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1 Introduction

Higher spin fields is among the most challenging topics in theoretical physics. Irrespective

of the theoretical difficulties, there are a few examples where massive higher spin fields

naturally arise in physical contexts. For example, hadronic resonances have masses of order

the strong scale and spins s ≥ 1/2. String theory, in addition, has a spectrum of massive

higher spin fields with masses above the Planck scale. QCD excitations can be easily

produced in terrestrial high energy experiments. The production of particles with masses

larger than a few TeV, however, is infeasible given today’s limited technology. Fortunately

enough, massive higher spin particles could be produced in the early Universe, e.g., during
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inflation, electroweak, or QCD phase transitions. This will happen provided there is a

mechanism that leads to the production of these particle, e.g., parametric resonance [1].

Generally, the non-perturbative production of particles from vacuum will be accompanied

by the generation of gravitational waves (GW) [2, 3]. Despite the fact that heavy particles

will immediately decay once they are produces, GW accompanying their production might

be detected today as a signal from the early epoch of the Universe. One hopes that these

GW will have distinct features that distinguish them among other early Universe signals.1

A systematic study of higher spins started as early as quantum field theory itself.

However, this subject remains a largely unexplored territory until today. In 1939, Fierz

and Pauli were the first to write a system of Lorentz covariant equations that respect

unitarity and describe the motion of higher spin fields in flat background [7]. In their

studies, they noticed that turning on interactions among higher spin particles results in

inconsistencies in the field theories describing them. This led them to suggest that a

Lagrangian formulation of higher spin fields might evade these difficulties and renders the

theory consistent. It was not until the mid 1970s when Singh, Hagen, Fronsdal, and Fang,

completed the program of Feirz and Pauli by writing a Lagrangian formulation of fields

with arbitrary spins [8–12]. This formulation (known as Fronsdal formulation) extends

the concept of gauge field theory of electromagnetism and gravity to an arbitrary spin and

demands the introduction of auxiliary fields that are used to eliminate the spurious degrees

of freedom. This Lagrangian formulation, however, was limited to free field theories. In the

meanwhile, many no-go theorems appeared in the period from 1960s to 1980s that forbid the

minimal coupling between higher spin fields and electromagnetism or gravity, see [13–15]

for reviews. In addition, Weinberg and Witten proved that there cannot be a consistent

massless field theory with spin s ≥ 2 that has a gauge invariant and conserved energy-

momentum tensor [16]. However, starting from 1980 many yes-go examples of interacting

higher spin fields appeared. In all these examples non-minimal coupling, e.g., [17], and/or

formulating the theory on a curved background, e.g., [18], was a necessary ingredient for a

consistent description of higher spin particles.

Independently, Bragmann and Wigner [19] and Weinberg [20, 21] wrote down a free

field description of higher spin particles based on the higher dimensional irreducible rep-

resentations of Poincaré algebra. These fields are known as the general causal fields [22].

This construction generalizes the Weyl equation, which describes the motion of a spin half

particle belonging to (1/2, 0) or (0, 1/2) representation of the Lorentz algebra, to higher

spin fields that transform as (s, 0) or (s, 0) under the Lorentz group. Alternatively, we can

also use the Dirac representation (s, 0)⊕ (0, s), which is particularly important in the case

of massive higher spin particles. Here, one does not introduce any gauge redundancy since

the fields used in this description are the physical ones. Therefore, no question of incon-

sistency or unphysical states can arise. The price one pays by working with the physical

fields, however, is the lack of a Lagrangian formulation which makes their coupling to a

background field, like electromagnetism or gravity, a tricky business.

1Non-Gaussianities from higher spin fields was discussed in [4]. See also [5, 6] for recent discussions of

the imprints of higher spin fields on cosmological perturbations.
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In this work we examine the generation of large scale signals from the nonpertur-

bative production of general causal fields. In particular, we seek a model-independent

setup that can provide simplified answers about the generation of GW that accompany

the parametric-resonance production of higher spin fields. A precise account of the details

of such scenario is a daunting task, specially that coupling higher spin fields to gravity

(not to mention their coupling to other fields, which is necessary to provide the para-

metric resonance mechanism) is still an open question. In our setup, however, we do not

need to know about the specific particle-physics model that explains the generation of

higher spin fields from vacuum. We just assume that these fields are somehow produced,

and therefore, we only need to compute their on-shell energy-momentum tensor correla-

tors. This should be translated into large scale GW signals via multiplying by appropriate

transfer, i.e., Green’s functions. The normal procedure to compute the energy-momentum

tensor correlator, which accompanies the production of particles in the presence of an ex-

ternal field or time varying background, e.g., in a cosmological context, is to start from

a Lagrangian, vary it with respect to the metric tensor to obtain the energy-momentum

tensor, and then use the canonical quantization to write down the fields in terms of cre-

ations and annihilation operators. Next, we evolve these operators via the Bogoliubov

transformation to finally obtain an expression of the energy-momentum tensor and its

correlators. The absence of a Lagrangian formulation for the general causal fields, how-

ever, makes it necessary to find an alternative route that enables us tackle the problem

indirectly. Motivated by the effective action of s = 1
2 field along with the principle of

Poincaré covariance, we postulate a definition of the energy-momentum tensor of gen-

eral causal fields in a flat or curved background. Then, we use the analytic properties

of Green’s function to show that the nonperturbative production of massive higher spin

fields from vacuum will accompany the emergence of non-vanishing energy-momentum

tensor correlators.

As a check on our new formalism, we compute the energy-momentum tensor correlator

of s = 1/2 fields (both massive and massless) in flat and FRW backgrounds reproducing

previous results that were obtained using the canonical formalism. Further, we apply our

method to compute the energy-momentum tensor correlators of massive spin particles with

spin s = 1 and show that these correlators respect unitarity. This can be shown by pro-

jecting the correlators along helicity-2 eigenbasis, which is a succinct way to directly check

that 〈T−(k)T−(−k)〉 > 0 and 〈T+(k)T+(−k)〉 > 0, where T± are the energy-momentum

tensor along the positive (negative) helicity-basis. Interestingly enough, these two corre-

lators may not be equal in the presence of a mechanism that favors one helicity over the

other, which can be envisaged directly from our construction without the need to provide

a detailed particle-physics model to explain it. We also give general expressions of the

energy-momentum tensor correlators for massive fields with s ≥ 2. The explicit computa-

tions of these correlators as well as checking their unitarity is a cumbersome task that is

left for future investigations.

We also show that the production of massless fields with spin s ≥ 1 in a flat background

is pathological within the general causal framework. This is attributed to the fact that the

energy-momentum tensors of these fields are highly non-local functions of momentum.
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Our work in organized as follows. In section 2 we provide the necessary mathematical

background of the general causal fields in both flat and curved backgrounds. In particu-

lar, we review the Lorentz group and Weinberg construction of Green’s functions of the

general causal fields in flat space. This includes both massless and massive fields. Next,

we generalize this construction to curved background using the vierbein formalism. We

also provide a review section on spinor calculus. In section 3 we use the effective action of

the spin 1
2 field along with the principle of Poincaré covariance as a motivation to postu-

late a definition of the energy-momentum tensor of higher spin general causal fields. The

energy-momentum tensor and its correlators contain vertex functions that we determine in

section 4. In section 5 we use the formalism of sections 2 to 4 along with the analyticity

of Green’s functions to show that the production of higher spin fields from vacuum accom-

panies the emergence of macroscopic energy-momentum tensor correlator. We calculate

this correlator for s = 1
2 and s = 1 in flat background and also for s = 1

2 in FRW back-

ground. Using the energy-momentum tensor correlator, we review the gravitational waves

power spectrum in section 6. We conclude in section 7 by discussing the implications and

limitations of our work.

