 40π.

MC simulations LS method NISP method

Number of simulations 100000 1000 9

CPU time (in minutes) 886 14 3

high computational cost. In this case, although the three methods agree well on the estimation of the mean field of

the wave solution, the LS based method fails to fully converge towards the true variance field as estimated by the

fully converged MC simulations. As pointed out previously, the variance field displays some high values with similar

spatial features as in the first case with k = 20π. It is also clear that the variance follows the physical spatial field of

the wave. Due to the complexity of the wave features in this case, the butterfly effect of the uncertain wavenumber

is the main reasons of the difficulties in developing surrogate models for waves at high frequency. Furthermore, we

compare the results obtained using the quasi-Monte Carlo simulations for this test example. Notice that this class

of methods was shown to be useful in reducing the computational burden of uncertainty quantification methods, see

for example [71]. These techniques rely on the quasi random number generation for sampling schemes following

the Sobol’ sequences [72] or the Halton sequences [73] among others. They are very powerful particularly when

the stochastic dimension is not high because they are obtained with low discrepancy. Consequently, they are highly

dependent on the stochastic dimension as opposed to the standard Monte Carlo simulations. In the present case,

we compare the performance of this class of methods to the method proposed in this study. As can be anticipated,

the quasi-Monte Carlo simulation performs better than the LS method while, the NISP still performs better. In fact,

for the specific case when the stochastic dimension is low, the spectral methods have been demonstrated to be very
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Figure 10: Absolute Error in logarithmic scale for the estimation of the mean (top) and the variance (bottom) using both methods LS (left) and

NISP (right) with comparison to MC simulation for the interference problem of plane waves problem in a squared domain using k = 40π.

accurate as a few numbers of simulations is necessary to quantify the uncertainty properly, see for example [14, 61].

As opposed to the quasi-Monte Carlo simulations which are stable and accurate under some conditions on the required

number of simulations as discussed in [74] among others. In addition, we assessed the dependency space of the error.

For this purpose, Figure 10 depicts the absolute error for the estimation of both statistical moments, namely the mean

and variance solutions using the most converged surrogate model according to its RMSE value. Again, the NISP

has a good estimation of both moment fields in all the spatial domain, whereas the LS method produced poor local

estimates.

For the considered wave conditions, the NISP method seems to accurately perform the UQ with a considerable

saving in the CPU time compared to the MC and LS methods, compare Table 2. In this table, we summarize the CPU

times required to achieve the best value of the RMSE in the considered methods. It is also clear that the projection

method is 295 time less demanding than the converged MC simulations in terms of the computational cost. Compared

to the regression method which we recall here is not fully converged, the NISP method requires a CPU time four times
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y = 1.3 y = 1.5 y = 1

Figure 11: Cross-sections of the variance field at different locations obtained by the three considered methods for the interference of plane waves

problem in a squared domain using k = 40π.

Figure 12: Mean wave potential U(x, y, ζk) obtained for the stochastic simulation (left plot), the deterministic exact solution U(x, y, ζ̄) computed

using the mean value of k (right plot) obtained for scattering wave by a circular cylinder using k = 32π and CV = 10 %.

less. As reported in Figure 9, the NISP method achieved high accuracy faster than the regression based method. It

should be stressed that when it converges, the quadrature based method achieves a RMSE estimated at 10−5 for the

standard deviation and 10−8 for the mean solution. This can also be seen in Figure 11 where vertical and horizontal

cross-sections of the variance field are illustrated at different locations. It is clear that the regression method fails to be

accurate when the variance has high values. In addition, when the uncertainty increases and being a method relying on

a LS method, the surrogate model needs more work. This means that the convergence of the regression based method

needs more samples which yields a substantial increase in the computational cost.

4.2. Plane wave scattering by a circular cylinder

In this test example we consider the problem of a plane wave scattering by a circular cylinder widely used in the

literature to examine the performance of numerical methods for wave problems, see for example [46, 29]. Assuming
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y = 0 and x ∈ [−2,−1] y = 0 and x ∈ [1, 2]

y = 1.5 y = −1.5

Figure 13: Vertical cross-sections (first row) and horizontal cross-sections (second row) of the mean and the deterministic solutions obtained for

scattering wave by a circular cylinder using k = 32π.

that the incident wave propagates in the negative x-axis direction, the scattered wave field can be evaluated analytically

as

u = −

∞∑
n=0

iεn
J′n(ka)
H′n(ka)

Hn(kr) cos(nθ), (20)

where ε0 = 1, εn = 2 for n , 0 and Jn(ka) is the well-established Bessel and Hn(ka) is Hankel function of the first kind

and order n. The prime denotes the derivative of a function with respect to its argument. Note that the expression (18)

is written in polar coordinate r and θ whereas, the scatter radius is a. The computational domain D for this example

is a ring defined with the inner and outer radii Ri = 1 and Ro = 2, respectively. The analytical function (20) of the

scattered wave is imposed on the domain inner and outer boundaries using Robin-type boundary condition (2). The

objective of this test example is to examine the performance of the considered methods for the UQ to resolve the

pressure of a plane wave scattered by an infinitely rigid circular scatterer subject to stochastic wavenumbers. In our
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Table 3: Computational times obtained using the MC simulations, LS method and NISP method for the scattering wave by a circular cylinder using

k = 32π and CV = 10 %.

MC simulations LS method NISP method

Number of simulations 100000 10000 7

CPU time (in minutes) 15541 1063 20

simulations, the wavenumber is considered to be stochastic with a mean value k = 32π and coefficient of variation

CV = 10 % around the mean. Thus, the wavenumber follows a Normal distributionN(32π, 3.2π). We also use a finite

element mesh formed of 4-noded bilinear elements with a total number of 200 elements and 240 nodes. A total of 50

enrichment functions are used in the partition of unity.

