
Journal of Cosmology and
Astroparticle Physics

     

PAPER • OPEN ACCESS

Fast full N-body simulations of generic modified
gravity: conformal coupling models
To cite this article: Cheng-Zong Ruan et al JCAP05(2022)018

 

View the article online for updates and enhancements.

You may also like
COSMOLOGICAL SIMULATIONS OF
THE INTERGALACTIC MEDIUM
EVOLUTION. II. GALAXY MODEL AND
FEEDBACK
Benoit Côté, Hugo Martel and Laurent
Drissen

-

sígame v3: Gas Fragmentation in
Postprocessing of Cosmological
Simulations for More Accurate Infrared
Line Emission Modeling
Karen Pardos Olsen, Blakesley Burkhart,
Mordecai-Mark Mac Low et al.

-

Cold Filamentary Accretion and the
Formation of Metal-poor Globular Clusters
and Halo Stars
Nir Mandelker, Pieter G. van Dokkum,
Jean P. Brodie et al.

-

This content was downloaded from IP address 129.234.39.14 on 07/07/2022 at 09:11

https://doi.org/10.1088/1475-7516/2022/05/018
/article/10.1088/0004-637X/802/2/123
/article/10.1088/0004-637X/802/2/123
/article/10.1088/0004-637X/802/2/123
/article/10.1088/0004-637X/802/2/123
/article/10.3847/1538-4357/ac20d4
/article/10.3847/1538-4357/ac20d4
/article/10.3847/1538-4357/ac20d4
/article/10.3847/1538-4357/ac20d4
/article/10.3847/1538-4357/ac20d4
/article/10.3847/1538-4357/aaca98
/article/10.3847/1538-4357/aaca98
/article/10.3847/1538-4357/aaca98
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjssBb9K935JftJR19Lfnjaqmn6r5Av22JAJ0DsOVW_4fnTcL6AUFjrI0OsWSfG-STC8Jm5trXMUiigRPLaOXjP4sgIRrMxO38yk1dwCPEwjf958vlfLFZe5feDgaQJ6zAB9I7inJpE0wGUsIfjc3lZgsFK67WNYIsgWOpBRu7AkXO_HsIjdjZb9pQNSu7Q8J6FmYmE5oc4cZAPVBDM4Jumy2vVifYJ7RAMj-17kH7Ja8ewXCeb-IbMXwu5XDQlzJrHyeLrV6T3DNVzEvZIQgVm-AtI_0MxOU7oXHYqaKfNBlrQ&sig=Cg0ArKJSzAzViHn5folb&fbs_aeid=[gw_fbsaeid]&adurl=http://iopscience.org/books


J
C
A
P
0
5
(
2
0
2
2
)
0
1
8

ournal of Cosmology and Astroparticle Physics
An IOP and SISSA journalJ

Fast full N-body simulations of generic
modified gravity: conformal coupling
models
Cheng-Zong Ruan,a César Hernández-Aguayo,b,c Baojiu Li,a
Christian Arnold,a Carlton M. Baugh,a Anatoly Klypind
and Francisco Pradae
aInstitute for Computational Cosmology, Department of Physics, Durham University,
South Road, Durham DH1 3LE, U.K.
bMax-Planck-Institut fur Astrophysik,
Karl-Schwarzschild-Str 1, D-85748 Garching, Germany
cExcellence Cluster ORIGINS,
Boltzmannstrasse 2, D-85748 Garching, Germany
dAstronomy Department, New Mexico State University,
Las Cruces, NM 88001, U.S.A.
eInstituto de Astrofísica de Andalucía (CSIC),
Glorieta de la Astronomía, E-18080 Granada, Spain
E-mail: cheng-zong.ruan@durham.ac.uk, cesarhdz@MPA-Garching.MPG.DE,
baojiu.li@durham.ac.uk, christian.arnold@durham.ac.uk, c.m.baugh@durham.ac.uk,
aklypin@nmsu.edu, f.prada@csic.es

Received October 4, 2021
Revised March 16, 2022
Accepted March 16, 2022
Published May 11, 2022

Abstract. We present mg-glam, a code developed for the very fast production of full N -body
cosmological simulations in modified gravity (MG) models. We describe the implementation,
numerical tests and first results of a large suite of cosmological simulations for three classes
of MG models with conformal coupling terms: the f(R) gravity, symmetron and coupled
quintessence models. Derived from the parallel particle-mesh code glam, mg-glam incorpo-
rates an efficient multigrid relaxation technique to solve the characteristic nonlinear partial
differential equations of these models. For f(R) gravity, we have included new variants to
diversify the model behaviour, and we have tailored the relaxation algorithms to these to
maintain high computational efficiency. In a companion paper, we describe versions of this
code developed for derivative coupling MG models, including the Vainshtein- and K-mouflage-
type models. mg-glam can model the prototypes for most MG models of interest, and is
broad and versatile. The code is highly optimised, with a tremendous speedup of a factor
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of more than a hundred compared with earlier N -body codes, while still giving accurate
predictions of the matter power spectrum and dark matter halo abundance. mg-glam is ideal
for the generation of large numbers of MG simulations that can be used in the construction
of mock galaxy catalogues and the production of accurate emulators for ongoing and future
galaxy surveys.
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1 Introduction

The accelerated expansion of our Universe [1, 2] is one of the most challenging problems
in modern physics, and after decades of attempts to find its origin, we are still far from
reaching a clear conclusion. While the current standard cosmological model — Λ Cold Dark
Matter (ΛCDM), which assumes that this accelerated expansion is caused by the cosmological
constant, Λ — is in excellent agreement with most observational data to date, this model
suffers from the well-known coincidence and fine-tuning problems. This suggests that a more
fundamental theory is yet to be developed which can naturally explain the small value of
Λ inferred from observations. The alternative theoretical models proposed so far can be
roughly classified into two categories: those that involve some exotic new matter species
beyond the standard model of particle physics, the so-called dark energy [3], which usually
has non-trivial dynamics; and the other which involve modifications to Einstein’s General
Relativity (GR) on certain (usually cosmic) scales [4–6], or introduces new fundamental forces
between matter particles.1 Leading examples include: quintessence [7–10], k-essence [11, 12],
coupled quintessence [13], f(R) gravity [14, 15] and chameleon model [16–19], symmetron
model [20, 21], the Dvali-Gabadadze-Porrati braneworld (DGP) model [22], scalar [23, 24]
and vector [25–27] Galileons, K-mouflage [28], and massive gravity [e.g., 29].

In modified gravity (MG) models, in addition to a modified, and accelerated, expansion
rate that could explain observations, often the law of gravity is also different from GR, which
can further affect the evolution of the large-scale structure (LSS) of the Universe. This suggests
that we can use various cosmological observations to constrain and test these models [e.g.,
30–32]. In this sense, the study of MG models can be used as a testbed to verify the validity of
GR on cosmological scales, hence going beyond the usual small-scale or local tests of GR [33].

In the last two decades, there have been substantial progresses in the size and quality
of cosmological observations, many of which can be excellent probes of dark energy and
modified gravity [e.g., 34, 35]. Some of the leading probes include cosmic microwave back-
ground (CMB) [36–39], supernovae [1, 2, 40–47], galaxy clustering [48–54] and baryonic
acoustic oscillations (BAO) [55–60], gravitational lensing [61–65], and the properties of galaxy
clusters [62, 66–72]. In the near future, a number of large, Stage-IV, galaxy and cluster
surveys, such as DESI [73], Euclid [74, 75], Vera Rubin observatory [76] and eROSITA [77],
are expected to revolutionise our knowledge about the Universe and our understanding of
the cosmic acceleration, by providing cutting-edge observational data with unprecedented
volume and much better controlled systematic errors. Further down the line, experiments
such as CMB-S4 [78] and LISA [79] will offer other independent tests of models by using
improved CMB observables, such as CMB lensing and the kinetic Sunyaev-Zel’dovich effect,
and gravitational waves.

To exploit the next generation of observational data, we need to develop accurate
theoretical tools to predict the cosmological implications of various models, in particular their
behaviour on small scales which encode a great wealth of information. However, predicting
LSS formation on small scales is a non-trivial task because structure evolution is in the
highly non-linear regime on these scales, with a lot of complicated physical processes, such as
gravitational collapse and baryonic interactions, in play. The only tool that could accurately
predict structure formation in this regime is cosmological simulations, which follow the
evolution of matter through the cosmic time, from some initial, linear, density field all the

1The two classes of models can not always be clearly distinguished, and some of the modified gravity models
studied here can also considered as coupled dark energy.
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way down to the highly-clustered matter distribution on small, sub-galactic, scales at late
times. Modern cosmological simulation codes, e.g., ramses [80], gadget [81, 82], arepo [83],
pkdgrav [84], swift [85], concept[86], gevolution[87], have been able to employ hundreds
of billions or trillions of particles in giga-parsec volumes [e.g., 84, 88, 89], and are nowdays
indispensable in the confrontation of theories with observational data. In particular, to
achieve the high level of precision required by galaxy surveys, one can generate hundreds
or thousands of independent galaxy mocks that cover the expected survey volume, using
these simulations. However, this has so far been impossible for MG models, which usually
involve highly non-linear partial differential equations that govern the new physics, solving
which has proven to be very expensive even with the latest codes, e.g., ecosmog [90–93],
mg-gadget [94], isis [95] and mg-arepo [96, 97] (see [98] for a comparison of several MG
codes). For example, current MG simulations can take between 2 to O(10) times longer than
standard ΛCDM simulations with the same specifications. Obviously, to best explore future
observations for testing MG models, we need a new simulation code for these models with
greatly improved efficiency compared with the current generation of codes.

Here, we present such a code, mg-glam, which is an extension of the parallel particle-
mesh (PPM) N -body code glam2 [99], in which various important classes of modified gravity
models have been implemented. Efficiency is the main feature of mg-glam, which is partly
thanks to the efficiency and optimisations it inherits from its base code, glam,3 partly due to
optimised numerical algorithms tailored to solve the nonlinear equations of motion in these
modified gravity models, and partly thanks to a careful design of the code and data structures
to reduce the memory footprint of the simulations.

Modified gravity models can be classified according to the fundamental properties of their
new dynamical degrees of freedom, and the interactions the latter have. Here, we study three
classes of MG models which introduce scalar-type degrees of freedom that have conformal-
coupling interactions: coupled quintessence [13], chameleon [16, 17] f(R) gravity [103], and
symmetron models [20, 21]. These models generally introduce a new force (fifth force) between
matter particles, and the latter two can be considered as special examples of the former, but
differ in that they can both employ screening mechanisms to evade Solar System constraints
on the fifth force. These models have been widely studied in recent years and, as we argue
below, the implementation of them can lead to prototype MG codes that can be modified to
work with minimal effort for other classes of interesting models. In a twin paper [104], we will
describe the implementation and analysis of two classes of derivative-coupling MG models,
including the DGP and K-mouflage models.

As we will demonstrate below, the inclusion of modified gravity solvers in mg-glam
adds an overhead to the computational cost of glam, and for the models considered in this
paper and its twin paper [104], a mg-glam run takes about 3-5 times (depending on the
resolution) the computing time of an equivalent ΛCDM simulation using default glam. All in
all, this makes this new code at least 100 times faster than other modified gravity simulation
codes such as ecosmog [90–93] and mg-arepo [96, 97] for the same simulation boxsize and
particle number. In spite of such a massive improvement in speed over those latter codes, it
is worthwhile to note that mg-glam is not an approximate code: it solves the full Poisson
and MG equations, and its accuracy is only limited by the resolution of the PM grid used,

2glam stands for GaLAxy Mocks, which is a pipeline for massive production of galaxy catalogues in the
ΛCDM (GR) model.

3The glam code has been shown to be 1.6–4 times faster than similar codes such as cola [100], icecola [101]
and fastpm [102], while still achieving high resolution and accuracy.
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which can be specified by users based on their particular scientific objectives. This makes
it different from fast approximate simulation codes such as those [105–108] based on the
COmoving Lagrangian Acceleration method (cola) [109].

This paper is organised as follows. In section 2, we present a brief description of the
conformally coupled MG models covered in this work, which aims at offering a self-contained
overview of the key theoretical properties which are relevant for the numerical code. In
section 3, we present the details of our numerical implementations to solve the MG scalar
field equations, including the code and data structure, the implementation of the multigrid
relaxation method to solve the MG equations, and the tailored relaxation alogorithms for each
model. In section 4, we show various code test results, which help us to verify the accuracy
and reliability of the code. Section 5 shows the cosmological simulation results for a large
suite of MG models, which serve to showcase the potential power of the new code. Finally we
summarise and conclude in section 6.

Throughout this paper, we adopt the usual conventions that Greek indices label all
space-time coordinates (µ, ν, · · · = 0, 1, 2, 3), while Latin indices label the space coordinates
only (i, j, k, · · · = 1, 2, 3). Our metric signature is (−,+,+,+). We will strive to include the
speed of light c explicitly in relevant equations, rather than setting it to 1, given that in
numerical implementations c must be treated carefully. Unless otherwise stated, the symbol ≈
means ‘approximately equal’ or ‘equal under certain approximations as detailed in the text’,
while the symbol ' means that two quantities are of a similar order of magnitude. An overdot
denotes the derivative with respect to (w.r.t.) the cosmic time t, e.g., ȧ ≡ da/dt and the
Hubble expansion rate H(a) is defined as H = ȧ/a, while a prime (′) denotes the derivative
w.r.t. the conformal time τ , e.g., a′ = da /dτ , H(a) ≡ a′/a = aH(a). Unless otherwise stated,
we use a subscript 0 to denote the present-day value of a physical quantity, an overbar for the
background value of a quantity, and a tilde for quantities written in code units.

We note that, since they have a lot in common, including the motivation and the design of
code structure and algorithms, this paper has identical or similar texts with its twin paper [104]
in the Introduction section, as well as in sections 3.1, 3.1.1, 3.2 until 3.2.1, 3.2.1, 3.2.2, the
last paragraph of 3.2.3, and part of 4.1.

2 Theories

In this section we will describe several classes of theoretical models which will later be
implemented in the modified glam code. The main purpose of this description is to make
this paper self-contained, and so we will keep it concise. Interested readers can find more
details in the literature elsewhere.

Consider a general model where a scalar field, φ, couples to matter, described by the
following action

S =
∫

d4x
√
−g

[
M2

Pl
2 R− 1

2∇
µφ∇µφ− V (φ)

]
+
∑
i

∫
d4x

√
−ĝLm [ψi, ĝµν ] . (2.1)

Here the first term is the gravitational action, where g is the determinant of the metric tensor
gµν , MPl the reduced Planck mass, R the Ricci scalar, ∇µ the covariant derivative, and V (φ)
the potential energy of the scalar field φ. The second term is the matter action, which sums
over all matter species labelled by i, with ψ being the matter field and ĝµν the metric that
couples to it. In principle, ĝµν can be different for different matter species, but we consider
the universal ĝµν here for simplicity.

– 3 –
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The Jordan-frame metric ĝµν and the Einstein-frame metric gµν are related to each other
by the following conformal scaling

ĝµν = A2(φ)gµν . (2.2)

Here we work in the Einstein frame, in which the effect of the scalar field is in the matter
sector, i.e., modified geodesics for matter particles, while the left-hand sides of the Einstein
equations keep their standard form. This is in contrast to the Jordan frame, where the
scalar field manifestly modifies the curvature terms on the left side of the Einstein equation.
However, in a classical sense the physics is the same in these two frames. Note that the
relation between gµν and ĝµν can be more complicated, e.g., including a disformal term, but
these possibilities are beyond the scope of the present work.

The scalar field is a dynamical and physical degree of freedom in this model, which is
governed by the following equation of motion

∇µ∇µφ = dA(φ)
dφ [ρm − 3Pm] + dV (φ)

dφ , (2.3)

where ρm and Pm are respectively the density and pressure of non-relativistic matter (radiation
species do not contribute due to the conformal nature of eq. (2.2)). We also define the coupling
strength β(φ) as a dimensionless function of φ:

β(φ) ≡MPl
d lnA(φ)

φ
. (2.4)

Note the MPl in this definition, which is because φ has dimensions of mass. For later
convenience, we shall define a dimensionless scalar field as

ϕ ≡ φ

MPl
. (2.5)

We can see from eq. (2.3) that, in addition to the self-interaction of the scalar field φ, described
by its potential energy, V (φ), the matter coupling means that the dynamics of φ is also
affected by the presence of matter. We can therefore define an effective total potential of the
scalar field, Veff(φ), as

Veff(φ) ≡ A(φ)ρm + V (φ), (2.6)

where we have used Pm = 0 for matter. With appropriate choices of V (φ) and A(φ), the
effective potential Veff(φ) may have one or more minima, i.e., dVeff/dφ = 0 at φ = φmin.
Provided that the shape of Veff(φ) is sufficiently steep around φmin, as in some classes of
models to be studied below, the scalar field can oscillate around it, and we can define a scalar
field mass, m, as

m2 ≡ d2Veff (φmin)
dφ2 . (2.7)

For non-relativistic matter particles, the interaction with the scalar field introduces new
terms in their geodesic equations,

u̇µ + φ̇

MPl
uµ = −cβ(φ)

MPl
∇µφ, (2.8)

where uµ ≡ dxµ/dτ is the 4-velocity, and overdot denotes the time derivative.