2 Theory and formulation

2.1 General causal fields

This section aims to introduce the formalism and notation used throughout this work. We

use the general causal fields (also called the Weinberg-type fields) to describe higher spin

particles. This formalism is heavily based on the higher dimensional representations of the

Lorentz algebra so(3, 1) or its double cover sl(2,C) that we will review momentarily. In

this work we use the signature ηab = (−,+,+,+). The Greek letters are used to denote

the curved spacetime coordinates, the latin letters a, b, c, d are used for the flat spacetime

coordinates, the latin letters i, j, k label the spatial flat coordinates, while the latin letters

M,N,P,Q are used to label the matrix elements of sl(2,C). The Lorentz algebra generators

Tab satisfy the commutation relations [23]

[Tab, Tcd] = i (ηcbTad − ηcaTbd + ηdbTca − ηdaTcb) . (2.1)

In particular we have Tab = −Tba such that

Ti0 = Ki ,
1

2
εijkTjk = Ji , (2.2)

where Ki and Ji are respectively the generators of boosts and so(3) rotations. Then, it is

a simple exercise to use (2.1) to show that the combinations

Ai =
1

2
(Ji + iKi) , Bi =

1

2
(Ji − iKi) (2.3)

satisfy the commutation relations of two independent copies of su(2) algebra:

[Ai,Aj ] = iεijkAi , [Bi,Bj ] = iεijkBi , [Ai,Bj ] = 0 for all i, j . (2.4)
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The two algebras are called suL(2) and suR(2) for {Ai} and {Bi} generators, respectively.

Let the set of generators {Ci} denotes either {Ai} or {Bi}. Then for a representation of

spin s we have[
C(s)

1 ± iC
(s)
2

]N
M

= δM,N±M [(s∓N)(s±N + 1)]1/2 ,
[
C(s)

3

]N
M

= MδMN , (2.5)

where M,N = s, s− 1, . . . ,−s+ 1,−s and s = 0, 1/2, 1, 3/2, . . .

The complexified generators of so(3, 1) are related to su(2)L ⊕ su(2)R, and hence,

any representation of the Lorentz algebra can be designated by a pair of numbers (s1, s2),

where s1 and s2 are the spins of the representations of su(2)L and su(2)R, respectively.

Thus, the generators Tab can be written as the direct sum of two sets of generators trans-

forming under su(2)L and su(2)R such that Tab ≡ Isu(2)L ⊗ T su(2)R
ab + T su(2)L

ab ⊗ Isu(2)R ,

or explicitly using the matrix elements [Tab]M1M2
N1N2

= δM1
N1

[Tab]M2
N2

+ [Tab]M1
N1

δM2
N2

, where

M1, N1 = s1, s1 − 1, . . . ,−s1 + 1,−s1 and M2, N2 = s2, s2 − 1, . . . ,−s2 + 1,−s2.

Under the Lorentz transformation, a general field transforms in the s1 representation

of su(2)L and s2 representation of su(2)R. As special cases, we consider fields with s1 = 0

or s2 = 0 such that:

J = J (s) , K = −iJ (s) for type (s, 0) fields ,

J = J (s) , K = +iJ (s) for type (0, s) fields ,
(2.6)

where a boldface symbol denotes a three dimensional vector. Such fields transform as

2s + 1 dimensional spinors and are denoted by ΦL for (s, 0) and ΦR for (0, s) such that

Φ
(s)
L,R ≡ (Φ1,Φ2, . . . ,Φ2s+1)T . They are known as the general causal fields [22] or Weinberg-

type fields [20, 21]. Under a general proper Lorentz transformation Λ (we can always take

the boost to be along the z-direction without loss of generality) these fields transform as

Φ
(s)
L → D(s)[Λ]Φ

(s)
L = D(s)[R]e−iφK

(s)
3 Φ

(s)
L for type (s, 0) fields ,

Φ
(s)
R → D̄(s)[Λ]Φ

(s)
R = D(s)[R]e−iφK

(s)
3 Φ

(s)
R for type (0, s) fields , (2.7)

where φ is the boost parameter (rapidity) along the z-direction and D(s)[R] is the so(3)

part of the Lorentz transformation matrix.

Now consider a (s, 0) massless field moving along the z-direction with its spin directing

along the positive z-axis: Φ
(s)
L =

(
0, 0, 0, . . . , 1︸︷︷︸

2s+1

)T
. Then, it is trivial to show that such

field satisfies

J
(s)
3 Φ

(s)
L = −sΦ(s)

L . (2.8)

By applying a general rotation about the z-axis we can write the above equation as

p · J (s)Φ
(s)
L = −s|p|Φ(s)

L , for (s, 0) fields , (2.9)

where p is the field momentum. Thus, the (s, 0) fields describe left-handed particles with

helicity −s. By the same token, the (0, s) fields satisfy

p · J (s)Φ
(s)
R = +s|p|Φ(s)

R , for (0, s) fields , (2.10)
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and they describe right-handed particles with helicity +s. Now, it is not difficult to see

that (2.9) and (2.10) can be rewritten as first order differential equations:

J (s) · ∇Φ
(s)
L − s∂tΦ

(s)
L = 0 , for (s, 0) fields ,

J (s) · ∇Φ
(s)
R + s∂tΦ

(s)
R = 0 , for (0, s) fields . (2.11)

Every equation describes the propagation of a free single degree of freedom. In addition,

both types of fields satisfy the second order Klein-Gordon equation �ΦL,R = 0. In fact,

Equations (2.11) are the Weyl equations for s = 1/2. With a bit of work, one can show

that the case s = 1 corresponds to Maxwell’s equations for the left and right circularly

polarized radiation in free space:2

∇× (E − iB) + i
∂

∂t
(E − iB) = 0 , for (1, 0) fields ,

∇× (E + iB)− i ∂
∂t

(E + iB) = 0 , for (0, 1) fields . (2.13)

Moreover, applying the divergence operator on the above equations we obtain the Bianchi

identity ∇ · E = ∇ · B = 0. Since the equations of motion are first order, there are no

pathologies associated with the higher spins when we use the general causal construction.

Notice also that here we work directly with the field strengths (the physical fields) rather

than the potential fields, as is evident from s = 1/2 and s = 1 examples.

The massless general causal fields are chiral by construction. Thus, under the parity

transformation P : r → −r we have

K
P→ −K , J

P→ J , (2.14)

and hence,

Φ
(s)
L
P→ Φ

(s)
R . (2.15)

For massless fields chirality and helicity coincide, and both work as a good Lorentz invariant

quantum number. We will also limit our analysis to the left-handed fields (s, 0) since the

right-handed ones follow the exact same construction. The left handed fields will be denoted

by Φ, with no L subscript, when no confusion can arise.

We can also use the Dirac’s representation (s, 0)⊕ (0, s). In this case one combines the

left and right fields in a single field Ψ(s) as

Ψ(s) =

[
Φ

(s)
L

Φ
(s)
R

]
, (2.16)

such that Ψ(s) respects the parity, charge conjugation, and time reversal symmetries. This

construction is particularly important when we deal with massive fields.

2For example, using the assignment ψ = E−iB, one can show the equivalence between the first equation

in (2.13) and the first equation in (2.11) via the transformation (Φ denotes the left-handed field):

ψ1 =
−i√

2
(Φ1 − Φ3) , ψ2 =

1√
2

(Φ1 + Φ3) , ψ3 = iΦ2 . (2.12)

– 6 –
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2.2 Quantization of the general causal fields in flat space: massless fields

After discussing the classical aspects of the general causal fields, now we turn into

their canonical quantization. As we mentioned above, a free left-handed particle mov-

ing along the z-direction, with reference momentum κ, is described by the spinor

ξ(s) =

(
0, 0, . . . , 0, 1︸︷︷︸

2s+1

)T
. One can obtain the general form of the spinor by applying a

general proper Lorentz transformation Λ (boost and rotation):

ξ(s) → ξ(s)(p) = D(s)[Λ]ξ(s) ≡ D(s)[R(p)]e−iφ(|p|)K3ξ(s) , (2.17)

where the matrix D(s)[R(p)] is the rotational part of the Lorentz transformation,3

while e−iφ(|p|)K3 is the boost. One can show easily that the rapidity φ is given by

φ(|p|) = log [|p|/κ], where p is the particle’s momentum after applying the boost.

