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Abstract: We classify su(Nc) gauge theories on R3×S1 with massless fermions in higher

representations obeying periodic boundary conditions along S1. In particular, we single

out the class of theories that is asymptotically free and weakly coupled in the infrared, and

therefore, is amenable to semi-classical treatment. Our study is conducted by carefully

identifying the vacua inside the affine Weyl chamber using Verma bases and Frobenius

formula techniques. Theories with fermions in pure representations are generally strongly

coupled. The only exceptions are the four-index symmetric representation of su(2) and

adjoint representation of su(Nc). However, we find a plethora of admissible theories with

fermions in mixed representations. A sub-class of these theories have degenerate pertur-

bative vacua separated by domain walls. In particular, su(Nc) theories with fermions in

the mixed representations adjoint⊕fundamental and adjoint⊕two-index symmetric admit

degenerate vacua that spontaneously break the parity P, charge conjugation C, and time

reversal T symmetries. These are the first examples of strictly weakly coupled gauge theo-

ries on R3 × S1 with spontaneously broken C, P, and T symmetries. We also compute the

fermion zero modes in the background of monopole-instantons. The monopoles and their

composites (topological molecules) proliferate in the vacuum leading to the confinement

of electric charges. Interestingly enough, some theories have also accidental degenerate

vacua, which are not related by any symmetry. These vacua admit different numbers of

fermionic zero modes, and hence, different kinds of topological molecules. The lack of sym-

metry, however, indicates that such degeneracy might be lifted by higher order corrections.

Finally, we study the general phase structure of adjoint⊕fundamental theories in the small

circle and decompactification limits.
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1 Introduction

Confining gauge theories that are analytically calculable in four dimensions are scarce.

In fact, Seiberg-Witten theory on R4 [1, 2] and certain QCD-like theories on R3 × S1

(where S1 is a spatial rather than thermal circle) [3] are the only two known examples.

Indeed, it has been known for a long time [4–6] that compactifying a gauge theory on a

circle provides a mechanism for the gauge group to spontaneously break to its maximum

abelian subgroup, and hence, for the theory to admit monopole-instantons. The monopole-

instantons or their composites proliferate in the vacuum causing electric probe charges to

confine [3]. Surprisingly, the class of confining gauge theories on a circle has not yet been

fully explored. In the present work we pursue a systematic study of these theories.

It was understood since the pioneering work of Polyakov [7, 8] that adjoint scalars

are needed in order for the gauge group to break to its maximum abelian subgroup

su(Nc)→ u(1)Nc−1, and hence, to have an analytical control over the theory. The second

homotopy group Π2

(
SU(Nc)/U(1)Nc−1

)
= Z (the set of integers) is not trivial, and there-

fore, one expects to have stable nonperturbative solutions of the field equations. These

are the monopoles (or dyons) in 3 + 1-D and monopole-instantons in 3-D. The monopoles

carry magnetic charge, and hence, their proliferation in the vacuum causes electric charges

to confine. This is an example of the celebrated dual superconductivity [9–11]. The orig-

inal mechanism of the monopole condensation in nonabelian theories was introduced by

Polyakov in the context of the 3-D Georgi-Glashow model, while lifting the mechanism to

four dimensions was realized in the seminal work of Seiberg and Witten on N = 2 super

Yang-Mills. A crucial ingredient in this theory is the scalars in the supermultiplet that

cause the gauge group to abelianize, and hence, the monopoles to form. Then, one can

obtain confined electric charges in the IR after softly breaking N = 2 down to N = 1.

N = 2 super Yang-Mills is not the only 3 + 1-D model that offers an analytical

understanding of the dual superconductivity picture in four dimensions. A theory with

less amount of supersymmetry, yet under analytical control, is N = 1 super Yang-Mills

formulated on a circle S1 [4], i.e., the theory lives on R3 × S1. This is a Yang-Mills theory

endowed with a single adjoint Weyl fermion obeying periodic boundary conditions along

the circle.1 If we take the circle circumference L to be much smaller than the strong scale of

the theory, i.e., NcLΛQCD � 1, then the theory enters its weakly coupled regime. This can

be understood as follows. The gauge component along the compact direction is an adjoint

scalar that causes the theory to abelianize, i.e., the gauge group breaks spontaneously

to its maximum abelian subgroup. In turn, the Higgs mechanism gives mass of order

1/NcL to all the particles that run inside the vacuum polarization graph, and hence, the

four-dimensional coupling of the theory ceases to run at scale ∼ 1/NcL. Again, as in the

Polyakov model, one finds that the path integral of the weakly coupled theory is dominated

by monopole-instantons that generate a superpotential and in turn a mass gap [5]. It has

also been argued that this theory is continuously connected to super Yang-Mills on R4 as

we take the radius of the circle to infinity2[13, 14].

1This theory is different from thermal Yang-Mills where the fermions obey anti-periodic boundary

conditions.
2This continuity also holds in non-supersymmetric theories with fundamental fermions after turning on

a nontrivial flavor space holonomy [12].
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It was believed for a long time that supersymmetry is inevitable to lift the Polyakov

model from 3-D to 3+ 1-D. This belief was due to lack of understanding of the microscopic

mechanism that is responsible for confinement in N = 1 supersymmetry3 on R3 × S1. In

2007, it was realized that the mass gap generation in N = 1 super Yang-Mills on R3 × S1

is due to the proliferation of a new kind of topological “molecules” in the vacuum, dubbed

magnetic bions [3]. These are stable correlated events made of two monopole-instantons

and carry zero topological charge and two units of magnetic charges. Once these molecules

were identified, it was immediately realized that the confinement mechanism transcends the

supersymmetric theory to QCD(adj) [3], which is a Yang-Mills theory endowed with Weyl

fermions in the adjoint representation. For small values of the circle radius and relatively

small number of massless Weyl fermions, QCD(adj) on R3×S1 is a weakly coupled theory in

the abelian regime and is under analytical control. Thus, QCD(adj) on R3×S1 represents a

novel setup that lifts the Polyakov confinement mechanism (or the dual superconductivity

mechanism) from three to four dimensions without the need to invoke supersymmetry.

Unlike thermal Yang-Mills, su(Nc) QCD(adj) on R3 × S1 has a preserved center sym-

metry, thanks to the adjoint fermions. As we dimensionally reduce the theory from four to

three dimensions an effective potential of the adjoint scalar4 is generated. This potential

results from integrating out a tower of Kaluza-Klein excitations of both gauge and fermion

fluctuations. While the former tend to break the center, the latter tend to preserve it.

Finally, the preservation of the center symmetry results from the winning of the fermions

over the gauge fields.5 The unbroken center symmetry guarantees that the resulting three

dimensional effective potential will cause su(Nc) to break spontaneously to the maximum

abelian subgroup u(1)Nc−1. However, it was also realized that a preserved center symmetry

is not a necessary condition for the gauge group to abelianize [16]. A less restrictive condi-

tion is that the global minimum of the effective potential should lie inside the fundamental

domain of the field space (the affine Weyl chamber). A minimum that lies on the bound-

ary of the fundamental domain means that the groups su(Nc) breaks partially to u(1)b

subgroup, where 0 ≤ b < Nc−1, leaving behind a nonabelian part that is strongly coupled.

During the last decade, there has been a tremendous amount of effort to study compact-

ified gauge theories. This includes confinement/deconfinement phase transitions [17–19],

quantum/thermal continuity between compactified super Yang-Mills and hot pure Yang-

Mills [13, 20–22], the global structure [23], QCD under external magnetic field [24] and

at finite density [25]. Recently, there has also been a progress in the lattice simulations

of compactified super Yang-Mills [26]. All these studies have shown a striking qualitative

agreement between theories on R3 × S1 and their cousins on R4. We strongly believe that

this agreement justifies considering this class of theories seriously.

In the present work we systematically study su(Nc) QCD-like theories on R3 × S1

with massless fermions in higher dimensional representations. In particular, we study

3However, see [15] for an early work on the effective scalar potential in supersymmetric theories as a

dilute gas of instanton-anti-instanton molecules.
4The adjoint scalar is a Wilson line wrapping the S1 circle.
5This is true for nG > 1 adjoint Weyl fermions. In the supersymmetric case, nG = 1, the effective

potential vanishes to all orders in perturbation theory and the stability of the center is attributed to

nonperturbative contributions; see [13] for details.
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theories in pure representations R and mixed representations G⊕R, where G is the adjoint

representation. Our aim is to single out the admissible theories that are amenable to semi-

classical analysis. This is the beginning of a series of works that closely examine the

confining class of theories defined over a circle. The ultimate goal of these studies is to

shed more light on the role of fermions in confining gauge theories and understand the

microscopic structure of the topological molecules responsible for confinement.

By admissible theories we mean theories that satisfy the following four criteria: (a)

they are asymptotically free, (b) they are free of gauge and Witten anomalies, (c) they

have global minima inside (and not on the boundary of) the affine Weyl chamber, and

(d) they do not have light or massless charged fermions under u(1)Nc−1 in the infrared.

As a byproduct, we also determine the number of the fermion zero modes attached to the

monopole-instantons in all admissible theories. The zero modes play an important role in

forming the topological molecules, a subject that we pursue in a future work.

Determining the global minimum of the effective potential as well as the fermion zero

modes requires the computation of traces in general representations. These computations

are carried out using two different methods. In the first method we make use of the

Frobenius formula, which gives the trace of a representation R in terms of the trace of

the fundamental (defining) representation. In the other method we calculate the trace by

explicitly constructing the weights of R using Verma bases. We used both methods as a

cross check on our calculations.

For the reader who is interested only in the final product, our results are discussed in

section 8 and can be summarized as follows:

1. Pure representations: the admissible theories are those with fermions in the adjoint

representations. The four-index symmetric representation of su(2) is the only addi-

tion.

2. Mixed representations: here we find a plethora of admissible theories that are dis-

cussed in section 8 and displayed in table 8.

We also display the number of the fermion zero modes attached to the monopole-instantons

that correspond to the simple and affine roots of the algebra {α0,α1, . . . ,αNc−1}.
Interestingly enough, we find a subclass of the admissible theories that have degenerate

vacua. For example, theories with an odd number of colors and fermions in the fundamental

representation (with an appropriate number of adjoint fermions to ensure the existence

of the vacua inside the affine Weyl chamber) have two degenerate vacua that break the

parity P, charge conjugation C, and time reversal T symmetries. Also, theories with

an even number of colors and fermions in the two-index symmetric representation (again

with adjoint fermions) have two degenerate vacua that break the center Z2, P, C, and T
symmetries. In addition, some theories have also accidental degenerate vacua, which are

not related by any symmetry. These vacua admit different number of fermionic zero modes,

and hence, different kinds of topological molecules. The lack of symmetry, however, may

indicate that such degeneracy can be lifted by higher order corrections. Detailed discussion

of these theories is given in section 8.
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Our work is organized as follows. In section 2 we formulate our problem and fix

the notation. In section 3 we sort out the asymptotically free and anomaly free gauge

field theories. Next, we discuss the generation of the effective potential in section 4. In

section 5 we implement the Frobenius formula and Verma bases to compute the traces in

a general representation. Then, we search for the global minima of the effective potential

and display our results in section 6. The IR flow of the effective 3-D coupling constant of

our theories is discussed in section 7. The admissible class of theories, which are mathe-

matically well-defined and well-behaved in the IR, is discussed in section 8. The fermion

zero modes in the background of monopole-instantons are calculated in section 9. In sec-

tion 10 we give a detailed description of the phase structure of theories with fermions in

the adjoint⊕fundamental representation, discuss various interesting physical phenomena,

and study the decompactification limit. This serves as a prototype example of the rich

phase structure of theories with mixed representations. We finally conclude in section 11

by giving a brief summary of our work and plans for future directions. In appendices A

to F we review Lie Algebra, explain the convention, and list a few useful results in group

theory that we use throughout this work.

2 Theory and formulation

We consider su(Nc) Yang-Mills theory endowed with nG massless adjoint Weyl fermions,

ψ, along with nR massless Weyl fermions, χR, in a general representation R of su(Nc).

We consider the theory on R3×S1, where S1 is a circle of radius R. The fermions are given

periodic boundary conditions along the circle. The action of the system is given by

S =
1

g2

∫
R3×S1

tr

[
−1

2
FMNF

MN + iψ̄I σ̄MDG
Mψ

I + iχ̄IRσ̄
MDRMχ

I
R

]
, (2.1)

where the Latin letters M,N = 0, 1, 2, 3 denote the spacetime dimensions and the circle is

taken along the spatial x3 direction: x3 ≡ x3 + 2πR. The index I denotes the flavor, σ̄µ =(
1,−σi

)
, and {σi} are the Pauli matrices. The covariant derivative is DRM = ∂M + iAaM t

a
R,

where {taR}, a = 1, 2, . . . , N2
c − 1, are the generators of su(Nc) in the representation R.

The generators satisfy the Lie algebra
[
ta, tb

]
= ifabctc, where fabc are the group structure

constants. The field strength is given by FMN = ∂MAN − ∂NAM − i [AN , AM ], where AN
are the gauge fields. We assume that the theory is asymptotically free, and hence, the

theory is strongly coupled in the infrared at scale ΛQCD. At this stage the reader might

refer to appendix A for a review of Lie Algebra and the conventions used in this work.

If the radius of the circle is taken to be much smaller than 1/NcΛQCD, then the theory

is weakly coupled and we can apply perturbation theory. Let us denote by X any of the

gauge or fermion fields. Then, we can always decompose these fields in the Weyl-Cartan

bases {H, Eβ, E−β}, as follows:

X = Xata = X ·H +
∑
β+

XβEβ +
∑
β+

XβE−β , (2.2)

where {β+} is the set of all positive roots, H are the Cartan generators, E±β are the

raising (lowering) operators, and the bold face vector X = (X1, X2, . . . , XNc−1) denotes the

– 4 –
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field components along the Cartan generators. Confinement is an infrared phenomenon,

and hence, we are interested in length scales much larger than L. Therefore, we can

dimensionally reduce6 our theory from R3 × S1 to R3. Upon dimensional reduction, the

quantum fluctuations will generate a vacuum expectation value (vev) of the gauge field

component along the x3 direction. The vev can always be chosen to lie along the Cartan

generators by means of a similarity transformation, i.e., we have 〈Aa3ta〉 = 〈A3 ·H〉. Writing

A3 = Φ
L , where L = 2πR is the circumference of the S1 circle, then the bosonic part of the

3-dimensional action reads

S3d bos =
L

g2

∫
R3

tr

[
−1

2
FµνF

µν +
DµΦD

µΦ

L2

]
+ Veff(Φ) , (2.3)

where µ, ν = 0, 1, 2 and the potential V (Φ) results from integrating out the Kaluza Klein

excitations of the gauge and fermionic fields along the x3 direction. In fact, the effective

action (2.3) is the three-dimensional Georgi-Glashow model where the gauge field com-

ponent along the x3 direction Φ is an adjoint scalar. The reduced theory, however, still

remembers its four dimensional origin which manifests in the fact that Veff(Φ) is a peri-

odic function of Φ with periodicities Φ ≡ Φ + 2πα∗a, a = 1, 2, . . . , Nc − 1, where α∗a are

the co-roots, see e.g. [22] for details. Now, if the vev Φ lies inside the affine Weyl cham-

ber (we define the affine Weyl chamber in section 6), then the theory abelianizes, i.e., the

group su(Nc) spontaneously breaks into its maximal abelian subgroup u(1)Nc−1. Then, the

gauge and fermionic fields along {Eβ} acquire masses ∼ n/NcL (these are the W-bosons

and the fermionic counterparts), while the adjoint scalar acquires a mass ∼ gn/NcL, where

n = 1, 2, . . . accounts for the Kaluza Klein tower. Therefore, the long-distance bosonic

three dimensional action reads

S3d eff bos =
L

g2

∫
R3

−1

2
FµνF

µν , (2.4)

and we have used tr
[
H iHj

]
= δij , i, j = 1, 2, . . . , N2

c −1. Thus, the effective bosonic theory

is a collection of non-interacting three dimensional photons. Since photons in 3-D have only

one degree of freedom, one can use a dual description such that F µν = g2

4πLε
µνα∂ασ , where

σ is the dual photon field. Thus, the action (2.4) becomes

S3d eff bos =
g2

16π2L

∫
R3

(∂µσ)2 . (2.5)

Fortunately enough, the story does not stop here since there is a non-perturbative sec-

tor that has to be taken into account. In fact, the theory also admits composite instantons

(e.g. bions) that condense in the vacuum and causes the theory to confine. This mecha-

nism has been elucidated in previous publications [3, 16, 27, 28] for various theories with

various fermion contents, and we only mention it briefly in the conclusion. One of the main

purposes of the present work, however, is to perform a systematic study of the potential

V (Φ) to determine the class of theories that contain fermions in various representations

6We want to emphasize that the dimensional reduction from R3 × S1 to R3 still remembers about the

four-dimensional nature of the theory.