– 4 –
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The gravitational potential Φ and the MG scalar field have small values in Newtonian N -
body simulations. Modern relativistic N -body codes, such as gevolution [87], k-evolution [110]
and gramses [111, 112], take a leap beyond the weal-field approximation. However, the
relativistic effects are expected to be significant only on horizon scales and negligible on
nonlinear scales. In the weak-field limit where the metric gµν can be written through the
following line element,

ds2 = −(1 + 2Φ)c2dt2 + (1− 2Φ)dxidxi, (2.9)

where Φ is the Newtonian potential, we can approximately write eq. (2.8) as

r̈ = −∇Φ− c2β(φ)
MPl

∇φ− β(φ)
MPl

φ̇ṙ, (2.10)

where r is the physical coordinate of the particle and ∇ is the gradient with respect to the
physical coordinate.

Eq. (2.10) summarises three of the key effects that a coupled scalar field can have on
cosmic structure formation: (1) a fifth force, as given by the gradient of φ, (2) a frictional
force that is proportional to φ̇ and the particle’s velocity ṙ — this is similar to the usual
‘frictional’ force caused by the Hubble expansion H, but because H can be modified by the
coupled scalar field too, we have a third effect through a modified H, which is implicit in
eq. (2.10).

In the same limit, the scalar field equation of motion, eq. (2.3), can be simplified as

c2∇2φ ≈ Vφ(φ)− Vφ(φ̄) +Aφ(φ)ρm −Aφ(φ̄)ρ̄m, (2.11)

where an overbar denotes the background value of a quantity, and Vφ ≡ dV (φ)/dφ, Aφ ≡
dA(φ)/dφ. In deriving eq. (2.11) we have used the weak field approximation, as well as the
quasi-static approximation which enables use to neglect the time derivative of the scalar field
perturbation, δφ ≡ φ− φ̄, compared with its spatial gradient, i.e., |δ̈φ| ' |H ˙δφ| � |∇2δφ| =
|∇2φ|, where H ≡ ȧ/a is the Hubble expansion rate. It is important to note that we do
not assume that ¨̄φ� |∇2φ|, because ¨̄φ and H ˙̄φ can be significant in certain models such as
coupled quintessence, where φ can evolve by a large amount throughout the cosmic history.

The quasi-static approximation has been tested for the modified gravity theories consid-
ered in this paper, such as f(R) gravity [113, 114] and symmetron [115]. Ref. [113] performed
a consistency check of this approximation for Hu-Sawicki f(R) gravity [103]. The authors ran
a couple of MG simulations in the quasi-static limit and checked that the time derivative of the
scalar field is generally much smaller than its spatial derivative. Ref. [114] directly examined
this approximation by running full simulations including the time derivative terms, and found
that the effects of the scalar field time derivative terms can be safely ignored in Hu-Sawicki
f(R) gravity. For the symmetron model, ref. [115] ran simulations with non-static terms and
found almost no difference in the matter power spectrum with the static simulations. However,
the local power spectrum (defined as the P (k) for the filtered matter field) shows deviations
of the order of 1%. Therefore, it is expected that the quasi-static approximation is valid for
usual cosmological probes such as power spectra, but other properties can be affected.

According to these researches, the quasi-static approximation is valid for our cosmological
analyses. The effects of the scalar field time derivatives are small enough that can be safely
ignored for the nonlinear evolution of dark matter fields.

– 5 –
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Finally, the Newtonian potential Φ is governed by the following Poisson equation, again
written under the weak-field and quasi-static approximations,

∇2Φ ≈ 4πGA(φ̄) (ρm − ρ̄m) , (2.12)

where we note the presence of A(φ̄) in front of ρm, which is because the coupling to the scalar
field φ can cause a time evolution of the particle masses of non-relativistic species, therefore
affecting the depth of the resulting potential well Φ. This is the fourth key effect a coupled
scalar field can have on cosmic structure formation. In the models considered in this paper,
either the scalar field perturbation is small such that A(φ) ' A(φ̄), or the scalar field has a
small amplitude (|ϕ| � 1) in the entire cosmological regime so that A(φ) ' 1 and A(φ̄) ' 1.

Eqs. (2.10), (2.11), (2.12) are the three key equations to be solved in our N -body
simulations.

2.1 Coupled quintessence

The behaviour of the coupled scalar field, as well as its effect on the cosmological evolution, is
fully specified with concrete choices of the coupling function A(φ) and scalar potential V (φ).
Such models are known as coupled quintessence [13], and have been studied extensively in the
literature, including simulation analyses.

With some choices of A(φ) and V (φ), the scalar field dynamics can become highly
nonlinear, such as in the symmetron and chameleon models described below. These models
are often display very little evolution of the background scalar field (|∆ϕ| � 1) throughout
the cosmic history so that the background expansion rate closely mimics that of ΛCDM; the
spatial perturbations of ϕ can reach |δϕ| ' |ϕ̄| � 1. In other, more general, cases, the scalar
field can have a substantial dynamical evolution, |∆ϕ| ∼ O(1) and |δϕ| � |ϕ̄|, which allows
deviations from the ΛCDM expansion history, and the fifth force behaves in a less nonlinear
way. This latter case is the focus in this subsection.

We consider an exponential coupling function

A(φ) = exp
(
β

φ

MPl

)
= exp (βϕ) , (2.13)

and an inverse power-law potential

V (φ) = Mα
PlΛ4

φα
= Λ4

ϕα
, (2.14)

where α, β are dimensionless model parameters, and Λ is a model parameter with mass
dimension 1 which represents a new energy scale related to the cosmic acceleration. For
convenience, we define a dimensionless order-unity parameter λ as

Λ4

M2
Pl

= H2
0λ

2. (2.15)

We consider parameters α > 0, so that V (φ) is a runaway potential and the scalar field rolls
down V (φ), and β < 0 so that the effective potential Veff(φ) has no minimum and the scalar
field can keep rolling down Veff(φ) if not stopped by other effects. This means that we can
have |ϕ̄| ∼ O(1) at late times (as mentioned in the previous paragraph) and kinetic energy
makes up a substantial fraction of the scalar field’s total energy (so that its equation of state
wφ can deviate substantially from −1).

– 6 –
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While we specialise to eqs. (2.13), (2.14) for the coupled quintessence models in this
paper, the mg-glam code that we will illustrate below using this model can be applied to
other choices of A(φ) and V (φ) with minor changes in a few places, to allow fast, inexpensive
and accurate simulations for generic coupled quintessence models.

For completeness and convenience of later discussions, we also present here the linear
growth equation for matter density contrast δ (or equivalently the linear growth factor D+
itself) in the above coupled quintessence model:

δ′′ +
[
a′

a
+ d lnA(ϕ̄)

dϕ ϕ̄′
]
δ′ − 4πGρ̄m(a)a2A(ϕ̄)

(
1 + 2β2

)
δ = 0, (2.16)

where ′ denotes the derivative with respect to the conformal time τ . According to this
equation, there are 4 effects that the coupled scalar field has on structure formation: (i) a
modified expansion history, a′/a; (ii) a fifth force whose ratio with respect to the strength
of the standard Newtonian force is given by 2β2; (iii) a rescaling of the matter density field
by A(ϕ) 6= 1 in the Poisson equation, implying that the matter particle mass is effectively
modified; and (iv) a velocity-dependent force described by the term involving (d lnA/dϕ) ϕ̄′δ′.
The ratio between the fifth and Newtonian forces can be derived as follows: eq. (2.11) can be
approximately rewritten as

∇2
(
c2δϕ

)
≈ 8πGβA(ϕ̄) [ρm − ρ̄m] , (2.17)

where we have used Aφ = β
MPl

exp(βϕ), M−2
Pl = 8πG, and neglected the contribution the

scalar field potetial V (φ) in the field perturbation δϕ. Then, from eqs. (2.12) and (2.10),
it follows that the ratio of the two forces is 2β2, which means that the fifth force always
boosts the total force experienced by matter particles in this model. In addition, since β is a
constant, from eq. (2.16) we can conclude that the enhancement to linear matter growth, i.e.,
in the linear growth factor and matter power spectrum, will be scale-independent.

2.2 Symmetrons

The symmetron [20, 21] model features the following potential V (φ) and coupling function
A(φ) for the scalar field:

V (φ) = V0 −
1
2µ

2φ2 + 1
4ζφ

4, (2.18)

A(φ) = 1 + 1
2
φ2

M2 , (2.19)

where µ,M are model parameters of mass dimension 1, ζ is a dimensionless model parameter
and V0 is a constant parameter of mass dimension 4, which represents vacuum energy and
acts to accelerate the Hubble expansion rate.

We can define
φ∗ ≡

µ√
ζ
, (2.20)

which represents the local minimum of the Mexican-hat-shaped symmetron potential V (φ).
The total effective potential of the scalar field, however, is given in eq. (2.6). Because A(φ) is a
quadratic function of φ, when ρm is large, the effective potential is dominated by A(φ)ρm, with
single global minimum at φ = 0; but when ρm is small, the effective potential is dominated
by V (φ) and has two minima, ±φmin. Explicitly, it can be shown that φmin = 0 when
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ρ̄m > µ2M2 ≡ ρ∗ in background cosmology, while otherwise the symmetry in V (φ) is broken
and the symmetron field solutions are given by

± φmin =
√

1
ζM2 (ρ∗ − ρ̄m), (2.21)

from which we can confirm the above statement that as ρ̄m → 0 we have φmin → φ∗. Because
ρ∗ has the dimension of density, it is more convenient to express it in terms of a characteristic
scale factor a∗ or redshift z∗ corresponding to the time of symmetry breaking in Veff(φ):

ρ∗ = ρ̄m0a
−3
∗ , (2.22)

where ρ̄m0 is the background matter density today. According to eq. (2.21), as ρm → 0,
φmin → φ∗, i.e., φmin approaches the minimum of V (φ). Therefore, we must have φmin ∈ [0, φ∗].
For this reason we can define the following dimensionless variable

u ≡ φ

φ∗
∈ [0, 1). (2.23)

Note that this is only true for background u, while in the perturbed case it is possible to have
u > 1 in certain regions. Also, u > 0 is just a choice, because the symmetron field has two
physically identical branches of solutions which differ by sign, and we choose the positive
branch for simplicity.4 In terms of the dimensionless scalar field ϕ, we have [92]

ϕmin(a) = ϕ∗

√
1−

(
a∗
a

)3
, (2.24)

with
ϕ∗ ≡

φ∗
MPl

= 6Ωmβ∗ξ
2a−3
∗ , (2.25)

where Ωm is the matter density parameter today, ξ ≡ H0/m∗ with m∗ being the ‘mass’ of the
scalar field at φ∗, given by

m2
∗ ≡

d2V (φ∗)
d2φ

= −µ2 + 3ζφ2
∗ = 2µ2, (2.26)

and β∗ is a dimensionless parameter defined through

MPl
dA
dφ = MPlφ

M2 ≡ β∗
φ

φ∗
, (2.27)

which can be further expressed as

β∗ ≡
MPl
M2

µ√
ζ

= MPlm
2
∗

2ρ∗
φ∗. (2.28)

Therefore, the model can be fully specified by three dimensionless parameters — β∗, a∗
(or z∗) and ξ — as opposed to the original, dimensional, parameters µ, ζ,M . We are interested

4Indeed, it is possible that u can have different signs in different regions of the Universe, which are separated
by domain walls, but we do not consider this more realistic possibility in this paper, as it does not have a big
impact on the observables of interest to us.
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in the regime of β∗, a∗ ∼ O(0.1) and ξ ∼ O
(
10−3). It is then evident from eqs. (2.25) that

ϕ∗ � 1 and therefore ϕmin(a)� 1, confirming our claim above that in this model the scalar
field has little evolution throughout the cosmic history. For simplicity we will assume that
in the background the scalar field always follows ϕmin, namely ϕ̄(a) = ϕmin(a).5 Further,
because ϕmin ' ϕ∗ � 1, we have

A(φ) = 1 + 1
2β∗

ϕ

ϕ∗
ϕ ' 1, (2.29)

which implies that the time variation of particle mass is negligible in this model, and

β(φ) = MPl
d ln A(φ)

dφ ' dA(ϕ)
dϕ = β∗

ϕ

ϕ∗
= β∗u, (2.30)

so that β∗ characterises the coupling strength between the scalar field and matter in this model.
With all the newly-defined variables, the scalar field equation of motion, eq. (2.3), in

this model can be simplified as

c2∇2 ϕ

ϕ∗
= 1

2ξ
−2H2

0a
2 ϕ

ϕ∗

(
ϕ2

ϕ2
∗
− 1

)
+ 1

2ξ
−2H2

0a
3
∗
ϕ

ϕ∗

ρm
ρ̄m

a−1, (2.31)

or equivalently

c2∇2u = 1
2ξ
−2H2

0a
2u
(
u2 − 1

)
+ 1

2ξ
−2H2

0a
3
∗u(1 + δ)a−1, (2.32)

where the density contrast is defined as

δ ≡ ρm
ρ̄m
− 1. (2.33)

The symmetron model and its extensions have been studied with the help of numerical
simulations in several works [22, 92], but the large computational cost has so far made it
impossible to run large, high-resolution simulations for a very large number of parameter
combinations, which is why we are implementing it in mg-glam. This model features
the symmetron screening mechanism [20], which helps to suppress the fifth force in dense
environments by driving ϕ→ 0 so that the coupling strength β(φ)→ 0, cf. eq. (2.30). This
essentially decouples the scalar field from matter and therefore eliminates the fifth force
in these environments, such that the model could evade stringent local and Solar System
constraints. The dilaton screening mechanism [116] is another class of coupled scalar field
models with a screening mechanism that works similarly, so in this paper we shall focus on
the symmetron model only.

2.3 Chameleon f(R) gravity

f(R) gravity [14, 15] is a very popular class of modified gravity models, which can be described
by the following gravitational action

S = M2
Pl

2

∫
d4x
√
−g [R+ f(R)] , (2.34)

5In practice, because ϕmin(a) evolves with time, when trying to track it, ϕ̄ can have oscillations around ϕmin
becausem∗ � H(a) ' H0. Following most literature on the symmetron model, we will neglect these oscillations.
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simply replacing the cosmological constant Λ with an algebraic function of the Ricci scalar,
f(R). It is well known that this theory can be equivalently rewritten as a scalar-tensor
theory after a change of variable, and is therefore mathematically and physically equivalent
to a coupled scalar field model in which the scalar field has a universal coupling to different
matter species. Therefore it belongs to the general models introduced in the beginning of
this section. The model is fully specified by fixing the function f(R), with different choices
of f(R) equivalent to coupled scalar field models with different forms of the scalar potential
V (φ). Meanwhile, the coupling strength of the scalar field is a constant β = 1/

√
6 for all

f(R) models,6 independent of f(R). Despite this limitation, this model still has very rich
phenomenology, and in this paper we will study it in the original form given by eq. (2.34),
instead of studying its equivalent coupled scalar field model.

With certain choices of the function f(R), the model can have the so-called chameleon
screening mechanism [16–19], which can help the fifth force to hide from experimental
detections in dense environments where ρm is high and the scalar field acquires a large mass
m and therefore its strength decays exponentially and essentially vanishes beyond a typical
distance of order m−1. Of course, not all choices of f(R) can lead to a viable chameleon
screening mechanism, and in this paper we will focus only on those where the chameleon
mechanism works, and we call the latter chameleon f(R) gravity.

