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Abstract. In the 1950’s Hopf gave examples of non-round convex 2-spheres in

Euclidean 3-space with rotational symmetry that satisfy a linear relationship
between their principal curvatures.

In this paper we investigate conditions under which evolving a smooth

rotationally symmetric sphere by a linear combination of its radii of curvature
yields a Hopf sphere. When the coefficients of the flow have certain integer

values, we show that the fate of an initial sphere is entirely determined by the

local geometry of its isolated umbilic points.
A surprising variety of behaviours is uncovered: convergence to round

spheres, convergence to non-round Hopf spheres, as well as divergence to in-

finity. The latter generally involves the sphere passing through its focal set
and forming cusps as it goes to infinity.

The critical quantity is the rate of vanishing of the astigmatism - the differ-
ence of the radii of curvature - as one approaches the isolated umbilic points

of the initial surface. It is proven that the relative size of this rate and the

coefficient in the flow function completely determines the fate of the evolution.
This is proven by reducing the problem to a single linear second order

partial differential equation for the astigmatism. The equation is of reaction-

diffusion type with convection, and is solved for arbitrary smooth initial data
in terms of associated Legendre polynomials. A dynamic form of quadratures

is then used to reconstruct the evolving surface in Euclidean 3-space.

The geometric setting for the equation is Radius of Curvature space, viewed
as a pair of hyperbolic/Anti-deSitter half-planes joined along their boundary,

the umbilic horizon. A rotationally symmetric sphere determines a parameter-

ized curve in this plane with end-points on the umbilic horizon. Any curvature
flow then yields a flow of this parameterized curve.

The slope of the curve at the umbilic horizon is linked by the Codazzi-
Mainardi equations to the rate of vanishing of astigmatism, and for generic

initial conditions can be used to determine the outcome of the flow.

If the slope at the umbilic horizon of the target Hopf sphere is greater than
that of the initial sphere, then the flow converges to a round sphere, while if
the slope of the target is less than that of the initial sphere the flow diverges.

It is when the slopes at the umbilic horizon of initial and target spheres are
equal that we get convergence to non-round Hopf spheres.

The slope can jump during the flow, and a number of examples are given:

instant jumps of the initial slope, as well as umbilic circles that contract to an
isolated umbilic point in finite time and ’pop’ the slope.

Finally, we present soliton-like solutions: curves that evolve under linear

flows by mutual hyperbolic/AdS isometries (dilation and translation) of Radius
of Curvature space.

A forthcoming paper will apply these geometric ideas to non-linear curva-
ture flows.

Date: 2nd August 2017.

1

ar
X

iv
:1

70
9.

00
58

0v
1 

 [
m

at
h.

D
G

] 
 2

 S
ep

 2
01

7



2 BRENDAN GUILFOYLE AND WILHELM KLINGENBERG

Contents

1. Introduction and Results 2
2. Radius of Curvature Space 6
2.1. Classical surface theory 6
2.2. Quadratures and degeneracy 7
2.3. RoC space 11
2.4. The slope at an umbilic 12
2.5. Linear Hopf spheres 13
3. Evolution by a Linear Hopf Relation 14
3.1. Evolution in RoC space 14
3.2. Solution for integer linear Hopf flows 16
4. Properties of the Solutions 19
4.1. A finite class of sufficient generality 19
4.2. Jumping slope at an isolated umbilic point 20
4.3. Contracting an umbilic circle 21
4.4. Solitons in RoC space 21
References 24

1. Introduction and Results

A surface S ⊂ R3 is said to be Weingarten if there exists a functional relationship
between the radii of curvature r1, r2 of the surface. Weingarten surfaces, first
introduced in 1863 [19], form an attractive class of objects which have been much
scrutinized classically and from a contemporary perspective. The literature, being
vast, is cited here somewhat haphazardly.

Well-known examples of surfaces with prescribed Weingarten relation are min-
imal surfaces, CMC-surfaces, pseudo-spheres and round spheres - see for example
[3] [4] [10] [14] [15] [17]. They provide examples of integrable systems [2], arise as
stationary solutions of well-known parabolic evolution equations [1] [13] and have
found application in CAD [18].

The possible forms that such a relationship can take touches upon topology and
analysis at a deep level and is rife with unanswered questions. In this paper we
fix the topological setting by considering only 2-spheres, but many of our results
would not hold for higher genus, where new phenomena arise.

We can also make an assumption of convexity on the sphere, as, due to the
boundedness of the focal set, convexity can always be achieved by passing to a
parallel sphere. This passage induces a simple transformation on a Weingarten
relation that is geometric in a certain sense, to be explained below.

The broad purpose of this work is the investigation of the possible Weingarten
relations that can arise for surfaces and, in particular, non-round 2-spheres. The
interest in non-roundness is due to the fact that, up to an additive constant, any
relation can be achieved by the round sphere of a suitable radius.

The central idea is to take an initial sphere and to deform it using a curva-
ture flow, a second order partial differential equation, in the hope of converging
to a sphere with a prescribed relation. Analysis first enters through the type of
this partial differential equation - whether the Weingarten relation is elliptic or
hyperbolic.
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Unfortunately, an important result of Hartman and Wintner [10] states that,
if a sphere satisfies an elliptic Weingarten relation at an umbilic point, it must
be round. As a consequence, parabolic curvature flows of surfaces, such as mean
curvature flow or Gauss curvature flow, can, at best, hope to yield round 2-spheres.

The role of the isolated umbilic points in this result is worthy of careful consid-
eration and is not accidental. This paper is set in a geometrized curvature (2-jet)
space of classical surface theory, in a similar way to the proof of the Carathéodory
Conjecture takes place in the geometrized 1-jet space, oriented line space [5]. The
centrality of isolated umbilic points in this new setting underscores once again their
beautiful subtlety.

The key to making progress on flowing to non-round spheres is to note that the
rotationally symmetric reduction of a hyperbolic relation can be used to construct
a parabolic curvature flow, with only one space dimension. Since curvature flows
preserve rotational symmetry, a parabolic flow can therefore find solutions of a
hyperbolic equation.

Moreover, a theorem of Voss [17] states that any sphere satisfying an analytic
Weingarten relation must be rotationally symmetric. The assumption of real an-
alyticity here is critical in the proof. It is not known whether there exist smooth
Weingarten spheres which are not rotationally symmetric.

In the rotationally symmetric case, the distinction between smooth and real
analyticity condenses on the isolated umbilic points. This paper develops a dynamic
perspective on this and shows how the the isolated umbilic points can also control
the behaviour of a curvature flow.

The evolution considered is by a linear Weingarten relation. A later paper [9]
will consider non-linear evolution. The simplifications in the linear case allow one
to completely integrate the flow, yet exhibits surprisingly complicated behaviour.
Moreover, for a linear Weingarten relation there are non-round targets for the flow,
namely Hopf spheres.

The Hopf spheres are a 2-parameter family of rotationally symmetric, non-round,
strictly convex spheres that satisfy a linear relationship on the principal curvatures
[11]. The relation they satisfy is a second order partial differential equation which
is hyperbolic, and therefore side-steps Hartman and Wintner’s obstacle to non-
roundness.

They are all at least C2 smooth but are real analytic only for certain discrete
values of the parameters. Hopf spheres which also satisfy a linear relation on the
radii of curvature form a 1-parameter sub-family we call linear Hopf spheres. In
fact, the term will include spheres parallel to such Hopf spheres - these are the
stationary limits to which the flow hopefully converges.