Now, the quantization of the general causal fields can be achieved by carrying out the

exact same steps used in the quantization of a spin 1/2 field. One expands the classical

field in terms of a complete set of orthonormal states with complex coefficients. Then,

we promote these coefficients to creation and annihilation operators. In this work we are

interested in the production of on-shell higher spin particles, and hence, all our fields and

their Green’s functions will be assumed to satisfy the on-shell condition. The quantum

field Φ(s), then, takes the following canonical form in the Fourier space

Φ
(s)
M (x) =

∫
d3p

(2π)3
√

2p0

[
|p|
κ

]s [
ape

ip·x−ip0t + b†pe
−ip·x+ip0t

]
D

(s)
M,−s[R(p)] , (2.19)

where the on-shell condition, p0 = |p|, has been assumed and we have used (2.17) and (2.6).

The annihilation and creation operators ap, a
†
p, bp, and b†p satisfy the (anti)commutation

relations [
ap, a

†
p′

]
±

= (2π)3δ3(p− p′) ,
[
bp, b

†
p′

]
±

= (2π)3δ3(p− p′) , (2.20)

where the commutator (the − sign) is used for integer spin fields and the anti-commutator

(the + sign) is used for the half-integer spin fields. Then, it can be easily shown that these

fields satisfy the microcausality condition[
Φ

(s)
M (x),Φ

†(s)
N (x′)

]
±

= −ΠMN (−i∂)∆(x− x′) , (2.21)

and the matrices ΠMN are defined by (2.38) below and ∆(x− x′) is the scalar propagator.

In fact, the (anti)commutator relations (2.21) establish the connection between spin and

statistics. It is customly to redefine the normalization of the massless field Φ by replacing

the factor κ−s with 2s, which we will do in the rest of this work.

3The matrix D(s)[R(p)] is an so(3) rotation that takes the form

D(s)[R(p)] = e−in̂·J
(s)θ , n̂ =

(−py, px, 0)√
p2x + p2y

, θ = cos−1

(
pz
|p|

)
. (2.18)
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Notice that in writing the quantum field Φ
(s)
M (x), which describes a single degree of

freedom, we used the annihilation and creation operators of the physical particles, which

are described by the spinor D
(s)
M,−s[R(p)]. This spared us from the need to introduce

any spurious degrees of freedom that could lead to unphysical negative energy states or

inconsistencies.

Structure of the massless Green’s functions. As we show in section 3 the Green’s

functions are indispensable tool to couple general causal fields to a fixed background. The

time-ordered Green’s function for the left-handed fields is defined as

G
(s)
0MN (x,x′, t, t′) = 〈0|T Φ

(s)
M (x, t)Φ

(s)†
N (x′, t′)|0〉 , (2.22)

where the time-order operator T is

T Φ
(s)
M (x, t)Φ

(s)†
N (x′, t′) =

{
Φ

(s)
M (x, t)Φ

(s)†
N (x′, t′) t > t′

(−1)2sΦ
(s)†
N (x′, t′)Φ

(s)
M (x, t) t < t′

. (2.23)

Now, using (2.19) and a|0〉 = b|0〉 = 0 we can write the Green’s function in the form

G
(s)
0MN (x,x′, t, t′) =

∫
d3p

(2π)3 e
ip·(x−x′)G(s)

0MN (p,p′, t, t′) , (2.24)

where the momentum-space Green’s function is

G(s)
0MN (p,p′, t, t′) =

|p|2s

2|p|

{
Π̂MN (p0,p)ei|p|(t−t

′) , t > t′

(−1)2sΠ̂MN (p0,−p)ei|p|(t
′−t) , t < t′

, (2.25)

and Π̂MN (p0,p) = D
(s)
M,−s[R(p)]D

∗(s)
N,−s[R(p)]. The matrices Π̂MN can be put in a nicer

form by using the formula (which can easily be proved by induction):

δM,−sδN,−s =
1

(2s)!

[
s∏

λ=−s+1

(λI− J3)

]
MN

, (2.26)

and then applying the rotation matrix Ds[R(p)] to find:

Π̂MN (p0,p) =
1

(2s)!|p|2s

[
s∏

λ=−s+1

(
λp0I− p · J

)]
MN

. (2.27)

In section 2.4 we show that one can write Π̂MN (p0,p) in the Lorentz covariant form

Π̂MN (p0,p) =
(−1)2s

22s
ta1a2...a2sMN na1(p)na2(p) . . . na2s(p) , (2.28)

where na ≡ (1, p
|p|) are light-like vectors and ta1a2...a2sMN are the generalized Pauli matrices

as we explain in section 2.4.

– 8 –
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2.3 Quantization of the general causal fields in flat space: massive fields

In the massive case it is more convenient to work with the Dirac representation (s, 0)⊕(0, s),

where one combines the left and right fields in a single field Ψ(s) as defined in (2.16). The

field Ψ(s) satisfies the massive Klein-Gordon equation

(�−m2)Ψ(s)(x) = 0 . (2.29)

In addition, one can show that Ψ(s)(x) satisfies the generalized Dirac’s equation[
−i2sγa1...a2s∂a1 . . . ∂a2s +m2s

]
Ψ(s)(x) = 0 , (2.30)

where the generalized γ matrices, γa1...a2s , are given by

γa1...a2s =

[
0 ta1...a2s

t̄a1...a2s 0

]
, (2.31)

where the matrices t and t̄ will be introduced in section 2.4. Unlike the massless case, where

the left- or right- handed fields describe the propagation of a single degree of freedom,

massive fields on the other hand describe (2s+ 1) massive degrees of freedom for (s, 0) or

(0, s) fields. This is obvious since the dimension of SO(3) group (which is the little group

in the massive case)4 has dimension (2s+ 1).

Next, as usual, we expand the left and right fields in terms of creation and annihilation

operators as follows:

Φ
(s)
L,M =

∫
d3p

(2π)3
√

2ω(p)

∑
N

{
D

(s)
MN (p)ap,Ne

ip·x+D
(s)
MN (p)b†p,Ne

−ip·x
}
,

Φ
(s)
R,M =

∫
d3p

(2π)3
√

2ω(p)

∑
N

{
D

(s)
MN (−p)ap,Ne

ip·x+(−1)2sD
(s)
MN (−p)b†p,Ne

−ip·x
}
, (2.32)

where ω(p) =
√
m2 + |p|2 is the on-shell condition and the sum over N goes from s to

−s, which are all the 2s + 1 physical states. One then defines the time-ordered Green’s

function as

G(s)
0MN (x,x′, t, t′) = 〈0|T Ψ̄(s)(x, t)Ψ(s)(x′, t′)|0〉 ,

(2.33)

where we have defined Ψ̄(s) ≡ βΨ(s)† and β is given by

β =

[
0 I(2s+1)×(2s+1)

I(2s+1)×(2s+1) 0

]
. (2.34)

Using (2.32) and the commutation relations[
ap,M ,a

†
p′,M ′

]
±

= (2π)3δ3(p−p′)δMM ′ ,
[
bp,M , b

†
p′,M ′

]
±

= (2π)3δ3(p−p′)δMM ′ , (2.35)

4Notice that the little group in the massless case is SO(2), and hence, the Dirac field has only 4 degrees

of freedom.
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one can easily show

G(s)
0 (x,x′, t, t′) =

∫
d3p

(2π)3
eip·(x−x

′)G0(p, t, t′) , (2.36)

where

G0(p, t, t′) =
1

2ω(p)



[
I (m)−2sΠ(p0,p)

(m)−2sΠ̄(p0,p) I

]
e−iω(p)(t−t′) , t > t′

(−1)2s

[
I (m)−2sΠ(p0,−p)

(m)−2sΠ̄(p0,−p) I

]
e−iω(p)(t′−t) , t < t′

.

(2.37)

The polarizations Π and Π̄ are the time-like non-normalized version of Π̂ defined in (2.27).

They were derived in [20] and we do not repeat this derivation here. They take the form

Π(p0,p) = (−1)2sta1...a2spa1 . . . pa2s , Π̄(p0,p) = (−1)2st̄a1...a2spa1 . . . pa2s , (2.38)

where pµ are time-like on-shell vectors, and the tensors ta1...a2s and t̄a1...a2s are defined in

section 2.4.

2.4 Spinor calculus

In this section we pause to summarize an important piece of group theory that we have

been using throughout this work. In particular, we elucidate the philosophy behind the

generalized Pauli matrices ta1...a2s and t̄a1...a2s that appeared in previous sections.