– 5 –
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and yet enjoy stable vevs, and hence, may provide an excellent laboratory to understand

the effect of fermions on the confinement phenomenon. The study of the composite instan-

tons in these theories will be pursued in great details in a future work. The validity of our

analysis hings on the validity of perturbation analysis at small circle radius, and hence, we

first have to examine whether a theory, with a specific number of nG and nR fermions, is

weakly coupled in the IR. An abelian weakly coupled theory in the IR demands that (i)

the UV theory is asymptotically free and (ii) the absence of light charged particles in the

IR. The next section is devoted to study the theories that contain an arbitrary number of

fermions in a general representation, and yet, are asymptotically free.

3 Asymptotically and anomaly free theories

3.1 Asymptotically free theories

In this section we perform a systematic study to determine the asymptotically free su(Nc)

Yang-Mills theory with nG and nR massless Weyl fermions. The two-loop β function of

this theory is given by [29, 30]

β(g) =−β0
g3

(4π)2
−β1

g5

(4π)4
, (3.1)

β0 =
11

6
C2(G)− 1

3
T (G)nG−

1

3
T (R)nR ,

β1 =
34

12
C2

2 (G)− 5

6
nGC2(G)T (G)−nG

2
C2(G)T (G)− 5

6
nRC2(G)T (R)−nR

2
C2(R)T (R) ,

where C2(R) and T (R) are respectively the Casimir and trace operators of representation

R, see appendix B for the expressions of these operators.

Using this information, we find the condition that the theory remains asymptotically

free, i.e., β0 > 0, is given by

nG +
C2(R)d(R)

2Nc(N2
c − 1)

nR <
11

2
, (3.2)

where d(R) is the dimension of the representation. This equation tells us that for a large

number of fermions or for representations with large dimensions the screening effect of the

fermions overcomes the anti-screening of the gluons and the theory looses its asymptotic

freedom.

We are interested in weakly coupled theories in the IR, and therefore, we first check

that our theories are asymptotically free in the UV, i.e., they respect the inequality (3.2). In

the second column of tables 1 to 7 we list all asymptotically free representations of su(Nc)

with 2 ≤ Nc ≤ 8. It is trivial to see that the number of allowed representations decreases

as we use more adjoint fermions. Also, theories with a larger number of colors admit more

asymptotically free representations, which can be easily found from (3.2). However, it is ex-

tremely challenging to numerically study the effective potential beyond su(8), see section 6,

and hence, we limit our analysis to 2 ≤ Nc ≤ 8. Once the asymptotically free theories are

identified, the next step is to make sure that the theory does not have an anomaly.

– 6 –
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3.2 Anomalies

Gauge anomaly. Theories with complex representations suffer from gauge anomalies.

The anomaly is given by

trR [{ta, tb} tc] = dabcA(R) , (3.3)

where A(R) is an integer called the cubic Dynkin index or the anomaly of the representation

and dabc is a symmetric third-rank tensor made out of the structure constants of the algebra

fabc. The cubic Dynkin index vanishes for all simple Lie algebras except su(Nc) for Nc ≥ 3

(and so(6) which is isomorphic to su(4)). The values of A(R) are given in appendix C

for the asymptotically free representations we encounter in this work. There we also show

that real representations (the ones with Dynkin labels that satisfy (m1,m2, . . . ,mr) =

(mr,mr−1, . . . ,m1)) have vanishing cubic Dynkin indices. Thus, in order for a theory to

be anomaly free the Weyl fermions have to belong to a real representation, or otherwise

we need to consider Dirac fermions (i.e. an even number of Weyl fermions).

Witten anomaly. Some of the theories with fermions in a particular representation are

not mathematically defined since they have Witten (terminal) anomaly [31, 32]. A good

diagnose of such theories is that they have an odd number of fermionic zero modes in the

background of a Belavin-Polyakov-Schwarz-Tyupkin (BPST) instanton [33]. Atiyah-Singer

index theorem [34] gives the number of fermionic zero modes in the background of a BPST

instanton as

If (R) = nRT (R)K , (3.4)

where

K =
1

16π2

∫
d4xF aMN F̃

a
MN , (3.5)

is the instanton number.

In tables 1 to 7 we compute Atiyah-Singer index in the background of a single BPST

instanton for the asymptotically free su(Nc) theories with 2 ≤ Nc ≤ 8 and fermions in

representations nG ⊕ nR. Theories with an odd index have Witten anomalies, and hence,

are ill-defined. For example, su(2) with nF = 1 is ill defined despite the fact that it is

gauge anomaly free.

Having found all asymptotically and anomaly free theories, the next task will be sum-

ming up contributions from the Kaluza-Klein tower. This is discussed in the next section.

4 Integrating out the Kaluza Klein tower: the effective potential

In this section we apply dimensional reduction to our theory, eq. (2.1), assuming that

condition (3.2) holds, i.e., the theory is asymptotically free, and hence, perturbation theory

is at work. Upon dimensionally reducing the theory from four to three dimensions we obtain

a tower of heavy Kaluza-Klein excitations that can be integrated out. The effect of the

tower on the low energy phenomena can be taken into account by calculating the effective

– 7 –



J
H
E
P
1
2
(
2
0
1
7
)
0
2
8

potential V (Φ). The purpose of this section is to elucidate this calculation which originally

appeared in the pioneering work of Gross, Pisarski, and Yafee [35]. In the following, we

calculate V (Φ) for fermions in a generic representation R. The calculations for the gauge

fields follow the exact same steps. The reader can refer to [35] for details.

The calculations start by assuming that the potential develops a holonomy Φ along

the x3-direction, and therefore, we seek a self-consistent solution in the sense that at the

end of the calculations one should check that the potential yields a minimum at Φ. To this

end, we write (from here on we remove the subscript R to reduce notational clutter)

AM (~x, x3) =
ΦiH i

L
δM,3 +AM (~x, x3) , (4.1)

where AM are the field fluctuations, and expand the fields χ and AM as in (2.2). Explicitly,

we have

AM = AaM t
a = AiMH

i +
∑
β+

AβMEβ +
∑
β+

A∗βM E−β ,

χ = χata = χiH i +
∑
β+

χβEβ +
∑
β+

χ−βE−β . (4.2)

Substituting eq. (4.2) into eq. (2.1) and using
[
H i, Hj

]
= 0 ,

[
H i, E±β

]
= ±βiE±β, and

tr
[
tatb
]

= δab, we obtain

Sχ =

∫
R3×S1

i

χ̄σ̄mµ ∂µχm +

d(R)∑
n=1

χ̄mσ̄3
Φ · µn
L

χm + interaction terms

 , (4.3)

where {µn} is the set of all weights of the R representation and d(R) is its dimension.

Since the action (4.3) is quadratic in χ, we can readily integrate out the χ field. Assuming

periodic boundary conditions for the fermions along the spatial circle, and performing

continuous and discrete Fourier transforms along x0,1,2 and x3, respectively, we obtain the

one-loop effective potential

Vχ(φ) = −
d(R)∑
m=1

∑
p∈Z

∫
d3k

(2π)3
log

[
k2 +

(
2πp

L
+

Φ · µm
L

)2
]

≡ −
∑
p∈Z

trR

{∫
d3k

(2π)3
log

[
k2 +

(
2πp

L
+

Φ ·H
L

)2
]}

. (4.4)

The potential in eq. (4.4) is UV divergent and it needs to be regularized before we can

make use of it. The regularization can be performed using the zeta-function technique.7

7Basically, this can be done by writing

∑
p∈Z

∫
d3k

(2π)3
log
[
k2 + (p+ a)2

]
= −lims→0

d

ds

∑
p∈Z

∫
d3k

(2π)3
[
k2 + (p+ a)2

]−s , (4.5)

and then using the identity [36, 37]∑
p∈Z

[
c+ (p+ a)2

]−s
=

√
π

Γ[s]
|c|1−2s

[
Γ

(
s− 1

2

)
+ 4

∞∑
p=1

(πp|c|)s−
1
2 cos (2πpa)Ks− 1

2
(2πp|c|)

]
, (4.6)

where Kn are the Bessel functions of the second kind. Finally, one can extract the physically relevant

information by carefully taking the limit s→ 0.
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One can also follow the same steps to calculate the effective potential that results from

integrating out the Kaluza-Klein tower of the gauge field. The final form of the effective

potential reads

Veff (Φ) =
2

π2L3

∞∑
p=1

1

p4
{nRtrR [cos (pΦ ·H)] + (nG − 1)trG [cos (pΦ ·H)]} . (4.7)

One of the main purposes of this work is to determine whether the potential (4.7) has

non-trivial minima. As we emphasized above, the presence of non-trivial minima means

that the gauge group su(Nc) breaks spontaneously down to its maximum abelian sub-

group u(1)Nc−1. This in turn makes it possible to tackle the theory, e.g., understand the

confinement dynamics, by analytical means.

The potential (4.7) is expressed as a sum over the weight vectors {µ} of representation

R. At this point, we can proceed either by explicitly constructing the weights of R or using

Frobenius formula. In the next section we elaborate on these two different methods.

5 Computation of traces

A direct computation of the traces in (4.7) for a general representation can be circum-

vented by using the Frobenius formula, which will be discussed in this section. However,

in this work we will also need to determine the number of fermionic zero modes in the

background of instantons and check whether any of the charged fermions in the IR are

massless. These two pieces of computations require the explicit knowledge of the weights

in every representation. In fact, computing the traces using both the explicit weights and

Frobenius formula works as a cross check on our computations. In the rest of this section

we discuss both methods in some detail.

5.1 Constructing the weights using Verma bases

Obtaining the weights of a particular representation can be a formidable task. Fortunately

enough, this task is made possible by exploiting a method that was originally due to Verma

and then further developed by Li, Moody, Nicolescu, and Patera [38], and can be applied

to construct all finite dimensional irreducible representations8 of su(Nc). This method is

a set of basis-defining inequalities which satisfy the following criteria. (1) The inequalities

define a set of linearly independent vectors that span the whole representation space. (2)

The number of inequalities is equal to the number of the positive roots. (3) The bases

provided by this method consist of eigenvectors of the Cartan subalgebra and thus each

basis vector is labeled by additive quantum numbers that are the components of a weight

of the representation.

For a given representation R of su(Nc), which we denote by R = (m1,m2, . . . ,mNc−1)

(see appendix A for a review of Lie Algebra and the conventions used in this work), the

basis vectors are[
(E−α1)aN (E−α2)aN−1 . . .

(
E−αNc−1

)aN−Nc+2
] [

(E−α1)aN−Nc+1 . . .
(
E−αNc−2

)aN−2Nc+4
]

× . . . [(E−α1)a3 (E−α2)a2 ] (E−α1)a1 |R〉 , (5.1)

8In fact, this method can also be applied to construct all finite dimensional irreducible representations

of the simple Lie algebras of types Bn and Cn (2 ≤ n ≤ 6), Dn (4 ≤ n ≤ 6), and G2; see [38] for details.
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where N = Nc(Nc − 1)/2 and {E−αa}, a = 1, 2, . . . , Nc − 1 is the set of the simple-root

generators. The coefficients {ai} satisfy a set of inequalities given in table 11 in appendix D,

where we also give an example of using the Verma bases to construct the weights of su(3).

The set of rules used to construct the weights in any representation can be easily coded

and implemented in a numerical scheme to obtain the global minimum of the effective

potential. Before doing that, we will also discuss the Frobenius formula that can be used

to circumvent the explicit construction of the weights.

5.2 The Frobenius formula

In the rest of this section we apply the Frobenius formula in order to compute the traces in

eq. (4.7). We first note that one can write trR [cos (pΦ ·H)] as Re
{

trR
[
eipΦ·H

]}
. Defining

the Polyakov loop along the compact circle as

Ω ≡ eiΦ·H , (5.2)

we find that the effective potential can be expressed as

Veff (Φ) =
2

π2L3

∞∑
p=1

Re {nRtrR [Ωp] + (nG − 1)trG [Ωp]}
p4

. (5.3)

Now, we are in a position to compute the traces in a general representation R using

the Frobenius formula. For P ∈ su(Nc), the Frobenius formula gives the trace of P in the

representation (n,~0) ≡ (n, 0, 0, . . . , 0) in terms of the trace of the fundamental (defining)

representation as [39, 40]

tr(n,~0)P =
∑
j∈Sn

1∏n
k=1 k

jkjk!
(trFP )j1

(
trFP

2
)j2 . . . (trFPn)jn , (5.4)

where the sum is over all the n! permutations {j1, j2, . . . , jn} of the symmetric group

Sn. The vector {j1, j2, . . . , jn} can be obtained as the solution of the equation

1j1 + 2j2 + . . .+ njn = n for all integers ji ≥ 0. The traces for a general representa-

tion R = (m1,m2, . . . ,mr) can be obtained using tensor methods and Young tableau. In

appendix E we list trRP for all the needed representations in this work, i.e., the represen-

tations that are asymptotically free.

In this section we introduced all the necessary tools needed to compute the traces. In

the next section we study the minimization problem of the effective potential.

6 The global minima of the effective potential

The existence of a minimum (or minima) of the effective potential inside (and not on the

boundary of) the affine Weyl chamber (defined below) guarantees that the gauge group

su(Nc) breaks down to its maximum abelian subgroup u(1)Nc−1. In this section we search

for the minima of the effective potential using both analytical and numerical means. The

analytical method is a succinct way to understand the behavior of the minima in the pres-

ence of fermions in mixed representations. In addition, it provides us with valuable infor-

mation that we can use to check our numerical calculations. Unfortunately, it is extremely

difficult to analytically find the minima of the potential for any group beyond su(3).
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6.1 The affine Weyl chamber

The affine Weyl chamber is the region of physically inequivalent values of Φ. This region

is a polyhedron in Nc − 1 dimensional space defined by the inequalities

αa ·Φ > 0 for all a = 1, 2, 3, . . . , Nc − 1 and −α0 ·Φ < 2π , (6.1)

where αa, a = 1, 2, . . . , Nc−1, are the simple roots and α0 is the affine root which is given by

α0 = −
Nc−1∑
a=1

αa . (6.2)

The interior of this region (not including the boundary) is the smallest region in the Φ-

space with no massless W -bosons (including their Kaluza-Klein excitations), see [41] for

more details. The existence of the global minimum on the boundary means that one (or

several) W -bosons become(s) massless, which makes the theory strongly coupled and in-

validates its semi-classical description. As an example, in figure 1 we plot the affine Weyl

chamber of su(3) and indicate the locations of the minima in the two cases 1 ≤ nG ≤ 5

and (nG = 2)⊕
(
n(20) = 2

)
(two fermions in the adjoint and two fermions in the two-index

symmetric representations). In the latter case we see that the potential admits two degen-

erate vacua, as we discuss extensively in section 8.1. In both cases the minima are located

inside the affine Weyl chamber.

In addition, we also define the quantity

Z =

∣∣trF [eiΦmin·H
]∣∣

Nc
. (6.3)

Theories that respect the center symmetry of su(Nc) have Z = 0 at Φmin. On the other

hand, theories that break the center of the group badly, for example theories in the decon-

fined phase, have Z ∼= 1. Since 0 ≤
∣∣trF [eiΦmin·H

]∣∣ ≤ Nc, we find that 0 ≤ Z ≤ 1 is a gauge

invariant measure of the distance between the global minimum and center symmetric point.

6.2 Analytical solutions

To this end, we try to minimize Veff analytically. In fact, the sum over p in (4.7) can be

performed exactly:

B(z) ≡
∞∑
p=1

cos pz

p4
=
−15z4 + 60πz3 − 60π2z2 + 8π4

720
, 0 ≤ z ≤ 2π . (6.4)

Next, with the aid of the Frobenius formula we find that the effective potential of su(2) is

given by9

Veff(Φ) =

∞∑
p=1

2nF cos
(
pΦ
2

)
+ 4(nG − 1) cos2

(
pΦ
2

)
p4

, (6.5)

9We find it more convenient to use the normalization α2 = 1 for su(2).
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Figure 1. The shaded region is the affine Weyl chamber of su(3). The horizontal and vertical axes

are φ1 and φ2, respectively. We take the simple roots to be α1 =
(

1
2 ,
√
3
2

)
and α2 =

(
1
2 ,−

√
3
2

)
.

The blue circles indicate the location of the two degenerate vacua in the case (nG = 2)⊕
(
n(20) = 2

)
.