In f(R) gravity, the Einstein equation is modified to

Gµν −Xµν = 8πGTµν , (2.35)

where Tµν is the energy-momentum tensor, Gµν ≡ Rµν − 1
2gµνR is the Einstein tensor with

Rµν being the Ricci tensor, and Xµν is defined as

Xµν ≡ −fRRµν + 1
2
[
f(R)−∇λ∇λfR

]
gµν +∇µ∇νfR, (2.36)

where fR ≡ df(R)/dR is a new dynamical scalar degree of freedom, with the following
equation of motion

∇µ∇µfR = 1
3 [R− fRR+ 2f(R)− 8πGρm] . (2.37)

One of the leading choices of the function f(R) was the one proposed by Hu & Saw-
icki [103]. In this paper, instead of using the original function form provided in [103], we
present it in an approximate form which will allow us to generalise it. Let’s start with the
following expression of fR(R),

fR(R) = − |fR0|
(
R̄0
R

)n+1

, (2.38)

where fR0 is the present-day value of the background fR, R̄0 is the background Ricci scalar
today, and n ≥ 0 is an integer. For n > 0, the functional form f(R) can be written as

f(R) ≈ −6H2
0 ΩΛ + 1

n
|fR0|

(
R̄0
R

)n+1

R, (2.39)

6This means that the ratio between the strengths of the fifth and the standard Newtonian forces is at most
1 + 2β2 = 1/3. For more details see below.
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where ΩΛ = 1− Ωm and the first term represents a cosmological constant that is responsible
for the cosmic acceleration. For n = 0, we have

f(R) ≈ −6H2
0 ΩΛ + |fR0| R̄0 ln

(
R̄0
R

)
. (2.40)

Most of the simulation works to date have been performed for the case of n = 1, while the
cases of n = 2 and n = 0 are not as well explored. In this paper we implement all three cases
into mg-glam.

In general, for the model to have a viable chameleon screening, the parameter fR0
in eq. (2.38) should satisfy |fR0| � 1. At late times, when R̄(a) ' R̄0, we can see from
eqs. (2.39), (2.40) that the relation f(R) ' −6H2

0 ΩΛ holds. On the other hand, from eq. (2.38)
we have |fR| � 1 throughout the cosmic history, i.e., it has a negligible evolution in time. This
implies that all the terms in Xµν in eq. (2.36) other than f(R) can be neglected compared
with the f(R) term, and so the model behaves approximately like ΛCDM in the background
expansion rate, with the background Ricci scalar given by

R̄(a) = 3M2
(
a−3 + 4 ΩΛ

Ωm

)
, (2.41)

and M2 ≡ H2
0 Ωm. This is compatible with what we mentioned above, i.e., in the coupled

scalar field model that is equivalent to these f(R) models, the scalar field φ has little time
evolution and therefore has an equation of state which is very close to −1. It also implies that
the weak-field approximation, where we can neglect the time evolution of the scalar degree of
freedom fR, is a good approximation, so that in an inhomogeneous Universe we have

∇2fR ≈
1

3c2 [δR− 8πGδρm] a2, (2.42)

where ∇ is the gradient with respect to the comoving coordinate, as before, δρm ≡ ρm− ρ̄m =
ρ̄mδ, and

δR = R− R̄. (2.43)
By realising that eq. (2.38) can be inverted to give

R = R̄0

(
fR0
fR

) 1
n+1

. (2.44)

With eq. (2.44), eq. (2.42) becomes a nonlinear dynamical equation for fR.
Also under the quasi-static and weak-field approximations, the Poisson equation takes

the following modified form

∇2Φ ≈ 16πG
3 δρma

2 − 1
6δRa

2 = 4πGρ̄ma
2δ − 1

2c
2∇2fR , (2.45)

where in the second step we have used eq. (2.42).
One can have a quick peek into two opposite regimes of solutions for eqs. (2.42), (2.45).

In the large field limit, when |fR| is relatively large (e.g., in the case of large |fR0|), the
perturbation δfR is small compared to the background field |f̄R|, and |δR| � 8πGδρm, so
that the Poisson equation (2.45) can be approximated as

∇2Φ ≈ 16πG
3 δρma

2. (2.46)
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Comparing this with the standard Poisson equation in ΛCDM,

∇2Φ ≈ 4πGδρma
2, (2.47)

we confirm that the fifth force, i.e., the enhancement of gravity, is 1/3 of the strength of
the standard Newtonian force. In the opposite, small-field, limit where |fR| takes very small
values, the left-hand side of eq. (2.42) is negligible and so we have δR ≈ 8πGδρm, and plugging
this into eq. (2.45) we recover eq. (2.47): this is the screened regime where the fifth force is
strongly suppressed.

2.4 Summary and comments

In this section we have briefly summarised the essentials of the three classes of scalar field
modified gravity models to be considered in this work. Among these, coupled quintessence is
technically more trivial, because the fifth force is unscreened nearly everywhere, while f(R)
gravity and symmetrons are both representative thin-shell screening models [117] featuring
two of the most important screening mechanisms respectively. Compared with previous
simulation work, we will consider f(R) models with more values of the parameter n: as
discussed below, instead of the common choice of n = 1, we will also look at n = 0, 2 to see
how the phenomenology of the model varies.

We remark that, even with the additional modified gravity models implemented in
this paper, as well as the models implemented in the twin paper [104], we are still far from
covering all possible models. Changing the coupling function A(ϕ) or the scalar field potential
V (ϕ), as an example, will lead to new models. However, our objective is to have an efficient
simulation code that covers different types of models, which serves as a ‘prototype’ that can
be very easily modified for any other models belonging to the same type. This differs from
the model-independent [118] or parameterised modified gravity [119] approaches adopted
elsewhere, and we perfer this approach since there is a direct link to some fundamental
Lagrangian here, and because, any parameterisation of models, one its parameters specified,
also corresponds to a fixed model.

3 Numerical implementations

This section is the core part of this paper, where will describe in detail how the different
theoretical models of section 2 can be incorporated in a numerical simulation code, so that
the scalar degree of freedom can be solved at any given time with any given matter density
field. This way, the various effects of the scalar field on cosmic structure formation can be
accurately predicted and implemented.

3.1 The GLAM code

The glam code is presented in [99], and is a promising tool to quickly generate N -body
simulations with reasonable speed and acceptable resolution, which are suitable for the massive
production of galaxy survey mocks.

As a PM code, glam solves the Poisson equation for the gravitational potential in a
periodic cube using fast Fourier Transformation (FFT). The code uses a 3D mesh for density
and potential estimates, and only one mesh is needed for the calculation: the density mesh is
replaced with the potential. The gravity solver uses FFT to solve the discrete analogue of the
Poisson equation, by applying it first in x- and then to y-direction, and finally transposing
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the matrix to improve data locality before applying FFT in the third (z-)direction. After
multiplying this data matrix by the Green’s function, an inverse FFT is applied, performing
one matrix transposition and three FFTs, to compute the Newtonian potential field on the
mesh. The potential is then differentiated using a standard three-point finite difference scheme
to obtain the x, y and z force components at the centres of the mesh cells. These force
components are next interpolated to the locations of simulation particles, which are displaced
using a leapfrog scheme. A standard Cloud-in-Cell (CIC) interpolation scheme is used for
both the assignment of particles to calculate the density values in the mesh cells and the
interpolation of the forces.

A combination of parameters that define the resolution and speed of the glam code are
carefully selected. For example, it uses the FFT5 code (the Fortran 90 version of FFTpack5.1)
because it has an option of real-to-real FFT that uses only half of the memory as compared
to FFTW. It typically uses 1/2–1/3 of the number of particles (in 1D) as compared with the
mesh size — given that the code is limited by available RAM, this is a better combination
than using the same number of particles and mesh points.

glam uses openmp directives to parallelise the solver. Overall, the code scales nearly
perfectly, as has been demonstrated by tests run with different mesh sizes and on different
processors (later in the paper we will present some actual scaling test of mg-glam as well,
which again is nearly perfect). mpi parallelisation is used only to run many realisations on
different supercomputer nodes with very little inter-node communications. Load balance is
excellent since theoretically every realisation requires the same number of CPUs.

Initial conditions are generated on spot by glam, using the standard Zel’dovich approxi-
mation [120, 121] from a user-provided linear matter power spectrum P (k) at z = 0. The code
backscales this P (k) to the initial redshift zini using the linear growth factor for ΛCDM with
the specified cosmological parameters. Since the Zel’dovich approximation is less accurate at
low redshifts [122], the simulation is typically started at an initial redshift zini ≥ 100.

In general, the modified gravity affects the generation of the ICs [123]. But we start
the simulation at z = 100, a time in which the MG fields have little effect on the growth of
structure. Also, it was checked that the ΛCDM and MG simulations can use the same initial
conditions for the symmetron model [22]. However, this is not case for all modified gravity or
dark energy models. For example, ref. [110] shows that the backscaling initial conditions cannot
compute simultaneously the power spectrum of matter and of the gravitational potential for
clustered dark energy.

glam uses a fixed number of time steps, but this number can be specified by the user.
The standard choice is about 150–200. Here, we have compared the model difference of the
matter power spectra between modified gravity mg-glam and ΛCDM glam simulations and
found that the result is converged with 160 time steps. Doubling the number of steps from
160 to 320 makes negligible difference.

The code generates the density field, including peculiar velocities, for a particular
cosmological model. Nonlinear matter power spectra and halo catalogues at user-specified
output redshifts (snapshots) are measured on the fly. For the latter, glam employs the Bound
Density Maximum (BDM; [124, 125]) algorithm to get around the usual limitations placed on
the completeness of low-mass haloes by the lack of force resolution in PM simulations. Here
we briefly describe the idea behind the BDM halo finder, and further details can be found
in [125, 126]. The code starts by calculating a local density at the positions of individual
particles, using a spherical tophat filter containing a constant number Nfilter (typically 20)
of particles. It then gathers all the density maxima and, for each maximum, finds a sphere
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that contains a mass M∆ = 4
3π∆ρcrit(z)R3

∆, where ρcrit(z) is the critical density at the halo
redshift z, and ∆ is the overdensity within the halo radius R∆. Throughout this work we will
use the virial density definition for ∆ given by [127]

∆vir(z) = 18π2 + 82 [Ωm(z)− 1]− 39 [Ωm(z)− 1]2 , (3.1)

where Ωm(z) is the matter density parameter at z. To find distinct haloes, the BDM halo
finder still needs to deal with overlapping spheres. To this end, it treats the density maxima as
halo centres and finds the one sphere, amongst a group of overlapping ones, with the deepest
Newtonian potential. This is treated as a distinct, central, halo. The radii and masses of the
haloes which correspond to the other (overlapping) spheres are then found by a procedure
that guarantees a smooth transition of the properties of small haloes when they fall into the
larger halo to become subhaloes of the latter. The latter is done by defining the radius of the
infalling halo as max(R1, R2), where R1 is its distance to the surface of the larger, soon-to-be
host, central halo, and R2 is its distance to the nearest density maximum in the spherical
shell [min(R∆, R1),max(R∆, R1)] centred around it (if no density maximum exists in this
shell, R2 = R∆). The BDM halo finder was compared against a range of other halo finders
in [126], where good agreement was found.

mg-glam extends glam to a general class of modified gravity theories by adding extra
modules for solving MG scalar field equations, which will be introduced in the following
subsection.

3.1.1 The GLAM code units
Like most other N -body codes, glam uses its own internal unit system. The code units are
designed such that the physical equations can be cast in dimensionless form, which is more
convenient for numerical solutions.

Let the box size of simulations be L and the number of grid points in one dimension be
Ng. We can introduce dimensionless coordinates x̃, momenta p̃ and potentials Φ̃ using the
following relations [99]

x̃ =
(
Ng
L

)
x , p̃ =

(
Ng
H0L

)
p , Φ̃ =

(
Ng
H0L

)2
Φ . (3.2)

Having the dimensionless momenta, we can find the peculiar velocity,

vpec = 100
(
L

Ng

)(
p̃

a

)
km s−1 , (3.3)

where we assumed that box size L is given in units of h−1Mpc. Using these notations, we
write the particle equations of motion and the Poisson equation as

dp̃

da = −
(
H0
ȧ

)
∇̃Φ̃ , (3.4)

dx̃

da = −
(
H0
ȧ

)
p̃

a2 , (3.5)

∇̃2Φ̃ = 3
2Ωma

−1δ̃, (3.6)

where δ̃ is the code unit expression of the density contrast δ.
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From eqs. (3.2) we can derive the following units,

∇̃ =
(
L

Ng

)
∇ , dt̃ = H0dt , ρ̃m =

(
a3

ρcrit,0Ωm

)
ρm , δ̃ = δ . (3.7)

In what follows, we will also use the following definition

c̃ =
(
Ng
H0L

)
c (3.8)

for the code-unit expression of the speed of light, c.
glam uses a regularly spaced three-dimensional mesh of size N3

g that covers the cubic
domain L3 of a simulation box. The size of a cell, ∆x = L/Ng, and the mass of each particle,
mp, define the force and mass resolution respectively:

mp = Ωm ρcrit,0

[
L

Np

]3

= 8.517× 1010
[ Ωm

0.30

] [
L/h−1Gpc
Np/1000

]3

h−1M�, (3.9)

∆x =
[
L/h−1Gpc
Ng/1000

]
h−1Mpc, (3.10)

where N3
p is the number of particles and ρcrit,0 is the critical density of the universe at present.

3.2 Solvers for the extra degrees of freedom

We have seen in section 2 that in modified gravity models we usually need to solve a new,
dynamical, degree of freedom, which is governed by some nonlinear, elliptical type, partial
differential equation (PDE). Being a nonlinear PDE, unlike the linear Poisson equation solved
in default glam, the equation can not be solved by a one-step fast Fourier transform7 but
requires a multigrid relaxation scheme to obtain a solution.

For completeness, we will first give a concise summary of the relaxation method and its
multigrid implementation (section 3.2.1). Next, we will specify the practical side, discussing
how to efficiently arrange the memory in the computer, to allow the same memory space to
be used for different quantities at different stages of the calculation, therefore minimising the
overall memory requirement (section 3.2.2), and also saving the time for frequently allocating
and deallocating operations. After that, in sections 3.2.3–3.2.5, we will respectively discuss
how the nonlinear PDEs in general coupled quintessence, symmetron and f(R) models can
be solved most efficiently. Much effort will be devoted to replacing the common Newton-
Gauss-Seidel relaxation method by a nonlinear Gauss-Seidel, which has been found to lead
to substantial speedup of simulations [129] (but we will generalise this to more models than
focused on in ref. [129]). For the coupled quintessence model, we will also briefly describe
how the background evolution of the scalar field is numerically solved as an integral part of
mg-glam, to further increase its flexibility.

7This does not mean that FFT cannot be used under any circumstances. For example, ref. [128] used a
FFT-relaxation method to solve nonlinear PDEs iteratively. In each iteration, the equation is treated as if
it were linear (by treating the nonlinear terms as a ‘source’) and solved using FFT, but the solution in the
previous step is used to update the ‘source’, for the PDE to be solved again to get a more accurate solution,
until some convergence is reached.
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3.2.1 Multigrid Gauss-Seidel relaxation

Let the partial differential equation (PDE) to be solved take the following form:

L(u) = 0, (3.11)

where u is the scalar field and L is the PDE operator. To solve this equation numerically,
we use finite difference to get a discrete version of it on a mesh.8 Since mg-glam is a
particle-mesh (PM) code, it has a uniform mesh resolution and does not use adaptive mesh
refinement (AMR). When discretised on a uniform mesh with cell size h, the above equation
can be denoted as

Lh(uh) = fh, (3.12)

where we have added a nonzero right-hand side, fh, for generality (while fh = 0 on the
mesh with cell size h, later when we discrete it on coarser meshes needed for the multigrid
implementation, f is no longer necessarily zero). Both uh and fh are evaluated at the cell
centres of the given mesh.

The solution we obtain numerically, û, is unlikely to be the true solution uh to the
discrete equation, and applying the PDE operator on the former gives the following, slightly
different, equation:

Lh(ûh) = f̂h. (3.13)

Taking the difference between the above two equations, we get

Lh(uh)− Lh(ûh) = fh − f̂h = −dh, (3.14)

where
dh ≡ f̂h − fh, (3.15)

is the local residual, which characterises the inaccuracy of the solution ûh (this is because if
ûh = uh, we would expect f̂h = fh and hence there is zero ‘inaccuracy’). dh is also evaluated
at cell centres. Later, to check if a given set of numerical solution ûh is acceptable, we will
use a global residual, εh, which is a single number for the given mesh of cell size h. In this
work we choose to define εh as the root-mean-squared of dh in all mesh cells (although this
is by no means the only possible definition). We will call both dh and εh ‘residual’ as the
context will make it clear which one is referred to.