In more detail, consider evolving an initial smooth rotationally symmetric convex

sphere S0 ⊂ R3 to a family of rotationally symmetric spheres ~X : S2 × [0, t)→ R3

such that

(1.1)
∂ ~X

∂t

⊥

= −K ~N, ~X(S2, 0) = S0,

where

(1.2) K = 1
2 (r1 + r2) + λ

2 (r1 − r2)− ψ∞,



4 BRENDAN GUILFOYLE AND WILHELM KLINGENBERG

for constants λ > 1 and ψ∞ > 0, and ~N is the unit normal to the sphere. Here and
throughout r2 is the radius of curvature of the profile curve, while r1 is the other
radius of curvature.

The difference of the radii of curvature is a critical quantity in what follows as it
vanishes at, and only at, umbilic points. It is often referred to as the astigmatism of
the surface [16]. The behaviour of the flow is entirely determined by the vanishing
of the astigmatism at the isolated umbilic points of the initial surface.

In particular, a rotationally symmetric sphere is said to be of order k if the
astigmatism vanishes like the 2 + 2kth power of the polar angle at the umbilic
points (full definitions are in Section 2.2). The order of a generic smooth surface is
0.

We prove the following:

Theorem 1. Let S0 be a smooth embedded convex rotationally symmetric sphere
of order k. The linear Hopf flow (1.1) and (1.2) with

(1.3) λ = 1 +
1

n+ 1
for n ∈ N,

behaves in the following manner:

(1) if n < k, the evolving sphere converges exponentially through smooth convex
spheres to the round sphere of radius ψ∞,

(2) if n = k, an initial non-round sphere converges exponentially through smooth
convex spheres to a non-round linear Hopf sphere,

(3) if n > k, the sphere diverges exponentially.

In the last case, the sphere in R3 may pass through its focal set as it expands to
infinity.

The linear Hopf flow (1.1), (1.2) satisfying (1.3) is referred to as integer linear
Hopf flow. The quantized nature of the slope at the umbilic points - and hence its
expression in the flowing relation - is a further manifestation of the deep role of
umbilic points in the analysis of the surface.

To prove this Theorem we view the flow in radii of curvature (RoC) space, which
for convex surfaces is an open cone in R2 [8]. The initial surface is rotationally
symmetric and remains so under the flow, and therefore its image in RoC space (its
RoC diagram) is a curve. For example, the RoC diagram of a linear Hopf spheres
is a line segment with end-point on the horizontal axis.

We derive the evolution equations of this curve in RoC space under a linear cur-
vature flow (1.1) and (1.2). In full generality, this is a system of second order partial
differential equations with mixed Dirichlet and Neumann boundary conditions, but
it can be reduced to a single linear reaction-diffusion equation with convection for
the astigmatism with Dirichlet boundary conditions.

This PDE for the astigmatism is then solved in closed form for smooth initial
data and integer values of the flowing function. The full curve flow is reconstructed
by quadratures and we present the explicit solution in terms of the initial data in
Theorems 5 and 6 of Section 3.2.

The order of a sphere is closely related to the slope at the isolated umbilic points.
That is, at the north pole N and south pole S, define the slopes at the umbilic points
to be the slopes µN , µS of its RoC diagram at the North and South poles. These
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quantities play a key role in the work of Hopf [11] and can only take on certain
values for smooth surfaces.

Generically, the slopes at the umbilic points are both equal to 2. For a surface
of order k the slopes satisfy

µN , µS ≤ 1 +
1

k + 1
,

with equality for generic surfaces of order k - which we refer to as the non-degenerate
case. This is proven in Theorem 4 of Section 2.4. For linear Hopf spheres satisfying
K = 0 with (1.2) holding, clearly the slope at the umbilic points is µ = λ.

Our result can be recast in terms of slopes:

Theorem 2. Let S0 be a smooth strictly convex rotationally symmetric non-degenerate
surface with slope at the umbilic points µ = µN = µS.

Under integer linear Hopf flow (1.1), (1.2) and (1.3), the evolving sphere behaves
in the following manner:

(1) if λ > µ,the evolving sphere converges exponentially through smooth convex
spheres to the round sphere of radius ψ∞,

(2) if λ = µ, an initial non-round sphere converges exponentially through smooth
convex spheres to a non-round linear Hopf sphere.

(3) if 1 < λ < µ, the sphere diverges exponentially.

We also extract the following:

Theorem 3. Under the linear Hopf flow (1.1) and (1.2) with λ = 2 any smooth
convex rotationally symmetric sphere S0 converges exponentially through smooth
spheres to a linear Hopf sphere, which is non-round if S0 is of order 0 and round
otherwise.

For non-integer linear Hopf flows the situation is less clear-cut. In particular,
the stationary solutions to which the flow should converge are not smooth and
so there can be a loss of differentiability. Explicit exact solutions are still easy
to construct, although they are not smooth and involve Legendre functions (rather
than polynomials). This presents difficulties to writing the general solution in terms
of a complete set of modes.

In this regard, Proposition 12 is the only significant result in this paper that
applies to non-integer flows, although there is every reason to believe that Theorem
2 holds for non-integer values of λ.

The next section contains background material on rotationally symmetric sur-
faces and their RoC diagrams. This fixes notation and introduces the main examples
and tools. Further details on RoC space in general can be found in [8]. Section 3
presents the initial value problem for linear Hopf flow and its solution in the integer
case. Theorems 1, 2 and 3 then follow.

The final section considers the properties of these solutions. A family of exam-
ples of sufficient generality is constructed to directly illustrate various behaviour:
divergence, convergence to round and non-round linear Hopf spheres, slope jumping
and the contraction of umbilic circles to the poles.
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We also present solitons: spheres that evolve by a linear curvature flow such that
the induced motion of its RoC diagram is by an isometry of the hyperbolic/AdS
metric.

In a forthcoming paper we will extend this approach to non-linear curvature
flows [9]

2. Radius of Curvature Space

This section introduces the basic differential geometric tools needed from surface
theory. The setting is Radius of Curvature space which is a geometrized 2-jet.
Going from RoC space to Euclidean 3-space is explained and the Hopf spheres are
discussed. These are the stationary limits to which we ultimately hope the flow
converges.

2.1. Classical surface theory. Consider a smooth, closed, convex sphere S ⊂ R3

with support function r : S → R. While most of the discussion applies locally to
any surface away from flat points, throughout we usually have that S is a convex
sphere.

Moving a surface parallel along its outward pointing oriented normal lines corre-
sponds to adding a constant to the support function r. Shrinking a convex surface
along its oriented normal lines eventually leads to a loss of convexity - points where
the surface touches its focal set [6]. Continuing to shrink, the surface pulls itself
inside out and one obtains a closed convex sphere with inward pointing normal line.

Most of the behaviour discussed in this paper is at a higher derivative level, and
so are invariant under such parallel changes. Thus suitable modifications can be
made to ensure that strict convexity is maintained, and it is also easy to describe
the singularities that can develop.

The simplest examples of Weingarten surfaces are those with rotational symme-
try:

Definition 1. A surface S is rotationally symmetric if S is invariant under a
subgroup S1 ⊂ Euc(R3), so that for RotΘ ∈ S1 we have RotΘ(S) = S.

For a closed convex sphere this action has two fixed points, both umbilic points,
which are antipodal under the Gauss map.

Parameterize S by the inverse of the Gauss map, with standard polar coordinates
(θ, φ). For a rotationally symmetric surface with fixed points at θ = 0, π, the
support function and curvatures are functions only of θ.