We start with the usual Pauli matrices t ≡ σ and t0 ≡ σ0 = I, which transform as

four-vectors in the sense

D(1/2) [Λ] taD(1/2)† [Λ] = Λab t
b , (2.39)

where Λ is a general proper Lorentz transformation and D(1/2) [Λ] is the corresponding

2 × 2 Lorentz transformation matrix in the (1/2, 0) representation. This is the familiar

construction of vectors in the basis of the defining representation (1/2, 0) of su(2). Similarly,

the matrices t̄ ≡ −σ and t̄0 ≡ σ0 = I transform as vectors in the (0, 1/2) representation.

In fact, one can generalize this construction to represent tensors of rank 2s using the 2s+1

dimensional representation matrices [20, 21, 24]. Then, one can prove that for irreducible

representations of the Lorentz algebra there exists a set of (2s+ 1)× (2s+ 1) dimensional

matrices ta1a2...a2s such that: (1) ta1a2...a2s is symmetric in a1, a2, . . . , a2s, (2) traceless in

all indices, i.e. ηa1a2t
a1a2...a2s = 0, and that (3) ta1a2...a2s transforms as

D(s)[Λ]ta1a2...a2sMN D(s)†[Λ] = Λb1a1Λb2a2 . . .Λ
b2s
a2st

b1b2...b2s
MN , (2.40)

where M,N = s, s− 1, . . . ,−s+ 1,−s, and D(s) [Λ] is the corresponding (2s+ 1)× (2s+ 1)

Lorentz transformation matrix in the (s, 0) representation [20, 21]. Similarly, there exists
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a set of (2s+ 1)× (2s+ 1) dimensional matrices t̄a1a2...a2s that correspond to tensors in the

(0, s) representation. They transform according to

D(s)†[Λ−1]t̄a1a2...a2sMN D(s)[Λ−1] = Λb1a1Λb2a2 . . .Λ
b2s
a2st̄

b1b2...b2s
MN . (2.41)

One can show that

t̄a1a2...a2s = (±1)ta1a2...a2s , (2.42)

where the sign is +1 or −1 according to whether there are an even or odd number of

space-like indices, respectively. Also one can show [20, 21]

t(a1a2...a2s t̄b1b2...b2s) = η(a1b1 . . . ηa2sb2s) , (2.43)

where the parentheses denote complete symmetrization over the indicated indices. One

can also prove the trace identity

tr
[
ta1a2...a2s t̄b1b2...b2s

]
= C1η

ai1aj1 . . . ηbi2bj2 + C2η
ai1bj1 . . . ηbi2aj2 + . . . , (2.44)

where {Ci} are constants. For example, in the case s = 1 we have tr
[
t̄a1a2tb1b2

]
=

−ga1a2gb1b2 +2ga1b1ga2b2 +2ga1b2ga2b1 . The trace identity will be crucial to our construction

as we show in section 4.

Since the set of matrices {ta1a2...a2s} are linearly independent, we can use them to

express Π̂MN (p̂) = D
(s)
M,−s[R(p̂)]D

∗(s)
N,−s[R(p̂)] in a covariant form:

Π̂MN (p0,p) =
(−1)2s

|2p|2s
ta1a2...a2sMN pa1pa2 . . . pa2s , (2.45)

where p is a light-like vector. Finally, defining na(p) ≡
(

1, p
|p|

)
we can write Π̂MN (p̂) that

we defined in (2.27) as

Π̂MN (p0,p) =
(−1)2s

22s
ta1a2...a2sMN na1(p)na2(p) . . . na2s(p) . (2.46)

By comparing (2.27) and (2.46) we can read off the expressions of ta1a2...a2sMN in terms of

{J i}. For example, for the case s = 1 we have t00 = t̄00 = I, t0i = ti0 = Ji = −t̄i0,

tij = t̄ij = {Ji,Jj} − δij . We can use the same matrices to write the covariant expression

of Π(p0,p) given in (2.38).

2.5 General causal fields in curved space: the vierbein formalism

The study of higher spin fields in curved background is of paramount importance since the

production of ultra heavy higher spin resonances in expanding background could leave a

distinct feature in the large scale observables, e.g., energy-momentum tensor correlators. In

this section we review the vierbein formalism, which is necessary to construct general causal

fields in curved background. Although our construction is general enough, the present work

will limit the treatment to s = 1/2 particles in curved background. Higher spin particles

in curved background will be pursued elsewhere.
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Vierbeins, which are denoted by V a
µ , are tangent vectors to a set of locally inertial

coordinates ξaX erected at a spacetime point X:

V a
µ ≡

(
∂ξa

∂xµ

)
x=X

. (2.47)

The Greek letters denote the curved space coordinates, while the latin letters a, b, . . . de-

note the flat space coordinates, which are raised and lowered with the flat space metric

ηµν . We fix ξaX at each spacetime point such that under a general non-inertial coordinate

transformation we have

V ′aµ =
∂xν

∂x′µ
V a
ν . (2.48)

V a
µ can be thought of 4 different covariant vectors, one for each value of a. Therefore,

we refer any four vector or tensor at point x to an inertial frame at the same point by

contracting it with the vierbein. For example, the curved spacetime metric tensor gµν(x)

can be contracted with two virebians to obtain the inertial frame metric ηab as follows

ηab = V a
µ (x)V b

ν (x)gµν(x) (2.49)

or the inverse relation

gµν(x) = V a
µ (x)V b

ν (x)ηab . (2.50)

Using this language we classify various objects as being Lorentz scalars, spinors, vectors,

etc., or coordinate scalars, spinors, vectors, etc., or mixed combinations under both Lorentz

and coordinate transformations. For example, V a
µ is a Lorentz vector and coordinate vec-

tor, gµν is a coordinate tensor and Lorentz scalar, while ηab is a coordinate scalar and

Lorentz tensor.

One uses this technology to construct physical quantities (like the general causal fields

or their covariant derivatives for example) at inertial frames and then refer them to general

spacetime points using veirbiens. Thus, one can show that the covariant derivative Da is

given by [25]

Da = V µ
a (∂µ + Γµ) , (2.51)

where the spin connection Γµ is

Γµ =
1

2
T abV ν

a Vbν;µ , (2.52)

and T ab are the corresponding Lorentz generators of the object being differentiated. Here,

one has to be carefule when dealing with a set of nested Lorentz generators. For example,

the left-handed massless field Φ
(s)
L transforms as (s, 0), while the covariant derivative Db

transforms as
(

1
2 ,

1
2

)
. Thus, DbΦ

(s)
L transforms as

(
1
2 ,

1
2

)
⊕(s, 0). If we denote the generators

and spin connection of
(

1
2 ,

1
2

)
⊕ (s, 0) representation by [Tab]cNdM and [Γµ]cNdM , respectively,

then we can write them in terms of the corresponding
(

1
2 ,

1
2

)
and (s, 0) quantities as [26]

[Tab]cNdM = δNM [Tab]cd + δcd [Tab]NM ,

[Γµ]cNdM = δNM [Γµ]cd + δcd [Γµ]NM , (2.53)
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where the latin indices a, b, c, d label the
(

1
2 ,

1
2

)
representation, while the latin indices M,N

label the (s, 0) representation. In particular we have for the
(

1
2 ,

1
2

)
representation

[Tab]cd = δdaηbc − δcbηad . (2.54)

Using this construction, the massive Klein-Gordon equation of the generalized Dirac’s field

Ψ(s) takes the form

(�−m2)Ψ(s) =
[
DaDa −m2

]
Ψ

(s)
N

= V µ
a

[
δadδ

M
N ∂µ + [Γµ]aMdN

]
V d
ν

[
δPM∂

ν + [Γν ]PM

]
Ψ

(s)
P −m

2Ψ
(s)
N = 0 . (2.55)

One can also conformally couple Ψ(s) (in the m = 0 limit) by adding the term ξRΨ(s) to

the Klein-Gordon equation, where ξ = (s+ 1)/6 [26].