Relaxation solves eq. (3.12) by starting from some approximate trial solution to uh, ûhold,
and check if it satisfies the PDE. If not, this trial solution can be updated using a method
that is similar to the Newton-Ralphson iterative method to solve nonlinear algebraic equations

ûhnew = ûhold −
Lh
(
ûhold

)
− f̂h

∂Lh
(
ûhold

)
/∂ûh

. (3.16)

This process can be repeated iteratively, until the updated solution satisfies the PDE to an
acceptable level, i.e., εh becomes small enough. In practice, because we are solving the PDE
on a mesh, eq. (3.16) should be performed for all mesh cells, which raises the question of
how to order this operation for the many cells. We will adopt the Gauss-Seidel ‘black-red
chessboard’ approach, where the cells are split into two classes, ‘black’ and ‘red’, such that all

8In this paper we consider the simplest case of cubic cells.
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the six direct neighbours9 of a ‘red’ cell are black and vice versa. The relaxation operation,
eq. (3.16), is performed in two sweeps, the first for ‘black’ cells (i.e., only updating ûh in ‘black’
cells while keeping their values in ‘red’ cells untouched), while the second for all the ‘red’ cells.
This is a standard method to solve nonlinear elliptical PDEs by using relaxation, known as
the Newton-Gauss-Seidel method. However, although this method is generic, it is not always
efficient, and later we will describe a less generic alternative which is nevertheless more efficient.

Relaxation iterations are useful at reducing the Fourier modes of the error in the trial
solution ûh, whose wavelengths are comparable to that of the size of the mesh cell h. If we
do relaxation on a fine mesh, this means that the short-wave modes of the error are quickly
reduced, but the long-wave modes are generally much slower to decrease, which can lead to a
slow convergence of the relaxation iterations. A useful approach to solve this problem is by
using multigrid: after a few iterations on the fine level, we ‘move’ the equation to a coarser
level where the cell size is larger and the longer-wave modes of the error in ûh can be more
quickly decreased. The discretised PDE on the coarser level is given by

LH(uH) = L
(
Rûh

)
−Rdh ≡ SH , (3.17)

where the superscript H denotes the coarse level where the cell size is H (in our case H = 2h),
and R denotes the restriction operator which interpolates quantities from the fine level to the
coarse level. In our numerical implementation, a coarse (cubic) cell contains 8 fine (cubic) cells
of equal volume, and the restriction operation can be conveniently taken as the arithmetic
average of the values of the quantity to be interpolated in the 8 fine cells.

Eq. (3.17) can be solved using relaxation similarly to eq. (3.13), for which the numerical
solution is denoted as ûH . This can be used to ‘correct’ and ‘improve’ the approximate
solution ûh on the fine level, as

ûh,new = ûh,old + P
(
ûH −Rûh

)
, (3.18)

where P is the prolongation operation which does the interpolation from the coarse to the
fine levels. In this work we shall use the following definition of the prolongation operation:
for a given fine cell,

1. find its parent cell, i.e., the coarser cell that contains the fine cell;

2. find the seven neighbours of the parent cell, i.e., the coarser cells which share a face
(there are 3 of these), an edge (there are 3 of these) or a vertex (just 1) with the above
parent coarser cell;

3. calculate the fine-cell value of the quantity to be interpolated from the coarse to the fine
levels, as a weighted average of the corresponding values in the 8 coarse cells mentioned
above: 27/64 for the parent coarse cell, and 9/64, 3/64 and 1/64 respectively for the
coarse cells sharing a face, an edge and a vertex with the parent cell.

The above is a simple illustration of how multigrid works for two levels of mesh resolution,
h and H. In principle, multigrid can be and is usually implemented using more than two
levels. In this paper we will use a hierarchy of increasingly coarser meshes with the coarsest
one having 43 cells.

9The direct neighbours of a given cell are the six neighbouring cells which share a common face with
that cell.
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h

2h

4h

8h
V-cycle F-cycle W-cycle

Figure 1. An illustration of the three different arrangements of multigrid relaxation method used
in this paper: from left to right, V-cycle, F-cycle and W-cycle. The horizontal dotted lines depict 4
multigrid levels of mesh, with the finest mesh (denoted by its cell size h) on top, and the coarsest mesh
(with cell size 8h) at the bottom. The relaxation always starts on the finest level, and the solid lines
show how the multigrid solver walks through the different levels, performing Gauss-Seidel relaxation
iterations at each level (denoted by the circles), called smoothing. Only one single full cycle is shown
for each case. The solver walks over the multigrid levels more times in W-cycle than in F-cycle and
V-cycle, and thus it requires fewer cycles in the former case to arrive at a converged solution. However,
it is also computationally more expensive. We will compare the performances of the three different
arrangements in real cosmological simulations in section 4.3.

There are flexibilities in how to arrange the relaxations at different levels. The most-
commonly used arrangement is the so-called V-cycle, where one starts from the finest level,
moves to the coarsest one performing relaxation iterations on each of the intermediate levels
(cf. eq. (3.17)), and then moves straight back to the finest performing corrections using
eq. (3.18) on each of the intermediate levels. Other arrangements, such as F-cycle and
W-cycle (cf. figure 1), are sometimes more efficient in improving the convergence rate of ûh to
uu, and we have implemented them in mg-glam as well.

3.2.2 Memory usage

glam uses a single array to store mesh quantities, such as the matter density field and the
Newtonian potential, because at any given time only one of these is needed. The Newtonian
force at cell centres is calculated by finite-differencing the potential and then interpolated to
the particle positions. To be memory efficient, glam also opts not to create a separate array
to store the forces at the cell centres, but instead directly calculates them at the particle
positions immediately before updating the particle velocities.

With the new scalar field to be solved in modified gravity models, we need two additional
arrays of size N3

g , where N3
g is the number of cells of the PM grid (i.e., there are Ng cells in each

direction of the cubic simulation box). This leads to three arrays. Array 1 is the default array
in glam, which is used to store the density field ρ and the Newtonian potential Φ (at different
stages of the simulation). Note that the density field is also needed when solving the scalar field
equation of motion during the relaxation iterations, and so we cannot use this array to also
store the scalar field. On the other hand, we will solve the Newtonian potential after the scalar
field, by when it is safe to overwrite this array with Φ. Array2 is exclusively used to store the
scalar field solution ûh on the PM grid, which will be used to calculate the fifth force. Array3
is used to store the various intermediate quantities which are created for the implementation of
the multigrid relaxation, such as dh, ûH , Rûh, Rdh, SH and ρH , the last of which is the density
field on the coarser level H , which appears in the coarse-level discrete PDE operator LH .
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Section i range j range k range Quantity
1 1, · · · , Ng/2 1, · · · , Ng/2 1, · · · , Ng/2 d`, Rd`

2 Ng/2 + 1, · · · , Ng 1, · · · , Ng/2 1, · · · , Ng/2 d`, ρ`−1 = Rρ`

3 1, · · · , Ng/2 Ng/2 + 1, · · · , Ng 1, · · · , Ng/2 d`, Rû`

4 Ng/2 + 1, · · · , Ng Ng/2 + 1, · · · , Ng 1, · · · , Ng/2 d`, û`−1

5 1, · · · , Ng/2 1, · · · , Ng/2 Ng/2 + 1, · · · , Ng d`, recursion

6 Ng/2 + 1, · · · , Ng 1, · · · , Ng/2 Ng/2 + 1, · · · , Ng d`, d`−1

7 1, · · · , Ng/2 Ng/2 + 1, · · · , Ng Ng/2 + 1, · · · , Ng d`, S`−1

8 Ng/2 + 1, · · · , Ng Ng/2 + 1, · · · , Ng Ng/2 + 1, · · · , Ng d`

Table 1. The summary of the quantities stored in each section of Array3.

To be concrete, we imagine the 3D array (Array3) as a cubic box with N3
g cubic cells of

equal size. An array element, denoted by (i, j, k), represents the ith cell in the x direction, jth
cell in the y direction and kth cell in the z direction, with i, j, k = 1, · · · , Ng. We divide this
array into 8 sections, each of which can be considered to correspond to one of the 8 octants
that equally divide the volume of the cubic box. The range of (i, j, k) of each section and the
quantity stored in that section of Array3 are summarised in table 1.

Let us explain this more explicitly. First of all, the whole Array3, of size N3
g , will be used

to store the residual value dh on the PM grid (which has N3
g cells). From now on, we label this

grid by ‘level-`’, and use ‘level-(`−m)’ to denote the grid that are m times coarser, i.e., if the
cell size of the PM grid is h, then the cells in this coarse grid have a size of 2mh. In the table
above we have used d` to denote the dh on level-`, and so on. Note that we always use Ng = 2`.

The local residual dh on a fine grid is only needed for two purposes: (1) to calculate the
global residual on that grid, εh, which is needed to decide convergence of the relaxation, and
(2) to calculate the coarse-level PDE operator LH that is needed for the multigrid acceleration,
as per eq. (3.17). This suggests that dh does not have to occupy Array3 all the time, and so
this array can be reused to store other intermediate quantities (see the last column of the
above table) after we have obtained εh.

In our arrangement, Section 1 stores the residual Rd`, Section 2 stores the restricted
density field ρ`−1 = Rρ`, Sections 3 and 4 store, respectively, the restricted scalar field
solution Rû` and the coarse-grid scalar field solution û`−1 — the former is needed to calculate
S`−1 in eq. (3.17) and to correct the fine-grid solution using eq. (3.18), which is fixed after
calculation, while the latter is updated during the coarse-grid relaxation sweeps.10 Section 7
stores the coarse-grid source S`−1 for the PDE operator L`−1 as defined in eq. (3.17), and
finally Section 6 stores the residual on the coarse level, d`−1. Note that all these quantities
are for level-(`− 1), so that they can be stored in section of Array3 of size (Ng/2)3. Section 8
is not used to store anything other than d`.

We have not touched Section 5 so far — this section is reserved to store the same
quantities as above, but for level-(`− 2), which are needed if we want to use more than two
levels of multigrid. It is further divided into 8 section, each of which will play the same roles

10We use Rû` as the initial guess for û`−1 for the Gauss-Seidel relaxations on the coarse level.
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as detailed in the table above.11 In particular, the (sub)Section 5 of Section 5 is reserved for
quantities on level-(`− 3), and so on. In this way, there is no need to create separate arrays of
various sizes to store the intermediate quantities on different multigrid levels which therefore
saves memory.

There is a small tricky issue here: as we mentioned above, the local residual d` on the
PM grid is needed to calculate the coarse-grid source S`−1 using eq. (3.17), thus we will be
using the quantity d` stored in Array3 to calculate Rd` and then write it to (part of) the same
array, running the risk of overwriting some of the data while it is still needed. To avoid this
problem, we refrain from using the d` data already stored in Array3, but instead recalculate
it in the subroutine to calculate Rd` (this only needs to be done for level-`). With a bit of
extra computation, this enables use to avoid creating another array of similar size to Array3.

Since Array3 stores different quantities in different parts, care must be excised when
assessing these data. There is a simple rule for this: suppose that we need to read or write the
quantities on the coarse grid of level-(`−m) with m ≥ 1. These are 3-dimensional quantities
with the three directions labelled by I, J,K, which run over 1, · · · , 2`−m, and we have

R(d`−m+1) [I, J,K]↔ Array3[i = I, j = J , k = K + (2m − 2) · 2`−m],
R(ρ`−m+1) [I, J,K]↔ Array3[i = I + 2`−m, j = J , k = K + (2m − 2) · 2`−m],
R(u`−m+1) [I, J,K]↔ Array3[i = I, j = J + 2`−m, k = K + (2m − 2) · 2`−m],

û`−m [I, J,K]↔ Array3[i = I + 2`−m, j = J + 2`−m, k = K + (2m − 2) · 2`−m],
d`−m [I, J,K]↔ Array3[i = I + 2`−m, j = J , k = K + (2m − 1) · 2`−m],
S`−m[I, J,K]↔ Array3[i = I, j = J + 2`−m, k = K + (2m − 1) · 2`−m],

(3.19)
where i, j, k = 1, · · · , Ng run over the entire Array3.

We can estimate the required memory for mg-glam simulations as follows. As mentioned
above, the code uses a 3D array of single precision to store both the density field and the
Newtonian potential, and one set of arrays for particle positions and velocities. In addition, two
arrays are added to store the scalar field solution (Array2) and various intermediate quantities
in the multigrid relaxation solver (Array3). In the cosmological simulations described in this
paper, we have used double precision for the two new arrays, and we have checked that using
single precision slightly speeds up the simulation, while agreeing with the double-precision
results within 0.001% and 0.5% respectively for the matter power spectrum and halo mass
function. Given its fast speed and its shared-memory nature, memory is expected to be the
main limiting factor for large mg-glam jobs. For this reason, we assume that all arrays are
set to be single precision for future runs, and this leads to the following estimate of the total
required memory:

Mtot = 12N3
g + 24N3

p bytes ,

= 89.41
(
Ng

2000

)3
+ 22.35

(
Np

1000

)3
GB ,

≈ 112
(
Np

1000

)3
GB , for Ng = 2Np , (3.20)

where we have used 1 GB = 10243 bytes. This is slightly more than twice the memory
requirement of the default glam code, which is 52 (Np/1000)3 GB [99].

11The exception is that, as d`−1 is already stored in Section 6, it does not have to be stored in Section 5 again.
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3.2.3 Implementation of coupled quintessence

Defining the code unit of the dimensionless scalar field perturbation, δϕ = ϕ− ϕ̄, as12

ϕ̃ ≡ c2Ng
H2

0L
2 δϕ = c̃2δϕ, (3.21)

with δϕ being the perturbation to ϕ, we can rewrite its equation of motion as

∇̃2ϕ̃ = 3βΩma
−1eβϕ̄

[
exp

(
β
ϕ̃

c̃2

)
(1 + δ̃)− 1

]
− αλ2a2

[
1

(ϕ̄+ c̃−2ϕ̃)1+α −
1

ϕ̄1+α

]
, (3.22)

where ϕ̄ is the background value of ϕ, and λ is defined in eq. (2.15). The Poisson equation
becomes

∇̃2Φ̃N = 3
2Ωma

−1eβϕ̄
[
exp

(
β
ϕ̃

c̃2

)
(1 + δ̃)− 1

]
+ λ2a2

[ 1
(ϕ̄+ c̃−2ϕ̃)α −

1
ϕ̄α

]
. (3.23)

In practice, as we know that the scalar field density perturbation is small in the models of
interest, the second term on the right-hand side of the Poisson equation can be dropped
approximately. We have also chosen to neglect the term exp

(
βc̃−2ϕ̃

)
in front of (1 + δ̃), to

simplify the simulation — this is again justified because |δϕ| � |ϕ̄| ' O(1) at late times,
although including this in the simulation is trivial.

The modified particle coordinate and velocity updates can be rewritten as

dx̃

da = H0
a2ȧ

p̃, (3.24)
dp̃

da = −H0
ȧ

[
∇̃Φ̃N + β∇̃ϕ̃

]
− βdϕ̄

da p̃. (3.25)

Here we can observe more explicitly the effect of a modified background expansion history in
coupled quintessence models, encoded in the H0ȧ

−1 terms.
In mg-glam, eq. (3.22) is solved using the Newton-Gauss-Seidel method described in

section 3.2.1. Eq. (3.23) is not directly solved, but instead we solve the (standard) Poisson
equation not having eβϕ̄: since this is a background quantity, we instead multiply it when
calculating the Newtonian force from Φ̃N. Eqs. (3.24), (3.25) are then solved — the fifth force
β∇̃ϕ̃ is incorporated by first summing up the two potentials, Φ̃N + βϕ̃, and then doing the
finite difference.