The red square is the center symmetric point, which is the vacuum location for 1 ≤ nG ≤ 5 adjoint

fermions.

nG = 2, nF = 0

1 2 3 4 5 6

1

2

3

4

nG = 2, nF = 2

1 2 3 4 5 6

2

4

6

8

nG = 2, nF = 4

1 2 3 4 5 6

5

10

Figure 2. The effective potential, Veff(Φ), for su(2) with nG = 2 and nF = 0, 2, 4.

for nG and nF fermions. Then, using eq. (6.4) we obtain, apart from irrelevant additive

and multiplicative constants,

Veff(Φ) ∼ −15(16(nG− 1) +nF )Φ4 + 120π(8(nG− 1) +nF )Φ3− 240π2(4(nG− 1) +nF )Φ2 ,

(6.6)

which admits a minimum at

Φmin =
4π(4nG + nF − 4)

16nG + nF − 16
. (6.7)

Expression (6.7) shows that there cannot be a minimum inside the affine Weyl chamber,

0 < Φ < 2π, for a single flavor of adjoint fermion and any number of fundamentals. It

also shows that the maximum number of fundamental fermions that can yield a minimum

inside the affine Weyl chamber increases as we increase the number of adjoint fermions. Of

course, one should not trust (6.7) when the theory ceases to be asymptotically free.

In figure 2 we plot the su(2) effective potential for nG = 2 and nF = 0, 2, 4 in the range

0 < Φ < 2π. For nF = 0 the potential develops a minimum at φ = π, which is a center

symmetric point since Z = 0. As we increase the number of fundamentals, the minimum

shifts closer to the boundary of the affine Weyl chamber Φ = 2π.
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Similarly, one can also use analytical means to find the global minimum in the su(3)

case. Here, it is more convenient to use the RNc root and weight bases given in appendix A.

Modulo multiplicative and additive constants, the effective potential for nG adjoint and

nF fundamental fermions reads

V (Φ1,Φ2) ∼ nF (B(Φ1) +B(Φ2) +B(Φ1 + φ2))

+ 2(nG − 1) (B(Φ1 − Φ2) +B(2Φ1 + Φ2) +B(Φ1 + 2Φ2)) . (6.8)

The global minimum of the potential is given by

Φ1 min =
2π [6(nG − 1) + nF ]

nF + 18(nG − 1)
, Φ2 min = 0 , (6.9)

and the eigenvalues of the Hessian are{
360π2(36(−1 + nG)2 − n2

F )

nF + 18(−1 + nG)
,

120π2(36(−1 + nG)2 − n2
F )

nF + 18(−1 + nG)

}
. (6.10)

We can also check easily that the maximum number of the allowed fundamentals increases

with increasing nG, as in the su(2) case. However, we show in section 7 that su(3) with fun-

damental fermions have massless modes charged under u(1)2 rendering the theory strongly

coupled in the IR. Yet, this case is important since it provides us with information that

we can use to check our numerical computations.

6.3 Numerical investigation

It is extremely difficult to use analytical expressions to find the global minima of the

potential for any group beyond su(3). In this section we numerically search for the minima

of the effective potential (5.3) for all asymptotically free theories.

Since the sum in (5.3) is rapidly convergent, we could try to find the minimum for fixed

small values of p and then check whether the obtained minimum is the true global minimum

of the full potential. Unfortunately, this method does not work when the global minumum

is far from the center symmetric point, specially when it is close to the boundary of the

affine Weyl chamber. Therefore, we prefer to use a full numerical approach. Apart from

additive and multiplicative constants, the final form of the effective potential is given by

Veff ∼ nRtrRB [Φ ·H] + (nG − 1)trGB [Φ ·H] , (6.11)

where B(x) is given by (6.4). As we mentioned before, we use both Frobenius method and

Verma bases to double check our computations.

In our numerical scheme, we seek the global minimum of the effective potential (5.3)

with 16-digit precision. However, we are conservative in deciding whether the minimum is

located inside or on the boundaries of the affine Weyl chamber. Therefore, we exclude all

theories that have global minima within a distance less than 10−3 from the boundary, i.e.,

the conditions for accepting a theory is that its global minimum (or minima) satisfies the

conditions

αa ·Φmin> 10−3 for all a= 1,2,3, . . . ,Nc−1 and −α0 ·Φmin< 2π−10−3. (6.12)
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The cutoff window is consistent with the analytical results of su(2) and su(3) that we

discussed in the previous section. In particular, increasing the size of the cutoff window,

to allow for the minima to reside within a distance smaller than 10−3 from the boundaries

of the Weyl chamber, overestimates the number of the allowed fermions compared to the

number we obtain from the analytical expressions of su(2) and su(3). Therefore, we use

the empirical affine Weyl chamber as given by (6.12) throughout our numerical work.

Indeed, we can also have situations of degenerate global minima. We study these cases

in great details in section 8.1.

Our results are discussed in the following subsections.

Theories with fermions in pure representations.

(a) Theories with 1 ≤ nG < 5 flavors of fermions in the adjoint representation of su(Nc)

have global minima inside the affine Weyl chamber.10 In fact, these global minima

preserve the center symmetry of the gauge group, i.e., Z = 0. This class of theories

is well studied in the literature, see e.g., [3, 28], and we refrain from giving further

comments.

(b) su(2) with a single fermion flavor in the representation R = (4) has global minima

(two minima, see section 8.1) inside the affine Weyl chamber. We also find Z = 1√
2
,

which means that the global minima of the theory breaks the center symmetry.

(c) All other theories with fermions in all other representations of su(Nc) fail to have global

minima inside the affine Weyl chamber. The physical reason behind this observation

will be discussed below.

Therefore, beyond su(2), only theories with adjoint fermions abelianize, and hence,

have semi-classical description.

Theories with fermions in mixed representations nG⊕nR. Now, we consider the

mixed representations of 1 ≤ nG ≤ 5 flavors of massless adjoint fermions and nR massless

fermions in representation R. Our results for the gauge groups su(2) to su(8) are displayed

in tables 1 to 7. The first column, nG, is the number of the adjoint fermions. In the second

column we list the asymptotically free theories with fermions in representation R. In the

third column we give the maximum number of R fermions, nmax
R , in the presence of nG

fermions such that the theory remains asymptotically free. The fourth column gives the

range of fermions that lead to a global minimum (or minima) of the effective potential

inside the affine Weyl chamber. This range is represented either as an interval [n1
R, n

2
R]

(keeping in mind that we really mean the integer values of the fermion number), or as a

list of numbers {n1
R, n

2
R, . . .}. The abbreviation NON indicates the absence of a global

minimum inside the affine Weyl chamber. The fifth column gives the deviation of the

global minimum of the potential from the center symmetric point as defined in (6.3). In

particular, we give the range of Z as an interval [Z1,Z2], where Z1 corresponds to n1
R

and Z2 corresponds to n2
R. Notice that we do not compute Z for theories with no global

10The special case nG = 1 is N = 1 super Yang-Mills.
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minima inside the affine Weyl chamber. The final column gives the Atiyah-Singer index

in the background of a single Belavin-Polyakov-Schwarz-Tyupkin (BPST) instanton. An

odd index would indicate that the theory has a Witten anomaly, see section 3.2. Finally,

theories that are asymptotically free, have global minima inside the affine Weyl chamber,

anomaly free, and do not admit massless charged fermions, under u(1)Nc−1, in the IR are

indicated by blue bold face, see section 8 for more details.

Interestingly, we find that the same pattern we observed for su(2) and su(3) continues

to hold for higher groups and higher representations. In particular, the number of allowed

fundamental fermions increases with increasing nG. One can understand this fact by ana-

lyzing the fields that compete among each other to break or restore the center symmetry. In

the absence of fermions, gauge fluctuations will always break the center of the group badly

by pushing the minimum of the potential to the boundaries of the affine Weyl chamber.

Fundamental fermions also tend to break the center symmetry. In fact, our analysis shows

that fermions in all pure representations, except the adjoint, either push the minimum of

the potential to the boundary of the affine Weyl chamber or, at least, cannot fight against

the gauge fields. Adjoint fermions, on the contrary, prefer a stable center and adding them

is the only hope to have a theory with a non-trivial global minimum. Adding a single

Weyl adjoint fermion to pure Yang-Mills renders the theory supersymmetric, which has

a vanishing perturbative potential to all orders in perturbation theory. Nonperturbative

contributions (neutral bions), however, restore the center symmetry [13]. The contribution

from neutral bions is exponentially suppressed and it cannot fight against any additional

non-adjoint fermion field. Hence, in general we find no nontrivial global minimum for a the-

ory with zero or one adjoint fermion in the presence of any number of additional fermions

in a representation R 6= adj. An exception to this generality is the (020) representation

in su(4) with a single adjoint fermion. Although the contributions from gauge and adjoint

fermion cancel each other, the representation (020) is capable of generating an effective

potential with a nontrivial minimum. Notice, however, that the potential generated from

this representation is not capable by itself in fighting against the gauge field; it needs at

least a single adjoint fermion to join the battle (the maximum number of (020) fermions

allowed by asymptotic freedom, which is 2 in this case, is not enough to fight against the

gauge field). Adding more than one adjoint fermion empowers the theory in its fight against

the gauge fluctuations and other additional fermion fields. Thus, for nG ≥ 2 we expect

that more fermions will be allowed, which is limited only by the requirement of asymptotic

freedom of the theory, as can be seen in the tables.

Of course, the location of the global minimum (or minima) will be determined as a

compromise between the different components of the theory. In general, the minimum

will not respect the center symmetry of the gauge group. The deviation of the minimum

from the center-symmetric point is measured using Z defined in (6.3). In tables 1 to 7

we list the range of Z for the range of the allowed fermions in each representation. We

have checked explicitly that for a given number of nG adjoint fermions, the value of Z
increases monotonically with the number of additional fermions in a representation R. In

particular, Z � 1 for very small number of fermions (not in the adjoint) and it reaches its

peak for the maximum number of allowed fermions. Such behavior is consistent with our
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nG R nmax
R Range of nR Range of Z If

0 (1)=F 22 NON NA nR

(2) = adj 5 1
2

[1,5] {0} 4nR

(3) 2 1
5

NON NA 10nR

(4) 1 1
10

{1} {0.707} 20nR

1 (1) 18 NON NA 4 + nR

(3) 1 4
5

NON NA 4 + 10nR

2 (1) 14 [1,7]even [0.274, 0.991] 8+nR

(3) 1 2
5

{1} {0.257} 8 + 10nR

3 (1) 10 [1,10]even [0.142, 0.901] 12+nR

(3) 1 {1} {0.188} 12 + 10nR

4 (1) 6 [1,6]even [0.096, 0.500] 16 + nR

5 (1) 2 {1,2} {0.072, 0.142} 20 + nR

Table 1. su(2): classification of all asymptotically free theories. The first column, nG, is the number

of the adjoint fermions. In the second column we list the asymptotically free theories with fermions

in representation R. In the third column we give the maximum number of R fermions, nmax
R , in

the presence of nG fermions such that the theory remains asymptotically free. The fourth column

gives the range of fermions that lead to a global minimum (or minima) of the effective potential

inside the affine Weyl chamber. This range is represented either as an interval [n1R, n
2
R] (keeping

in mind that we really mean the integer values of the fermion number), or as a list of numbers

{n1R, n2
R, . . .}. The abbreviation NON indicates the absence of a global minimum inside the affine

Weyl chamber. The fifth column gives the deviation of the global minimum of the potential from

the center symmetric point as defined in (6.3). In particular, we give the range of Z as an interval

[Z1,Z2], where Z1 corresponds to n1R and Z2 corresponds to n2R. Notice that we do not compute

Z for theories with no global minima inside the affine Weyl chamber. The final column gives the

Atiyah-Singer index in the background of a Belavin-Polyakov-Schwarz-Tyupkin (BPST) instanton.

discussion above since fermions in a representation R 6= adj favor destabilizing the center.

We also note that the global minima of the adjoint-antisymmetric mixed representations

nG ⊕ (0, 1, 0, . . . , 0), for Nc even, are very close to the center symmetric point as these

theories have Z ∼= 0. However, as we will discuss in section 8, all these theories are

strongly coupled in the IR. It is also important to emphasize that although tables 1 to 7

show a few cases with Z = 0, this is meant to be true only within our numerical accuracy.

7 The flow of the 3-D coupling constant

Having found all theories that are asymptotically and anomaly free and have global minima

inside the affine Weyl chamber, now we turn to the question whether the 3-D effective

coupling constant is small in the IR. The weak coupling is necessary in order to trust the

semi-classical treatment of such theories. We will find that the necessary condition that a

theory stays in the weakly coupled regime is that

µm ·Φmin

2π
/∈ Z for all non-zero µm ,m = {1, 2, . . . , d(R)} , (7.1)

where Z is the set of integer numbers.
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nG R nmax
R Range of nR Range of Z If

0 (10) 33 NON NA nR

(20) 6 3
5

NON NA 5nR

(30) 2 1
5

NON NA 15nR

(11) 5 1
2

[1,5] {0} 6nR

(21) 1 13
20

NON NA 20nR

1 (10) 27 NON NA 6 + nR

(20) 5 2
5

NON NA 6 + 5nR

(30) 1 4
5

NON NA 6 + 15nR

(21) 1 7
20

NON NA 6 + 20nR

2 (10) 21 [1, 5] [0.118, 0.327] 12 + nR

(20) 4 1
5

{1} {0.202} 12 + 5nR

(30) 1 2
5

{1} {0.314} 12 + 15nR

(21) 1 1
20

{1} {0.215} 12 + 20nR

3 (10) 15 [1, 11] [0.063, 0.331] 18 + nR

(20) 3 {1,2, 3} [0.047, 0.202, 0.337] 18 + 5nR

(30) 1 {1} {0.206} 18 + 15nR

4 (10) 9 [1, 9] [0.042, 0.267] 24 + nR

(20) 1 4
5

{1} {0.035} 24 + 5nR

5 (10) 3 [1, 3] [0.033, 0.092] 30 + nR

Table 2. su(3).

Figure 3. Fermion contribution to the vacuum polarization.

In order to obtain the effective 3-D coupling constant starting from the four dimensional

theory, we need to compute the contribution from both gauge and fermion loops upon

compactifying the theory over S1. The contribution from the gauge fluctuations was found

in [42]. The contribution from fermions in a general representation R can be obtained from

the vacuum polarization diagram of figure 3. Using the propagator on R3×S1 (see [42] for

details), the one-loop fermion contribution to the vacuum polarization reads

Πed
MN (p, ω) = −nR

g2(L)

2L

∑
q∈Z

∫
d3k

(2π)3
trR

[
tetdγM

1

/K
γN

1

/K + /P

]
,

where γM are the Dirac matrices.11 Then, employing the Weyl-Cartan basis we find that

11We use Dirac fermions in this computation, and hence, the result for Weyl fermions is obtained by

dividing by 2.
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1
7
)
0
2
8

nG R nmax
R Range of nR Range of Z If

0 (100) 44 NON NA nR

(200) 7 1
3

NON NA 6nR

(300) 2 2
21

NON NA 21nR

(010) 22 NON NA 2nR

(020) 2 3
4

NON NA 16nR

(101) 5 1
5

[1,5] {0} 8nR

(110) 3 5
13

NON NA 13nR

(201) 2 1
3

NON NA 33nR

1 (100) 36 NON NA 8 + nR

(200) 6 NON NA 8 + 6nR

(300) 1 5
7

NON NA 8 + 21nR

(010) 18 NON NA 8 + 2nR

(020) 2 1
4

{1,2} {0.485, 0.485} 8 + 16nR

(110) 2 10
13

NON NA 8 + 13nR

(201) 1 1
11

NON NA 8 + 33nR

2 (100) 28 [1,15]even [0.126, 0.998] 16 + nR

(200) 4 2
3

{1,2} {0, 0.95} 16 + 6nR

(300) 1 1
3

NON NA 16 + 21nR

(010) 14 {1} {0} 16 + 2nR

(020) 1 3
4

{1} {0.25} 16 + 16nR

(110) 2 2
13

NON NA 16 + 13nR

3 (100) 20 [1,20]even [0.063, 0.900] 24 + nR

(200) 3 1
3

{1, 2, 3} {0, 0, 8.85× 10−4} 24 + 6nR

(010) 10 [1, 3] {0} 24 + 2nR

(020) 1 1
4

{1} {0.34} 24 + 16nR

(110) 1 7
13

{1} {0.057} 24 + 13nR

4 (100) 12 [1,12]even [0.042, 0.479] 32 + nR

(200) 2 {1, 2} {0, 0} 32 + 6nR

(010) 6 [1, 5] {0} 32 + 16nR

5 (100) 4 [1,4]even [0.031, 0.126] 40 + nR

(010) 2 {1, 2} {0} 40 + 16nR

Table 3. su(4).

the gauge fluctuations Aµ couple to the fermions χm as µm · Aµ, where m = 1, 2, . . . d(R),

and hence, the polarization tensor is given by

Πij
µν(p,ω) =−2g2(L)