Proposition 1. [7] If r1 and r2 are the radii of curvature of a rotationally sym-
metric sphere S, with r2 the radius of curvature of the profile curve, then in Gauss
polar coordinates for 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π we find that

(2.1) ψ = 1
2 (r1 + r2) = 1

2

d2r

dθ2
+ 1

2 cot θ
dr

dθ
+ r = r +

1

2 sin θ

d

dθ

(
sin θ

dr

dθ

)

(2.2) s = 1
2 (r1 − r2) = − 1

2

d2r

dθ2
+ 1

2 cot θ
dr

dθ
= − 1

2 sin θ
d

dθ

(
1

sin θ

dr

dθ

)
.
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Definition 2. A convex rotationally symmetric sphere is called oblate if r1 ≥ r2

everywhere, and prolate if r1 ≤ r2 everywhere. Thus the function s is positive if
the sphere is oblate and negative if it is prolate.

Proposition 2. On a rotationally symmetric surface, the Codazzi-Mainardi equa-
tion identities hold:

(2.3)
d

dθ
(ψ + s) + 2 cot θ s = 0.

Proof. This can be seen by checking that equations (2.1) and (2.2) imply equation
(2.3). �

Equation (2.3) is necessary and sufficient for a map to arise as the RoC diagram
of a rotationally symmetric surface:

Proposition 3. For every proper C1−smooth curve C([0, π], {0, π}) → (R2,R) :
θ 7→ (ψ(θ), s(θ)), that satisfies the Codazzi-Mainardi equation (2.3) for 0 ≤ θ ≤ π,
there exists a closed rotationally symmetric C3−smooth surface S in R3 in Gauss
coordinates (θ, φ), such that the curve C is the image of the RoC diagram of S.

The sphere S in R3 is unique up to translation parallel to the axis of symmetry.

Proof. Given a curve (ψ(θ), s(θ)) satisfying (2.3), define the function r : [0, π]→ R
by

1
2 sin θ

d

dθ

(
1

sin θ

dr

dθ

)
= −s.

That is

(2.4) r = C2 − C1 cos θ − 2

∫ [
sin θ

∫
s

sin θ
dθ

]
dθ.

Thus r is the support function of a closed rotationally symmetric surface whose
RoC diagram is the given curve.

The value of the constant C1 is changed by parallel translation along the axis of
symmetry, C2 is fixed by the value of ψ. �

2.2. Quadratures and degeneracy. Given the function s(θ), equation (2.4) al-
lows one to find the support function r(θ) “up to quadratures” i.e. one’s ability to
carry out the double integration explicitly. In the following Proposition we carry
out the process explicitly for certain classes of functions s(θ) that we use in section
3.2.

In particular, introduce the decomposition of s in terms of trigonometric poly-
nomials:

Proposition 4. For any smooth convex sphere S, the difference of the radii of
curvature can be written

s =

∞∑
l=0

(al + bl cos θ) sin2l+2 θ,

for constants al, bl.

Proof. Standard. �
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For each of these two terms we carry out quadratures.

Proposition 5. If s = C0 sin2l+2 θ then

(2.5) r = C2 + C1 cos θ − 2C0

l∑
k=0

(−1)k

(2k + 1)(2k + 2)

(
l

k

)
cos2k+2 θ,

and

(2.6) ψ = C2 +

l∑
k=0

(−1)kC0
k + 2

k + 1

(
l

k

)
−
(

1 +
1

l + 1

)
C0 sin2l+2 θ.

If s = C0 cos θ sin2l+2 θ then

(2.7) r = C2 + C1 cos θ −
l+1∑
k=0

C0
(−1)k

(l + 1)(2k + 1)

(
l + 1

k

)
cos2k+1 θ,

and
(2.8)

ψ = C2 +

l∑
k=0

k∑
m=0

C0
(−1)k+m[1− (2k + 1)(m+ 1)]

(l + 1)(2k + 1)

(
l + 1

k

)(
k

m

)
cos θ sin2m θ.

In addition, we have

(2.9)
dψ

dθ
= −2C0(l + 2) sin2l+1 θ + C0(2l + 5) sin2l+3 θ.

Proof. For ease of notation drop the constants of integration term C2 +C1 cos θ for
r.

To prove equation (2.5), use quadratures on the expression for s

r =− 2

∫
sin θdθ

∫
s

sin θ
dθ = −2C0

∫
d cos θ

∫
(1− cos2 θ)2ld cos θ

= −2C0

l∑
k=0

(−1)k

(2k + 1)(2k + 2)

(
l

k

)
cos2k+2 θ.

To prove equation (2.6), differentiate this expression for r using equation (2.1).
The result, after some simplification is

ψ = C0

[
− sin2l θ +

l∑
k=0

(
l

k

)
k + 2

k + 1
+

l+1∑
m=1

l∑
k=m−1

(−1)k+m

(
l

k

)(
k + 1

m

)
k + 2

k + 1
sin2m θ

]
.

Now equation (2.6) follows from:

Lemma 1. For all l,m ∈ N with l ≥ m− 1 ≥ 0 the following identities hold

l∑
k=m−1

(−1)k+m k + 2

k + 1

(
l

k

)(
k + 1

m

)
=


0 if l > m
1 if l = m

−1− 1
l+1 if l = m− 1

.
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Proof. This can be proven as follows: for all l,m ∈ N with 0 ≤ m− 1 ≤ l,

l∑
k=m−1

(−1)k+m k + 2

k + 1

(
l

k

)(
k + 1

m

)
=

1

m

l∑
k=m−1

(−1)k+m(k + 2)

(
l

k

)(
k

m− 1

)

=
1

m

(
l

m− 1

) l∑
k=m−1

(−1)k+m(k + 2)

(
l −m+ 1

k −m+ 1

)

=
1

m

(
l

m− 1

) l−m+1∑
k=0

(−1)k+1(k +m+ 1)

(
l −m+ 1

k

)

=
m+ 1

m

(
l

m− 1

) l−m+1∑
k=0

(−1)k+1

(
l −m+ 1

k

)

+
l −m+ 1

m

(
l

m− 1

) l−m+1∑
k=1

(−1)k+1

(
l −m
k − 1

)
= − m

m+ 1

(
l

m− 1

)
[[l = m− 1]]

+
l −m+ 1

m

(
l

m− 1

) l−m∑
k=0

(−1)k
(
l −m
k

)
=

(
−1− 1

m

)
[[l = m− 1]] +

l −m+ 1

m

(
l

m− 1

)
[[l = m]]

=

(
−1− 1

m

)
[[l = m− 1]] + 1[[l = m]].

Thanks to Markus Scheuer for pointing out this proof (see this MathOverflow dis-
cussion for details). �

To prove equation (2.7), use quadratures on the expression for s, while equation
(2.8) follows from the definition of ψ, as before.

Finally, differentiating equation (2.8) yields

dψ

dθ
=(2l + 5) sin2l+3 θ + 1

l+1

l∑
m=0

[
l+1∑

k=m+1

(−1)k+m

(
l + 1

k

)(
(1− (2k + 1)(m+ 2)) 2m+2

2k+1

(
k

m+1

)
+ (1− (2k + 1)(m+ 1)) 2m+1

2k+1

(
k
m

))
+ (1− (2m+ 1)(m+ 1))

(
l+1
m

)]
sin2m+1 θ.