MG-GLAM background cosmology solver. As eqs. (3.24), (3.25) contain background
quantities ȧ and dϕ̃/da, for every given coupled quintessence model we need to solve its
background evolution. This is governed by the following system of equations — the equation
of motion for the background scalar field ϕ̄:

¨̄ϕ+ 3 ȧ
a

˙̄ϕ+ dV (ϕ̄)
dϕ + dA (ϕ̄)

dϕ 8πGρ̄m = 0, (3.26)

12Note that, for brevity, we have slightly abused the notations, by using the same symbol ϕ with a tilde
for the code-unit expression of δϕ. Given that the code-unit quantity always comes with a tilde, this should
not cause any confusion with, e.g., the background scalar field ϕ̄, or the total dimensionless scalar field ϕ in
physical units.
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the Friedmann equation (with a flat Universe, k = 0, being assumed)

H2 =
(
ȧ

a

)2
= 8πG

3 [ρ̄r(a) +A(ϕ̄)ρ̄m(a)] + 1
6

˙̄ϕ2 +H2
0
λ2

ϕ̄α
, (3.27)

and the Raychaudhuri equation

3
(
Ḣ +H2

)
= −4πG [2ρ̄r(a) +A(ϕ̄)ρ̄m(a)]− ˙̄ϕ2 +H2

0
λ2

ϕ̄α
, (3.28)

where ρ̄r denotes the background density of radiations (we assume that all three species of
neutrinos are massless and thus counted as radiation). Note that in eqs. (3.27), (3.28), to
see the dimensions of the different terms clearly, we have already explicitly substituted the
inverse-powerlaw potential and used the definition of λ in eq. (2.15). In mg-glam the scalar
field equation is solved by a fifth-sixth order continuous Runge-Kutta method.13

For numerical solutions in background cosmology, instead of directly working with
eqs. (3.26), (3.27), (3.28), it is convenient to use N ≡ ln(a) as the time variable, for which we
have

ϕ̄′ = H dϕ̄
dN , ϕ̄′′ = H2 d2ϕ̄

dN2 +H′ dϕ̄dN , (3.29)

where, as mentioned in the Introduction, ′ is the derivative with respect to the conformal time
τ and H ≡ a′/a. In this convention, the background quintessence field equation of motion,
eq. (3.26), can be written as

H2

H2
0

d2ϕ̄

dN2 +
[
2H

2

H2
0

+ H
′

H2
0

]
dϕ̄
dN − 3αλe2N ϕ̄−(1+α) + 3βe−NΩm exp(βϕ̄) = 0, (3.30)

where the quantities H2/H2
0 and H′/H2

0 can be obtained from eqs. (3.27), (3.28) as

H2

H2
0

=
[
1− 1

6

( dϕ̄
dN

)2
]−1 [

Ωre−2N + exp(βϕ̄)Ωme−N + λe2N ϕ̄−α
]
, (3.31)

H′

H2
0

= −1
3

( dϕ̄
dN

)2 H2

H2
0

+ λe2N ϕ̄−α − Ωre−2N − 1
2Ωme−N exp(βϕ̄). (3.32)

Here Ωr denotes the present-day radiation density parameter, with ‘radiation’ including CMB
photons with a present-day temperature of 2.7255 K and 3.046 flavours of massless neutrinos;
we defer the implementation of massive neutrinos, both as a non-interacting particle species
and in the context of coupling to scalar fields, to future works.

We note that λ is not a free parameter of the model. Rather, once the density parameters
Ωm, Ωr and H0 are specified (or equally once the present-day densities of matter and radiation
are specified), λ, which quantifies the size of the potential energy of the scalar field, must take
some certain value in order to ensure consistency. If λ is too large, the predicted H(a = 1)
will be larger than the desired (input) value of H0, and vice versa. In practice, mg-glam
starts from a trial value of λ = 1, evolves eqs. (3.26), (3.27), (3.28) from some initial redshift
(zi = 105) to z = 0, and checks if the calculated value of H(a = 1) is equal to the desired value
H0 (within a small relative error of order O

(
10−6)); if the predicted H(a = 1) is larger than

13For this numerical integrator we have used subroutine dverk from the camb code, originally developed
in Fortran 66 by K.R. Jackson.
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the desired H0, λ is decreased, and vice versa. This process is repeated iteratively to obtain a
good approximation to λ with a relative error smaller than 10−6. The initial conditions of
ϕ̄ and ˙̄ϕ at zi = 105 are not important, as long as their values are small enough. Once the
value of λ has been determined in this way, it is stored to be used in other parts of the code;
also stored are a large array of the various background quantities such as H, Ḣ, ϕ̄ and ˙̄ϕ — if
needed at any time by the scalar field solver of mg-glam, these quantities can be linearly
interpolated in the scale factor a.

3.2.4 Implementation of symmetrons

The scalar field equation of motion in the symmetron model, eq. (2.32), can be written in
code unit as

c̃2∇̃2u = a2

2ξ2

[
ρ̃
a3
∗
a3 − 1

]
u+ a2

2ξ2u
3. (3.33)

While this equation can be solved similarly to the case of coupled quintessence by using the
standard Newton-Gauss-Seidel relaxation method we described in section 3.2.3, the ‘Newton’
approximation of this method, eq. (3.16), is indeed unnecessary, as can be seen from the
following derivation. Defining

Li,j,k(u) ≡ ui+1,j,k + ui−1,j,k + ui,j+1,k + ui,j−1,k + ui,j,k+1 + ui,j,k−1, (3.34)

where a subscript i,j,k denotes the value of a quantity in a cell that is the ith (jth, kth) in
the x (y, z) direction, the discretised version of eq. (3.33), after some rearrangement, can be
written as

u3
i,j,k +

[
ρ̃i,j,k

a3
∗
a3 − 1

]
ui,j,k + 12

h2
c̃2ξ2

a2 ui,j,k −
2
h2
c̃2ξ2

a2 Li,j,k = 0. (3.35)

We can define

p ≡ ρ̃i,j,k
a3
∗
a3 − 1 + 12

h2
c̃2ξ2

a2 , (3.36)

q ≡ − 2
h2
c̃2ξ2

a2 Li,j,k, (3.37)

so that the above equation can be simplified as

u3
i,j,k + pui,j,k + q = 0. (3.38)

This is similar to the discrete equation of motion in the Hu-Sawicki f(R) gravity model with
n = 1, as discussed in ref. [129], which can be treated as a cubic equation of ui,j,k that can be
solved exactly (analytically). Therefore, given the (approximate) values of the field u in the
six direct neighbouring cells of (i, j, k), we can calculate ui,j,k analytically, and there is no need
to solve it using the Newton approximation as in eq. (3.16). The relaxation iterations are still
needed, since the values of u in the six direct neighbours are approximate and therefore need
to be updated iteratively, but the replacement of the Newton solver with an exact solution
of ui,j,k (therefore the name nonlinear Gauss-Seidel as opposed to Newton Gauss-Seidel)
has been found to significantly improve the convergence speed of the relaxation [129]. This
method for the symmetron model was briefly mentioned in an appendix of ref. [129] but no
numerical implementation was shown there.
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The solution to eq. (3.38) can be found as

ui,j,k =


− 1

3

(
C + ∆0

C

)
, ∆ > 0 ,

3
√
−q , ∆ = 0 ,

− 2
3
√

∆0 cos
(Θ

3 + 2π
3

)
, ∆ < 0 ,

(3.39)

where we have defined ∆0 ≡ −3p, ∆1 ≡ 27q, ∆ ≡ ∆2
1 − 4∆3

0 and

C ≡ 3

√
1
2

[
∆1 +

√
∆2

1 − 4∆3
0

]
, (3.40)

Θ ≡ arccos

 ∆1

2
√

∆3
0

 . (3.41)

It can be shown that all the 3 branches of solutions in eq. (3.39) can be the physical solution
in certain regimes, depending on model parameters, density values, mesh size, and so on.
In our implementation in mg-glam, we have used eq. (3.39) instead of eq. (3.16) for the
symmetron model.

The acceleration on particles, eq. (2.10), can be written as following in the symmetron
model:

dx̃

da = H0
a2ȧ

p̃, (3.42)
dp̃

da = F̃N + F̃5 + F̃×, (3.43)

where F̃N, F̃5 and F̃× denote, respectively, the standard Newtonian acceleration, the fifth
force acceleration and the frictional force acceleration, in code units, given by

F̃N = −H0
ȧ

∇̃Φ̃N, (3.44)

F̃5 = −6H0
ȧ
ξ2Ωmβ

2
∗ c̃

2a−3
∗ u∇̃u = −3H0

ȧ
ξ2Ωmβ

2
∗ c̃

2a−3
∗ ∇̃

(
u2
)
, (3.45)

F̃× = −9Ωmβ
2
∗ξ

2

√
1−

(
a∗
a

)3 1
a4up̃. (3.46)

In practice, as mentioned earlier, the frictional force is much weaker than the other two force
components because of the very slow time evolution of the symmetron field. Likewise, any
time variation of the matter particle mass due to the coupling with the symmetron field must
be tiny and negligible. Therefore, for the Poisson equation, which governs ΦN and thus FN,
we simply approximate it to be the same as in ΛCDM.

3.2.5 Implementation of f(R) gravity
In section 2.3 we have introduced a class of f(R) models with an (inverse) power-law function
fR, eq. (2.38), and mentioned that we will focus on the cases of n = 0, 1, 2. In this subsection,
we shall first derive equations that apply to general values of n, and then specialise to these
three cases, for which we will develop case-specific algorithms of nonlinear Gauss-Seidel
relaxation.
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In code unit, the fR equation of motion of this model, eq. (2.42), can be written as

c̃2∇̃2f̃R = −Ωma
−1
(
1 + δ̃

)
+ 1

3
˜̄R(a)a2

( ˜̄fR
f̃R

) 1
n+1

− 4ΩΛa
2, (3.47)

where f̃R ≡ fR and ˜̄fR ≡ f̄R(a) is the background value of fR. The Newtonian force is still
given by eq. (3.44) with Φ̃N governed by eq. (3.6). On the other hand, the fifth force in code
unit can be written as

F̃5 = 1
2 c̃

2∇̃f̃R. (3.48)

It is more convenient to define the following new, positive-definite, scalar field variable [129]

u ≡ (−fR)1/(n+1), (3.49)

where the minus sign is because fR < 0. Eq. (3.47) then becomes

− c̃2∇̃2
(
un+1

)
+ Ωm

a
δ + 1

3
˜̄R(a)a2 − 1

3
˜̄R(a)a2

[
−f̄R(a)

]1/(n+1) 1
u

= 0, (3.50)

where we have defined the following dimensionless background quantity:

˜̄R(a) ≡ R̄(a)
H2

0
= 3

(
Ωma

−3 + 4ΩΛ
)
, (3.51)

with R̄(a) being the background value of the Ricci scalar at scale factor a. Eq. (3.50) can be
further simplified to

un+2
i,j,k + pui,j,k + q = 0, (3.52)

where

p ≡ h2

6c̃2

[Ωm
a
δi,j,k + 1

3
˜̄R(a)a2

]
− 1

6Li,j,k, (3.53)

q ≡ − h2

6c̃2
1
3

˜̄R(a)a2
[
−f̄R(a)

]1/(n+1)
(3.54)

where Li,j,k was defined in eq. (3.34), and we have neglected the tilde in ˜̄fR(a) because
˜̄fR = f̄R anyway.

Eq. (3.52) is a polynomial for ui,j,k, which can be analytically solved for the cases of
n = 0, 1 and 2. The case of n = 1 has been discussed in ref. [129], while cases of n = 0, 2 have
not been studied before using nonlinear Gauss-Seidel schemes.14 Here we discuss all three
cases with equal details.

• The case of n = 2. In this case, eq. (3.52) is a quartic equation of ui,j,k. Define

∆0 ≡ 12q,
∆1 ≡ 27p2. (3.55)

14The case of n = 2 has been studied using simulations based on Newton-Gauss-Seidel relaxation [e.g., 130].
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We see that q < 0 and so ∆0 < 0 and ∆1 > 0. Eq. (3.52) has 4 branches of analytical
solutions:

ui,j,k = −S ± 1
2

√
−4S2 + p

S
, (3.56)

ui,j,k = S ± 1
2

√
−4S2 − p

S
, (3.57)

where we have defined

S ≡ 1
2

√
1
3

(
Q+ ∆0

Q

)
,

Q ≡ 3

√
1
2

[
∆1 +

√
∆2

1 − 4∆3
0

]
. (3.58)

We need to find the correct branch of solution. First, note that S is a square root, and
so we can show that if the quantity under the square root is a positive number, then
S > 0. This is straightforward, as.

12S2 = Q+ ∆0
Q

= 3

√
1
2

[√
∆2

1 − 4∆3
0 + ∆1

]
− 3

√
1
2

[√
∆2

1 − 4∆3
0 −∆1

]
> 0. (3.59)

Consider first the limit p→ 0. From the above equation we have

12S2 ≈ 3

√
(−∆0)3/2 + 1

2∆1 − 3

√
(−∆0)3/2 − 1

2∆1 ≈ −
1
3

∆1
∆0

= −3
4
p2

q
, (3.60)

which means that S ' |p| → 0 but p/S → ±4√−q depending on the sign of p. This
leads to the solution ui,j,k = 4

√
−q.

Given that S > 0, if p > 0, eq. (3.57) cannot be the physical branch because ui,j,k in
this branch is complex. The ‘−’ branch of eq. (3.56) cannot be chosen either, because
ui,j,k < 0, inconsistent with the requirement that ui,j,k > 0.
If p < 0, eq. (3.56) cannot be the physical branch because ui,j,k in this branch is complex.
Out of the two branches of eq. (3.57), we should choose ‘+’, because this guarantees
that when p→ 0− we still have ui,j,k > 0.
Therefore, the analytical solution can be summarised as

ui,j,k =


− S + 1

2

√
−4S2 + p

S
, p > 0,

4
√
−q, p = 0,

S + 1
2

√
−4S2 − p

S
, p < 0.

(3.61)

Note that it can be shown that 8S3 < |p| because ∆1 = 27p2 and ∆0 = 12q < 0. This
fact guarantees that in eqs. (3.61) the square roots are real; it also guarantees that in
the p > 0 branch the condition ui,j,k > 0 is satisfied (in the p < 0 branch it is satisfied
automatically).
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The existence of analytical solutions eq. (3.61) indicates that, like in the symmetron
model, in the n = 2 case of f(R) gravity here, it is not necessary to use the Newton
approximation within the Gauss-Seidel relaxation, but the solution ui,j,k of cell (i, j, k)
can be solved given the density field in this cell and the approximate solutions of u in
the neighbouring cells.

• The case of n = 1. In this case, eq. (3.52) is a cubic equation of ui,j,k [129]. Define
∆0 ≡ −3p, ∆1 ≡ 27q and the discriminant

∆ ≡ ∆2
1 − 4∆3

0. (3.62)

We see that q < 0 and so ∆1 < 0. The solution is given by

ui,j,k =


− 1

3

(
C + ∆0

C

)
, ∆ > 0,

3
√
−q, ∆ = 0,

− 2
3
√

∆0 cos
(Θ

3 + 2π
3

)
, ∆ < 0,

(3.63)

where

C ≡ 3

√
1
2

[
∆1 +

√
∆2

1 − 4∆3
0

]
, (3.64)

Θ ≡ arccos

 ∆1

2
√

∆3
0

 . (3.65)

Again, the exact analytical solutions given in eq. (3.63) eliminates the need for Newton-
Gauss-Seidel relaxations, and this has led to a significant improvement in the speed
and convergence properties of simulations of this model compared with previous simula-
tions [129].

• The case of n = 0. In this case, eq. (3.52) is a quadratic equation of ui,j,k. The solution
in this case is simple and the physical branch is given by

ui,j,k = 1
2

[
−p+

√
p2 − 4q

]
, (3.66)

which satisfies ui,j,k > 0.

4 Code tests

In this section, we present various code test results to demonstrate the reliability of the
equations, algorithms and implementations described in the previous sections. We follow
the code test framework of the ecosmog code papers [90, 91]. Apart from the background
cosmology test, all the tests shown in this section were performed on a cubic box with size
256h−1Mpc and 512 grid cells in each direction, and all background quantities are calculated
at a = 1.
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4.1 Background cosmology tests

Of the models considered in this work, only the coupled quintessence model can substantially
affect the background expansion history, while for (viable) f(R) gravity and symmetron models
the expansion rate is practically indistinguishable from that of ΛCDM. In mg-glam, the
background cosmology in the coupled quintessence model is solved numerically, as described
in section 3.2.3.

To check the numerical implementation, we have compared the predictions of certain
background quantities by mg-glam with the results produced by the modified camb code,
for the same coupled quintessence model, described in [123]. The results are presented in
figure 2, where the left panel shows the ratio between the background expansion rates of
three coupled quintessence models and that of a ΛCDM model with the same (non-MG)
cosmological parameters, while the right panel shows the background evolution of the scalar
field, ϕ̄(a), for the same three models. Lines are from the modified camb code and symbols
are for mg-glam. We see that the background cosmology solver of mg-glam agrees with the
camb code very well in all cases.

There are two additional interesting features displayed in figure 2. First, the results are
much more sensitive to β than to α, as can be observed by comparing the closeness between
the black vs red lines, and the large difference between the black vs blue lines. This shows
that the coupling to matter has a stronger impact on the scalar field background evolution
than the potetial itself.

Second, as discussed in section 2.1, the scalar field affects structure formation through a
combination of the following four effects:

• modified expansion rate: in the models studied here, the expansion rate is slowed down,
which can lead to enhancement of structure formation.