L
nR

d(R)∑
m=1

∑
q∈Z

∫
d3k

(2π)3
µimµ

j
m

[
gµν
(
−K ·P−K2

)
+KµKν+KνPµ+2KµKν

][
k2+

(
2πq
L + µm·Φ

L

)2][
(kkk+ppp)2+

(
2πq
L + µm·Φ

L +ω
)2] ,

where Kµ =
(

2πq
L + µm·Φ

L , ~k
)

and Pµ = (ω,p). The computation of the integral and sum

was detailed in [42]. After a few manipulations we find that the IR limit, ω = 0, of the
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7
)
0
2
8

nG R nmax
R Range of nR Range of Z If

0 (1000) 55 NON NA nR

(2000) 7 6
7

NON NA 7nR

(3000) 1 27
28

NON NA 28nR

(0100) 18 1
3

NON NA 3nR

(0200) 1 4
7

NON NA 35nR

(1001) 5 1
2

[1,5] {0} 10nR

(2001) 1 6
49

NON NA 49nR

(1100) 2 1
2

NON NA 22nR

(1010) 2 7
24

NON NA 24nR

(0110) 1 1
10

NON NA 50nR

1 (1000) 45 NON NA 10 + nR

(2000) 6 3
7

NON NA 10 + 7nR

(3000) 1 17
28

NON NA 10 + 28nR

(0100) 15 NON NA 10 + 3nR

(0200) 1 2
7

NON NA 10 + 35nR

(1100) 2 1
22

NON NA 10 + 22nR

(1010) 1 7
8

NON NA 10 + 24nR

2 (1000) 35 {1, 2, 3, 4, 5,6, 7,8, 9} [0.095, 0.602] 20 + nR

(2000) 5 {1,2} {0.060, 0.193} 20 + 7nR

(3000) 1 1
4

NON NA 20 + 28nR

(0100) 11 2
3

{1} {0.0516} 20 + 3nR

(0200) 1 NON NA 20 + 35nR

(1100) 1 13
22

NON NA 20 + 22nR

(1010) 1 11
24

NON NA 20 + 24nR

3 (1000) 25 [1, 11]
⋃

[12,19]even [0.048, 0.631] 30 + nR

(2000) 3 4
7

{1,2, 3} {0.007, 0.060, 0.143} 30 + 7nR

(0100) 8 1
3

{1, 2} {0.003, 0.016} 30 + 3nR

(1100) 1 3
22

{1} {0.015} 30 + 22nR

(1010) 1 1
24

{1} {0.059} 20 + 24nR

4 (1000) 15 [1, 15] [0.032, 0.392] 40 + nR

(2000) 2 1
7

{1,2} {0.004, 0.009} 40 + 7nR

(0100) 5 [1, 3] [3.7× 10−4, 0.016] 40 + 3nR

5 (1000) 5 [1, 5] [0.024, 0.118] 50 + nR

(0100) 1 2
3

{1} {2.9× 10−4} 50 + 3nR

Table 4. su(5).

vacuum polarization is

Πij
µµ(p, ω = 0)

p2
=
nRg

2(L)

6π2

d(R)∑
m=1

µimµ
j
m

[
ψ

(
µm ·Φ

2π

)
+ ψ

(
1− µm ·Φ

2π

)]
+ other terms independent of µ . (7.2)

The combination of the digamma functions ψ(x) +ψ(1− x) blows up when x is an integer

including zero. Thus, the smallness of the coupling constant is guaranteed if the condi-

tion (7.1) is respected. Now, from (4.3) and (4.4) we see that the fermion mass is given
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)
0
2
8

nG R nmax
R Range of nR Range of Z If

0 (10000) 66 NON NA nR

(20000) 8 1
4

NON NA 8nR

(30000) 1 5
6

NON NA 36nR

(01000) 16 1
2

NON NA 4nR

(02000) 1 1
32

NON NA 64nR

(00100) 11 NON NA 6nR

(10001) 5 1
2

[1,5] {0} 12nR

(11000) 2 NON NA 33nR

(10100) 1 7
26

NON NA 52nR

(10010) 1 14
19

NON NA 38nR

1 (10000) 54 NON NA 12 + nR

(20000) 6 3
4

NON NA 12 + 8nR

(30000) 1 1
2

NON NA 12 + 36nR

(01000) 13 1
2

NON NA 12 + 4nR

(00100) 9 NON NA 12 + 6nR

(11000) 1 7
11

NON NA 12 + 33nR

(10100) 1 1
26

NON NA 12 + 52nR

(10010) 1 8
19

NON NA 12 + 38nR

2 (10000) 42 [1,14]even [0.083, 0.872] 24 + nR

(20000) 5 1
4

{1,2} {0, 6× 10−7} 24 + 8nR

(30000) 1 1
6

NON NA 24 + 36nR

(01000) 10 1
2

{1} {0} 24 + 4nR

(00100) 7 NON NA 24 + 6nR

(11000) 1 3
11

NON NA 24 + 33nR

(10010) 1 2
19

NON NA 24 + 38nR

3 (10000) 30 [1,28]even [0.042, 0.872] 36 + nR

(20000) 3 3
4

{1, 2, 3} {0} 36 + 8nR

(01000) 7 1
2

[1, 2] {0} 36 + 4nR

(00100) 5 {1} {0} 36 + 6nR

4 (10000) 18 [1,18]even [0.028, 0.478] 48 + nR

(20000) 2 1
4

[1, 2] {0} 48 + 8nR

(01000) 4 1
2

[1, 3] {0} 48 + 4nR

(00100) 3 [1,2] {0} 48 + 6nR

5 (10000) 6 [1,6]even [0.021, 0.125] 60 + nR

(01000) 1 1
2

{1} {0} 60 + 4nR

(00100) 1 {1} {0} 60 + 6nR

Table 5. su(6).

by m(p,µm) =
∣∣∣2πpL +

µm·Φmin
L

∣∣∣, where p ∈ Z denotes the Kaluza-Klein mode. For p = 0

and
µm·Φmin

2π 6= q, q ∈ Z, we see that the mass of the zero mode is
µm·Φmin

L . Hence for
µm·Φmin

2π = q, q ∈ Z, we can shift p = 0 by an integer to find m(0,µm) = m(q, 0), and thus,

we conclude that the condition (7.1) is equivalent to saying that non of the zero-mode

fermions that are charged under the abelian subgroups u(1)Nc−1 are massless.
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H
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1
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2
0
1
7
)
0
2
8

nG R nmax
R Range of nR Range of Z If

0 (100000) 77 NON NA nR

(200000) 8 5
9

NON NA 9nR

(300000) 1 32
45

NON NA 45nR

(010000) 15 2
5

NON NA 5nR

(001000) 7 7
10

NON NA 10nR

(100001) 5 1
2

[1,5] {0} 14nR

(110000) 1 31
46

NON NA 46nR

(100010) 1 2
5

NON NA 55nR

1 (100000) 63 NON NA 14 + nR

(200000) 7 NON NA 14 + 9nR

(300000) 1 2
5

NON NA 14 + 45nR

(010000) 12 3
5

NON NA 14 + 5nR

(001000) 6 3
10

NON NA 14 + 10nR

(110000) 1 17
46

NON NA 14 + 46nR

(100010) 1 8
55

NON NA 14 + 55nR

2 (100000) 49 {1, 2, 3, 4, 5,6, 7,8, 9} [0.070, 0.527] 28 + nR

(200000) 5 4
9

{1,2} {0.0226, 0.666} 28 + 9nR

(300000) 1 4
45

NON NA 28 + 38nR

(010000) 9 4
5

{1} {4.4× 10−4} 28 + 5nR

(001000) 4 9
10

NON NA 28 + 10nR

(110000) 1 3
46

NON NA 28 + 46nR

3 (100000) 35 [1, 11]
⋃

[12,19]even [0.035, 0.551] 42 + nR

(200000) 3 8
9

{1,2, 3} [0.002, 0.111] 42 + 9nR

(010000) 7 {1, 2} {3.09× 10−4, 4.44× 10−4} 42 + 5nR

(001000) 3 1
2

{1} {0.024} 42 + 10nR

4 (100000) 21 [1, 18]
⋃
{19, 21}

⋃
{20} [0.024, 0.428] 56 + nR

(200000) 2 1
3

{1,2} [0.001, 0.003] 56 + 9nR

(010000) 4 1
5

[1, 3] [8× 10−5, 4.44× 10−4] 56 + 5nR

(001000) 2 1
10

{1} {0.013} 56 + 10nR

5 (100000) 7 [1, 7] [0.018, 0.122] 70 + nR

(010000) 1 2
5

{1} {1.58× 10−5} 70 + 5nR

Table 6. su(7).

8 The admissible class of theories

As we pointed out above, finding a global minimum of a theory inside the affine Weyl

chamber is not enough to conclude that the theory is weakly coupled in the IR. In fact,

one also has to check that there are no light or massless charged modes under u(1)Nc−1;

otherwise the 3-D effective theory is strongly coupled in the IR. This adds an extra

constrain on the class of theories on R3× S1 that are under analytical control. We call the

theory that satisfies all the criteria:

(a) asymptotically free,

(b) anomaly free,
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0
2
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nG R nmax
R Range of nR Range of Z If

0 (1000000) 88 NON NA nR

(2000000) 8 4
5

NON NA 10nR

(3000000) 1 3
5

NON NA 55nR

(0100000) 14 2
3

NON NA 6nR

(0010000) 5 13
15

NON NA 15nR

(0001000) 4 2
5

NON NA 20nR

(1000001) 5 1
2

[1,5] {0} 16nR

(1100000) 1 27
61

NON NA 61nR

(1000010) 1 13
75

NON NA 75nR

1 (1000000) 72 NON NA 16 + nR

(2000000) 7 1
5

NON NA 16 + 10nR

(3000000) 1 17
55

NON NA 16 + 55nR

(0100000) 12 NON NA 16 + 6nR

(0010000) 4 4
5

NON NA 16 + 15nR

(0001000) 3 3
5

NON NA 16 + 20nR

(1100000) 1 11
61

NON NA 61nR

2 (1000000) 56 [1,14]even [0.063, 0.740] 32 + nR

(2000000) 5 3
5

{1,2} {0, 0.106} 32 + 10nR

(3000000) 1 1
55

NON NA 32 + 55nR

(0100000) 9 1
3

{1} {0} 32 + 6nR

(0010000) 3 11
15

NON NA 32 + 15nR

(0001000) 2 4
5

NON NA 32 + 20nR

3 (1000000) 40 [1,28]even [0.031, 0.740] 48 + nR

(2000000) 4 {1, 2, 3,4} {0, 0, 0.001, 0.230} 48 + 10nR

(0100000) 6 2
3

{1, 2} {0} 48 + 6nR

(0010000) 2 2
3

{1} {0.002} 48 + 15nR

(0001000) 2 {1} {0} 48 + 20nR

4 (1000000) 24 [1,24]even [0.021, 0.478] 64 + nR

(2000000) 2 2
5

{1, 2} {0} 64 + 10nR

(0100000) 4 [1, 3] {0} 64 + 6nR

(0010000) 1 3
5

{1} {0.003} 64 + 15nR

(0001000) 1 1
5

{1} {0} 64 + 20nR

5 (1000000) 8 [1,8]even [0.016, 0.125] 80 + nR

(0100000) 1 1
3

{1} {0} 80 + 6nR

Table 7. su(8).

(c) has a global minimum (or a set of degenerate global minima, see section 8.1) inside

(and not on the boundary of) the affine Weyl chamber, and

(d) has no light or massless charged fermions under u(1)Nc−1

admissible in the sense that such theory is mathematically well-defined and amenable to

semi-classical treatment at small circle radius, i.e., at NcLΛQCD � 1.
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For every representation in tables 1 to 7 we checked whether condition (7.1) is satisfied

with six-digit accuracy, i.e., we declare theories with mass eigenvalues ≤ 10−6 as having

massless modes. The 10−6 cutoff we choose is consistent with the analytical expressions we

have for su(2) and su(3). The admissible theories are shown in blue bold face. In general,

representations with at least one fermion that satisfy the above criteria are indicated by

blue bold face (the second column in the tables). However, we warn the reader that

he/she should also look at the fourth column to see how many fermions are allowed in the

representations, which is also indicated by blue bold face. Finally, it is interesting to note

that all theories with two-index symmetric or two-index antisymmetric representations and

satisfy Z ∼= 0 (very much respect the center symmetry) have massless modes in the infrared.

The admissible theories are summarized as follows:

General pattern.

1. Theories with pure 1 ≤ nG ≤ 5 flavors of adjoint fermions. This class of theories has

been extensively studied in the literature.

2. Theories with even Nc and fermions in the fundamental, (100 . . . 00), and 2 ≤ nG ≤ 5

and for all allowed range of nF . However since theories with an odd number of nF
suffer from anomalies, only theories with even nF are well defined.

3. Theories with even Nc > 2 and even number of fermions in the two-index symmetric

representation, S ≡ (200 . . . 00), and 2 ≤ nG ≤ 3. None of these theories suffer from

anomalies.

4. Theories with odd Nc and fermions in the two-index symmetric representation

S ≡ (200 . . . 00) for 2 ≤ nG ≤ 4. However, theories with odd number of n(200...00)

have anomalies and are excluded.

5. Theories with odd Nc > 3 and fermions in the fundamental representation,

F ≡ (100 . . . 00), for 2 ≤ nG ≤ 4 and large number of nF . Again, notice that theories

with odd number of nF have anomalies.

Exceptional theories.

6. su(2) with a single fermion flavor in the representation R = (4). This theory was

considered previously in [16].

7. su(2) with a single fermion flavor in the representation R = (3) and nG = 1, 2.

8. su(4) with fermions in (020) and 1 ≤ nG ≤ 3.

9. su(6) with fermions in (00100) and 3 ≤ nG ≤ 5.

Now, a few remarks are in order.

(a) Our classification is limited by our numerical capabilities to go beyond su(8). In

particular, some more admissible theories may be included beyond su(8). We leave

this for future investigation.
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(b) Generally, one can add a small mass to the massless fermionic excitations or turn on a

global U(1) vector holonomy [12] (for theories with fermions in vector representations),

which renders the theory weakly coupled in the IR. A small mass will not greatly

affect the global minimum of the potential. In fact, adding a mass will only increase

the chance of the theory to have a nontrivial minimum since a massive fermion in a

representation R 6= adj will have less power, to fight against the adjoint fermions that

prefer a nontrivial minimum, compared to a massless one.

(c) Finally, we note that some of the admissible theories have degenerate global minima.

This will have far-reaching consequences, as we will see in the next section and section 9.

8.1 Perturbative vacua and the role of discrete symmetries

It has been understood for a long time that theories with adjoint fermions have a unique

vacuum that preserves center symmetry, parity, and charge conjugations [3, 5]. In this

section we perform a systematic analysis to shed light on the nature of the perturbative

vacua of the admissible theories with fermions in mixed representations. One of the im-

portant tasks is to examine the uniqueness of the vacua we found in the previous section

by means of a minimization procedure that aims to find all the degenerate global minima

of the potential.

An invaluable tool in our study is the Polyakov loop wrapping the S1 circle:

ΩR = eiHR·Φ. In particular, the fundamental Polyakov loop ΩF transforms under the

center group ZNc of SU(Nc) as ΩF → ei
2πk
Nc ΩF , k = 1, 2, . . . , Nc. Using the Frobenius

formula, one can determine whether the Lagrangian of fermions in a representation R is

invariant under ZNc or a proper subgroup of it. For example, using the expressions in

appendix E it is trivial to show that the Lagrangian of adjoint matter is invariant un-

der ZNc , while the Lagrangians of antisymmetric and two-index symmetric fermions are

invariant under Z2 (for Nc even), etc.

Under charge conjugation C and parity, P : r → −r, the Cartan components of the

gauge field transform as (we use the metric ηMN = (1,−1,−1,−1))

PAM (t, r)P† → AM (t,−r) ,

CAM (t, r)C† → −AM (t, r) , (8.1)

and therefore, the Polyakov loop transforms as

ΩR → Ω†R (8.2)

under both P and C. Thus, we have

ImΩR
C or P−→ −ImΩR . (8.3)

If we draw the eigenvalues of Ω on the unit circle, then both P and C send every eigenvalue

to its complex conjugate. Therefore, a theory with a unique vacuum must have complex

conjugate pairs of eigenvalues. However, in a theory with spontaneously broken P or C
symmetries the set of eigenvalues of one vacuum is the complex conjugate of the eigenvalues
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Figure 4. The eigenvalues of the fundamental Polyakov loop. Left panel: su(2) with two fun-

damental and two adjoint fermions. Right panel: su(4) with two fundamental and two adjoint

fermions. In both cases we find trFΩ = −1. Since the trace is real, the unique vacuum of these

theories respects C, P, and T symmetries.

of the other vacuum. Then P and C operations send every eigenvalue of one vacuum to

an eigenvalue of the other. Geometrically, this can be thought of as a reflection about the

real axis.