Now equation (2.9) follows from the identity:

Lemma 2. For all l,m ∈ N with l ≥ m ≥ 0 the following identities hold

l+1∑
k=m+1

(−1)k+m
(
l+1
k

) [
(1− (2k + 1)(m+ 2)) 2m+2

2k+1

(
k

m+1

)
+ (1− (2k + 1)(m+ 1)) 2m+1

2k+1

(
k
m

)]
+(1− (2m+ 1)(m+ 1))

(
l+1
m

)
=

{
0 if l > m

2(l + 1)(l + 2) if l = m
.

https://tinyurl.com/y7po8jnl
https://tinyurl.com/y7po8jnl
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Proof. This can be proven as follows:

l+1∑
k=m+1

(−1)k+m

(
l + 1

k

)[
(1− (2k + 1)(m+ 2))

2m+ 2

2k + 1

(
k

m+ 1

)
+(1− (2k + 1)(m+ 1))

2m+ 1

2k + 1

(
k

m

)]
=

l+1∑
k=m+1

(−1)k+m

(
l + 1

k

)
[m− 2k(m+ 2)]

(
k

m

)

=

(
l + 1

m

) l+1∑
k=m+1

(−1)k+m

(
l + 1−m
k −m

)
[m− 2k(m+ 2)]

=

(
l + 1

m

) l+1−m∑
k=1

(−1)k
(
l + 1−m

k

)
[−2k(m+ 2)−m(2m+ 3)]

= −2(m+ 2)

(
l + 1

m

) l+1−m∑
k=1

(−1)k
(
l + 1−m

k

)
k

−m(2m+ 3)

(
l + 1

m

)
([[l + 1 = m]]− 1)

= −2(m+ 2)

(
l + 1

l + 1−m

)
(l + 1−m)

l+1−m∑
k=1

(−1)k
(
l −m
k − 1

)
−m(2m+ 3)

(
l + 1

m

)
([[l + 1 = m]]− 1)

= 2(m+ 2)(l + 1)

(
l

m

) l−m∑
k=0

(−1)k
(
l −m
k

)
−m(2m+ 3)

(
l + 1

m

)
([[l + 1 = m]]− 1)

= 2(l + 1)(l + 2)[[l = m]]

−(1− (2m+ 1)(m+ 1))

(
l + 1

m

)
([[l + 1 = m]]− 1).

Thanks to Markus Scheuer for pointing out this proof and to Darij Grinberg for
giving an alternative proof (see this MathOverflow discussion for details). �

�

A further class that will be of use are combinations of associated Legendre poly-
nomials:

Proposition 6. If s = C0 sin2+n θ Pnl (cos θ) for the associated Legendre polynomial
Pnl (cos θ) with l > n+ 2 then

(2.10) r = C2 + C1 cos θ − C0
2 sin2+n θP 2+n

l (cos θ)

(l + n+ 2)(l + n+ 1)(l − n)(l − n− 1)
,

https://mathoverflow.net/questions/278074/is-there-a-simple-proof-of-the-following-identity-part-2
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and

ψ = C2 − C0 sinn θ

[
(l + n+ 2)2 − (l + n+ 4)(l + n+ 1) sin2 θ

(l + n+ 2)(l + n+ 1)(l − n)(l − n− 1)
P 2+n
l (cos θ)

− (2l + 2n+ 3) cos θ

(l + n+ 1)(l − n)(l − n− 1)
P 2+n
l−1 (cos θ) +

1

(l − n)(l − n− 1)
P 2+n
l−2 (cos θ)

]
.

Proof. For ease of notation again we drop the constants of integration term C2 +
C1 cos θ for r.

To prove equation (2.10), use quadratures on the expression for s

r =− 2

∫
sin θdθ

∫
s

sin θ
dθ = −2

∫
d cos θ

∫
sinn θPnl (cos θ)d cos θ

= −2
(−1)n

2ll!

∫
dx

∫
(1− x2)n

dl+n

dxl+n
(x2 − 1)ldx,

where x = cos θ and we use the usual identities for associated Legendre polynomials:

Pnl (x) =
(−1)n

2ll!
(1− x2)

n
2
dl+n

dxl+n
(x2 − 1)l.

Furthermore, recall the identity

dl−n

dxl−n
(x2 − 1)l = (−1)n

(l − n)!

(l + n)!
(1− x2)n

dl+n

dxl+n
(x2 − 1)l,

which means that

r =− 2
(l + n)!

2ll!(l − n)!

∫
dx

∫
dl−n

dxl−n
(x2 − 1)ldx

= −2
(l + n)!

2ll!(l − n)!

dl−n−2

dxl−n−2
(x2 − 1)l

= −2
(l + n)!(−1)n(l − n− 2)!

2ll!(l − n)!(l + k + 2)!
(1− x2)2+n dl+n+2

dxl+n+2
(x2 − 1)l

= −
2 sin2+n θP 2+n

l (cos θ)

(l + k + 2)(l + n+ 1)(l − n)(l − n− 1)
,

as claimed. �

Definition 3. Given the decomposition of s as in Proposition 4, the surface is said
to be of order k if al = bl = 0 for all l < k and ak, bk are not both zero.

A surface of order k is non-degenerate if moreover a2
k 6= b2k.

A generic smooth surface is of order 0, while a generic surface of order k is
non-degenerate. A Hopf sphere with µ = 1 + 1

n+1 is of order n.

2.3. RoC space. The RoC diagram of S is the image of the map f : S2 → R2

taking (θ, φ) ∈ S to (ψ = 1
2 (r1 + r2), s = 1

2 (r1 − r2)). Thus, the umbilic points lie
along the horizontal axis. This is equivalent to the curvature diagram discussed by
Hopf [12] but more suited to our purposes, as elucidated in [8].

RoC space can be thought of as two half-planes joined at the umbilic horizon.
The hyperbolic/Anti-deSitter area 2-form on these half-planes pulled back to S is
equal to the curvature 2-form of the induced Lorentz metric on the set of oriented
normal lines to S, viewed as a surface in TS2, pulled back to S [8].



12 BRENDAN GUILFOYLE AND WILHELM KLINGENBERG

Hyperbolic/AdS dilations and translations of the RoC diagram of S come from
scaling about the origin and addition of a constant to the support function of S in
R3, respectively.

Not every such parameterized map arises as the RoC diagram of a surface in R3,
as the Codazzi-Mainardi conditions (2.3) must hold.

The RoC diagram of a rotationally symmetric sphere is a curve in the plane and
if the sphere is convex, it lies in the open cone {ψ + s > 0} ∩ {ψ − s > 0}. Moving
the diagram in RoC space by a translation parallel to the umbilic horizon moves
the sphere in R3 to a parallel surface. If shrunk enough (i.e. moved to the left in
RoC space) it will eventually hit the diagonal and lose convexity at its focal set [6].

Continue to push the sphere through its focal set and it will develop cusps
and self-intersections which eventually resolve themselves as one pushes all the
way through the diagonals. The result is a convex sphere parameterised by its
inward-pointing normal. This well-known behaviour of the quadratic complex along
oriented lines in R3 is represented in RoC space by horizontal translation.