In this work we are particularly interested in de Sitter space:

ds2 =
1

H2τ2

(
−dτ2 + dx2 + dy2 + dz2

)
, (2.56)

with the metric

gµν =
1

H2τ2
ηµν , (2.57)

where H is the Hubble’s parameter and τ is the conformal time. de Sitter space is con-

formally flat, and hence, the easiest way to calculate the covariant derivative is to apply a

Weyl transformation to the flat space such that

gµν → ḡµν = Ω2ηµν , (2.58)

where Ω = 1
Hτ . Then, we have

Da → D̄a = V̄ µ
a

[
∂µ + Γ̄µ

]
,

Γµ → Γ̄µ = Γµ − Ω−1T efV ν
e VfµΩ,ν , (2.59)

where V̄ u
a = Ω−1V µ

a , V µ
a = δµa , and Γµ = 0.

With the aid of Weyl transformation one can show that the Klein-Gordon equation

takes the form[
τ2∂a∂

a − 2τ
∂

∂τ
+ 2τT 0a∂a + 12ξ +

m2

H2
− s(s+ 1)

]
Ψ(s)(x) = 0 . (2.60)

de Sitter space admits SO(3) as a subgroup, and hence, one can write the Fourier transform

of the three-dimensional part of the positive and negative frequency modes of Ψ(s) as

Ψ
(s)
± (τ,x) =

∫
d3p

(2π)3
e±ip·xΨ̃

(s)
± (τ,p). (2.61)
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Then, one substitutes (2.61) into (2.60) to find that the quantum field Ψ(s) can be expanded

in terms of creation and annihilation operators as (see [26–28] for details)

Φ
(s)
L ,M =

∫
d3p

(2π)3

∑
N

{
Ξ+L
MN (p, τ)a(p, N)eip·x + Ξ−LMN (p, τ)b†(p, N)e−ip·x

}
,

Φ
(s)
R ,M =

∫
d3p

(2π)3

∑
N

{
Ξ+R
MN (p, τ)a(p, N)eip·x + Ξ−RMN (p, τ)b†(p, N)e−ip·x

}
, (2.62)

where [
Ξ+L
MN

Ξ+R
MN

]
=

Hτ

2
√
|p|

[
e
iπN
2

(
m
H

)N
W−N,ν (2i|p|τ)D

(s)
M,N [R(p̂)]

e
−iπN

2

(
m
H

)−N
WN,ν (2i|p|τ)D

(s)
M,N [R(p̂)]

]
,[

Ξ−LMN

Ξ−RMN

]
=

Hτ

2
√
|p|

[
e
−iπN

2

(
m
H

)N
W−N,ν (−2i|p|τ)D

(s)
M,N [R(p̂)]

(−1)se
−i3πN

2

(
m
H

)−N
WN,ν (−2i|p|τ)D

(s)
M,N [R(p̂)]

]
, (2.63)

ν2 = 9
4 −m

2H2 − 12ξ + s(s+ 1), and Wa,b(x) are the Whittaker’s functions.

In this work we will only consider left-handed massless fields in the s = 1/2 represen-

tation. In this case the sum over N in (2.62) is restricted to a single value N = −s.
Next, we define the Green’s functions of the left fields as (with a similar form for the

right field Green’s function after replacing Π with Π̄)

G
(s)
0MN (x,x′, τ,τ ′) = 〈0|T Φ

(s)
M (x, τ)Φ

(s)†
N (x′, τ ′)|0〉

=

∫
d3p

(2π)3
eip·(x−x

′)

{
Π̂MN (p0,p)u∗(p, τ ′)u(p, τ) , τ > τ ′

Π̂MN (p0,−p)v∗(−p, τ ′)v(−p, τ) , τ ′>τ
, (2.64)

where

u(p, τ) =
Hτ

2
√
|p|
e
iπs
2

(m
H

)s
Ws,ν (−2i|p|τ) ,

v(p, τ) =
Hτ

2
√
|p|
e
−iπs

2

(m
H

)s
Ws,ν (2i|p|τ) . (2.65)

One can easily show that expression (2.64) degenerates to (2.25) in the limit H,m→ 0.

This ends all the mathematical background needed in order to compute energy-

momentum tensor correlators of higher spin fields in a fixed background. In the next

sections we show how this can be achieved using general principles of covariance and

analyticity.

3 Path integral, effective action, and energy momentum tensor

3.1 Motivation and strategy

The production of particles from vacuum will generally be accompanied by the generation

of macroscopic energy-momentum tensor since this process puts physical states on shell.

However, this process is stochastic, and hence, the average of the transverse traceless part
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of the energy-momentum tensor over all directions and/or momenta is expected to vanish.

Nevertheless, we still can obtain non-trivial energy-momentum tensor correlators, which

may carry distinct features of the particles produced. The lack of a Lagrangian formulation

of the general causal fields makes the task of obtaining an energy-momentum tensor, not

to mention its correlators, a non-trivial one.

In this section we postulate a form of the energy-momentum tensor of the general

causal fields. This tensor satisfies all the conditions of an energy-momentum tensor: it is

symmetric, conserved, and Lorentz covariant second rank tensor. We motivate the form

of this tensor by carefully constructing the corresponding one for s = 1
2 field with no

reference to a Lagrangian formulation. The idea is based on the observation that the

knowledge of the free-field Green’s function in a fixed background can be used to define

an effective action of the field. Then, by perturbing the background with appropriate

operators we can obtain the energy-momentum tensor as well as its second and higher

order correlators by taking a series of functional derivatives of the effective action with

respect to the background metric. In flat space, we find that the set of operators can be

determined exactly by requiring the existence of non-vanishing, conserved, and covariant

energy-momentum tensor. The same method can in principle be used to sort out the set

of allowed operators in curved background, modulo a non-trivial point regarding the non-

commutativity of covariant derivatives for spins s > 1
2 . In both cases (flat and curved

background), we find that the use of the analytical properties of the on-shell-time-ordered

Greens’ function, i.e., the on-shell Feynman propagator, is enough to determine the energy-

momentum tensor correlators that emerge due to production of the general causal fields

from vacuum.

We first apply our formalism to the massless case in flat background, where algebra is

the least cumbersome. Then, we show that the same formalism can be generalized to the

massive case and in curved background.

3.2 Massless fields

Given an action S[Φ,Φ†], where Φ is any complex field, e.g., the spin 1
2 field, then one

can write the path integral as (in the following we keep the spin index s general for later

convenience)

Z[J ] =

∫
D[Φ]D[Φ†]eiS[Φ,Φ†]+i

∫
d4x
√
−g(x)J(x)Φ(x)−i

∫
d4x
√
−g(x)J†(x)Φ†(x) , (3.1)

in the presence of an external current J . Physically, the partition function Z is the vacuum

persistence amplitude 〈Out, 0|0, In〉. The presence of an external current J can cause an

instability in the initial vacuum state |0, In〉 leading to particle production. In the absence

of currents in flat space we have |0, In〉 = |0,Out〉 = |0〉, and hence Z[0] = 〈0|0〉 = 1 and

no particle production can take place. However, particle production can occur in curved

spacetime since in general |0, In〉 6= |0,Out〉 even in the absence of external current [29].

Therefore, one can mimic the effect of curved spacetime by turning on an external current

in flat space and vise versa. We also define the effective action W as

Z[0] = 〈Out, 0|0, In〉 ≡ eiW . (3.2)

– 15 –



J
H
E
P
0
6
(
2
0
1
8
)
1
5
4

In fact, the effective action provides us with a valuable tool to compute the energy momen-

tum tensor and its correlators, as we will see in this section. This is particularly important

in our case because of the absence of a Lagrangian formulation for the general causal fields.