We also assess the MC simulations for this wave problem using a full set of 100000 realizations as a baseline

for the UQ. Figure 12 illustrates a comparison between the deterministic and the stochastic mean solution fields.

For a better insight, vertical and horizontal cross-sections are displayed in Figure 13. Compared to the previous

example of plane wave scattering in the squared domain, the damping effects is less pronounced for this test example.

Furthermore, the butterfly effect is still present in these simulations but it has been relatively diminished. For instance,

the spatial mean value for the coefficient of variation in this case is estimated at 93.5 %. These effects can clearly be

notable in the cross-sections shown in Figure 13. It should also be pointed out that despite the fact that the uncertainty

has diminished in this problem compared to the previous case, development of the surrogate model is still challenging

with this level of uncertainty.

Next, we turn our attention to a comparison study of the three considered methods in order to estimate the uncer-

tainty in this scattering wave problem. In Figure 14 we present the stochastic mean and variance fields obtained using

the LS based method, the NISP method and the MC simulations. It is clear that for the considered wave conditions,

the differences between the results obtained using the three methods are slightly appreciable. For instance, the mean

field is well reconstructed using both LS and NISP methods. However, the variance field is better reconstructed using

the NISP method than the LS based method. For comparison reasons, cross-sections of the variance field at different

locations are reported in Figure 15. At the location close to the scatter, the obtained results using the three methods

overlap and at the location far from the scatter, the regression method is less effective.

Finally, we compare the computational cost and the necessary number of simulations needed for each method to

achieve the stochastic convergence with respect to the MC simulations baseline. Figure 16 depicts the results of the

evolution of RMSE as a function of the necessary number of simulations needed for convergence. The performance

of the most converged surrogate model for both LS method and NISP method are compared using absolute error in

Figure 17. Note that while the difference is not clear for the mean field unsurprisingly, the NISP method performs
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Figure 14: Mean wave potential (first row) and variance solution (second row) computed using the MC simulations (first column), the LS method

(second column) and the NISP method (third column) obtained for the scattering wave by a circular cylinder using k = 32π and CV = 10 %.

Figure 15: Vertical cross-sections at x = 0, y ∈ [−2,−1] (left plot) and at x = 0, y ∈ [1, 2] (right plot) of the variance fields obtained for scattering

wave by a circular cylinder using k = 32π.

better in the estimation of the variance field. To further quantify the results for this example we summarize in Table

3 the computational cost (CPU time) required to achieve the best value of the RMSE. As for the previous case, the
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Figure 16: The RMSE for the mean wave potential (left plot) and variance solution (right plot) obtained using the MC simulations, LS method and

NISP method for the scattering wave by a circular cylinder using k = 32π.

NISP method allows to achieve a good accuracy more rapid than the LS method. For this test example, 7 simulations

in the NISP method perform better than the regression based method with 10000 simulations. In comparison with the

crude MC simulations, the CPU time is 777 times higher than the NISP method. For this scattering wave problem

with k = 32π, the NSIP method is demonstrated to be very robust as it requires few CPU times to perform the UQ

with very high accuracy.

5. Conclusions

In the present study we have performed the uncertainty quantification for wave problems at high frequency. The

uncertainty is assumed to be resulting from high values of wavenumbers in the problems under study. Solving such

problems using finite element methods is very challenging. The literature shows that using an enriched finite element

approach can significantly reduce the computational costs of solving forward wave problems. Here, we have used

plane waves as enrichment functions in the partition of unity approximation. In the current work, we have evaluated

the use of polynomial chaos expansion in a non-intrusive manner. This method relies on the Galerkin projection using

a deterministic design of experiment. Numerical results are presented for two sets of numerical experiments, first

for interference of waves and then for a wave scattering by a circular cylinder at high wavenumbers. Both sets are

considered at high frequencies and evaluated using a regression based method and the non-intrusive spectral projec-

tion. The uncertainty quantification is achieved by combining the advantages of both the non-intrusive techniques and

the partition of unity finite element discretizations. The proposed approach has led to a major reduction in the time

required to perform the computations by several orders of magnitude without compromising the accuracy. It should

be stressed that comparisons of the CPU time do not include the cases where the forward problem is solved with the

standard finite element method where in this case the simulations would have become practically lengthy.
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Figure 17: Absolute Error in logarithmic scale for the estimation of the mean (top) and the variance (bottom) using both methods LS (left) and

NISP (right) with comparison to MC simulation obtained for scattering wave by a circular cylinder using k = 32π.

Comparisons to the well-established Monte Carlo simulations have been presented for the interference of plane

waves in a squared domain and a scattering wave problem. The computed results demonstrate that accounting for

the propagation of the uncertainty in the wavenumber through the model, the wave solution exhibits a large amount

of uncertainty. In the scattering wave problem we have also highlighted an increase in the uncertainty for areas

located far from the scatter. For these reasons, developing a robust surrogate model at low computational cost is very

challenging. The results presented in this study confirms that the non-intrusive spectral projection outperforms the

regression based method. The non-intrusive spectral projection is found to produce the most accurate results at a

considerable gain in the computational cost. Although the proposed algorithms were discussed within the context of

acoustics, the conclusions drawn from this study are directly applicable to other wave applications. In practice, all the

presented approach is equally useful for other wave applications.
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[33] I. Babuška, J. Melenk, The partition of unity method, International journal for numerical methods in engineering 40 (4) (1997) 727–758.

[34] O. Laghrouche, P. Bettess, R. Astley, Modelling of short wave diffraction problems using approximating systems of plane waves, International

Journal for Numerical Methods in Engineering 54 (10) (2002) 1501–1533.
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