To get a better picture of the RoC diagram of a rotationally symmetric sphere,
consider the simple linear combination:

s = (a0 + b0 cos θ) sin2 θ + (a1 + b1 cos θ) sin4 θ,

which, by Propositions 5 and 6, has mean radii of curvature

ψ =ψ∞ + (c0 + ( 2
3b0 + 4

15b1)(cos θ − 1)) + [−2a0 + (− 5
3b0 + 2

15b1) cos θ] sin2 θ

+ 1
10 [15a1 + 14b1 cos θ] sin4 θ,

for constants ψ∞ and c0.
In Figure 1 the RoC diagrams are given for three different spheres:

1A : ψ∞ = 10, c0 = 1, a0 = 3, a1 = 10, b0 = 2, b1 = 7,
1B : ψ∞ = 10, c0 = 1, a0 = 3, a1 = 10, b0 = 20, b1 = 7,
1C : ψ∞ = 1, c0 = 1, a0 = 3, a1 = 5, b0 = −36, b1 = 50.

The red horizontal line is the umbilic horizon.
Figure 1A shows the simplest oblate rotationally symmetric surface, while Figure

1B is the RoC diagram of a turnip-shaped sphere: a prolate and an oblate disc joined
along an umbilic circle. Figure 1C demonstrates how the RoC diagram does not
have to be an embedding.

2.4. The slope at an umbilic. For any smooth rotationally symmetric sphere
with the north pole N and south pole S, define the slopes at the isolated umbilic
points to be the slopes of the RoC diagram at the north and south poles:

µN = lim
p→N

ψ(p)− ψ(N)

s(p)
µS = lim

p→S

ψ(p)− ψ(S)

s(p)
.

In other words, the slopes of the endpoints on the umbilic horizon. We prove the
following:

Theorem 4. For a smooth rotationally symmetric sphere of order k the slopes at
the isolated umbilic points satisfy

µN , µS ≤ 1 +
1

k + 1
.

with equality when the sphere is non-degenerate.



INTEGER LINEAR HOPF FLOWS 13

Proof. Starting with the decomposition of s given in Proposition 4

s =

∞∑
l=0

(al + bl cos θ) sin2l+2 θ,

for constants al, bl. Suppose that the sphere is of order k so that we write

s = (ak + bk cos θ) sin2k+2 θ +O(2k + 4),

for ak, bk not both zero. These can be integrated directly for ψ using Proposition
5 and differentiated to find that

ds

dθ
= 2(k + 1)(bk + ak cos θ) sin2k+1 θ +O(2k + 3)

and
dψ

dθ
= −2(k + 2)(bk + ak cos θ) sin2k+1 θ +O(2k + 3),

and therefore

µN = lim
θ→0

ψ(0)− ψ(θ)

s(θ)
= − lim

θ→0

dψ
dθ
ds
dθ

= lim
θ→0

(k + 2)(bk + ak cos θ) sin2k+1 θ +O(2k + 3)

(k + 1)(bk + ak cos θ) sin2k+1 θ +O(2k + 3)

If ak 6= ±bk, i.e. the surface is non-degenerate, then this limit is equal to

µN = 1 +
1

k + 1

and the same for µS .
In the degenerate case, the limit is computed by taking higher derivatives, which

increases the order and decreases the slope, hence the inequality.
�

2.5. Linear Hopf spheres. Consider the case of a rotationally symmetric surface
satisfying the linear relation

(2.11) ψ + µs = ψ∞, for constants ψ∞ > 0, µ > 1.

Note that a relation of the form aκ + bH = c, for Gauss curvature κ and mean
curvature H, is called ”linear” in the literature [15], and Hopf’s examples, also
satisfy a linear relation, but between the curvatures [11]. In contrast, linear Hopf
spheres for us will refer to the relationship between the radii of curvature, as above.

Note also that moving to a parallel surface changes ψ∞ by an additive constant.
Combining the derivative w.r.t. θ of this linear relationship with the Codazzi-

Mainardi relation (2.3) yields

1− µ
s

ds

dθ
= −2 cot θ,

which integrates to

s = C0 sin
2

µ−1 θ.

This can be integrated directly for the support function, using equation (2.4), yield-
ing a family of smooth spheres with:

r = C2 + C1 cos θ − 2C0

∫ [
sin θ

∫
sin

3−µ
µ−1 θdθ

]
dθ,
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which are non-round for C0 6= 0, convex for large enough C2 and prolate or oblate
depending on whether C0 < 0 or C0 > 0. Changing C1 translates the sphere in R3

along the axis of symmetry and leaves the radii of curvature unchanged.
The Hopf spheres are real-analytic iff µ = 1 + 1

l+1 for some l ∈ N in which case
we can carry out the double integration explicitly to find:

r = C2 + C1 cos θ − 2C0

l∑
k=0

(−1)k

(2k + 1)(2k + 2)

(
l

k

)
cos2k+2 θ,

as per Proposition 5.
To summarize

Proposition 7. For constants ψ∞ > 0, µ > 1 there is a 1-parameter family of
rotationally symmetric spheres (unique up to translation) satisfying the linear Hopf
relation (2.11) and the radii of curvature are given by

ψ = ψ∞ − µC0 sin
2

µ−1 θ s = C0 sin
2

µ−1 θ,

which are convex iff ψ∞ > C0µ. They are real analytic iff

µ = 1 +
1

l + 1
for some l ∈ N.

3. Evolution by a Linear Hopf Relation

In this section we formulate the evolution equations of a rotationally symmetric
sphere moving by a linear combination of its radii of curvature and give the complete
solution in terms of initial data for integer values (1.3).

3.1. Evolution in RoC space. As in [8], a classical curvature flow of a sphere is

a map ~X : S2 × [0, t1)→ R3 such that

(3.1)
∂ ~X

∂t

⊥

= −K(ψ, s) ~n, ~X(S2, 0) = S0,

where K is a given function of the sum and difference of the radii of curvature, ~n
is the unit normal vector to the flowing sphere and S0 is an initial convex sphere.

Consider the special case when the initial sphere is rotationally symmetric. Since
the evolution equation, depending only on the second fundamental form, is rota-
tionally symmetric, the spheres St for t ≥ 0 will therefore also be rotationally
symmetric. Moreover, the axis of symmetry remains stationary under the flow, and
the north and south poles remain umbilic.

In RoC space it as a curve flow on the plane subject to the boundary condition
that it’s end-points lie on the horizontal axis - the umbilic horizon. In fact, it is a
parameterized curve and must satisfy the Codazzi-Mainardi relation (2.3) which we
have seen relates the vanishing of s with the slope at the isolated umbilic points.

The curve evolves in RoC space under the linear Hopf flow as follows:

Proposition 8. The flow on RoC space for a curvature function K = ψ+λs−ψ∞
is

(3.2)
∂ψ

∂t
=
λ− 1

2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
− λ cot θ

∂ψ

∂θ
− 2λs

sin2 θ
− ψ + ψ∞
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(3.3)
∂s

∂t
=
λ− 1

2 sin θ

∂

∂θ

(
sin θ

∂s

∂θ

)
− λ cot θ

∂s

∂θ
+

1 + cos2 θ

sin2 θ
s.

Proof. These equations can be obtained by the rotationally symmetric reduction
of the general curvature flow equations given in Proposition 3 of [8]. Alternatively,
derive this ab initio as follows.

Start with the flow of the support function r, which for a curvature flow (3.1) is
simply

∂r

∂t
= −K = −ψ − λs+ ψ∞

and so, by equations (2.1)

∂ψ

∂t
=

∂

∂t

(
r +

1

2 sin θ

∂

∂θ

(
sin θ

∂r

∂θ

))
= −ψ − λs+ ψ∞ −

1

2 sin θ

∂

∂θ

(
sin θ

∂

∂θ
(ψ + λs− ψ∞)

)
= −ψ − λs+ ψ∞ − 1

2

(
∂2ψ

∂θ2
+ λ

∂2s

∂θ2

)
− 1

2 cot θ

(
∂ψ

∂θ
+ λ

∂s

∂θ

)
.