To this end we set J = 0 and examine the variation of (3.1) to find

δZ[0] = i

∫
D[Φ]D[Φ†]δSeiS = i〈Out, 0|δS|0, In〉 , (3.3)

from which one obtains

〈Out, 0|Tµν |0, In〉 = −i 2√
−g

δZ[0]

δgµν
. (3.4)

Finally, one can use (3.2) to find:

〈Tµν〉 ≡
〈Out, 0|Tµν |0, In〉
〈Out, 0|0, In〉

=
2√
−g

δW

δgµν
,

〈Tµν(x)Tαβ(y)〉 =
4√

−g(x)
√
−g(y)

δ2W

δgµν(x)δgαβ(y)
. (3.5)

The partition function of the free field Φ in a fixed curved background is given by

Z[0] =

∫
D[Φ]D[Φ†]ei

∫
d4x
√
−g(x)Φ†(x)[G−1(x,x′)]

x′→xΦ(x) . (3.6)

Since the integral over Φ is quadratic, it can be readily performed to obtain:

Z[0] = Det
[
G−1

](−1)2s+1

. (3.7)

Now, using (3.2) we find

W = −i(−1)2s+1Tr log
[
G−1

]
= −i(−1)2s+1

∫
d4x
√
−g(x)tr log

[
G−1(x, x′)

]
x′→x , (3.8)

where Tr denotes the trace over spacetime and Lorentz indices, while tr denotes the trace

over Lorentz indices only. Next, we consider a small perturbation in the background metric:

gµν = g0µν + δgµν , δ
√
−g =

1

2

√
−g0g

µν
0 δgµν , (3.9)

where g0µν is the unperturbed metric. The Green’s function responds to the perturbation

of g by acquiring an extra piece

G−1 = G−1
0 + δgµνOµν , (3.10)

where G0 is the unperturbed Green’s function and Oµν is the vertex operator that will

be determined in the next section. Using the cyclic property of the trace we have

tr log
[
G−1

]
= tr log

[
G−1

0 [I + δgµνOµνG0]
]
. Thus, we can write the effective action as

W = −i(−1)2s+1

∫
d4x
√
−(g0 + δg)

{
tr log

[
G−1

0

]
+ tr log [I + δgµνO

µνG0]
}
. (3.11)
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Expanding to second order in δgµν we obtain

W =−i(−1)2s+1

{∫
d4x
√
−g0(x)tr log

[
G−1

0 (x,x′)
]
x′→x

+

∫
d4x
√
−g0(x)δgµν(x)tr

[
Oµν(x)G0(x,x′)

]
x′→x

+
1

2

∫
d4x
√
−g0(x)gµν0 δgµν(x)

[
tr log

[
G−1

0

]
x′→x+tr

[
δgαβ(x)Oαβ(x)G0(x,x′)

]
x′→x

]
−1

2

∫
d4xd4y

√
−g0(x)

√
−g0(y)δgµν(x)δgαβ(y)tr

[
Oµν(x)G0(x,y)Oαβ(y)G0(y,x)

]}
.

(3.12)

Now, we use (3.5) to find the expectation value of the energy-momentum tensor of the

field Φ

〈Tµν〉 = −2i(−1)2s+1

{
tr
[
Oµν(x)G0(x, x′)

]
x′→x −

1

2
gµν0 tr log

[
G0(x, x′)

]
x′→x

}
. (3.13)

The effective action (3.8) is coordinate and Lorentz scalar (in the veirbien sense), and hence,

it is evident that the energy-momentum tensor is conserved; see [25] for the proof. Using

the same technology, we can also calculate the connected part of the energy-momentum

tensor correlator:

〈Tµν(x)Tαβ(y)〉c = 2i(−1)2s+1tr
[
Oµν(x)G0(x, y)Oαβ(y)G0(y, x)

]
. (3.14)

In the following we will be interested in the momentum-space energy-momentum ten-

sor correlator. To this end we assume that the spacetime admits SO(3) as an isometry

subgroup. Then, we can write the Green’s function in Fourier space as

G0(x, y) =

∫
d3p

(2π)3 e
ip·(x−y)G0(p, τx, τy) , (3.15)

where τ refers to either the cosmic or conformal time. We also use the fact that Oµν is

a differential operator, as we will show in section 4, and take the Fourier transform of

〈Tµν(x)Tαβ(y)〉c to find

〈Tµν(k, τx)Tαβ(k′, τy)〉c = 2i(−1)2s+1δ3
(
k + k′

) ∫
d3p tr

[
Oµν(p, τx)G0(p, τx, τy)

Oαβ(p− k, τy)G0(p− k, τy, τx)
]
. (3.16)

Equation (3.16) is one of our main results in this work.

The derivation of (3.13) and (3.14) was carried out for s = 1
2 field. The second rank

tensor in (3.13) satisfies all the criteria of an energy-momentum tensor: (a) it is a second

rank symmetric tensor and (b) it is conserved, i.e., ∇µTµν = 0. These criteria are also

satisfied had we replaced the spin 1
2 field with a field with an arbitrary spin; all we need

to do is to use the Green’s function of the corresponding field. Hence, in the absence of

a Lagrangian formulation of the general causal fields, we postulate equation (3.13) as the

definition of the energy-momentum tensor for any field with spin s ≥ 1
2 .

– 17 –



J
H
E
P
0
6
(
2
0
1
8
)
1
5
4

Postulate. The energy-momentum tensor and its two-point function of the general causal

fields are given by expressions (3.13) and (3.14) (or equivalently (3.16) for spaces with

SO(3) isometry), respectively. Generalizing (3.16) to multi-point functions is a straightfor-

ward task.

We will show that these expressions along with the analytic properties of G0(p−k,τy,τx)

is enough to determine the large scale correlators of the energy-momentum tensor due to

the production of particles from vacuum.

3.3 Massive fields

Turning on a mass for the fields does not change any of the above steps we followed to

derive the energy-momentum tensor and its correlators. Repeating the above procedure in

the massive case, where we use the Dirac representation (s, 0)⊕ (0, s), we find

〈Tµν〉 = −2i(−1)2s+1

{
TR
[
Oµν(x)G0(x, x′)

]
x′→x −

1

2
gµν0 TR log

[
G0(x, x′)

]
x′→x

}
, (3.17)

and

〈Tµν(k, τx)Tαβ(k′, τy)〉c = 2i(−1)2s+1δ3
(
k + k′

) ∫
d3p TR

[
Oµν(p, τx)G0(p, τx, τy)

Oαβ(p− k, τy)G0(p− k, τy, τx)
]
, (3.18)

where G0 and G0 in flat space are given by (2.36) and (2.37), respectively, and TR is the

trace over Dirac indices in the (s, 0)⊕ (0, s) representation.

4 Vertex operators

In the previous section we showed how one can construct the energy-momentum tensor,

and its correlators, of a free general causal field in a given background. However, this

construction forced us to introduce vertex operators Oµν that are yet to be determined.

This section is devoted to elucidate the method we use to construct the vertex operators,

which hinges on general considerations of Lorentz covariance. The general idea is that

Oµν is used to write the energy-momentum tensor via (3.13), and hence, we can use the

symmetries of this tensor to construct Oµν . The construction of the vertex operators in

flat space follows immediately from symmetry considerations of Tµν . The construction,

however, is more involved in curved background.

4.1 Flat space vertices: massless fields

The energy-momentum tensor has to obey the following obvious criteria: (1) it transforms

covariantly under Lorentz transformations, (2) it is conserved, and (3) it is symmetric in its

two indices. Therefore, the momentum-space expression of the energy-momentum tensor

of any on-shell massless particle in flat space has to take the form

〈Tµν(p2)〉 = f1(p2)pµpν − f2(p2)gµν . (4.1)
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In this section we use both the Greek µ, ν and Latin a, b letters to denote flat space

coordinates. Now, since we are dealing with on-shell massless particles we have p2 = 0,

and hence, f1(p2) and f2(p2) are at most constants: f1(p2) = f1, f2(p2) = f2. However,

conservation of Tµν , i.e., pµT
µν = 0, demands the vanishing of f2. Therefore, the energy-

momentum tensor, which takes the simple form,

〈Tµν(p2)〉 = fpµpν (4.2)

or its inverse Fourier transform

〈Tµν(x)〉 = f

∫
d3p

(2π)32|p|
eip·x−i|p|tpµpν (4.3)

will guide us in our search for the vertex operators in flat space.

The energy-momentum tensor defined via (3.13) should coincide with (4.3). Therefore,

we first demand that tr logG0 = 0, which can be achieved through appropriate renormal-

ization. Now, the trace of Oµν operating on G0 should reproduce ∼ pµpν after applying

Fourier transform. Recalling that G0 ∼ ta1a2...a2s and the fact ηa1a2t
a1a2...a2s = 0, etc. (see

section 2.4) forces the vertex to be an object that carries spinoral indices such that its

contraction with ta1a2...a2s gives a non-zero result. Also recalling the transformation laws

of ta1a2...a2s and t̄a1a2...a2s , see (2.40) and (2.41), along with the trace identity (2.44) leaves

us with the only choice that the vertex Oµν has to be proportional to the tensor t̄µa2...a2s

if we want the trace of OµνG0 to be covariant under the Lorentz transformation. This

completely fixes the form of the vertex operators modulo a p-dependent coefficient as we

show below. In order to elucidate the construction of Oµν we work out s = 1
2 and s = 1 as

two examples and then give the general form of Oµν .