• fifth force: the fifth-force-to-Newtonian-gravity ratio is a constant 2β2, and this boosts
structure formation.

• velocity-dependent force: from the right panel of figure 2, we see that the scalar field
is positive and grows over time such that, with β < 0, the term (d lnA(ϕ̄)/dϕ) ϕ̄′ < 0,
which means that the velocity-dependent force is in the same direction as the particle
velocity, i.e., it is essentially an ‘anti-friction’ force which tends to strengthen structure
formation.

• time variation of effective particle mass: since the particle mass effectively depends on
exp(βϕ̄), with β < 0 and ϕ̄ > 0, at late times the effective mass decreases, which tends
to weaken structure formation.

Therefore, the 4 effects work in different directions, and the net effect on structure formation
— whether it is boosted or weakened — will need to be calculated numerically for specific
models.

4.2 Density tests

This subsection is devoted to the tests of the multigrid solvers for the f(R), symmetron and
coupled quintessence models, using different density configurations for which the scalar field
solution can be solved analytically or using a different numerical code.
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Figure 2. Cosmological background evolution tests. Left panel: the ratio of the Hubble parameters
between the coupled quintessence and the GR models, from the modified camb (lines) and mg-glam
(dots) codes for three kinds of model parameter values as labeled. Right panel: the evolution of the
background scalar field in the coupled quintessence from camb (lines) and mg-glam codes.

4.2.1 Homogeneous matter density field
In a homogeneous density field the MG scalar field should also be homogeneous and exactly
equal to its background value if the matter field is homogeneous, i.e.,

δ̃(x̃) ≡ 0 −→


fR(x̃)/f̄R ≡ 1, f(R) gravity;
ϕ(x̃)/ϕ∗ = ϕ̄/ϕ∗ ≤ 1, symmetron;
c̃2δϕ(x̃) ≡ 0, coupled quintessence.

(4.1)

This offers a very simple test for the relaxation solvers described above, that is particularly
useful for checking the implementation of multigrid.

We show the test results for a homogeneous density field in the left-hand panels of
figure 3, where we display the scalar field values along the x̃ direction for fixed ỹ, z̃ coordinates
before (symbols) and after (lines) the multigrid relaxation, for two initial guesses (black and
red). The three rows, from top to bottom, are respectively for the f(R), symmetron and
coupld quintessence models. For f(R) gravity, the initial guesses are randomly generated from
a uniform distribution within ξ = fR(x̃)/f̄R ∈ [0, 2], and the model parameters used are n = 1
and fR0 = −10−5; for the symmetron model, the random initial guesses are generated from a
uniform distribution ϕ(x̃)/ϕ∗ ∈ [0, 1] and the model parameters adopted are a∗ = 0.5, ξ = 10−3,
β∗ = 0.1; for coupled quintessence we consider the model parameters α = 0.1, β = −0.2, and
the initial guesses are from a uniformation distribution δϕ(x̃) ∈ [−0.5, 0.5].

In all cases, we find that the solutions after relaxation agree very well to the analytical
predictions given in eq. (4.1).

4.2.2 One-dimensional code tests
In the case of one spatial dimension, the scalar field satisfies ordinary differential equations.
Therefore, we can construct a density field that has a known analytical solution of the scalar
field, to check if the code returns the correct numerical solution, according to the scalar
field equations of f(R) gravity (eq. (3.50)), symmetron (eq. (3.33)) and coupled quintessence
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Figure 3. The uniform and one-dimensional code test results. The two columns show the cases with
homogeneous (left) and sine (right) scalar fields, whilst the different rows represent the f(R) gravity
(upper), symmetron (middle) and coupled quintessence (bottom) models. Left Panels: uniform density
test, where the symbols represent the random initial guesses of the MG scalar field in the ranges of
[0, 2] (f(R) gravity), [0, 1] (symmetron) and [−0.5, 0.5] (coupled quintessence), respectively. The solid
lines show the numerical solutions after multigrid relaxation. Two random initialisations have been
displayed in red and black. Right Panels: sine field tests. The squares show the numerical results and
the lines show the analytical solutions. The upper right panel shows the f(R) gravity test results with
n = 0, 1 and 2 as labeled.

(eq. (3.22)) in code units. In practice this can be achieved by choosing a functional form of
the scalar field in 1D, and applying the above equations to derive analytical expressions for
δ(x̃). For example, we can design density configurations in f(R) gravity by manipulating
eq. (3.50) in the 1D case as

δ̃(x̃) = − a

Ωm

{
−c̃2∇̃2

[
un+1

]
− 1

3
˜̄R(a)a2

[
−f̄R(a)

]1/(n+1) 1
u

+ 1
3

˜̄R(a)a2
}
. (4.2)

We have designed such tests where the scalar field solution is a sine function.
For f(R) gravity, the scalar field takes the following sine-function form,

fR(x̃)
f̄R

= 1 +A sin 2πx̃
Ng

, (4.3)

if the density field is given by

δ̃(x̃) = a

Ωm

c̃2f̄R

(
2π
Ng

)2

A sin 2πx̃
Ng

+ 1
3

˜̄R(a)a2
(

1 +A sin 2πx̃
Ng

)− 1
n+1

− 1
3

˜̄R(a)a2

, (4.4)

where A is a constant and |A| < 1 as fR/f̄R should be positive. We have again adopted
fR0 = −10−5 and considered the three cases of n = 0, 1, 2 respectively.
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For the symmetron model, we have taken the following form of the scalar field

u(x̃) = ϕ(x̃)
ϕ∗

= 1
2 +A sin 2πx̃

Ng
, (4.5)

which corresponds to the following overdensity field,

δ̃ (x̃) = a3

a3
∗

1−
(

1
2 +A sin 2πx̃

Ng

)2

− 2
a2 ξ

2c̃2A

(
2π
Ng

)2 sin 2πx̃
Ng

1
2 +A sin 2πx̃

Ng

− 1. (4.6)

The model parameter used here are the same as in the uniform density test above.
For the coupled quintessence model, we have taken the following form of the scalar field

ϕ̃(x̃) = c̃2δϕ(x̃) = A sin 2πx̃
Ng

, (4.7)

which corresponds to the following overdensity field,

δ̃ (x̃) = − a

3βΩm
exp(βϕ̄)

A( 2π
Ng

)2

sin 2πx̃
Ng
− λ2a2(

ϕ̄+ c̃−2A sin 2πx̃
Ng

)α + λ2a2

ϕ̄α

 . (4.8)

The model parameter used here are the same as in the uniform density test above.
The panels in the right column of figure 3 present the sine field test results for the three

classes of models, in the same order as in the left column. The numerical solutions from
mg-glam (squares) agree well with the analytical solutions of eqs. (4.3), (4.5), (4.7), shown by
lines, indicating that the code works accurately to solve the scalar field equations. In all the
tests shown here we have taken A = 0.5, but we have checked other values of A, as well as sine
functions with more than one oscillation period, and found similar agreements in all cases.

4.2.3 Three-dimensional density tests
As the final part of our tests of the multigrid relaxation solver, we consider slightly more
complicated density configurations than the uniform and 1D density fields used previously. In
order to get analytical and numerical solutions that can be compared with the predictions by
mg-glam, we still would like to use density fields that have certain symmetries. To this end,
we have done tests using a point mass (for f(R) gravity) and spherical tophat overdensity
(for the symmetron and coupled quintessence models). These tests will see the scalar field
values vary in x, y and z directions, and they are therefore proper 3D tests.

Point mass. For the first test in 3D space, we consider the solution of the scalar field
around a point mass placed at the origin, for which we have approximated analytical solution
that is valid in the regions far from the mass. This test has been widey performed in previous
MG code papers such as [90, 96, 113, 131]. The matter overdensity array is constructed as

δ̃i,j,k =
{

10−4(N3
g − 1), i = j = k = 1;

−10−4, otherwise.
(4.9)

where i, j, k = 1, . . . , Ng are the cell indices in x, y, z directions, respectively.
In f(R) gravity, with this density configuration, the scalaron equation eq. (2.42) in

regions far from the point mass simplifies to

∇2δfR ≈ m2
effδfR , (4.10)
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where δfR(x) ≡ fR(x)− f̄R, and the effective mass of the scalar field, meff , is given by

m2
eff ≡ −

1
3(n+ 1)

R̄0

c2f̄R0

(
R̄

R̄0

)n+2

= H2
0 Ωm

c2(n+ 1)(−f̄R0)

(
a−3 + 4 ΩΛ

Ωm

)n+2

(
1 + 4 ΩΛ

Ωm

)n+1 . (4.11)

At a = 1, this only depends on the combination (n+ 1)f̄R0. For a sphericially symmetric case
such as the one considered here, the equation can be recast in the following form,

1
r2

d
dr

[
r2 dδfR

dr

]
= m2

effδfR, (4.12)

or equivalently
d2

dr2 [rδfR(r)] = m2
eff · rδfR(r), (4.13)

where r is the distance from the central point mass. This equation has the solution

rδfR(r) = α1 exp (−meffr) + α2 exp (meffr) , (4.14)

where α1, α2 are constants of integral, and we must have α2 = 0 to prevent the solution from
diverging at r →∞. This leads to the following solution

δfR(r) ∝ 1
r

exp (−meffr) , (4.15)

which in code unit can be rewritten as

δfR (r̃) ∝ 1
r̃

exp (−m̃eff r̃) , (4.16)

where the m̃eff is the scalar field mass meff in code unit, given by

m̃2
eff ≡

Ωm

c̃2(n+ 1)(−f̄R0)

(
a−3 + 4 ΩΛ

Ωm

)n+2

(
1 + 4 ΩΛ

Ωm

)n+1 . (4.17)

Note that we have neglected the tilde for δfR since in our code units f̃R = fR and ˜̄fR0 =
f̄R0 ≡ fR0.

In the left panel of figure 4, we show the numerical solutions from mg-glam and the
analytical results given in eq. (4.16). Notice that the latter has an unknown coefficient, which
we have tuned to match the amplitude of the mg-glam solution. Once that is done, the
two agree very well for all three f(R) gravity models with fR0 = −10−5 for n = 0, 1 and 2
resepctively, except on scales smaller than ' 5h−1Mpc since eq. (4.10) is not valid near the
point mass, and far from the point mass where the mg-glam solution starts to see the effect
of periodic boundary condition, which is absent in eq. (4.16).

Spherical tophat overdensity. For the symmetron and coupled quintessence models,
instead of a point mass test, we have considered a spherical tophat overdensity with radius
R̃TH located at the centre of the simulation box (x̃, ỹ, z̃) = (Ng/2, Ng/2, Ng/2). Note that
code units are used here. The overdensity field is given by

δ̃TH (r̃) =
{
δ̃in, r̃ ≤ R̃TH

δ̃out, r̃ > R̃TH
, (4.18)
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Figure 4. The three-dimensional code test results. Left Panel: the numerical (squares) and analytical
(lines) solutions to δfR ≡ fR − f̄R around a point mass located at (x, y, z) = (0, 0, 0), for three f(R)
gravity models with fR0 = −10−5 and n = 0 (red), 1 (black) and 2 (blue), respectively. The analytical
approximations are only valid far from the point mass. Only the solutions along the x-axis are shown.
Middle Panel: top-hat overdensity test for the symmetron (black) and f(R) gravity models (dashed
lines). The lines correspond to the analytical solutions and the dots represent the numerical results.
The quantities shown on the y-axis are ϕ(r)/ϕ∗ for the symmetron model, and fR(r)/f̄R for the f(R)
model. Right Panel: the same as the middle panel but for the coupled quintessence model.

where r̃ ≡
√

(x̃−Ng/2)2 + (ỹ −Ng/2)2 + (z̃ −Ng/2)2 is the distance from the tophat centre,
and we have adopted R̃TH = 0.1Ng, δ̃in = 5000 and δ̃out = 0 in our tests. In spherical
symmetry, the scalar field equations for the symmetron (eq. (3.33)) and coupled quintessence
(eq. (3.22)) models reduce to the following 1D ordinary differential equations,

c̃2 1
r̃2

d
dr̃

[
r̃2 du

dr̃

]
= a2

2ξ2

[(
1 + δ̃TH(r̃)

)a3
∗
a3 − 1

]
u+ a2

2ξ2u
3 (4.19)

and

1
r̃2

d
dr̃

[
r̃2 dϕ̃

dr̃

]
= 3βΩm

a
eβϕ̄

[
exp

(
β
ϕ̃

c̃2

)(
1 + δ̃TH(r)

)
− 1

]
− αλ2a2

[
1

(ϕ̄+ c̃−2ϕ̃)1+α −
1

ϕ̄1+α

]
, (4.20)

respectively.
These two 1D equations are numerically solved using the maple software, with the

following boundary conditions on the interval r ∈ [0, Ng/2],

u(r̃ = Ng/2) =
√

1−
(
a∗
a

)3
,

du
dr̃ (r̃ = 0) = 0 , (4.21)

and

ϕ̃(r̃ = Ng/2) = 0, dϕ̃
dr̃ (r̃ = 0) = 0 , (4.22)

for the symmetron and coupled quintessence models respectively. Note that rigorously
speaking the first boundary condition should really have been set at r̃ →∞, but for numerical
implementation this is impractical and we instead use Ng/2 as an approximation to ∞.
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We have obtained the numerical solutions of these ODEs for u(r̃) and ϕ̃(r̃), but still call
them ‘analytical’ to distinguish from the numerical solutions directly solved from the original
PDEs solved by mg-glam. The model parameters are the same as in the uniform and 1D
density tests: for the symmetron model we have used a∗ = 0.5, ξ = 10−3, β∗ = 0.1, while for
coupled quintessence we have used α = 0.1, β = −0.2.

The analytical and numerical solutions for the symmetron and coupled quintessence
models are displayed in the middle and right panels of figure 4, respectively as the black solid
line and black symbols. They agree very well.

As a comparison, in the middle panel of figure 4 we have also shown, with coloured
symbols, the mg-glam solutions for the f(R) model with fR0 = −10−5 and n = 0 (blue), 1
(orange) and 2 (green). This can serve as a quick comparison of the screening efficiencies in
these four models. First, we note that in all three f(R) models the solution, fR(r̃)/f̄R0, tends
to 1 far from the spherical tophat, which is expected because the scalar field approaches its
background value far from the matter perturbation at the centre. Second, for all four models,
the scalar field is strongly suppressed inside the tophat (grey shaded region), but increases
sharply immediately outside R̃TH such that within some small distance from the edge of the
tophat it already reaches & 50% of the background value: this is what one would expect from
the f(R) and symmetron models — both of which are examples of the so-called thin-shell
screened models [117]. Third, comparing the solutions of the three f(R) models with the same
fR0, it seems that increasing the value of n increases the screening efficency, implying that
the n = 2 case has the strongest screening amongst them; we shall see the consequence of this
in the cosmological simulations in the next section. Finally, comparing the tested symmetron
model with the f(R) ones, it seems that the solution of the former lies somewhere in between
the n = 0 and n = 1 cases (at least near the tophat); however, we caution that the fifth forces
in the two models are obtained in different ways: in f(R) gravity it is directly proportional
to ∇fR, while for symmetrons it is proportional to ∇

(
u2), cf. eq. (3.45), rather than ∇u.

4.3 Convergence tests

As mentioned in section 3.2.1, we have implemented three different arrangements of the
multigrid solver — V-, F- and W-cycles. To compare them we have run a series of small
cosmological simulations for the f(R) gravity model with fR0 = −10−5 and n = 1, the
symmetron model with a∗ = 0.3, ξ = 10−3 and β∗ = 0.1 and the coupled quintessence model
with α = 0.1 and β = −0.2. These runs all use L = 256h−1Mpc, N3

p = 5123 and N3
g = 10243

for the smaller simulations. We consider 10 and 2 V-cycles (V10 and V2), 1 F-cycle (F1) and
1 W-cycle (W1) to test the convergence of the MG scalar field solutions. The V10 simulation
results are used as the benchmark of our test. For F- and W-cycles we only conisder one cycle
because, as will be shown below, this already gives excellently converged results.