By virtue of the Codazzi-Mainardi equation (2.3) and its derivative, replace the
derivatives of s by those of ψ. The result is as stated.

A similar calculation gives the flow of the astigmatism s as

∂s

∂t
= 1

2

(
∂2ψ

∂θ2
+ λ

∂2s

∂θ2

)
− 1

2 cot θ

(
∂ψ

∂θ
+ λ

∂s

∂θ

)
,

and by replacing the derivatives of ψ by those of s using the Codazzi-Mainardi
equation (2.3). The stated result follows. �

When viewed in RoC space, this system is parabolic as long as λ > 1. In fact, the
second equation is entirely decoupled: the difference of the radii of curvature satis-
fies a linear reaction-diffusion equation with convection - with Dirichlet boundary
conditions s(0) = s(π) = 0.

Our approach to solving the flow is to start by integrating this reaction-diffusion
equation explicitly and to use quadratures to reconstruct the support function of
the surface from the astigmatism s. Differentiation then yields ψ as per equation
(2.1).

It is easily seen that

Corollary 1. Under the curvature flow the rotationally symmetric Codazzi-Mainardi
equation (2.3) is preserved:

∂

∂t

[
∂(ψ + s)

∂θ
+ 2 cot θ s

]
= 0.

In the next section the flow when λ = 1 + 1
n+1 will be completely integrated. An

insight into how this is done is given by the flow of the following quantity:

Proposition 9. If λ = 1 + 1
n+1 then we have the flow

∂

∂t

(
s

sin2+n θ

)
=

1

2(n+ 1)

[
∂2

∂θ2
+ cot θ

∂

∂θ
+

(
(n+ 1)n− n2

sin2 θ

)]
s

sin2+n θ
.
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In particular, if n is a natural number, the eigen-space of the second order
operator on the right-hand side consists of the associated Legendre polynomials
Pnl (θ) for l ≥ n, and as we will see in the next section, these span the higher modes
of the integer linear Hopf flow.

3.2. Solution for integer linear Hopf flows. In this section we completely solve
the evolution of a smooth sphere by a linear combination of its radii of curvature
in terms of initial conditions in the integer case where (1.3) holds.

First introduce a decomposition of the s in terms of trigonometric polynomials
adapted to the flow. As per Proposition 4 the difference of the radii of curvature
at time t = 0 can be written

s(0) =

∞∑
l=0

(al + bl cos θ) sin2l+2 θ,

for constants al, bl.
For any n ∈ N split this into

(3.4) s(0) =

n−1∑
l=0

(al + bl cos θ) sin2l+2 θ +

∞∑
l=n

cl sin
2+n θPnl (cos θ),

for constants al, bl, cl, where Pnl (cos θ) are associated Legendre polynomials.

Theorem 5. Given a decomposition (3.4) of an initial surface, the difference be-
tween the radii of curvature evolves under linear Hopf flow (1.1), (1.2) and (1.3)
as follows:

s =

n−2∑
l=0

[Al(t) +Bl(t) cos θ] sin2l+2 θ + (ãn−1e
µn−1t + b̃n−1e

µ
n− 1

2
t
cos θ) sin2n θ

+ sin2+n θ

∞∑
l=n

clP
n
l (cos θ)e−ωlt,

where

(3.5) Al(t) = ãle
µlt +

n−l−1∑
m=1

(−1)n−l−m

n−l−1∏
p=m

νn−p

n−l∏
q=m+1

(µn−m−µn−p)

ãn−me
µn−mt

(3.6) Bl(t) = b̃le
µ
l+

1
2
t

+

n−l−1∑
m=1

(−1)n−l−m

n−l−1∏
p=m

νn−p

n−l∏
q=m+1

(µ
n−m+

1
2
−µ

n−p+1
2

)

b̃n−me
µ
n−m+

1
2
t
,

for constants µl, νl, ωl defined by

µl =
(2l + 1)(n− l)

n+ 1
νl =

2l(n− l)
n+ 1

ωl =
l(l + 1)− n(n+ l)

2(n+ 1)
,

and constants ãl, b̃l determined by the initial constants al, bl via

al = ãl +

n−l−1∑
m=1

(−1)n−l−m

n−l−1∏
p=m

νn−p

n−l∏
q=m+1

(µn−m−µn−p)

ãn−m,
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bl = b̃l +

n−l−1∑
m=1

(−1)n−l−m

n−l−1∏
p=m

νn−p

n−l∏
q=m+1

(µ
n−m+

1
2
−µ

n−p+1
2

)

b̃n−m,

Proof. The solution above can be checked directly, if laboriously, by substitution
in the reaction-diffusion equation (3.3). However to illustrate the structure of the
flow proceed as follows.

Consider Proposition 9. Take a sum of associated Legendre polynomials

(3.7) s = sin2+n θ

∞∑
l=n

clP
n
l (cos θ),

and allow the values of cl to vary in time, then the reaction-diffusion equation
means that

∂

∂t

(
s

sin2+n θ

)
=

∞∑
l=n

dcl
dt
Pnl (cos θ) = −

∞∑
l=n

clωlP
n
l (cos θ)

for ωl = l(l+1)−n(n+l)
2(n+1) . Solving term by term yields

s(t) = sin2+n θ

∞∑
l=n

c̃lP
n
l (cos θ)e−ωlt,

for constants c̃l and l ≥ n. Thus we have solved for the stationary (l = n) and
higher orders (l > n), which die off as t→∞.

The sum (3.7) only involves terms that are at least of order 2 + 2n and to lower
this, the natural generalisation would be to use Legendre functions for which l < n.
Since these are less familiar, we compute the lower orders recursively by hand.

First consider the following:

Lemma 3. Let 4̃ be the elliptic operator on the right-hand side of equation (3.3):

4̃ =
λ− 1

2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− λ cot θ

∂

∂θ
+

1 + cos2 θ

sin2 θ
.

Then

4̃ sin2m θ =
m− n− 1

n+ 1

[
(1− 2m) sin2m θ + 2(m− 1) sin2m−2 θ

]
,

and

4̃ cos θ sin2m θ =
cos θ

n+ 1

[
m(2n− 2m+ 1) sin2m θ + 2(m− 1)(m− n− 1) sin2m−2 θ

]
.

Now flow the lower order in the decomposition:

s =

n−1∑
l=0

(Al +Bl cos θ) sin2l+2 θ,

where Al and Bl depend on time. By the previous Lemma the evolutions of Al and
Bl decouple and can be dealt with separately.

Thus, consider first

s =

n−1∑
l=0

Al(t) sin2l+2 θ,
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and compute using Lemma 3:

∂s

∂t
=

n−1∑
l=0

dAl
dt

sin2l+2 θ = 4̃s =

n−1∑
l=0

l − n
n+ 1

Al
[
−(2l + 1) sin2l+2 θ + 2l sin2l θ

]
= 2n−1

n+1 An−1 sin2n θ +

n−2∑
l=0

[
(n−l)(2l+1)

n+1 Al − (n−l−1)(2l+2)
n+1 Al+1

]
sin2l+2 θ.

Comparing terms leads to the finite system of ODE’s

d

dt
An−1 = 2n−1

n+1 An−1
d

dt
Al − µlAl = νl+1Al+1 for l < n− 1,

where

µl =
(2l + 1)(n− l)

n+ 1
νl =

2l(n− l)
n+ 1

.