Under time reversal, T : t→ −t, we have

TAM (t, r)T −1 → AM (−t, r) , (8.4)

and hence,

ΩR → ΩR . (8.5)

However, since T is antiunitary we find

ImΩR =
1

2i

[
ΩR − Ω†R

]
T−→ −ImΩR . (8.6)

Therefore, one can use Im (trRΩ) as a gauge invariant order parameter for the breaking of

C, P, T , and CPT symmetries [43].

8.1.1 Theories with a unique vacuum

A typical distribution of the eigenvalues of the fundamental Polyakov loop is shown in

figure 4 for su(2) and su(4) with two adjoint and two fundamental fermions. Both of these

theories have a unique vacuum. Also, since Im (trFΩ) = 0, both of them preserve C, P,

and T symmetries. In fact, we find that all su(Nc) theories with even Nc and fundamental

fermions (of course with an appropriate number of adjoint fermions as in tables 1 to 7)

have a unique vacuum that preserves all the discrete symmetries.

8.1.2 Theories with multiple vacua

An interesting observation is that a subclass of the admissible theories have degenerate

vacua. In order to search for the degenerate minima, we feed the minimization algorithm
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Figure 5. The eigenvalue distribution of ΩF for su(2) with a single fermion in the (4) representa-

tion. Different vacua are labeled by different markers and distinct colors. The red (circle) vacuum

has trFΩ =
√

2, while the blue (triangle) vacuum has trFΩ = −
√

2. Since ΩF is real, this theory

respects C, P, and T symmetries.

1 2 3 4 5 6

-2.5

-2.0

-1.5

-1.0

-0.5

Figure 6. A cross section of the effective potential of su(4) with n(200) = 2 and nG = 2. We

plot Veff(Φ1,Φ2,Φ3) as a function of 0 ≤ Φ1 ≤ 2π for constant values of Φ2 and Φ3. The two

minima are located at {5.468, 3.399, 2.889} and {0.816, 3.399, 2.889}. We use the simple roots

α1 = (1, 0, 0), α2 =
(
− 1

2 ,
√
3
2 , 0

)
, α3

(
0,− 1√

3
,
√

2
3

)
.

with different initial values of Φ chosen randomly. We declare a set of minima degenerate

when the difference of Veff computed at these minima is less than 10−10.

The simplest of these theories is su(2) with a single fermion in the (4) representation.

The Lagrangian of this theory is invariant under Z2 center symmetry that negates the

fundamental Polyakov loop: trFΩ → −trFΩ. This theory has two degenerate vacua as

can be seen from the eigenvalue distribution of ΩF shown in figure 5. The trace of the

fundamental Polyakov loop is trFΩ = ±
√

2 for the red (circle) and blue (triangle) vacua,

respectively. Therefore, we see that every vacuum breaks the Z2 center and that the two

vacua are exchanged under the application of the Z2 center transformation. However, since

trFΩ is real, both vacua respect C, P, and T symmetries.

The second case is su(4) with two adjoint and two (200) (two-index symmetric)

fermions. This theory enjoys a Z2 center symmetry. Here we have 4 degenerate vacua

that break the center symmetry. However, only each pair of them is exchanged under the

Z2 center transformation. Thus, we have accidental degeneracy. In figure 6 we plot a cross

section of the effective potential showing 2, out of the 4, degenerate vacua, that are not
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Figure 7. The eigenvalue distribution of ΩF for su(4) with two adjoint and two (200) fermions.

Different vacua are labeled by different markers and distinct colors. The theory has 4 degenerate

minima and broken Z2 center. Every pair of minima is exchanged under Z2. In order to reduce

clutter, we plot the eigenvalues of ΩF for the related vacua (by Z2 transformation) on two separate

panels. The right and left panels are not exchanged under any symmetry, and in general, the

degeneracy between the two panels could be lifted after taking higher order loops into account. In

the left panel we have trFΩ = ±i3.797 for the red (circle) and blue (triangle) vacua, respectively. In

the right panel we have trFΩ = ±i0.124 for the Green (musical note) and black (club suit) vacua,

respectively. All vacua break C, P, and T symmetries.

related via a Z2 symmetry. We also plot the eigenvalue distribution of the fundamental

Polyakov loop ΩF in figure 7. In order to reduce clutter, we plot the eigenvalues of ΩF

on two separate panels. The right and left panels are not exchanged under any symme-

try, and in general, the degeneracy between the two panels is expected to be lifted upon

taking higher order loops into account. In addition, since trFΩ is imaginary, P, C, and

T symmetries are spontaneously broken in the four different vacua. The accidental sym-

metry happens also in su(8) with two adjoint and two (200), and three adjoint and four

(200) fermions. In this case we find at least four degenerate vacua. However, our numerical

method does not have enough resolution to check weather there are more degenerate vacua.

Now, we move to the case of su(4) with fermions in the nG ⊕ n(020) representation.

This theory enjoys a Z4 center symmetry, which is completely broken in the four degenerate

vacua. These vacua are shuffled under a Z4 transformation. In figure 8 we plot the

eigenvalue distribution of the fundamental Polyakov loop. Since Im (trFΩ) 6= 0, all the

four vacua break C, P, and T symmetries. An application of any of the latter symmetries

exchange the vacua by a complex conjugation of the eigenvalues.

Our next theory is su(3) with three adjoints and two (200) fermions. This theory

does not have a center. Yet, we find that the theory has two degenerate minima, see

figures 9 and 1. Upon computing the trace of the fundamental Polyakov loop we find

trFΩ = −0.487 ± 0.798I. Thus, the two vacua are exchanged under any of the discrete

symmetries C, P, and T . In fact, we find all su(Nc) with odd Nc and fermions in the (200)

representation share the same behavior. Theories with odd number of colors and large

number of fundamental fermions belong to the same category.
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Figure 8. The eigenvalue distribution of ΩF for su(4) with one adjoint and one (020) fermions.

The theory has four degenerate vacua labeled by different markers and distinct colors. The red

(circle), blue (triangle), green (square), and yellow (club suit) vacua have trFΩ = 1.373(1 − i),

−1.373(1 + i), 1.373(−1 + i), 1.373(1 + i), respectively. All the four vacua break C, P, and T
symmetries.

æ

æ

æ

æ

æ

æ

ò

ò

ò

ò
ò

ò

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Figure 9. The eigenvalues of trFΩ for su(3) with two (200) and three adjoint fermions. This

theory has two degenerate vacua, which are labeled by distinct colors and markers. We find

trFΩ = −0.487± 0.798I for the red (circle) and blue (triangle) vacua, respectively. The two vacua

break C, P, and T , and therefore CPT symmetries.

In table 8 we display all the admissible theories along with their center group ZC
and indicate whether ZC , C, P, T are broken. In all cases ZC is either fully preserved

or broken to unity. Theories with broken centers have as many vacua as elements of ZC ,

unless there is accidental degeneracy. Theories with no center and preserved C, P, T have

a unique vacum, while those with no center and spontaneously broken C, P, T have doubly

degenerate vacua.

9 Monopole-instantons and fermion zero modes on R3 × S1

In this section we calculate the fermion zero modes attached to the fundamental saddles

of Yang-Mills on R3 × S1. This computation is essential to understand the structure of

the topological molecules that proliferate in the vacuum and cause the theory to confine.
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Group R nG ⊕ nR ZC C ,P , T Fermion zero modes of R
su(2) (1) 2⊕ {2, 4, 6} — X {0,1}

3⊕ {2, 4, 6, 8, 10} — X {0,1}
4⊕ {2, 4, 6} — X {0,1}

5⊕ 2 — X {0,1}
(2) [1, 5]⊕ 0 Z2 X {2, 2}
(3) 2⊕ 1 — X {6,4}

3⊕ 1 — X {6,4}
(4) 0⊕ 1 /Z2 X {6, 14}

su(3) (11) [1, 5]⊕ 0 Z3 X {2, 2, 2}
(20) 3⊕ 2 — 6 {2, 3, 0}

su(4) (100) 2⊕ {n(100) ∈ even , 2 ≤ n(100) ≤ 14} — X {0, 0, 1, 0}
3⊕ {n(100) ∈ even , 2 ≤ n(100) ≤ 20} — X {0, 0, 1, 0}
4⊕ {n(100) ∈ even , 2 ≤ n(100) ≤ 12} — X {0, 0, 1, 0}

5⊕ {2, 4} — X {0, 0, 1, 0}
(101) [1, 5]⊕ 0 Z4 X {2, 2, 2, 2}
(020) 1⊕ {1, 2} /Z4 6 {6, 6, 2, 2}

2⊕ 1 /Z4 6 {6, 6, 2, 2}
3⊕ 1 /Z4 6 {6, 6, 2, 2}

(200) 2⊕ 2 /Z2 6 {2, 2, 2, 0} or {0, 6, 0, 0}
su(5) (1000) 2⊕ {6, 8} — 6 {0, 0, 1, 0, 0}

3⊕ {12, 14, 16, 18} — 6 {0, 0, 1, 0, 0}
(1001) [1, 5]⊕ 0 Z5 X {2, 2, 2, 2, 2}
(2000) 2⊕ 2 — 6 {3, 0, 4, 0, 0}

3⊕ 2 — 6 {2, 1, 0, 3, 1}
4⊕ 2 — 6 {2, 2, 0, 3, 0}

su(6) (10000) 2⊕ {n(10000) ∈ even , 2 ≤ n(10000) ≤ 14} — X {0, 0, 0, 1, 0, 0}
3⊕ {n(10000) ∈ even , 2 ≤ n(10000) ≤ 28} — X {0, 0, 0, 1, 0, 0}
4⊕ {n(10000) ∈ even , 2 ≤ n(10000) ≤ 18} — X {0, 0, 0, 1, 0, 0}

5⊕ {2, 4, 6} — X {0, 0, 0, 1, 0, 0}
(00100) 3⊕ 1 Z3 X {0, 2, 0, 2, 0, 2}

4⊕ {1, 2} Z3 X {0, 2, 0, 2, 0, 2}
5⊕ 1 Z3 X {0, 2, 0, 2, 0, 2}

(10001) [1, 5]⊕ 0 Z6 X {2, 2, 2, 2, 2, 2}
(20000) 2⊕ 2 /Z2 6 {2, 0, 2, 2, 0, 2}

su(7) (100000) 2⊕ {6, 8} — 6 {0, 0, 0, 0, 1, 0, 0}
3⊕ {12, 14, 16, 18} — 6 {0, 0, 0, 0, 1, 0, 0}

4⊕ 20 — 6 {0, 0, 0, 0, 1, 0, 0}
(100001) [1, 5]⊕ 0 Z7 X {2, 2, 2, 2, 2, 2, 2}
(200000) 2⊕ 2 — 6 {2, 1, 1, 3, 0, 1, 1}

3⊕ 2 — 6 {2, 0, 1, 3, 0, 1, 2}
4⊕ 2 — 6 {2, 0, 2, 0, 3, 0, 2}

su(8) (1000000) 2⊕ {n(1000000) ∈ even , 2 ≤ n(100000) ≤ 14} — X {0, 0, 0, 0, 1, 0, 0, 0}
3⊕ {n(1000000) ∈ even , 2 ≤ n(100000) ≤ 28} — X {0, 0, 0, 0, 1, 0, 0, 0}
4⊕ {n(1000000) ∈ even , 2 ≤ n(100000) ≤ 24} — X {0, 0, 0, 0, 1, 0, 0, 0}
5⊕ {n(1000000) ∈ even , 2 ≤ n(100000) ≤ 8} — X {0, 0, 0, 0, 1, 0, 0, 0}

(1000001) [1, 5]⊕ 0 Z8 X {2, 2, 2, 2, 2, 2, 2, 2}
(200000) 2⊕ 2 /Z2 6 at least four degenerate vacua

3⊕ 4 /Z2 6 at least four degenerate vacua

Table 8. Summary of admissible theories.
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The study of these molecules for a general representation nG ⊕ nR will be pursued in a

future work.

The basic non-perturbative saddles in Yang-Mills theory on R3 × S1 are monopole-

instantons. The monopole action is 1/Nc the action of the BPST instanton. Hence, one

can think of a single BPST instanton as being composed of Nc monopole instantons. Each

monopole carries a magnetic charge α∗a, a = 0, 1, 2, . . . , Nc − 1, where α∗a is the co-root

defined as α∗a = 2αa
α2
a

, a = 1, 2, . . . , Nc − 1, and α∗0 = −
∑Nc−1

a=1 α∗a.
12 Each monopole-

instanton carries a number of fermion zero modes which can be computed using Singer-

Poppitz-Ünsal index on R3 × S1 [44, 45]. The index computation was carried out for

fermions in the adjoint and fundamental representations in [45], and then was generalized

for fermions in any representation in [22]. The number of fermionic zero modes residing on

a monopole-instanton with charge αa, a = 1, 2, . . . , Nc − 1, is given by

If(α∗a)(R) = nRtrR

[
bΦ ·H

2π
cα∗a ·H

]
, (9.1)

where bxc is the floor function, which is the largest integer less than or equal to x. The

number of the zero modes attached to the affine monopole (the monopole corresponding

to the root α0) can be envisaged from the fact that a BPST instanton is made up of Nc

monopoles. Thus, we have

If(α∗0)(R) = nR

[
T (R)−

Nc−1∑
a=1

If(α∗a)(R)

]
. (9.2)

The computation of the index can be carried out either by explicit sum over the weights

of the representation R or using the Frobenius formula. The weights can be constructed

using Verma bases as we discussed in section 5. The use of the Frobenius formula is more

involved and we discuss it in appendix F.

In the last column of table 8 we list the number of the fermion zero modes attached to

the monopole-instantons that correspond to the sequence of the roots {α0,α1, . . . ,αNc−1}
for all admissible theories.

Now we come to an important observation regarding the representation (200 . . . 0) of

su(Nc) with even Nc. To be more specific, let us recall the theory su(4) with nG = 2 and

n(200) = 2 we discussed in section 8.1 (a similar behavior occurs in su(8) with nG = 2

and n(200) = 2). The effective potential of this representation admits 4 degenerate global

minima. Each pair of them is related via a Z2 center transformation, as shown in the

left and right panels of figure 7. However, every panel is not related to the other by any

symmetry. In fact, what is even more interesting is that the R = (200) fermion zero modes

of the two panels are different. The vacua of the left panel has {2, 2, 2, 0} while the vacua

of the right panel has {0, 6, 0, 0} fermion zero modes attached to the monopoles. All four

vacua, however, admit {2, 2, 2, 2} adjoint fermion zero modes. Thus, one expects that the

two minima will have different topological molecules. The proliferation of these molecules

could lift the degeneracy even before taking higher order loops into account. This study

will be left for a future work.
12In our normalization α2 = 2, and hence α∗a = αa for all a = 0, 1, 2, . . . , Nc − 1.
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10 su(Nc) theories with fermions in G⊕ F : a detailed study

In this section we consider in great detail the case of mixed representation G⊕F on R3×S1

and comment on connection between these theories and their cousins on R4. This works as

an example for the rich phase structure of theories with fermions in mixed representations

that will be pursued in great details in a future work.

Global symmetries. For convenience, let us take NF = nF /2 to denote the number of

the Dirac fundamental fermions. These theories have a classical global symmetry U(1)G×
U(1)A ×U(1)B × SU(nG)× SU(NF )L × SU(NF )R. The abelian group U(1)G is the global

phase factor of the adjoint fermions, while U(1)B and U(1)A are respectively the baryon

number and axial symmetries of the fundamentals. Quantum mechanically, only a diagonal

subgroup of U(1)G ×U(1)A survives as can be envisaged by studying the BPST instanton

with the dressing zero modes (or ’t Hooft vertex), which schematically takes the form:13

IT = e−SI (λGλG)Ncng
(
λ1
Lλ

1
R

)
. . .
(
λNFL λNFR

)
, (10.1)

where SI = 8π2

g2
is the BPST instanton action and λG and λL,R are the zero modes of

the adjoint and fundamental fermions, respectively. It is trivial to check that the ’t Hooft

vertex is invariant under the transformation λG → eiαλG , λL → eiβλL , λR → eiβλR, where

β = −nGNc
NF

α, which is U(1)A+G, the diagonal subgroup of U(1)G ×U(1)A.

Mass gap and decompactification. Both perturbative and nonperturbative spectra

of the theory must be invariant under the non-anomalous global symmetries. This is

particularly true for the monopole operators (see [16, 22, 27] for a lucid description of

these operators):

M1 = e−Sα1eiσ·α1 (λGλG)ng ,M2 = e−Sα2eiσ·α2 (λGλG)ng , . . . (10.2)

Ma = e−Sαaeiσ·αa (λGλG)ng
(
λ1
Lλ

1
R

)
. . .
(
λNfL λNfR

)
, . . . ,M0 = e−Sα0eiσ·α0 (λGλG)ng ,

where Sαa = 4π
g2

(2πδa,0 +α∗a ·Φ0) is the action of the αa’s monopole at the vev Φ0. Notice

that the fundamental zero modes reside only on one of the monopoles according to the

index theorem. The invariance of the monopole operators demands that the dual photons

transform as σ → σ − 2ngαρ under U(1)A+G, where ρ =
∑Nc−1

a=1 ωa is the Weyl vector.