Figure 5 shows the relative differences of the matter power spectra at z = 0 between
the test simulations described above and the benchmark case (V10), for f(R) gravity (left),
and the symmetron (middle) and coupled quintessence (right) models. We find that all the
different schemes and different numbers of cycles used to solve the partial differential equations
have good agreement on almost all scales probed by the simulations (. 0.4%). However, when
more cycles are used, the run time gets longer, and the slowest simulations are those using V10.
F-cycles and W-cycles are more effective in reducing residuals, both agreeing with V10 by
. 0.05% after only one cycle, which is not surprising since they walk more times across the fine
and coarse multigrid levels. As a result, Both F1 and W1 are slower than V2. Therefore, as a
compromise between accuracy and cost, we decide to always use V2 in our cosmological runs.
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Figure 5. A comparison of the convergence with different multigrid arrangements and numbers of
cycles of the Gauss-Seidel relaxation. The fractional differences in the matter power spectra are plotted
at z = 0, obtained for different multigrid schemes (V2, V10, F1, W1) using V10 as the reference.
The cases shown are for the f(R) model with fR0 = −10−5 and n = 1 (left panel), the symmetron
model with a∗ = 0.3, ξ = 10−3 and β∗ = 0.1 (middle panel), and the coupled quintessence model with
α = 0.1, β = −0.2 (right panel).

It is a great achievement for the multigrid solver to reach convergence after just 2
V-cycles (and 2 Gauss-Seidel passings of the entire mesh in each cycle), for nonlinear equations
in the f(R) gravity and symmetron models.

4.4 Comparisons with previous simulations

As a final test of the mg-glam code, we compare its predictions from cosmological simulations
with those by other modified gravity codes in the literature. We do this for the f(R) and
symmetron models only, since the coupled quintessence model is more trivial: the fifth force
in this model is unscreened, and has a nearly constant ratio with the strength of Newtonian
gravity in space [123].

For f(R) gravity, we have run two mg-glam simulations for the model fR0 = −10−5,
n = 1, using a box size L = 512h−1Mpc with N3

p = 10243 particles and N3
g = 20483

mesh cells. These are compared with the predictions from a simulation using mg-arepo,
with L = 500h−1Mpc and N3

p = 10243. All these simulations have the same cosmological
parameters, but they started from different realisations of initial conditions (ICs). Since
mg-arepo uses adaptive mesh refinement for the modified gravity force and trees for the
Newtonian force with a softening length of ≈ 15h−1kpc, it achieves better force resolution as
compared with the mg-glam simulations that use a regular mesh with Ng = 2048 giving a
force resolution of 0.25h−1Mpc. Despite this, we will see that mg-glam can reproduce the
mg-arepo results on scales of interest.

In the left panel of figure 6 we compare the matter power spectra, Pmm(k), from the mg-
glam (lines) and mg-arepo (symbols) simulations. The upper subpanel shows the absolute
P (k), where the two codes agree down to k ≈ 1hMpc−1. As shown in [99], with a mesh
resolution of 0.25h−1Mpc the glam code is capable of predicting Pmm(k) with percent-level
accuracy down to k ≈ 1hMpc−1. The lower subpanel shows the enhancements of the matter
power spectrum due to f(R) gravity. To obtain this, we have also run a counterpart ΛCDM
simulation for each of the f(R) simulations, using the same box size, grid number, particle
number, cosmological parameters and initial conditions; we then take the relative difference
between an f(R) run and its counterpart ΛCDM run. We can see an excellent agreement
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Figure 6. Comparison of matter power spectra (left panel) and halo mass functions (right panel)
predicted by simulations with the same box size and particle number, using the mg-glam (black
dashed lines with symbols) and mg-arepo (red solid lines) codes for the same f(R) model, n = 1 and
−fR0 = 10−5. The upper subpanels show the absolute measurements from the simulations, while the
lower subpanels show the relative differences from the counterpart ΛCDM runs. The vertical dashed
line in the right panel denotes 1012.5h−1M�. The two codes agree very well above this mass.

between the two codes, down to k ≈ 3hMpc−1 (even though the power spectra themselves
agree only down to k ≈ 1hMpc−1).

The right panel of figure 6 extends the comparison to the differential halo mass function
(dHMF). The dHMF is a description of the halo abundance; more accurately, it quantifies
the number density of haloes, in a spatial volume, that falls into a given halo mass bin. In
the upper subpanel we present the dHMFs measured from the mg-glam and mg-arepo
simulations, while in the lower subpanel we show the enhancements with respect to their
counterpart ΛCDM runs. As we mentioned above, mg-glam uses the spherical overdensity
halo mass definition with the virial halo overdensity, Mvir. On the other hand, mg-arepo by
default uses the M200c halo mass difinition, which is defined by requiring the mean overdensity
within the halo radius R∆, to be ∆ = 200ρcrit(z). To be self-consistent, we have rerun
mg-arepo’s halo finder, subfind [132], using the Mvir definition. The upper subpanel shows
that, at this specific mesh resolution, the dHMF predicted by mg-glam is complete down
to 1012.5h−1M�, and agrees with mg-arepo for M > 1012.5h−1M�. In addition, the dHMF
enhancements due to f(R) gravity predicted by these two codes also agree very well, despite
being noisy at the high-mass end due to the small box sizes used here.

Overall, for the f(R) version, we find very good agreement between mg-glam and
mg-arepo. We have also compared the mg-glam simulation results with predictions by
ecosmog (although the results are not presented here), and obtained as good agreements as
shown in figure 6 for both Pmm(k) and the HMF.

For the symmetron model, we have three mg-glam runs for the parameter values
a∗ = 0.33, β∗ = 1 and ξ = 3.34× 10−4, and we compare the measured matter power spectra
with those presented in [92] and [133] using the adaptive mesh refinements codes ecosmog
and mlapm, respectively. The ecosmog symmetron run followed the evolution of N3

p = 2563
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Figure 7. Comparison of the matter power spectra for the symmetron model with a∗ = 0.33, β∗ = 1
and ξ = 3.34× 10−4 at z = 0, between the ecosmog and mlapm code results in [92, 133], and two
groups of mg-glam runs with box sizes of 128 and 512h−1Mpc. The box sizes used in the mlapm and
ecosmog runs are respectively 64h−1Mpc and 128h−1Mpc. The 25 small-box mg-glam realisations
have substantial sample variance, compared with one large-box mg-glam run.

particles in a box of size L = 128h−1Mpc, and the domain grid (defined as the finest uniform
grid which covers the whole simulation box) has N3

g = 2563 cells. For the mlapm simulation,
the box size is 64h−1Mpc, the particle number is 2563 and the domain grid cell number is 1283.

Figure 7 shows the enhancement of the matter spectrum with respect to ΛCDM, for the
three mg-glam runs (solid lines) and the data taken from [92] (red symbols) and [133] (black
symbols). The first thing to note is that, for such a small box size, there is a substantial impact
by the sample variance. This is the reason why we have run 25 independent realisations using
mg-glam for a smaller box size of L = 128h−1Mpc and one realisation for a larger box size
of 512h−1Mpc. Within the uncertainties allowed by sample variance, all three codes seem to
agree with each other.

4.5 Summary

To quickly sum up this section: we have done a number of tests of different aspects of the
mg-glam code. These include the test of the background cosmology solver for the coupled
quintessence model (cf. section 4.1), tests of the multigrid relaxation solver of the scalar field
equations for different density configurations (cf. sections 4.2.1, 4.2.2, 4.2.3), convergence
property tests of the relaxation solvers with three different multigrid arrangements (V-cycle,
F-cycle and W-cycle), and additionally comparisons of mg-glam cosmological simulations
with runs using other codes. We see that mg-glam satisfactorily passes all these tests, and
gives reasonable results.

5 Cosmological runs

The objective of mg-glam is the very fast generation of N -body simulations for a wide range
of modified gravity models. In this section, we will present some examples of cosmological
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runs using this code. In particular, we will run a very large suite of f(R) simulations with
different parameter values of n and fR0. These simulations only take a small fraction of time
of a single high-resolution run of mg-arepo or ecosmog for the box size and mass resolution.

The inventory of the cosmological runs we have performed is

• f(R) gravity runs with n = 0, 1 and 2 and log10(|fR0|) in 10 bins linearly spaced in the
range [−6.00,−4.50]. One realisation for each model.

• Ten realisations of f(R) gravity runs with n = 0 and 1 and − log10(|fR0|) = 5.00.

• five symmetron models with fixed a∗ = 0.33 and β∗ = 1, with different values of ξ given
by cξ/H0 = 0.5, 1, 2, 2.5, 3.

• three variants of the coupled quintessence model described in section 2.1, with (α, β)
equal to (0.1,−0.1), (0.1,−0.2) and (0.5,−0.2) respectively.

• For each MG simulation, we have a counterpart ΛCDM run with the same simulation
specifications of cosmological parameters. We will label these runs as ‘GR’ runs, to
contrast with ‘MG’ runs, even though none of our simulations is really general relativisic.

For all simulations, we followed the evolution of 10243 particles in a cubic box with size
512h−1Mpc using a grid with 20483 cells. The non-MG cosmological parameters are from
the Planck 2015 [134] best-fitting ΛCDM parameters:

{Ωb,Ωm, h, ns, σ8} = {0.0486, 0.3089, 0.6774, 0.9667, 0.8159}.

The ICs of both the GR and MG runs are generated on the fly from the same ΛCDM linear
perturbation theory power spectrum at zinit = 100, which itself is generated using the camb
code. We have used the same ICs for GR and MG simulations (for the same realisation),
since the MG effect is very weak at z > 100, so that the linear matter power spectrum at
zini = 100 is nearly identical to that of ΛCDM.

5.1 f(R) gravity

We have measured the matter power spectra Pmm(k) and halo mass functions (HMF) at z = 0.
The results are shown in figure 8 for the matter power spectra and figure 9 for the halo mass
functions. The relative differences for Pmm(k) and HMF between f(R) and GR are displayed
in the lower subpanels.

Figure 8 shows that the matter clustering is boosted by 3-40% due to the fifth force,
but the boost is scale-dependent and is weak on very large scales (k . 0.03hMpc−1). The
Pmm(k) enhancement, ∆P/PGR, depends qualitatively on the value of |fR0|. When |fR0| is
small so that the MG effect is weak, ∆P/PGR increases monotonically with k. On the other
hand, when the MG effect is strong, the fractional difference of matter power spectra no
longer monotonically increases with k, but goes down at small scales after reaching some
peak value at k ∼ 1hMpc−1 (although on even smaller scales the Pmm(k) enhancement
increases again for some models, we only focus on the scales k . 3hMpc−1 given the fixed
simulation resolution, cf. section 4.4). This behaviour can be explained in the context of the
halo model [135], which assumes that on small scales the matter power spectrum is determined
mainly by the matter distribution inside dark matter haloes (the one-halo term).
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Figure 8. Upper Panels: the non-linear matter power spectra at redshift z = 0, from mg-glam
simulations of the f(R) model for n = 0 (left panel), n = 1 (middle) and n = 2 (right), each with 10
values of |fR0| logarithmically spaced between 10−6 and 10−4.5, i.e., − log10 |fR0| = 4.50, 4.67, . . . , 6.00.
These are indicated with different colours given in the legends. Lower Panels: the fractional difference,
∆P/PGR, between the f(R) and ΛCDM results, where ∆P ≡ PMG−PGR. The n = 0, 1, − log10 |fR0| =
5.00 and ΛCDM results are the mean of ten independent realisations, while other models only have
one realisation.

• In the regime of weak MG effect, haloes are well screened inside so that particles do not
feel the fifth force during most of their evolution. When the haloes become unscreened
at late times, the total gravitational potential rapidly becomes 1/3 deeper, but the
particle kinetic energy requires more time to respond, so that these particles tend to fall
towards the halo centre, increasing the halo density profile and therefore the one-halo
contribution to Pmm(k).

• When the MG effect is strong, particles have been accelerated for a long time (both
well before and after they fall into haloes, as the latter are unscreened or less screened)
due to the relatively strong fifth force. This means that the accelerations and velocities
of particles can be boosted by a similar fraction as the enhancement in the depth of
the gravitational potential, and hence the partice kinetic energy can be increased by a
larger factor than the deepening of the potential, so that the particles are less likely to
be trapped towards the centre of the potential. The small-scale structure can thus be
erased out to a certain degree. This behaviour of f(R) gravity has been discussed in
previous works such as [136–138]. The explanation also works for other models in which
screening has always been weak or absent, such as the coupled quintessence model (the
left panel of figure 11) and the K-mouflage model [104]; in both cases we see a decay of
∆P/PGR at k & 1hMpc−1.

We note that the parameter n of the f(R) model also has a considerable influence on
structure formation. For fixed fR0, the larger the value of n, the more efficiently the fifth force
is screened, as can be seen from figure 8, which shows that the matter clustering enhancement
is strongest in the n = 0 while weakest in the n = 2 case. We have found similar behaviour
when we checked the solution of scalar field around a top-hat overdensity in section 4.2.3, see
the middle panel figure 4: the n = 2 case has the strongest screening efficiency.

In MG theories, the dark matter halo populations are also affected. One of the elementary
halo properties is their abundance, which we quantify using the differential halo mass function
(dHMF), dn (M)/ d log10M , which is defined as the halo number density per unit logarithmic
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Figure 9. Upper Panels: differential halo mass functions (HMFs) of f(R) gravity for n = 0 (left
panel), n = 1 (middle) and n = 2 (right), each with 10 values of |fR0| logarithmically spaced between
10−6 and 10−4.5, i.e., − log10 |fR0| = 4.50, 4.67, . . . , 6.00, at redshift z = 0, from mg-glam cosmological
runs. Lower Panels: the fractional difference ∆HMF/HMFGR between f(R) and ΛCDM results, where
∆HMF ≡ HMFMG − HMFGR. The n = 0, 1, − log10 |fR0| = 5.00 and ΛCDM results come from ten
realisations (the standard deviation of which is shown as the error bars in the bottom left/central
panels), while other models only have one realisation.

halo mass. The dHMF result for the f(R) gravity runs at z = 0 is shown in figure 9, where
the lower subpanels show the enhancements with respect to ΛCDM.

Firstly, we note that the abundance of haloes is enhanced due to the enhancement of
total gravity. Secondly, for the weaker f(R) models, the relative difference from ΛCDM is
suppressed for massive haloes, where the fifth force is efficiently screened; going to smaller
haloes the enhancement increases first, which is due to the less efficient screening and stronger
MG effect for these objects; but for even smaller haloes the HMF enhancement decreases after
reaching a peak, which is due to smaller haloes experiencing more mergers to form larger
haloes. Apparently, this trend is not seen for the strong MG cases, such as F4.50 (purple)
and F4.67 (dark blue), where the HMF enhancement seems to increase monotonoically with
halo mass. However, we speculate that the qualitative behaviour for the weaker f(R) models
should also hold even in these cases: note that our halo catalogues have been cut off for
Mvir & 1014.7 h−1M� due to the relatively small box size; should the simulations be run with
larger box sizes (while keeping the same resolution), we expect the HMF enhancement to
dacay to zero for large enough haloes even in the strong MG cases. Finally, we note that
the dHMFs are less sensitive to the model parameter n than to fR0, compared to the matter
power spectra. The shapes and amplitude of dHMFs are similar for n = 0, 1 and 2, though
we can still see that they are enhanced slightly more in the case of n = 0 than the cases of
n = 1, 2, for F4.50 and F4.67.

5.2 Symmetrons and coupled quintessence

We now present the measured matter power spectra and halo mass functions from our
symmetron and coupled quintessence runs in figures 10 and 11, respectively.

Figure 10 presents the symmetron model results with a∗ = 0.33, β∗ = 1.0 and five cξ/H0
values of 0.5, 1.0, 2.0, 2.5 and 3.0. The behaviour of the symmetron model is qualitatively
similar to that of the f(R) model since both of them are thin-shell screened models [117]. This
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Figure 10. The matter power spectra (left panel) and differential halo mass functions (right) of the
symmetron models at z = 0 for 5 different values of cξ/H0 as labelled. In all cases the remaining
symmetron parameters are fixed as a∗ = 0.33 and β∗ = 1.0. As in figures 8 and 9, the upper subpanels
present the absolute measurements from simulations, while the lower subpanels show the relative
differences from ΛCDM.

agrees with the middle panel of figure 4, which shows that these two models have qualitatively
very similar scalar field profiles for a given spherical tophat overdensity. A smaller value of
cξ/H0 means m∗, the ‘mass’ of the symmetron field, is larger, which subsequently implies
that the field can more easily settle to the potential minimum (which corresponds to ϕ = 0)
in dense regions, and therefore be screened.