First we consider s = 1
2 . The vertex operator takes the form5

O( 1
2) µν = −i

α 1
2

2
(t̄µ∂ν + t̄ν∂µ) . (4.4)

Then using the identity tr [t̄µtν ] = −gµν , we find from (3.13)

〈Tµν(x)〉 = 2iα 1
2

∫
d3p

(2π)3

eip·x−ix
0|p|

2|p|
pµpν , (4.5)

which takes the general form of the energy-momentum tensor for a massless field (4.3).

The vertex for s = 1 is

O(1) µν = − α1

2C1(�)
[t̄µρ∂ρ∂

ν + t̄νρ∂ρ∂
µ] . (4.6)

Using the (1, 0) Green’s function along with the identity tr
[
t̄µνtαβ

]
= −gµνgαβ+2gαµgνβ+

2gµβgνα we find

〈Tµν(x)〉 = −6iα1

∫
d3p

(2π)3

p2pµpν

2|p|C1(p2)
. (4.7)

5One might also want to add the term t̄a∂aη
µν to Oµν . However, upon taking the trace trOµνG0 we

find that this term gives p2 = 0. The same behavior occurs for higher s.

– 19 –



J
H
E
P
0
6
(
2
0
1
8
)
1
5
4

This expression is zero when considered on-shell. Hence, we set C1(p2) = −p2 or C1(�) = �
in order for the energy-momentum tensor to take its canonical form.

One can easily work out the general case to find

Cs(p
2) =

(
−p2

)2s−1
, Cs(�) = �2s−1 . (4.8)

Therefore, the vertex takes the general form

O(s) µν(x) =
(−i)2sαs
2Cs(�)

[
ηµa1η

ν
c t̄
a1a2...a2s∂a2∂a3 . . . ∂a2s∂

c + ηνa1η
µ
c t̄
a1a2...a2s∂a2∂a3 . . . ∂a2s∂

c
]
,

(4.9)

or in momentum space

O(s) µν(p) =
αs

2 (−p2)2s−1

[
ηµa1η

ν
c t̄
a1a2...a2spa2pa3 . . . pa2sp

c + ηνa1η
µ
c t̄
a1a2...a2spa2pa3 . . . pa2sp

c
]
,

(4.10)

where αs is a numerical coefficient that depends on the physics details. The appearance of

the non-locality Cs(�) for any s > 1
2 is signaling a singular behavior of the massless parti-

cles, which is going to hunt us back in calculating the energy-momentum tensor correlators.

4.2 Flat space vertices: massive fields

We follow the same procedure to construct the vertex operators in the massive case. In

particular, the most general on-shell energy-momentum tensor takes the form

〈Tµν(p2)〉 = f1p
µpν + f2η

µν , (4.11)

and the conservation law pµT
µν = 0 gives us a non-trivial relation between f1 and f2.

As we discussed before, we make use of the Dirac’s representation to deal with the

massive case. There are 5 vertex operators that can contribute to Oµν . They can be

grouped into diagonal and off diagonal operators:6

diagonal

{
Vµν1 = ηµνm2 ,

Vµν2 = pµpν ,

off diagonal


Vµν3 = (−1)2s

m2s−2 p
(µγν)a2...a2spa2 . . . pa2s ,

Vµν4 = 1
m2s−2 η

µνγa1a2...a2spa1pa2 . . . pa2s ,

Vµν5 = (−1)2s pµpν

m2s γ
a1...a2spa1 . . . pa2s .

(4.12)

Among these operators, V2 and V5 are power counting suppressed and we neglect them

in our treatment. In addition, one can trade V4 for V1 using the generalized Dirac’s

equation (2.30). Thus, the most general form of OµνM, where the subscript M is used

6We restrict our treatment to parity conserving operators. At the end of section 5 we comment on the

fact that turning on parity violating operators and/or the over production of left over right fields (or vice

versa) will lead to helical structure in the energy-momentum tensor correlators.
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to indicate that these vertices correspond to massive particles, that yields a symmetric and

conserved energy momentum tensor takes the form

O(s) µν
M (p) =

αs
(S)2s−1

[
(−1)2sp(µγν)a2...a2spa2 . . . pa2s + Csm2sηµνI(4s+2)×(4s+2)

]
, (4.13)

where Cs is a constant that we will determine momentarily, and S is some scale that has

the dimension of mass square. In what follows we take S = m2 for simplicity. Using (3.17)

we find

〈Tµν(x)〉 = i
αs

(m2)2s−1

∫
d3p

(2π)32ω(p)
eip·x−iω(p)tTR

[
K11 K12

K21 K22

]
, (4.14)

where

K11 = tc1...c2spc1 . . . pc2sp
(µt̄ν)d2...d2spd2 . . . pd2s +m4sCsηµνI(2s+1)×(2s+1) ,

K12 = (−1)2sCsm2stc1...c2spc1 . . . pc2sη
µν + (−1)2sm2sp(µt̄ν)d2...d2spd2 . . . pd2s . (4.15)

The expressions of K22 and K21 are obtained from K11 and K12, receptively, by replacing

t by t̄ and exchanging the positions of t and t̄. Then, taking the trace we find

〈Tµν(p)〉 = 2i
αs

(m2)2s−1

{
tr
[
tc1...c2spc1 . . . pc2sp

(µt̄ν)d2...d2spd2 . . . pd2s

]
+ (2s+ 1)m4sCsηµν

}
.

(4.16)

Finally the value of Cs is determined by requiring the conservation of the energy-momentum

tensor: pµT
µν = 0. For example C1/2 = −1/2 and C1 = −1. In fact, we will be interested

only in the transverse traceless part of Tµν , and therefore, the term m2sηµνI(4s+2)×(4s+2)

in O(s)µν
M can be safely neglected in our treatment.

4.3 Curved space vertices

Motivated by the vertex structure in flat space, we write the vertex of the massless fields

in curved space as:

O(s) µν = αs
(−i)2s

2Cs(�)

[
V µ
a1V

ν
c + V ν

a1V
µ
c

]
t̄a1a2...a2sJDa2Da3 . . . Da2sD

cK , (4.17)

where the brackets J K indicate total symmetrization of the covariant derivatives:

J(Da2Da3 . . . Da2sD
cK =

∑
permutations

Dap1
. . . Dc . . . Dap2s

. (4.18)

This symmetrization is dedicated by the symmetric nature of t̄a1a2...a2s . The hope is that

this symmetric definition will yield physical answers. Notice that unlike the flat back-

ground, the nonlocal operators Cs(�) might not lead to singular behavior. The treatment

of massive fields in curved space follows the same lines and we refrain from discussing

them further here. The investigation of all these points will be left for a future work. In

section 5.3 we use the curved space vertex of spin 1/2 to calculate the energy-momentum

tensor correlator in FRW background as a check on our formalism.
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Figure 1. The structure of the two-point function of the energy-momentum tensor. The time flows

from left, τy, to right, τx.