These monopoles cannot give rise to a mass gap since they are dressed with fermionic zero

modes. However, larger molecules can be formed in the infrared as a result of soaking up

the zero modes. In the theory under hand these molecules, we call them magnetic bions,

are made of a monopole Ma and an anti-monopole Ma+1 such that none of them carry

fundamental zero modes14 (see [3, 28] for more details):

Ba =MaMa+1 = e−Sαa−Sαa+1eiσ·(αa−αa+1) , (10.3)

13Recall that a BPST instanton consists of Nc monopoles-instantons. Therefore, the total number of the

BPST instanton zero modes can be found by summing up the zero modes of the individual monopoles.
14There are also molecules that can be made up from monopoles with fundamental zero modes. Such

molecules, however, do not carry a net magnetic charge, and hence, do not give rise to a mass gap.
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Figure 10. The monopoles and their zero modes in su(5) with nG = 2, NF = 3. A monopole and

anti-monopole can soak up their adjoint fermion zero modes to result in a magnetically charged

bion. The α3 monopole has additional fundamental zero modes, and hence, it does not participate

in the formation of any magnetically charged objects.

where a = 1, 2, . . . , Nc − 2, see figure 10. It is trivial to check that the bion operators

are invariant under the non-anomalous global symmetries of the theory. These bions carry

magnetic charges αa−αa+1 and their proliferation in the vacuum causes N−2 out of N−1

dual photons to acquire mass. Therefore, in any su(Nc) theory with fundamental fermions

there will be one massless dual photon in the spectrum. Mathematically, the effect of mag-

netic bions can be taken into account by inserting bion vertices in the partition function.

The validity of the semi-classical description hinges on the assumption that the bion gas is

very dilute, i.e., Sαa + Sαa+1 � 1, which is a very good assumption for a small compact-

ification radius. Finally, the bosonic part of the long-distance effective Lagrangian reads15

L =
1

2
(∂µσ)2 +

1

L2

N−2∑
a=1

Cae−(Sαa+Sαa+1) cos [σ · (αa −αa+1)] , (10.4)

where Ca are O(1) dimensionless coefficients that are not important to our discussion.

The mass gaps can be expressed in terms of the strong scale ΛQCD and L using the

β-function as16

MGa = ΛQCD (LΛQCD)
β0
4π

Φ0·(α∗a+α∗a+1)−1 , a = 1, 2, . . . , Nc − 2 , (10.6)

15The W-bosons and fluctuations of the holonomy field Φ have masses of order 1/(NcL) and g/(
√
NcL),

respectively. These masses are hierarchically much larger than the photon mass ∼ e
−2Smonopole/L, and

hence, we neglect them in the IR description of the theory.
16To one-loop order we have

4π

g2(L)
=
β0
4π

log

(
1

L2Λ2

)
. (10.5)
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and β0 is given by (3.1). In a theory with a broken center symmetry, like in the case of

nG ⊕NF , the mass gaps are not symmetric and rich structures in the theory is expected.

Expression (10.6) enables us to track the mass gaps as a function of the compactification

radius all the way to LΛQCD ' 1 and then17 to L → ∞. Four scenarios are possible as

we decompactify the circle. (1) The mass gap increases as we increase L, and hence, the

theory flows to the nonabelian confining regime at L ∼ 1/ΛQCD. In this case spontaneous

breaking of the continuous chiral symmetry happens on the way. (2) The mass gap is a

monotonically decreasing function of L and vanishes as L → ∞, and therefore, the semi-

classical description of the theory is valid all the way L→∞. (3) The mass gap decreases

as we increase L and then it saturates to a non-zero value as L approaches ΛQCD. This

can happen if chiral symmetry breaking happens on the way. (4) The mass gap increases

to some value as we increase L until the theory hits a Banks-Zaks fixed point [46] before

approaching the strong scale. After this point the coupling constant ceases to run and the

mass gap will decrease again as we decompactify the circle. The semi-classical description is

also valid in this scenario all the way to L→∞. Theories with preserved center symmetry

will fall into one of these four categories. However, mass gaps in theories with a broken

center symmetry can enjoy a mix of these scenarios.

Generally, theories with a small number of fundamental fermions belong to class (1),

while theories with a large number of fundamentals belong to class (4). To be more specific,

let us consider two examples of Nc = 5 admissible theories with nG = 2 , NF = 3 and then

with nG = 3 , NF = 8. As we see from table 8 both theories have spontaneously broken

discrete C, P, T symmetries. However, as we will see, they have different behaviors in the

decompactification limit.

The mass gaps of the nG = 2 , NF = 3 theory are MG12 = ΛQCD (LΛQCD)1.111,

MG04 = ΛQCD (LΛQCD)−0.069 ,MG01 = ΛQCD (LΛQCD)−0.068. The subscript in Mab de-

notes the monopoles that are used to make up the magnetic bion. For example, MG12

is made of the monopoles α1 and α2, etc. Notice that in this example the monopole α3

carries fundamental zero modes, and therefore, does not participate in making any mag-

netic bions; see figure 10. The behavior of the mass gaps as functions of the dimensionless

parameter LΛQCD is depicted in the left panel of figure 11. The mass gaps are asymmetric,

as expected in a theory with a broken center symmetry. While MG12 is a monotonically

increasing function of L, both MG04 and MG01 are monotonically decreasing functions of

L. At any scale L � Λ−1
QCD the theory is weakly coupled, as can be seen from comparing

the mass gaps with the W-mass ∼ 1/(NcL), and hence, the semi-classical description is ad-

equate. However, as L approaches ΛQCD the W-boson mass becomes comparable toMG12,

we loose the hierarchy of scales, and the theory is expected to enter its strongly coupled

nonabelian confining regime. In addition, spontaneous breaking of chiral symmetry is ex-

pected as we hit the strong scale. One can also check from the two-loop β function (3.1)

that the theory does not develop an IR fixed point before hitting the strong scale. Thus,

this theory belongs to a mix of classes (1) and (2) described in the previous paragraph.

17Strictly speaking, the borderline between the weak and strong coupling regimes is controlled by the

parameter NcLΛQCD, i.e., the W-boson mass, rather than LΛQCD. However, for a small number of colors

this distinction is not of great importance, which makes our discussion simpler.
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Figure 11. The mass gapsMG (in units of ΛQCD) as functions of ΛQCDL for two admissible theo-

ries with Nc = 5. For comparison, we also plot the mass the W-boson. On the left: nG = 2, NF = 3.

Weak coupling is lost at LλQCD ' 1. On the right: nG = 3, NF = 8. See the text for details.

Whether the theory really enters a strongly coupled confining regime can only be checked

via lattice simulations.

Now, let us move to the second example of nG = 3, NF = 8. The mass

gaps of this theory are MG12 = ΛQCD (LΛQCD)−0.22, MG04 = ΛQCD (LΛQCD)−0.753,

MG01 = ΛQCD (LΛQCD)−0.818. At very small L we see that all mass gaps decrease with L.

The theory, however, admits a Banks-Zaks fixed point in the infrared at g2∗
4π = 0.131 � 1,

as can be easily checked18 from (3.1). The fixed point corresponds to L∗ ≈ 10−14/ΛQCD.

Beyond this critical compactification radius the coupling constant ceases to run and all

mass gaps decrease as MG ≈ C/L, for some constant C that can be determined from

continuity across L∗. This intricate behavior is illustrated in the right panel of figure 11.

Notice that the photons masses are always less than the W-boson mass, and therefore,

the semi-classical description of the theory is valid19 all the way up to L → ∞. One can

also check that the actions of the bions are much bigger than unity at the critical radius,

which lends more confidence in the dilute gas semi-classical description at all radii. In the

decompactification limit L→∞ all the masses vanish and the theory flows to a conformal

field theory. Thus, su(5) with nG = 3, NF = 8 belongs to a class of theories that are

amenable to semi-classical description for all 0 < L <∞. The only other two theories that

are known to belong to this class are su(5) with nG = 5 and su(2) with n(40) = 1 [16, 27].

Analyzing the rest of the admissible theories found in this work to check whether there are

more theories that belong to this class will be carried out in a future work.

C ,P ,T symmetries. Now, we comment on the fate of the spontaneously broken dis-

crete symmetries C ,P , T in theories with nG⊕NF as we decompactify the circle. However,

18A Banks-Zacks fixed point can be inferred from the two-loop β-function in (3.1): we require that the

β-function vanishes at weak coupling, i.e. g2/(4π) � 1. The existence of this fixed point hinges on the

assumption that higher order loops do not bring in large numerical factors.
19The fact that the mass gaps of this theory is much larger than ΛQCD should not come as a surprise

since we have two scales: ΛQCD and L. What really matters for the validity of the semi-classical description

is that MG �MW .
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before doing that let us pause here to discuss the physical meaning and consequences of

breaking these symmetries.

First, one might wonder whether the spontaneously broken P symmetry we observe in

our theories is in contradiction with Vafa-Witten theorem [47], which states that parity-

conserving vector-like theories cannot have spontaneously broken parity. However, upon

careful inspection of this theorem, one finds that Lorentz invariance is one of its assump-

tions. Compactifying a theory over a circle breaks its 4-D Lorentz invariance, and hence,

our findings are not in conflict with Vafa-Witten theorem [48]. Second, an analysis of the

spectrum of these theories does not reveal any unusual structures compared to theories

with preserved C ,P , T symmetries. This is true for both the masses and charges (the

perturbative spectrum) as well as monopoles (the nonperturbative spectrum). However, as

we found in section 8.1, Im (trRΩ) is a gauge invariant order parameter that can signal the

breaking of these symmetries. This order parameter, however, is nonlocal in nature since

it wraps around the time circle.

In fact, Im (trRΩ) is not the only gauge invariant order parameter that one can build

to check the breaking of the discrete symmetries. In [49] a physical setup was proposed

to check the breaking of charge conjugation via turning on a background U(1)B field RM
along the compact direction and then taking the limit RM → 0. The additional term to

the Lagrangian is

∆L = −
Ψ̄I
FγMRMΨI

F

L
, (10.7)

where ΨI
F are the fundamental Dirac fermions, γM are the Dirac matrices, and the index

I is the flavor index which is summed over. The current 〈JM 〉 = 〈Ψ̄I
FγMΨI

F 〉 is not

invariant under C as JM
C→ −JM , and therefore, it can serve as an order parameter for the

spontaneous breaking of the charge conjugation symmetry. The finding 〈JM 〉 6= 0 signals

the breaking of C in the limit RM → 0. An observer will see a flux of baryons flowing

through the compact direction. 〈JM 〉 is calculated from the partition function Z[RM ] as

〈JM 〉 = −
[
∂ logZ[RM ]

∂RM

]
RM=0

. (10.8)

The current 〈JM 〉 was used in [49] to study the charge conjugation symmetry breaking of

QCD with fundamental fermions obeying periodic boundary conditions on the lattice. The

presence of adjoint fermions in our setup provides a controlled way to study this current

by analytical means in a semi-classical context. Recalling that Z[RM = 0] is the effective

potential Veff (Φ) in (5.3), we immediately realize that Z[RM ] can be obtained via the

substitution Φ ·H → Φ ·H +R3. We finally find:

〈J3〉 =
4NF

π2L3

∞∑
p=1

Im
{

tr
[
eipΦ0·H

]}
p3

. (10.9)

The fact that Im
{

tr
[
eipΦ0·H

]}
6= 0 in nG⊕NF theories with odd number of colors indicates

the presence of a baryonic current, and hence, the spontaneous breaking of C. Interestingly,
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Figure 12. L−madj phase diagrams. On the top: nG = 2, NF = 3. Theories with a small number

of fundamental fermions are expected to have a similar phase diagram. On the bottom: nG = 3,

NF = 8. Theories with a large number of fundamental fermions are expected to have a similar

phase diagram; see the text for details. The red thick line separates between the C ,P , T broken and

restored phases. Notice that in the bottom diagram C ,P , T are restored in the strict limit L =∞.

Im
{

tr
[
eipΦ0·H

]}
is the exact same order parameter that signals the breaking of all discrete

symmetries, and therefore, the non-vanishing of the baryonic current is also an indication

of breaking both P and T and in sequence CPT symmetry.

Now, we discuss the fate of discrete symmetries in the su(5) examples discussed above,

namely, theories with nG = 2 , NF = 3 and nG = 3 , NF = 8, as we decompacftify the

circle. As we explained in details, su(5) with nG = 2 , NF = 3 is expected to flow to

a strongly coupled regime in the limit L & ΛQCD. Since in the strict limit L → ∞ the

parity symmetry is not spontaneously broken according to Vafa-Witten theorem, we expect

P symmetry restoration to happen at some critical radius Lc & ΛQCD. Presumably, the

restoration of the spontaneously broken C and T symmetries will happen at the same

critical radius.20 If we give the adjoint fermions a mass, madj, and send the mass to

infinity, the adjoints decouple and we are left with a theory with only fundamentals. A

simulation of su(Nc) with odd Nc and a small number of fundamental fermions on R3×S1

was performed in [50] and it was found that the theory experiences a spontaneous breaking

of charge conjugation at Lc ≈ ΛQCD. Confronting the information we obtained from semi-

classics with the available lattice simulations, we expect the madj −L phase diagram for a

small number of fundamentals to look like the top panel of figure 12.

20Unlike the parity symmetry, there is no proof that a Lorentz-invariant vector-like theory cannot spon-

taneously break its C or T symmetries.
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In the second example, nG = 3 , NF = 8, the theory is under semi-classical control all

the way to L→∞. All the discrete symmetries are broken at all radii except at the strict

limit L→∞, where the theory flows to its conformal limit and C ,P , T are restored. For

a finite madj, this picture does not change as long as madj < ΛQCD, since in this range of

masses one can still identify a vev of Φ inside the affine Weyl chamber. On the other hand,

in the limit madj → ∞ the theory experiences a spontaneous breaking/restoration of dis-

crete symmetries at Lc ≈ ΛQCD, as can be inferred from lattice or weak-field computations,

see [49]. The madj−L phase diagram of this case is depicted in the bottom panel of figure 12.

11 Summary and future directions

In this work we have studied the general problem of classifying su(Nc) gauge theories on

R3 × S1 endowed with nG ⊕ nR fermions. Gauge theories on S1 are important class of

theories since they provide a laboratory to study interesting phenomena in a controllable

way. In this regard, it is important to single out the weakly coupled theories that are

amenable to semi-classical studies. We call these theories admissible in the sense that

they are mathematically well defined (free from anomalies) asymptotically free theories

with no massless modes in the IR. Our final results are displayed in table 8. We also

computed the number of fermion zero modes in the background of monopole-instantons of

these theories. Interestingly enough, some of the theories have degenerate vacua that may

break the center, P, C, and T symmetries. One expects that the degenerate vacua will be

separated by domain walls where these symmetries are restored.

We have also studied in great details theories with nG ⊕ nF mixed representations

and found that such class of theories enjoys a plethora of new interesting phenomena.

These theories can be categorized into two main groups as we decompactify the circle:

(1) theories that flow to strongly coupled regime, and (2) theories that are amenable to

semi-classical analysis all the way to L→∞, where L is the circle circumference. We also

found that there exists a flux of baryonic current along the compact direction with theories

that have broken Parity, which in the same time indicates the breaking of the charge and

time-reversal symmetries. We finally studied the phase structure of this class of theories

both in the small circle and decompactication limits.

11.1 Future directions

Theories with G⊕ F fermions serve as a prototype example of the rich phase structure of

theories with mixed representations. Here, we describe possible future directions:

1. The next step, which will be pursued in a future work, is to study the structure of

the topological molecules that are responsible for the confinement in the infrared in

the class of admissible theories. In any su(Nc) gauge theory, broken down to its

maximum abelian subgroup, there are Nc fundamental monopole-instantons dressed

up with fermionic zero modes. Molecules made of these monopoles can form in the

infrared given that (1) the molecules respect the fundamental symmetries of the

theory and (2) an appropriate number of the constituent monopoles soak up their

fermionic zero modes. If the resulting molecules carry a net magnetic charge, e.g.,

bions, then they cause the theory to confine in the infrared.
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2. Understanding the nature of the molecules that are responsible for confinement in the

admissible theories is crucial to track the mass gap as we decompactify the radius.

This is especially important in order to compare and contrast theories on R3 × S1

with those on R4.

3. It will be of immense importance to sort out all the admissible theories with Banks-

Zaks fixed points. The existence of an IR fixed point before the theory enters its

strongly coupled regime means that the semi-classical description of the theory is

valid for all compactification radii.