These can be integrated sequentially starting with l = n − 1 down to l = 0. The
effect of each step is the introduction of a new exponential term of coefficient µl > 0,
together with terms containing all lower exponents. The closed form of this is stated
in the Theorem.

The case where

s =

n−1∑
l=0

Bl(t) cos θ sin2l+2 θ,

is similar, the key steps being

∂s

∂t
=

n−1∑
l=0

dBl
dt

cos θ sin2l+2 θ =

n−1∑
l=0

Bl

[
(2n−2l−1)(l+1)

n+1 sin2l+2 θ + 2l(l−n)
n+1 sin2l θ

]
cos θ

= n
n+1Bn−1 cos θ sin2n θ +

n−2∑
l=0

l+1
n+1 [(2n− 2l − 1)Bl − 2(2n− 2l − 1)Bl+1] cos θ sin2l+2 θ,

yielding the ODE’s

d

dt
Bn−1 = n

n+1Bn−1
d

dt
Bl − µl+ 1

2
Bl = νl+1Bl+1 for l < n− 1,

with solutions as stated. �

To completely solve the problem, use quadratures to reconstruct the flowing
surface.

Theorem 6. The support function evolves by

r = ψ∞ + (D2 −D1 cos θ)e−t −
n−1∑
l=0

l∑
k=0

Al(t)
2(−1)k

(2k + 1)(2k + 2)

(
l

k

)
cos2k+2 θ

−
n−1∑
l=0

l+1∑
k=0

Bl(t)
(−1)k

(l + 1)(2k + 1)

(
l + 1

k

)
cos2k+1 θ

−
∞∑

l=n+2

2cl
(l + n+ 2)(l + n+ 1)(l − n)(l − n− 1)

sin2+n θP 2+n
l (cos θ)e−ωlt.

with Al(t) and Bl(t) given by equations (3.5) and (3.6), and constants D1 and D2

determined by the initial sphere.
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Proof. This follows from Propositions 5 and 6, which integrate s twice to get r
and differentiates twice to get ψ. Here the ”constants” now depend upon time, as
described in Theorem 5, and the two ”constants” of integration, C1(t) and C2(t)
must ensure that

∂r

∂t
= −K = −ψ − (1 + 1

n+1 )s+ ψ∞.

This implies that we must have

C1 = D1e
−t C2 = ψ∞ +D2e

−t,

for constants D1, D2.
This completes the proof of the Theorem.

�

Theorems 1, 2 and 3 of the Introduction are consequences of from Theorems 4,
5 and 6.

To see this, note that Theorem 1 follows from Theorem 5, since the astigmatism
s either goes to zero, to that of a non-round integer linear Hopf sphere, or to infinity,
depending on whether the order k of the initial surface is greater than, equal to or
less than n, respectively.

Theorem 2 then comes from combining Theorem 1 with Theorem 4 in the non-
degenerate case. Finally, Theorem 3 is the special case of Theorem 1 with n = 0.

4. Properties of the Solutions

In this section we explore some of the different types of behaviour exhibited by
the solutions presented in Theorems 5 and 6.

4.1. A finite class of sufficient generality. Let us explore a low degree polyno-
mial example in detail. That is, consider an initial surface S0 such that the initial
astigmatism is

(4.1) s(0) = (a0 + b0 cos θ) sin2 θ + (a1 + b1 cos θ) sin4 θ,

for constants a0, b0, a1, b1. We will solve the n = 0 and n = 1 integer linear Hopf
flow for this initial data in detail.

First, Theorem 5 gives the solution to the reaction-diffusion equation with n = 0
and these initial conditions as
(4.2)
s = [a0+ 2

3a1(1−e−3t)+(b0e
−t+ 2

5b1(e−t−e−6t)) cos θ] sin2 θ+(a1e
−3t+b1e

−6t cos θ) sin4 θ.

Now Propositions 5 and 6 yields a support function

r =ψ∞ − 4
3a1 − 2a0 + (c0 − 2

3b0 −
4
15b1)e−t + [2a0 + 4

3a1 + c1 + ( 2
3b0 + 4

15b1)e−t] cos θ

+ 2
15 [15a0 + 10a1 + (5b0 + 2b1)e−t cos θ] sin2 θ + 4

5 [5a1e
−3t + 3b1e

−6t cos θ] sin4 θ,

where c0 and c1 are determined by the initial support function. The surface in R3

parameterized by its Gauss coordinates can be reconstructed via its profile curve
in R2 (any plane containing the axis of symmetry)

x1 = r cos θ − sin θ
dr

dθ
x2 = r sin θ + cos θ

dr

dθ
.
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The mean radius of curvature works out to be

ψ =ψ∞ + [c0 + ( 2
3b0 + 4

15b1)(cos θ − 1)]e−t

+ [−2a0 + 4
3 (e−3t − 1)a1 + (− 5

3b0e
−t + 2

15b1(6e−6t − 5e−t)) cos θ] sin2 θ

+ 1
10 [15a1e

−3t + 14b1e
−6t cos θ] sin4 θ.

(4.3)

The behaviour of the integer linear Hopf flow with n = 0 (λ = 2) on RoC
space can be studied via equations (4.2) and (4.3) for different initial parameters
a0, b0, a1, b1, c0.

For this class of solutions clearly we have

Proposition 10. Under linear Hopf flow with n = 0 the initial surfaces with (4.1)
converge to non-round Hopf spheres iff a0 6= 0. If a0 = 0 they converge to a round
sphere of radius ψ∞.

Secondly, consider integer linear Hopf flow with n = 1. Once again Theorem 5
gives the solution for s, which is

(4.4) s = (a0 + b0 cos θ)et/2 sin2 θ + (a1 + b1e
−t cos θ) sin4 θ.

Now Propositions 5 and 5 yield a support function

r =ψ∞ − 4
3a1 − 2a0 + (c0 − 2

3b0 −
4
15b1)e−t + [2a0 + 4

3a1 + c1 + ( 2
3b0 + 4

15b1)e−t] cos θ

+ 2
15 [15a0 + 10a1 + (5b0 + 2b1)e−t cos θ] sin2 θ + 4

5 [5a1e
−3t + 3b1e

−6t cos θ] sin4 θ,

with mean radius of curvature

ψ =ψ∞ + (c0 + ( 2
3b0 + 4

15b1)(cos θ − 1))e−t

+ [−2a0 + 4
3 (e−3t − 1)a1 + (− 5

3b0e
−t + 2

15b1(6e−6t − 5e−t)) cos θ] sin2 θ

+ 1
10 [15a1e

−3t + 14b1e
−6t cos θ] sin4 θ.

(4.5)

Proposition 11. Under linear Hopf flow with n = 1 the initial surfaces with (4.1)
diverges to infinity unless both a0 = 0 and b0 = 0, in which case it converges to a
non-round Hopf sphere if a1 6= 0, and to a round sphere of radius ψ∞ if a1 = 0.

Note that when the RoC diagram diverges, the associated surface in R3 can pull
itself inside out by passing through its focal set. These are the points where the
RoC diagram intersects the diagonals on RoC space.

4.2. Jumping slope at an isolated umbilic point. The Codazzi Mainardi re-
lation relates the order of vanishing of s at the isolated umbilic points with the
slope of the Weingarten relation. For smooth surfaces this slope is quantized and
therefore can only change under the flow we are considering by jumping.