In figure 11 we show the Pmm(k) and dHMF from our three coupled quintessence models
with (α, β) = (0.1,−0.1), (0.1,−0.2) and (0.5,−0.2). The power spectrum enhancement
remains approximately constant at k . 0.1hMpc−1, which is the linear perturbation regime.
This is different from the behaviour seen in the f(R) and symmetron models above, where
∆P/PGR increases with k in this range, and the difference is because in coupled quintessence
there is no screening, so that the fifth force is long ranged, with a ratio to the strength of
Newtonian gravity that is almost constant in space. At small scales, k & 1hMpc−1, ∆P/PGR
decays with k, as we found in the stronger f(R) models in figure 8, and the physical reason
behind this is the same as there: different from the weaker f(R) models, even inside dark
matter haloes the particles still feel a strong fifth force, which is almost in constant proportion
to the strength of Newtonian force, and on top of this the direction-dependent force can also
speed up the particles; the result of the two forces is that the particles gain higher kinetic
energy and tend to move to and stay in the outer region of haloes, thereby reducing matter
clustering on small scales compared to ΛCDM.

The right panel of figure 11 presents the dHMF results. We find that the coupled
quintessence models studied here produce more high-mass haloes and fewer low-mass haloes
than GR, which is the consequence of the competition between the four effects discussed in
section 4.1. Because these effects strongly entangle with each other through the complicated
structure formation process, it is difficult to know quantitatively how they lead to the observed
behaviour above, except by running simulations with different combinations of them switched
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Figure 11. The matter power spectra (left panel) and the differential halo mass functions (right)
of the coupled quintessence models at z = 0, for three different α and β values as labelled. As in
figures 8, 9 and 10, the upper subpanels present the absolute measurements from mg-glam simuations,
while the lower subpanels show the relative differences from ΛCDM.

on or off. Although this is obviously an interesting and important thing to do, it is beyond
the scope of this paper, so we will leave it to future works.

5.3 Summary
In this section we have had an initial taste of the mg-glam code, by running a large suite of
simulations covering all three classes of models studied in this paper.

One particularly relevant aspect of the mg-glam code is its fast speed. The 40 f(R)
simulations described in this section have been run using 56 threads with openmp paral-
lelisation, and we find that the run times vary randomly between ' 17, 000 and ' 33, 000
seconds, apparently depending on the real-time performance of the computer nodes used.
The majority of them took ∼ 24, 000 seconds, or equivalently ' 375 core hours. This is
roughly 100 times faster than mg-arepo, and 300 times faster than ecosmog, for the same
simulation specifications. With such a high efficiency, we can easily ramp up the simulation
programme to include many more models and parameter choices, and increase the size and/or
resolution of the runs, e.g., using box size of at least 1h−1 Gpc. For the symmetron and
coupled quintessence runs we have found similar speeds, though the run time for coupled
quintessence models can perhaps be dramatically reduced if we do not explicitly solve the
scalar field and the fifth force, by instead assume that the latter is proportional to the
Newtonian force. We have also run a few even larger simulations for ΛCDM, F5n0 and F5n1
with L = 512h−1Mpc, Np = 2048 and Ng = 4096 (for the same cosmology as above), and
some of the results are presented in appendix A — these runs took around 42, 000 seconds
for ΛCDM, 80, 000 seconds for F5n0 and 125, 000 seconds (wallclock time) for F5n1 with 128
threads using the SKUN8@IAA supercomputer at the IAA-CSIC in Spain, suggesting that a
single run of specification L1000Np2048Ng4096, which would be useful for cosmological (e.g.,
galaxy clustering and galaxy clusters) analyses should take at most 1–1.5 days to complete
and is therefore easily affordable with existing computing resources.
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On the other hand, efficiency should not be achieved at the cost of a significant loss of
accuracy. For the runs used here, we have used a mesh resolution of 0.25h−1 Mpc, which is
sufficient to achieve percent-level accuracy of the matter power spectrum at k . 1hMpc−1 [99],
matter power spectrum enhancement at k . 3hMpc−1, and (main) halo mass function down
to ∼ 1012.5 h−1M�. The particle number, N3

p , in glam simulations is normally set according
to Np = Ng/2, so that in the simulations here we have used 10243 particles. However, we
have checked that increasing the particle number to 20483 has little impact on the halo mass
function. We notice that the completeness level of the HMFs here is similar to ecosmog runs
with the same simulation specifications, suggesting that mg-glam is capable of striking an
optimal balance between cost and accuracy. In appendix A, we present more detailed tests of
mg-glam’s power spectrum and HMF predictions at different force and mesh resolutions,
including our highest-resolution runs for ΛCDM and F5n1 with L = 512h−1Mpc, Np = 2048
and Ng = 4096 (for the same cosmology as above). There we demonstrate that the increase of
force resolution can lead to further improvement of the small-scale and low-mass predictions.

Before concluding this paper, let us briefly describe some tests we have performed to
understand how well the parallelisation of mg-glam works. This consists of a series of
runs (taking f(R) gravity F5n1 as a representative) to demonstrate the scaling of mg-glam,
and these runs were all done on the SKUN6/SKUN8 facility managed by the IAA-CSIC in
Spain.The strong scaling tests are presented in the left panel of figure 12. The test simulations
employed a fixed resolution of 2563 particles and 5123 grids, with the same Planck 2015
cosmology as used in the main mg-glam runs of this paper. This plot shows that, when the
number of openmp threads ranges between 1 and ∼ 30, the wallclock time scales linearly
with the thread number. The deviation from a perfect linear scaling (black dashed line) when
the number of threads exceeds 30 is possibly due to the small size of the test run. In addition,
we have also run a set of simulations of different sizes by varying the resolutions and keeping
the number of threads fixed. The wallclock time used is shown in the right panel of figure 12.
We see that the time consumption again scales nearly perfectly linearly with the considered
resolutions (up to Ng = 4096 and Np = Ng/2). These tests demonstrate that mg-glam is
well scalable.

6 Discussions and conclusions

In this work, together with a twin paper [104], we have introduced a new, fast and accurate
modified gravity simulation code, mg-glam, which is based on the highly-optimised parallel
particle-mesh N -body code glam [99]. We have focused on the numerical implementation of
three representative classes of conformally coupled scalar field models, including two thin-shell
screening models, f(R) gravity and symmetrons, and a coupled quintessence model with no
screening. In the case of f(R) gravity, we have extended earlier simulation studies to include
more general parameter choices, e.g., n = 0, 2, by generalising an efficient algorithm developed
for the n = 1 case in [129] to these new cases. The twin paper [104] explores MG models
with derivative coupling terms, including the DGP and K-mouflage models. Altogether, the
mg-glam code not only covers several of the most popular MG models in the literature, but
can also serve as prototypes that can be easily extended to work for other leading classes
of MG models, such as chameleons, Galileon gravity and coupled quintessence models with
other user-specified potentials and coupling functions.

We have performed a series of tests to check that our implementation of the multigrid
solvers works correctly, using different density configurations for which we can obtain analytical
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Figure 12. Left panel: the wallclock time of the mg-glam test runs for the F5n1 model, with
fixed simulation size/resolution (L = 512h−1Mpc, Np = 256 and Ng = 512), as a function of the
number of threads used in openmp parallelisation. The scaling between run time and thread number
is very close to be perfectly linear for number of threads up to ∼ 30. Right panel: the wallclock
times of the mg-glam runs for F5n1 with varying simulation sizes and resolutions (from left to right:
Ng = 256, 512, 1024, 2048, 4096, and Np = Ng/2), while the number of threads is chosen as 128. Again,
the scaling is nearly perfectly linear. In both cases, the symbols denote the times taken by the test
runs, and the lines denote the expected results with a ‘perfect linear scaling’. We find similarly good
scaling properties for ΛCDM and F5n0, but those are not shown here.

or independent numerical solutions of the scalar field, and found that the numerical solutions
given by mg-glam agree very well with them in all cases. We have shown that, using only two
V-cycles, we can achieve convergence for the nonlinear equations in the MG models considered.
Also, we have compared the solutions of the background scalar field and the modified expansion
rate in the coupled quintessence model obtained using mg-glam and camb, finding excellent
agreement between both codes. Finally, we have compared the power spectrum enhancement
and the abundance of dark matter haloes for the f(R) model predicted by mg-glam and
the mg-arepo code. In general, mg-glam is able to reproduce the predictions of these
quantities by mg-arepo and ecosmog simulations with sufficiently high accuracy for the
cosmological applications of interest to us, in spite of taking only a tiny fraction of the time
needed for the latter codes. For example, with 10243 particles in a box of size 512h−1Mpc,
mg-glam simulations can accurately predict ∆P/PGR at k . 3hMpc−1 and the HMF down
to 1012.5h−1M�, with about 1% of the computational costs for mg-arepo and ecosmog.

We have run a large suite of f(R) cosmological simulations for 10 models with |fR0|
logarithmically spaced in [−6.00,−4.50] and n = 0, 1, 2, and carried out the simulations for
five symmetron models and three coupled quintessence models. With this large suite of MG
simulations we are able to study in great detail the modified gravity effects, including that of
the screening mechanisms, on structure formation, as we have shown in the nonlinear matter
power spectra and halo mass functions. In particular, the large number of f(R) gravity runs
demonstrate, with fine details, how the effect of the chameleon screening mechanism depends
on not only the present-day scalar field value, fR0, but also the parameter n which has been
less explored to date.

The development of mg-glam will help in the construction of a large number of galaxy
mock catalogues in MG theories for Stage-IV galaxy surveys, such as DESI and Euclid.
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Owing to its high efficiency and accuracy, this code can be used to perform O(100) large
(L > 1.0h−1 Gpc at least) and high-resolution (mp < 1010 h−1M�) simulations for each
modified gravity model, with minimal computational cost. These will allow for variations of
not only the gravitational but also cosmological parameters, and subsequently the construction
of accurate emulators for various physical quantities in different gravity models. This will open
up a wide range of possibilities for future works to test gravity using cosmological observations.

One of the main potential applications of mg-glam simulations is the study of various
galaxy clustering statistics [e.g. 139] based on the mock galaxy catalogues mentioned above.
mg-glam will have the flexibility to be run at different resolutions, tailored to the different
observables and/or galaxy types. It will also have the advantage of allowing different classes
of MG, as well as dynamical dark energy [140] models, to be studied with equal depths
and fine details. In a series of upcoming papers, we will visit this topic, starting with the
prescriptions to populate dark matter haloes with galaxies, as well as a more detailed study
of halo properties, including halo clustering.
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A Effects of mass and force resolution

The original glam code has been well tested (cf. [99]) by examining the effects of time-stepping
and force resolution and comparing with the high-resolution MultiDark simulations [141]
which were performed using the gadget code [81]. In addition, ref. [140] compared the
glam results of halo mass functions and matter power spectra with those of the quijote
simulations [142], and found good agreement. Denote k1% as the wavenumber above which
the glam matter power spectrum begins to deviate by more than 1% from those of the
high-resolution simulations. Based on the comparison with the MultiDark simulations, the
authors found that k1% is related to the force resolution ∆x = Lbox/Ng (cf. eq. (3.10)) as

k1% = 0.25± 0.05
(∆x)/(h−1Mpc) hMpc−1 . (A.1)
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If this relation also works for the mg-glam code, the power spectra of the modified gravity
cosmological runs presented in the main text are reliable down to k1% ∼ 1hMpc−1. However,
as mentioned in the main text above, the results of the power spectrum enhancement with
respect to ΛCDM are empirically reliable down to larger k.

To test the effect of mass and force resolutions, we have performed four f(R) gravity
simulations for fR0 = −10−5, n = 1 with fixed box size 512h−1Mpc and varying particle and
grid numbers

(Np, Ng) =
{

(1024, 2048), (2048, 2048)
(1024, 4096), (2048, 4096)

}
,

which correspond to mass and force resolutions of(
mp

109 h−1M�
,

∆x
h−1Mpc

)
=
{

(11.0, 0.25 ), (1.37, 0.25 ),
(11.0, 0.125), (1.37, 0.125)

}
.

Here the two runs in the same row (column) have the same force/mesh (mass) resolution.
The adopted cosmological parameters are the same as the simulations used in the main text.

We compare the mg-glam matter power spectrum and halo mass function enhancement
∆P/PGR and ∆HMF/HMFGR with those of the mg-arepo simulations. We focus on these
quantities instead of comparing the absolute P (k) and HMF from (mg-)glam and other
codes, for the following reasons: (1) as mentioned above, the reliability of the ΛCDM results
from glam has been carefully tested and established; (2) comparisons between different codes
usually suffer from cosmic variance and different implementation details (such as the IC set
up, force calculation, time stepping and halo finding), and as a result a large number of runs
are needed to make reliable comparisons, after carefully calibrating simulation specifications
of the different codes — such an effort is unnecessary and beyond the scope of this work given
(1); (3) in MG simulations, people are often more interested in the enhancement with respect
to ΛCDM, and this is indeed what has been tested in the code papers of the previous MG
simulation codes. Also, we note that the mg-glam and mg-arepo simulations presented in
this work use slightly different cosmological parameters: we have checked explicitly (by running
test simulations with mg-glam using identical cosmological parameters as the mg-arepo
runs) that the effect is small (few percent level), but this nevertheless still makes it difficult
to justify directly comparing the absolute P (k) or HMF from them; the enhancement, on the
other hand, is known empirically to be less sensitive to cosmological parameter values and
differences between simulation codes.

The left panel of figure 13 presents the matter power spectrum enhancements at z = 0
from mg-glam and mg-arepo, as well as two mg-gadget simulations. We see that ∆P/PGR
is relatively insensitive to the mass and force resolution variations considered here; this is
consistent with previous experiences. However, increasing the mesh resolution from 0.25 to
0.125h−1Mpc does improve the agreement between mg-glam and mg-arepo, by reducing
∆P/PGR (see, e.g., [137] for a discussion of how a lower resolution simulation gives higher
∆P/PGR). The highest resolution mg-glam run (Np = 2048 and Ng = 4096) agrees with
mg-arepo nearly perfectly down to k ∼ 1hMpc−1, and the agreement is at the level of a
couple percent down to k ≈ 5hMpc−1 (ignoring the dip in ∆P/PGR at k ≈ 4hMpc−1, which
is apparently not physical). The slightly larger deviations at k > 1hMpc−1 can be still
due to the lower force resolutions in the glam simulations, but we note that the agreement
between the mg-gadget and mg-arepo runs (which have similar force resolutions) is at a
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Figure 13. Comparison of matter power spectra from mg-glam (lines), mg-gadget (squares and
circles) and mg-arepo (crosses) simulations at z = 0. The left panel shows the matter spectrum
enhancement, ∆P/PGR, from the different codes and resolutions, as the legend labels. The mg-arepo
data are the same as in figure 6, while the mg-gadget data are from the two lightcone simulations, at
higher (L = 768h−1Mpc and N3

p = 20483) and lower (L = 1536h−1Mpc and N3
p = 20483) resolutions,

described in ref. [143]. The upper right panel shows the absolute values of P (k) from mg-glam
simulations with the four combinations of mass and force resolutions. In the lower right panel, the
ratios of the power spectrum in each simulation to that of the highest resolution run (Np = 2048 and
Ng = 4096) are displayed, where the dark and light grey shaded regions denote respectively ±1% and
±2% differences from the benchmark. The vertical lines represent k = 1hMpc−1.

comparable level, so the difference is likely also partly due to the different codes (or simulation
realisations).

In the upper right panel of figure 13, we present the absolute matter power spectra from
the mg-glam simulations at different resolutions. As expected, increasing the mesh/force
resolution leads to a P (k) curve that decays much more slowly at small scales (orange and
green lines), while increasing the mass resolution (blue) gives little improvement. The lower
right panel of figure 13 shows the ratio of the matter spectrum in each simulation to that
from the highest resolution run. The figures indicate ≈ 1% convergence for k . 1hMpc−1,
which is consistent with the convergence test of the original glam code presented in [99].

The comparisons of halo mass functions are shown in figure 14, where note that we
used different halo finders for the mg-glam and mg-arepo results, but the same halo mass
definition, as described in section 4.4. The HMFs of mg-glam simulations are accurate in the
range of Mvir & 1012.5 h−1M� for ∆x = 0.25h−1Mpc (Ng = 2048), and Mvir & 1012 h−1M�
for ∆x = 0.125h−1Mpc (Ng = 4096). There is excellent agreement between mg-glam’s higher-
resolution runs and mg-arepo, in both the HMF and its enhancement, down to 1012h−1M�.
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Figure 14. Comparison of halo mass functions of mg-glam and mg-arepo simulations at z = 0.
The relative enhancements with respect to ΛCDM and the absolute values of the HMFs are shown in
the left and right panels, respectively. The two vertical lines in the right panel denote respectively the
masses 1012 and 1012.5h−1M�. There is excellent agreement between mg-glam’s higher-resolution
runs and mg-arepo, in both the HMF and its enhancement, down to 1012h−1M�.
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