4. In [17], a duality was established between two-dimensional XY-spin models with

symmetry-breaking perturbations and QCD with adjoint fermions on a small circle

and considered at temperatures near the deconfinement transition, i.e. QCD(adj) on

R2 × S1
β × S1

L, where S1
β and S1

L are respectively the thermal and spatial circles. The

connection between the XY-spin model and QCD(adj) was made by mapping the

partition functions of both theories to a multi-component electric-magnetic Coulomb

gas. This duality was also examined in [18, 19, 51]. It will be interesting to further

study this duality in theories with mixed representations.

5. Confining strings in QCD with adjoint fermions on R3×S1 were studied in [52]. This

study revealed that strings in this theory are made of two domain walls, which is

attributed to the composite nature of the bions. The proliferation of more complex

molecules in the vacuum will be accompanied by more complex string structure.

Studying the nature of strings in the admissible theories found in this work will be

pursued in a future work.

6. It has been known since the seminal work of Ünsal and Yaffe [43] (see also [53]) that

Armoni-Shifman-Veneziano large-Nc orientifold equivalence (which is an equivalence

between QCD with adjoint fermions and QCD with two-index symmetric or anti-

symmetric representation [54–56]) breaks down if the theory is put on R3 × S1, for

a sufficiently small circle. The breaking of the equivalence is a result of the sponta-

neous breaking of charge conjugation symmetry C. A careful inspection of tables 1

to 7 reveals that many theories in the mixed representations (adjoint)⊕(two-index

symmetric) and (adjoint)⊕(two-index antisymmetric) have trΩ = 0, and therefore,

they do not break C spontaneously. Despite the fact that such theories do not have a

semi-classical description (since theories with trΩ = 0 have light or massless fermions

charged under u(1)Nc−1, see section 6), one should still trust the effective poten-

tial calculations since it only requires weak coupling, which is always the case for a

sufficiently small circle. In the large Nc limit the dimensions of adjoint, two-index

symmetric, and two-index antisymmetric representations scale as N2
c , and the non-

breaking of C is suggesting an equivalence between the adjoint representation on one

hand and adjoint⊕two-index symmetric or adjoint⊕two-index antisymmetric repre-

sentations on the other hand on R3 × S1. Such tantalizing equivalence should be

taken with a great care in the light of [57] and will be pursued somewhere else.
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A Lie algebra and conventions

In this appendix we summarize important topics and set up the convention of the Lie

algebra used throughout this work. See [58, 59] for reviews.

Definitions. We define the Lie Algebra g of a group G as a collection of elements ta, a =

1, 2, . . . d(G) that satisfy the following two conditions

(i)
[
ta, tb

]
= ifabct

c ,

(ii)
[[
ta, tb

]
, tc
]

+ cyclic permutations = 0 (the Jacobi identity) . (A.1)

fabc are called the structure constants. If we assume that ta are Hermitian, then fabs
are real. Instead of (A.1), one can alternatively define the Lie algebra as a collection

of elements that satisfy
[
ta, tb

]
= ifabct

c with the condition that fabc are totally anti-

symmetric constants.

Cartan-Weyl bases. The classification of Lie algebra is obtained by finding a set of r

mutually commuting generators H i such that[
H i, Hj

]
= 0 , i, j = 1, 2, . . . , r , (A.2)

where r is the rank of the group. The rest of the Lie Algebra generators ta can be cast

into raising and lowering operators Eβ and E−β ≡ E†β such that[
H i, Eβ

]
= βiEβ ,

[Eβ, E−β] = βiH
i ,

[Eβ, Eγ ] = Nβ,γEβ,γ . (A.3)

β = (β1, β2, . . . , βr) are r-dimensional vectors called the roots. There are d(G) − r roots,

half of them are positive and the other half is negative. Also, there are (d(G)−r)/2 raising

Eβ and (d(G) − r)/2 lowering E−β operators corresponding to the positive and negative

roots, respectively. The constants Nβ,γ can be determined using the above construction;

however, we will not need them in the present work.

Simple roots, co-roots, and weights. We define the weights µ as the eigenvalues of

the generators H i in any representation R:

H i|µ,R〉 = µi|µ,R〉 . (A.4)

The number of these weights is the dimension of the representation R. The roots {β} are

the weights of the adjoint representation which has dimension d(G) = N2
c − 1 for su(Nc).
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We say that a weight is positive if its first non-zero component is positive. Then, we

define the simple roots as the positive roots that cannot be written as the sum of other

positive roots and we denote them by {α}. The number of the simple roots is the rank of

the group, which is Nc − 1 for su(Nc). The affine root is given by

α0 = −
r∑

a=1

kaαa , (A.5)

where ka are the Kac labels. For su(Nc) we have ka = 1 for all a = 1, 2, . . . , Nc − 1.

We also define the co-roots α∗ as

α∗ ≡ 2

α2
α . (A.6)

For su(Nc), which is a simple-laced algebra, we normalize the simple roots as α2
a = 2 for

all a = 1, 2, . . . , Nc − 1, and find α∗ = α. The Affine co-root α∗r+1 ≡ α∗0 is given by:

α∗r+1 = −
r∑

a=1

k∗aα
∗
a , (A.7)

where k∗a are the dual Kac labels. For su(Nc) we have k∗a = 1 for all a = 1, 2, . . . , Nc − 1.

The fundamental weights (not the weights of the fundamental representation), ωa, are

given by

ωa ·α∗b = δab , (A.8)

where a, b = 1, 2, . . . r. The highest weight µh of a representationR is a linear superposition

of the fundamental weights

µh =
r∑

a=1

maω , (A.9)

where {ma} ∈ Z+ ∪ 0, are called the Dynkin labels (or Dynkin indices). All other weights

of R can be obtained from the highest weight by successive applications of annihilation

operators E−α. Thus, a representation R is denoted by its Dynkin labels:

R = (m1,m2, . . . ,mr) , or simply (m1m2 . . .mr) when no confusion can arise. (A.10)

In general, (mr,mr−1, . . . ,m1) is the complex-conjugate representation of (m1,m2, . . . ,mr).

The representation is real if (m1,m2, . . . ,mr) = (mr,mr−1, . . . ,m1). For example, the

adjoint representation (1, 0, 0, . . . , 0, 1) is real. Some of the important representations are

depicted in table 9.

It is also useful to mention that the weights of the fundamental (defining) representa-

tion of su(Nc) are given by

νa = ω1 −
a−1∑
b=1

αb , a = 1, 2, . . . , Nc. (A.11)
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Representation Dynkin indices

Fundamental (F) (100 . . . 00)

Anti-fundamental (F ) (00 . . . 001)

Adjoint (adj) (100 . . . 01)

n-index symmetric (n00 . . . 00)

Two-index anti-symmetric (010 . . . 00)

Table 9. Examples of various representations and their Dynkin indices.

Tensors and Young tableau. The tensor associated with the representation

(m1,m2, . . . ,mr) has mi sets of indices, for each i from 1 to r = Nc − 1, that are anti-

symmetric within each set. The symmetry of this tensor can be obtained from Young

tableau. For example, the Young tableau of the (3, 3, 3) representation of su(4) is

. (A.12)

RNc−1 root basis for su(Nc). A convenient choice of the simple and affine roots in

su(Nc) is given by

{αa,= ea − ea+1 , 1 ≤ a ≤ Nc − 1} , α0 = eNc − e1 , (A.13)

where {ei} is the set of unit bases in RNc−1. In this system the roots span a hyperplane

in RNc−1 given by

Nc−1∑
a=1

Φa = 0 . (A.14)

The fundamental weights are given by

ωb =

(
b∑

a=1

ea

)
− b

Nc

Nc−1∑
a=1

ea . (A.15)

B The Casimir and trace operators, and the dimension of representation

Computing the β function requires the knowledge of the Casimir and trace operators. The

quadratic Casimir operator of representation R, C2(R), is defined as

taRt
a
R = C2(R)I . (B.1)

C2(G) is the quadratic Casimir of the adjoint representation.

T (R) is the trace operator in the same representation which is defined by

tr
[
taRt

b
R

]
= T (R)δab . (B.2)
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From eqs. (B.1) and (B.2) one can easily obtain the useful relation

T (R)d(G) = C2(R)d(R) , (B.3)

where d(R) is the dimension of the R representation.

For a representation R with Dynkin indices (a1, a2, . . . , aNc−1, aNc−2), the quadratic

Casimir operator is given by [60]

C2(R) =
1

Nc

Nc−1∑
m=1

[
Nc(Nc −m)mam +m(Nc −m)a2

m +

m−1∑
n=0

2n(Nc −m)anam

]
, (B.4)

and the dimension of the representation is

d(R) =

Nc−1∏
p=1

 1

p!

Nc−1∏
q=p

 q∑
r=q−p+1

(1 + ar)

 . (B.5)

In particular, we have C2(G) = 2Nc and d(G) = N2
c − 1.

C Cubic Dynkin index

In this appendix we list the values of the Cubic Dynkin index (or the anomaly of the

representation) A(R) for a few important representations. For a complex representation

R we have

trR [{ta, tb} tc] = dabcA(R) , (C.1)

where dabc is a third-rank tensor made out of the structure constants fabc. Taking the

complex conjugation can show that

trR̄ [{ta, tb} tc] = −dabcA(R) , (C.2)

and therefore, real representations (the ones that satisfy (m1,m2, . . . ,mr) =

(mr,mr−1, . . . ,m1)) have vanishing Cubic Dynkin index. In table 10 we list A(R) for

a few of the asymptotically free representations we encounter in this work, see e.g. [61].

D Constructing the weights using Verma bases

One can use Verma bases to construct the weights of any representation of su(Nc) in a sys-

tematic way. For representationR of su(Nc), which we denote byR = (m1,m2, . . . ,mNc−1)

the basis vectors are[
(E−α1)aN (E−α2)aN−1 . . .

(
E−αNc−1

)aN−Nc+2
] [

(E−α1)aN−Nc+1 . . .
(
E−αNc−2

)aN−2Nc+4
]

× . . . [(E−α1)a3 (E−α2)a2 ] (E−α1)a1 |R〉 , (D.1)

where N = Nc(Nc−1)/2 and {E−αa}, a = 1, 2, . . . , Nc−1 is the set of the simple-root gen-

erators. The coefficients {ai} satisfy a set of inequalities that are given in table 11, see [38].
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Group R A(R)

su(3) (10) 1

(20) 7

(11) 0

(30) 27

(21) 14

su(4) (100) 1

(010) 0

(200) 8

(101) 0

(020) 0

(110) 7

(300) 29

Group R A(R)

su(5) (1000) 1

(0100) 1

(0200) 15

(0100) 1

(1001) 0

(1100) 16

(1010) 6

su(6) (10000) 1

(01000) 2

(00100) 0

(20000) 10

(11000) 27

(10001) 0

(10010) 4

(10100) 22

Table 10. Cubic Dynkin index.

As an example, let us work out the weights of su(3) algebra. For a given representation

(m1,m2), the bases are given according to (D.1) by

(E−α1)a3 (E−α2)a2 (E−α1)a1 |(1, 1)〉, (D.2)

such that a1, a2, and a3 satisfy the inequalities

0 ≤ a1 ≤ m1 , 0 ≤ a2 ≤ m2 + a1 , 0 ≤ a3 ≤ min [m2, a2] . (D.3)

Then, for example, the basis of the adjoint representation, G = (1, 1), are given by{
|(1, 1)〉 , E−α1 |(1, 1)〉 , E−α2 |(1, 1)〉 , E−α2E−α1 |(1, 1)〉 , E−α1E−α2 |(1, 1)〉 ,

(E−α2)2E−α1 |(1, 1)〉 , E−α1E−α2E−α1 |(1, 1)〉 , E−α1 (E−α2)2E−α1 |(1, 1)〉
}
. (D.4)

The simple roots and fundamental weights of su(3) are

α1 =

(
1

2
,

√
3

2

)
, α2 =

(
1

2
,−
√

3

2

)
,

ω1 =

(
1

2
,

1

2
√

3

)
, ω2 =

(
1

2
,− 1

2
√

3

)
. (D.5)

Now remembering that any representation |(n1, n2)〉 ≡ n1ω1 + n2ω2, we can construct all

the weights from (D.4) by subtracting α1 and/or α2 roots from |(1, 1)〉.

E Frobenius formula and traces of the asymptotically free theories

In this appendix we give examples that illustrate the usefulness of the Frobenius for-

mula given by (5.4). First, one needs to construct the vector {j1, j2, . . . , jn}, which is the
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su(2) 0 ≤ a1 ≤ m1

0 ≤ a2 ≤ m2 + a1

su(3) 0 ≤ a3 ≤ min [m2, a2]

0 ≤ a4 ≤ m3 + a2

0 ≤ a5 ≤ min [m3 + a3, a4]

su(4) 0 ≤ a6 ≤ min [m3, a5]

. . . .

. . . .

. . . .

su(Nc) 0 ≤ aNc−N ≤ mN + aNc+1−2N

0 ≤ aNc−N−3 ≤ min [mN + aNc+2−2N , aNc−N ]

0 ≤ aNc−N+2 ≤ min [mN + aNc−2N+3, aNc−N+1]

. . .

. . .

0 ≤ aNc−1 ≤ min [mN , aNc−2]

Table 11. Verma bases inequalities [38].

permutations of the symmetric group Sn. As we mentioned in the main text, the vector

{j1, j2, . . . , jn} can be obtained as the solution of the equation 1j1+2j2+. . .+njn = n for all

integers ji ≥ 0. For example, for n = 3 we have {j1, j2, j3} = {3, 0, 0}, {1, 1, 0}, {0, 0, 1} and

for n = 4 we have {j1, j2, j3, j4} = {4, 0, 0, 0}, {1, 0, 1, 0}, {0, 2, 0, 0}, {2, 1, 0, 0}, {0, 0, 0, 4},
etc. Using this information, we obtain, for example,

tr(2,~0)P =
1

2

[
(trFP )2 +

(
trFP

2
)]
,

tr(3,~0)P =
1

3!

[
(trFP )3 + 3 (trFP )

(
trFP

2
)

+ 2
(
trFP

3
)]
, etc., (E.1)

where F ≡ (1,~0). Other representations can be obtained from (n,~0) representations using

the Young tableau. The idea is to express the direct products of two representations as the

direct sum of other representations. Since the trace of the product is equal to the sum of

the traces, then one can use this property to express the trace of a general representation

in terms of traces of (n,~0) representations. As an example,

(1, 0, . . . , 0)⊗ (1, 0, . . . , 0) = (0, 1, 0, . . . , 0)⊕ (2, 0, . . . , 0) , (E.2)

and hence

tr(0,1,0,...,0)P = (trFP )2 −
(
tr(2,0,0,...,0)P

)
. (E.3)

Next, we can use eq. (E.1) to express
(
tr(2,0,0,...,0)P

)
in terms of the trace of the fundamental

representation to finally obtain:

tr(0,1,0,...,0)P ≡ trASP =
1

2

[
(trFP )2 −

(
trFP

2
)]
. (E.4)
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Traces of the asymptotically free representations. Now, we list all the needed

traces in the asymptotically free theories. As is explained above, the expressions of these

traces in terms of the fundamental (defining) trace can be obtained from the Young tableau.

First we list general expressions of traces that are valid for any number of colors Nc ≥ 3:

tr(0,1,0,...,0)P ≡ trASP =
1

2

[
(trFP )2 −

(
trFP

2
)]
, (E.5)

tr(1,0,0,...,1)P ≡ trGP = |trFP |2 − 1 , (E.6)

tr(2,0,0,...,1)P =
(
tr(2,0,0,...,0)P

)
(trFP )∗ − (trFP ) . (E.7)

Next, we list the needed traces in all other groups:

1. su(4)

tr(1,1,0)P = (trASP ) (trFP )− (trFP )∗ (E.8)

tr(0,2,0)P = (trASP )2 − (trGP )− 1 . (E.9)

2. su(5)

tr(0,1,0,1)P = (trGP ) (trFP )−
(
tr(2,0,0,1)P

)
− (trFP ) , (E.10)

tr(0,2,0,0)P = (trASP )2 −
(
tr(0,1,0,1)P

)∗ − (trFP )∗ , (E.11)

tr(0,1,1,0)P = (trASP )2 − (trGP )− 1 , (E.12)

tr(0,1,1,0)P =
(
tr(2,0,0,0)P

)
(trFP )−

(
tr(2,0,0,0)P

)
. (E.13)

3. su(6)

tr(1,0,0,1,0)P = (trASP )∗ (trFP )− (trFP )∗ , (E.14)

tr(1,1,0,0,0)P =
(
tr(2,0,0,0)P

)
(trFP )−

(
tr(3,0,0,0)P

)
, (E.15)

tr(0,0,1,0,0)P = (trASP ) (trFP )−
(
tr(1,1,0,0,0)P

)
, (E.16)

tr(1,0,1,0,0)P =
(
tr(0,0,1,0,0)P

)
(trFP )− (trASP )∗ , (E.17)

tr(0,2,0,0,0)P = (trASP )2 −
(
tr(1,0,1,0,0)P

)
− (trASP )∗ . (E.18)

4. su(7)

tr(1,0,0,0,1,0)P = (trASP )∗ (trFP )− (trFP )∗ . (E.19)

The rest of the traces can be read from the su(6) traces by adding 0 to the last entry

in any vector: (a1, a2, . . . , a5)→ (a1, a2, . . . , a5, 0) .