Consider the evolution with n = 0 and ψ∞ = 10 of the RoC diagram for an
initial sphere with (a0, b0, a1, b1, c0) = (1, 1, 2, 3, 1). Since a0 = b0 6= 0 this surface
is degenerate of order 0. The RoC diagram is a simple bow above the horizontal
axis, so the sphere is oblate.
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Initially, the slopes at the two umbilic points are not equal, namely

µN (0) = 2 µS(0) = 3
2 .

By the solution we have given in the previous subsection, we see in Figure 2 that
the bow-shaped RoC diagram converges to a line segment on the plane and that
for t > 0

µN (t) = µS(t) = 2.

Thus the slope at the south pole umbilic jumps initially.
The flow converges exponentially in Euclidean 3-space to a non-round linear

Hopf sphere satisfying ψ + 2s = 10.

4.3. Contracting an umbilic circle. Consider the evolution with n = 0 and
ψ∞ = 10 of the initial sphere with (a0, b0, a1, b1, c0) = (1, 5, 2, 3, 1). This initial
sphere is turnip-shaped: part prolate, part oblate, separated by an umbilic circle.

As can be seen in Figure 3, under the flow the prolate part shrinks as the umbilic
circle contracts to the south pole. It reaches the pole in finite time and the surface is
degenerate for an instant - the slope jumps instantaneously, returning to its original
value as time continues.

Thus the umbilic circle disappears with a “pop” in finite time. Again the flow
converges to a non-round linear Hopf sphere satisfying ψ + 2s = 10, as predicted
by Theorem 2.

To get diverging solutions consider the previous solution given by equations (4.4)
and (4.5) with n = 1 and ψ∞ = 10. If we start with an initial sphere such as the
one generated by (a0, b0, a1, b1, c0) = (2, 5, 1,−1, 1), this yields an exponentially
increasing flow, as seen in Figure 4.

Such a flow will of necessity lose its convexity when it crosses either diagonal in
the RoC plane. This can be understood in R3 in terms of the focal set[6].

4.4. Solitons in RoC space. Consider flow by a linear curvature function for an
initial surface S0 which is itself a linear Hopf sphere and ask: when does the flowing
surface stay within the class of linear Hopf spheres?

By Proposition 7, the radii of curvature of a linear Hopf sphere with slope µ are

ψ = C0 − µC1 sin
2

µ−1 θ s = C1 sin
2

µ−1 θ.

We therefore seek solutions to the flow equations (3.2) and (3.3) of the above
form with C0, C1 and µ depending on time t. Substituting these in and adding
equation (3.2) and µ times equation (3.3) yields

dC0

dt
+ C0 − ψ∞ − C1 sin

2
µ−1 θ

(
dµ

dt
+

2(µ− λ)

sin2 θ

)
= 0,

Clearly this can only hold for all θ iff either C1 = 0 (round initial sphere) or µ = λ
or µ = 2 for all time.

In the first two cases, the sphere converges exponentially through parallel spheres
to the appropriate linear Hopf sphere. Such motion is by an isometry of the hyper-
bolic/AdS metric.

Assume now that µ = 2 for all time. Then the equation (3.3) is

dC1

dt
+ (λ− 2)C1 = 0,
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which integrates to C1 = C2e
(2−λ)t for some constant C2.

Now equation (3.2) becomes

dC0

dt
+ C0 − ψ∞ + 2C2(λ− 2)e(2−λ)t = 0,

with solution for λ 6= 3

C0 = ψ∞ + C3e
−t + 2C2

(
λ− 2

λ− 3

)
e(2−λ)t,

for some constant C3, and for λ = 3

C0 = ψ∞ + (C3 − 2C2t)e
−t.

For each linear flow (fixed λ and ψ∞) there is a 2-parameter family of solutions
to the initial boundary value problem in RoC space. The 2 parameters C2 and C3

are fixed by the initial choice of linear Hopf sphere with µ = 2.
Suppose that the initial surface has

ψ = ψ0 − 2sπ
2

sin2 θ s = sπ
2

sin2 θ,

so that the constants are ψ0 = ψ(0, 0) and sπ
2

= s(π2 , 0).
To summarize, the previous calculation and its integral in terms of the support

function yield:

Proposition 12. Given an initial linear Hopf surface S0 with µ = 2, the linear
flow (1.1) and (1.2) has a unique solution:

When λ 6= 3 the support function is

r = ψ∞ +
(
ψ0 − ψ∞ − 2(λ−2)

λ−3 sπ
2

)
e−t + 1

2sπ2

(
λ+1
λ−3 − cos 2θ

)
e(2−λ)t,

and the radii of curvature are

ψ = ψ∞ +
(
ψ0 − ψ∞ − 2(λ−2)

λ−3 sπ
2

)
e−t + 2sπ

2

(
λ−2
λ−3 − sin2 θ

)
e(2−λ)t,

s = sπ
2

sin2 θe(2−λ)t.

When λ = 3 the support function is

r = ψ∞ +
[
ψ0 − ψ∞ − sπ2 (2(t+ 1)− sin2 θ)

]
e−t,

and the radii of curvature are

ψ = ψ∞ +
[
ψ0 − ψ∞ − 2sπ

2
(t+ sin2 θ)

]
e−t s = sπ

2
sin2 θe−t.

The natural geometry on RoC space is two copies of the hyperbolic/AdS half-
plane joined along their boundaries (the umbilic horizon). Their common isometries
acting on an RoC diagram correspond to dilations about the origin in R3 and moving
to a parallel surface.

Associated solitons are

Proposition 13. A linear Hopf sphere evolving by a linear flow with µ = λ moves
by translation in RoC space.

A linear Hopf sphere with µ = 2 evolving by a linear flow with λ 6= 3 and

ψ∞ = ψ0 − 2(λ−2)
λ−3 moves by a dilation about the point (ψ∞, 0) on the umbilic

horizon. The dilation is contracting for λ > 2 and expanding for λ < 2.
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The soliton with ψ∞ = 10, λ = 4, sπ
2

= 1 and ψ0 = ψ∞ + 2(λ−2)
λ−3 is plotted

in Figure 5. This is converging to a sphere of radius 10. The direction of flow is
indicated by the box arrows here and throughout.
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[18] B.van-Brunt and K. Grant, Potential applications of Weingarten surfaces in CAGD, Part I:
Weingarten surfaces and surface shape investigation. Computer aided geometric design 13

(1996) 569–582.

[19] J. Weingarten, Uber die Ober achen, fur welche einer der beiden Hauptkrummungshalbmesser
eine function des anderen ist, J. Reine Angew. Math. 62 (1863) 160–173.

Brendan Guilfoyle, School of STEM, Institute of Technology, Tralee, Clash, Tralee,

Co. Kerry, Ireland.

E-mail address: brendan.guilfoyle@ittralee.ie

Wilhelm Klingenberg, Department of Mathematical Sciences, University of Durham,
Durham DH1 3LE, United Kingdom.

E-mail address: wilhelm.klingenberg@durham.ac.uk

http://www.arxiv.org/abs/1503.01930

	1. Introduction and Results
	2. Radius of Curvature Space
	2.1. Classical surface theory
	2.2. Quadratures and degeneracy
	2.3. RoC space
	2.4. The slope at an umbilic
	2.5. Linear Hopf spheres

	3. Evolution by a Linear Hopf Relation
	3.1. Evolution in RoC space
	3.2. Solution for integer linear Hopf flows

	4. Properties of the Solutions
	4.1. A finite class of sufficient generality
	4.2. Jumping slope at an isolated umbilic point
	4.3. Contracting an umbilic circle
	4.4. Solitons in RoC space

	References