5. su(8) and su(9)

The traces can be obtained from those of su(6).
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F Computing the index using Frobenius formula

In this appendix we show how to compute the index (9.1) using Frobenius formula. First,

we note that the quantity bΦ·H2π cα
∗
a ·H is not an element of su(Nc), and hence, we cannot

apply the Frobenius formula directly. In order to overcome this problem, we use the

following definition of the floor function

bxc = x− 1

2
+

1

π

∞∑
k=1

sin(2πkx)

k
, (F.1)

provided that x is not an integer. We also can write

α∗ ·H = −i
[
∂eiεα

∗·H

∂ε

]
ε=0

. (F.2)

Now the quantity eiεα
∗·H ∈ su(Nc) and we can readily apply the Frobenius formula.

Repeating this procedure, we finally obtain the index which can be written as

If(α∗a)(R) = nR

{
− ∂

∂ε1ε2
trR

[
ei(ε1α

∗
a·H+ε2

Φ·H
2π )

]
+
i

2

∂

∂ε1
trR

[
eiε1α

∗
a·H
]

(F.3)

−Im

[ ∞∑
k=1

i

πk

∂

∂ε1
trR

[
ei(ε1α

∗
a·H+kΦ·H)

]]}
ε1=ε2=0

, a = 1, 2, . . . , Nc − 1 .

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[17] M.M. Anber, E. Poppitz and M. Ünsal, 2d affine XY-spin model/4d gauge theory duality and

deconfinement, JHEP 04 (2012) 040 [arXiv:1112.6389] [INSPIRE].

[18] M.M. Anber, S. Collier and E. Poppitz, The SU(3)/Z3 QCD(adj) deconfinement transition

via the gauge theory/’affine’ XY-model duality, JHEP 01 (2013) 126 [arXiv:1211.2824]

[INSPIRE].

[19] M.M. Anber, S. Collier, E. Poppitz, S. Strimas-Mackey and B. Teeple, Deconfinement in

N = 1 super Yang-Mills theory on R3 × S1 via dual-Coulomb gas and “affine” XY-model,

JHEP 11 (2013) 142 [arXiv:1310.3522] [INSPIRE].

[20] M.M. Anber, Θ dependence of the deconfining phase transition in pure SU(Nc) Yang-Mills

theories, Phys. Rev. D 88 (2013) 085003 [arXiv:1302.2641] [INSPIRE].

[21] E. Poppitz and T. Sulejmanpasic, (S)QCD on R3 × S1: Screening of Polyakov loop by

fundamental quarks and the demise of semi-classics, JHEP 09 (2013) 128

[arXiv:1307.1317] [INSPIRE].

[22] M.M. Anber, E. Poppitz and B. Teeple, Deconfinement and continuity between thermal and

(super) Yang-Mills theory for all gauge groups, JHEP 09 (2014) 040 [arXiv:1406.1199]

[INSPIRE].

[23] M.M. Anber and E. Poppitz, On the global structure of deformed Yang-Mills theory and

QCD(adj) on R3 × S1, JHEP 10 (2015) 051 [arXiv:1508.00910] [INSPIRE].
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[25] T. Kanazawa, M. Ünsal and N. Yamamoto, Phases of circle-compactified QCD with adjoint

fermions at finite density, Phys. Rev. D 96 (2017) 034022 [arXiv:1703.06411] [INSPIRE].

[26] G. Bergner and S. Piemonte, Compactified N = 1 supersymmetric Yang-Mills theory on the

lattice: continuity and the disappearance of the deconfinement transition, JHEP 12 (2014)

133 [arXiv:1410.3668] [INSPIRE].

– 47 –

https://doi.org/10.1016/0550-3213(77)90086-4
https://doi.org/10.1016/0550-3213(77)90086-4
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B120,429%22
https://inspirehep.net/search?p=find+IRN+3249930
https://doi.org/10.1016/0370-2693(75)90221-X
https://doi.org/10.1016/0370-2693(75)90221-X
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B53,476%22
https://doi.org/10.1016/0370-2693(77)90854-1
https://doi.org/10.1016/0370-2693(77)90854-1
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B69,499%22
https://doi.org/10.1103/PhysRevLett.117.081601
https://arxiv.org/abs/1604.06108
https://inspirehep.net/search?p=find+EPRINT+arXiv:1604.06108
https://doi.org/10.1007/JHEP10(2012)115
https://arxiv.org/abs/1205.0290
https://inspirehep.net/search?p=find+EPRINT+arXiv:1205.0290
https://doi.org/10.1088/1126-6708/2009/07/048
https://doi.org/10.1088/1126-6708/2009/07/048
https://arxiv.org/abs/0904.1353
https://inspirehep.net/search?p=find+EPRINT+arXiv:0904.1353
https://doi.org/10.1016/0550-3213(88)90199-X
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B297,47%22
https://doi.org/10.1088/1126-6708/2009/12/011
https://arxiv.org/abs/0910.1245
https://inspirehep.net/search?p=find+EPRINT+arXiv:0910.1245
https://doi.org/10.1007/JHEP04(2012)040
https://arxiv.org/abs/1112.6389
https://inspirehep.net/search?p=find+EPRINT+arXiv:1112.6389
https://doi.org/10.1007/JHEP01(2013)126
https://arxiv.org/abs/1211.2824
https://inspirehep.net/search?p=find+EPRINT+arXiv:1211.2824
https://doi.org/10.1007/JHEP11(2013)142
https://arxiv.org/abs/1310.3522
https://inspirehep.net/search?p=find+EPRINT+arXiv:1310.3522
https://doi.org/10.1103/PhysRevD.88.085003
https://arxiv.org/abs/1302.2641
https://inspirehep.net/search?p=find+EPRINT+arXiv:1302.2641
https://doi.org/10.1007/JHEP09(2013)128
https://arxiv.org/abs/1307.1317
https://inspirehep.net/search?p=find+EPRINT+arXiv:1307.1317
https://doi.org/10.1007/JHEP09(2014)040
https://arxiv.org/abs/1406.1199
https://inspirehep.net/search?p=find+EPRINT+arXiv:1406.1199
https://doi.org/10.1007/JHEP10(2015)051
https://arxiv.org/abs/1508.00910
https://inspirehep.net/search?p=find+EPRINT+arXiv:1508.00910
https://doi.org/10.1007/JHEP12(2014)107
https://arxiv.org/abs/1309.4394
https://inspirehep.net/search?p=find+EPRINT+arXiv:1309.4394
https://doi.org/10.1103/PhysRevD.96.034022
https://arxiv.org/abs/1703.06411
https://inspirehep.net/search?p=find+EPRINT+arXiv:1703.06411
https://doi.org/10.1007/JHEP12(2014)133
https://doi.org/10.1007/JHEP12(2014)133
https://arxiv.org/abs/1410.3668
https://inspirehep.net/search?p=find+EPRINT+arXiv:1410.3668


J
H
E
P
1
2
(
2
0
1
7
)
0
2
8
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[45] E. Poppitz and M. Ünsal, Index theorem for topological excitations on R3 × S1 and

Chern-Simons theory, JHEP 03 (2009) 027 [arXiv:0812.2085] [INSPIRE].

[46] T. Banks and A. Zaks, On the Phase Structure of Vector-Like Gauge Theories with Massless

Fermions, Nucl. Phys. B 196 (1982) 189 [INSPIRE].

[47] C. Vafa and E. Witten, Parity Conservation in QCD, Phys. Rev. Lett. 53 (1984) 535

[INSPIRE].

– 48 –

https://doi.org/10.1088/1126-6708/2009/09/050
https://arxiv.org/abs/0906.5156
https://inspirehep.net/search?p=find+EPRINT+arXiv:0906.5156
https://doi.org/10.1007/JHEP06(2011)136
https://arxiv.org/abs/1105.0940
https://inspirehep.net/search?p=find+EPRINT+arXiv:1105.0940
https://doi.org/10.1103/PhysRevLett.33.244
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,33,244%22
https://doi.org/10.1103/PhysRevD.75.085018
https://arxiv.org/abs/hep-ph/0611341
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0611341
https://doi.org/10.1016/0370-2693(82)90728-6
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B117,324%22
https://doi.org/10.1016/0550-3213(84)90066-X
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B234,269%22
https://doi.org/10.1016/0370-2693(75)90163-X
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B59,85%22
https://doi.org/10.2307/1970715
https://inspirehep.net/search?p=find+J+%22Ann.Math.,87,484%22
https://doi.org/10.1103/RevModPhys.53.43
https://doi.org/10.1103/RevModPhys.53.43
https://inspirehep.net/search?p=find+J+%22Rev.Mod.Phys.,53,43%22
https://doi.org/10.1088/1126-6708/2001/06/019
https://arxiv.org/abs/hep-ph/0105021
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0105021
http://dx.doi.org/10.1063/1.527222
https://doi.org/10.1088/1126-6708/2009/07/095
https://arxiv.org/abs/0903.4638
https://inspirehep.net/search?p=find+EPRINT+arXiv:0903.4638
https://doi.org/10.1016/0550-3213(93)90042-N
https://arxiv.org/abs/hep-th/9303046
https://inspirehep.net/search?p=find+EPRINT+hep-th/9303046
https://doi.org/10.1007/JHEP08(2012)063
https://arxiv.org/abs/1206.1890
https://inspirehep.net/search?p=find+EPRINT+arXiv:1206.1890
https://doi.org/10.1007/JHEP01(2015)139
https://arxiv.org/abs/1410.0121
https://inspirehep.net/search?p=find+EPRINT+arXiv:1410.0121
https://doi.org/10.1103/PhysRevD.74.105019
https://doi.org/10.1103/PhysRevD.74.105019
https://arxiv.org/abs/hep-th/0608180
https://inspirehep.net/search?p=find+EPRINT+hep-th/0608180
http://dx.doi.org/10.1006/jfan.2000.3648
https://arxiv.org/abs/math/0009144
https://inspirehep.net/search?p=find+EPRINT+math/0009144
https://doi.org/10.1088/1126-6708/2009/03/027
https://arxiv.org/abs/0812.2085
https://inspirehep.net/search?p=find+EPRINT+arXiv:0812.2085
https://doi.org/10.1016/0550-3213(82)90035-9
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B196,189%22
https://doi.org/10.1103/PhysRevLett.53.535
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,53,535%22


J
H
E
P
1
2
(
2
0
1
7
)
0
2
8

[48] T.D. Cohen, Spontaneous parity violation in QCD at finite temperature: On the

Inapplicability of the Vafa-Witten theorem, Phys. Rev. D 64 (2001) 047704

[hep-th/0101197] [INSPIRE].

[49] B. Lucini, A. Patella and C. Pica, Baryon currents in QCD with compact dimensions, Phys.

Rev. D 75 (2007) 121701 [hep-th/0702167] [INSPIRE].

[50] T. DeGrand and R. Hoffmann, QCD with one compact spatial dimension, JHEP 02 (2007)

022 [hep-lat/0612012] [INSPIRE].

[51] B. Teeple, Deconfinement on R2 × S1
L × S1

β for all gauge groups and duality to double

Coulomb Gas, JHEP 04 (2016) 109 [arXiv:1506.02110] [INSPIRE].

[52] M.M. Anber, E. Poppitz and T. Sulejmanpasic, Strings from domain walls in

supersymmetric Yang-Mills theory and adjoint QCD, Phys. Rev. D 92 (2015) 021701

[arXiv:1501.06773] [INSPIRE].

[53] T.J. Hollowood and A. Naqvi, Phase transitions of orientifold gauge theories at large-N in

finite volume, JHEP 04 (2007) 087 [hep-th/0609203] [INSPIRE].

[54] A. Armoni, M. Shifman and G. Veneziano, Exact results in non-supersymmetric large-N

orientifold field theories, Nucl. Phys. B 667 (2003) 170 [hep-th/0302163] [INSPIRE].

[55] A. Armoni, M. Shifman and G. Veneziano, SUSY relics in one flavor QCD from a new 1/N

expansion, Phys. Rev. Lett. 91 (2003) 191601 [hep-th/0307097] [INSPIRE].

[56] A. Armoni, M. Shifman and G. Veneziano, From superYang-Mills theory to QCD: Planar

equivalence and its implications, in From fields to strings: Circumnavigating theoretical

physics. Ian Kogan memorial collection (3 volume set), M. Shifman, A. Vainshtein and

J. Wheater eds., pp. 353–444 (2004) [hep-th/0403071].

[57] A. Cherman and E. Poppitz, Emergent dimensions and branes from large-N confinement,

Phys. Rev. D 94 (2016) 125008 [arXiv:1606.01902] [INSPIRE].

[58] R. Slansky, Group Theory for Unified Model Building, Phys. Rept. 79 (1981) 1 [INSPIRE].

[59] H. Georgi, Lie algebras in particle physics, Front. Phys. 54 (1999) 1 [INSPIRE].

[60] P.L. White, Discrete symmetries from broken SU(N) and the MSSM, Nucl. Phys. B 403

(1993) 141 [hep-ph/9207231] [INSPIRE].

[61] P. Ramond, Group theory: A physicist’s survey, Cambridge University Press (2010).

– 49 –

https://doi.org/10.1103/PhysRevD.64.047704
https://arxiv.org/abs/hep-th/0101197
https://inspirehep.net/search?p=find+EPRINT+hep-th/0101197
https://doi.org/10.1103/PhysRevD.75.121701
https://doi.org/10.1103/PhysRevD.75.121701
https://arxiv.org/abs/hep-th/0702167
https://inspirehep.net/search?p=find+EPRINT+hep-th/0702167
https://doi.org/10.1088/1126-6708/2007/02/022
https://doi.org/10.1088/1126-6708/2007/02/022
https://arxiv.org/abs/hep-lat/0612012
https://inspirehep.net/search?p=find+EPRINT+hep-lat/0612012
https://doi.org/10.1007/JHEP04(2016)109
https://arxiv.org/abs/1506.02110
https://inspirehep.net/search?p=find+EPRINT+arXiv:1506.02110
https://doi.org/10.1103/PhysRevD.92.021701
https://arxiv.org/abs/1501.06773
https://inspirehep.net/search?p=find+EPRINT+arXiv:1501.06773
https://doi.org/10.1088/1126-6708/2007/04/087
https://arxiv.org/abs/hep-th/0609203
https://inspirehep.net/search?p=find+EPRINT+hep-th/0609203
https://doi.org/10.1016/S0550-3213(03)00538-8
https://arxiv.org/abs/hep-th/0302163
https://inspirehep.net/search?p=find+EPRINT+hep-th/0302163
https://doi.org/10.1103/PhysRevLett.91.191601
https://arxiv.org/abs/hep-th/0307097
https://inspirehep.net/search?p=find+EPRINT+hep-th/0307097
https://arxiv.org/abs/hep-th/0403071
https://doi.org/10.1103/PhysRevD.94.125008
https://arxiv.org/abs/1606.01902
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.01902
https://doi.org/10.1016/0370-1573(81)90092-2
https://inspirehep.net/search?p=find+J+%22Phys.Rept.,79,1%22
http://inspirehep.net/record/1236686/
https://doi.org/10.1016/0550-3213(93)90032-K
https://doi.org/10.1016/0550-3213(93)90032-K
https://arxiv.org/abs/hep-ph/9207231
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9207231

	Introduction
	Theory and formulation
	Asymptotically and anomaly free theories
	Asymptotically free theories
	Anomalies

	Integrating out the Kaluza Klein tower: the effective potential
	Computation of traces
	Constructing the weights using Verma bases
	The Frobenius formula

	The global minima of the effective potential
	The affine Weyl chamber
	Analytical solutions
	Numerical investigation

	The flow of the 3-D coupling constant
	The admissible class of theories
	Perturbative vacua and the role of discrete symmetries
	Theories with a unique vacuum
	Theories with multiple vacua


	Monopole-instantons and fermion zero modes on R**(3) x S**(1)
	su(N(c)) theories with fermions in G oplus F: a detailed study
	Summary and future directions
	Future directions

	Lie algebra and conventions
	The Casimir and trace operators, and the dimension of representation
	Cubic Dynkin index
	Constructing the weights using Verma bases
	Frobenius formula and traces of the asymptotically free theories
	Computing the index using Frobenius formula