5 Structure of the energy-momentum tensor correlator

In the previous section we constructed the on-shell vertex operators required to compute

the energy-momentum tensor and its correlators. Now, we are in a position to proceed

to these computations. The analytic structure of the correlator is dictated by the time-

ordered Green’s function (2.24), i.e., the Feynman propagator.7 In particular, one has to

exercise caution in determining which part of the Green’s function to pick, which depends

on whether τx > τy or vise versa, as we go from left to right in (3.16) and (3.18). Assuming

that τx > τy we pick a factor of (−1)2s from the second Green’s function which cancels out

with the same factor coming from the effective action. This intricate process is depicted

in figure 1. Finally, the energy-momentum tensor correlator for the left-handed massless

fields reads

〈Tµν(k, τx)Tαβ(k′, τy)〉c =−2iδ3
(
k+k′

)∫ d3p

4|p||p−k|

tr
[
O(s) µν(p, τx)Π̂(p0,p)u(p, τx)u∗(p, τy) (5.1)

O(s) αβ(p−k, τy)Π̂(p0−k0,k−p)v∗(k−p, τx)v(k−p, τy)
]
,

where Π̂(p0 − k0,k − p) should be understood as the polarization tensor obtained by a

rotation by some angle θ, about a reference axis, to the light-like vector p−k (as usual, we

take the reference axis to be the z-axis). The correlator of the massless right-handed fields

can be obtained by replacing Π with Π̄ and O(s) µν with Ō(s) µν (this demands replacing

7Once again, we stress that all our computations are done on-shell as we are interested in the on-shell

contribution of the particles produced from vacuum to the energy-momentum tensor.
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t̄ with t in O(s) µν). A similar procedure leads to the correlator of massive fields:

〈Tµν(k, τx)Tαβ(k′, τy)〉c = −2iδ3(k + k′)

∫
d3p

4ω(p)ω(p− k)

TR

{
O(s) µν
M (p, τx)

[
m2sI Π(p0,p)

Π̄(p0,p) m2sI

]
U(p, τx)U∗(p, τy)

× O(s) µν
M (p− k, τy)

[
m2sI Π((k − p)0,k − p)

Π̄((k − p)0,k − p) m2sI

]

× V∗(k − p, τx)V(k − p, τy)

}
, (5.2)

where we have used a condensed notation such that U and V can denote any of the Ξ

functions defined in (2.63). The explicit form of U and V will not concern us in the present

work since we limit our examination to the flat space correlators (massive and massless), in

addition to s = 1
2 massless case in FRW background. Both correlators (5.1) and (5.2) are

valid in a general background, keeping in mind that the construction of O(s) µν in curved

space is yet to be resolved for s > 1
2 . It is remarkable that the structure of (5.1) and (5.2)

is solely dependent on the principles of covariance and analyticity, bearing no reference to

a specific particle physics model.

Now, we can project the energy-momentum tensor correlator along the helicity-2 eigen-

basis defined as [30]

ελµν(k) = ελµ(k)ελν (k) , (5.3)

where λ = ±, ε±0 (k) = 0, and

ε±µ (k) =
θ̂ ± iφ̂√

2
, θ̂ = (cos θ cosφ, cos θ sinφ,− sin θ) , φ̂ = (− sinφ, cosφ, 0) . (5.4)

This projection has two-fold importance. First, it enables us to find out whether the

energy-momentum tensor correlators are parity violating. This can happen if the particle

production process prefers one field type (left or right) over the other. Second, it can

provide a succinct method to check the unitarity of the theory as we explain below. To

this end, we define the amplitude Mλ ,λ′ as

Mλ ,λ′(τx, τy) ≡ i〈T λ(k, τx)T λ
′
(−k, τy)〉c , (5.5)

where

T λ(k, τx) = ε−λµν (k)Tµν(k, τx) , (5.6)

which measures the amount of correlation projected along the two polarization directions.

By definition the quantities T+(k, τx)T+(−k, τx) and T−(k, τx)T−(−k, τx) (computed

at the same time point) are positive definite, which can be easily shown using the reality

of Tµν(x, τx) and properties of εµ(k). Therefore, a unitary theory has to yield positive

definite correlators 〈T+(k, τx)T+(−k, τx)〉c and 〈T−(k, τx)T−(−k, τx)〉c, which can readily

be checked from (5.1) or (5.2) along with (5.5).
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5.1 Flat space energy-momentum tensor correlators: massless fields

The calculations of the energy-momentum tensor correlator in flat space proceed by start-

ing from the Green’s function in flat space, keeping in mind that we are interested in

the contribution to the correlator from on-shell left handed particles (s, 0). The on-shell

condition means that we have to replace every p0 by |p| since we are dealing with mass-

less particles. This is particularly important when we operate with Oµν on the Green’s

functions in (3.16). The flat space Green’s function takes the form

G0(x, x′) =

∫
d3p

(2π)3
(2|p|)2s−1 eip·(x−x

′)−i|p||t−t′|G(p, t, t′) , (5.7)

where

G(p, t, t′) =

{
Π̂(p̂) , t > t′

(−1)2sΠ̂(−p̂) , t < t′
. (5.8)

Operating with Oµν we find

Oµν(x)G0(x, x′) = (−1)2s−1αs

∫
d3p

(2π)3

22s−1|p|
[n2(p)]2s−1n

(ν(p)t̄µ)a2...a2sna2(p) . . . na2s(p)

× eip·(x−x′)−i|p||t−t′|G(p, t, t′) , (5.9)

where n(p) ≡
(

1, p
|p|

)
is a null vector.

Collecting everything and substituting into (5.1) we obtain

〈Tµν(k, tx)Tαβ(k′, ty)〉c =
−i
2
α2
s

(
k + k′

) ∫
d3p eiϑ(p,k,tx,ty) |p||p− k|

[n2(p)]2s−1 [n2(p− k)]2s−1

× tr
{
na2(p) . . . na2s(p)n(µ(p)t̄ν)a2...a2snc1(p) . . . nc2s(p)tc1...c2s

×nb2(p− k) . . . nb2s(p− k)n(α(p− k)t̄β)b2...b2s

×nd1(k − p) . . . nd2s(k − p)td1...d2s
}
, (5.10)

where the phase ϑ is given by

ϑ(p,k, tx, ty) = (|p|+ |p− k|) (ty − tx) . (5.11)

For s > 1
2 the correlator has the highly singular piece

[
n2(p)

]2s−1 [
n2(p− k)

]2s−1
in the

denominator. Thus, we expect pathologies for fields with spin s > 1
2 .

Case I: s = 1
2
. Using the explicit expressions of n(p), n(p− k), ελµ(k), and substituting

into (5.5) and (5.10) we obtain for the left-handed fields

Mλ ,λ′(tx, ty) =
1

2
α2

1/2δ
λλ′δ3

(
k + k′

) ∫
d3p eiϑ(p,k,tx,ty)|p|2 sin2 θ

×
(

1 +
λ+ λ′

2
cos θ

)(
1 +

λ+ λ′

2

|p| cos θ − k√
k2 + |p|2 − 2k|p| cos θ

)
. (5.12)
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Similarly, the contribution from the right-handed fields is

Mλ ,λ′(tx, ty) =
1

2
α2

1/2δ
λλ′δ3

(
k + k′

) ∫
d3p eiϑ(p,k,tx,ty)|p|2 sin2 θ

×
(

1− λ+ λ′

2
cos θ

)(
1− λ+ λ′

2

|p| cos θ − k√
k2 + |p|2 − 2k|p| cos θ

)
. (5.13)

This exactly matches the results in [2], which were obtained using canonical quantization

methods.

Case II: s ≥ 1. In this case we find that there is a highly singular piece in the denom-

inator that causes the integrand in (5.10) to blow up. Thus, we conclude that either the

energy momentum tensor of general causal fields with spin s ≥ 1 vanishes identically or

there cannot be a consistent description of these fields in flat space. In fact, Weinberg-

Witten theorem excludes massless higher spin fields with s ≥ 2 that admit Lorentz covariant

energy-momentum tensor [16]. Our finding that massless general causal fields with s ≥ 2

are sick is consistent with Weinberg-Witten theorem since the energy-momentum tensor

we postulated in (3.13) is Lorentz covariant. However, we also find that fields with s = 1

are sick in the general causal formalism, which is attributed to the non-local nature of the

energy momentum tensor, see (4.6). We could have anticipated this result since the ampli-

tude for emitting or absorbing a massless particle with momentum |p| and spin s vanishes

like |p|s−
1
2 , as can be seen from (2.19). In fact, massless general causal fields cannot be

used to build theories that describe long-range forces, as electromagnetism and gravity [31]

(see also [32]). Instead, a massless spin s particle can be described by the symmetric po-

tential Aµ1µ2...µs , which transforms as ( s2 ,
s
2) under the Lorentz group. This is the direct

generalization of the electromagnetic potential Aµ and the metric tensor hµν to higher spin

fields. Such treatment has occupied a large portion of the literature on higher spin fields,

and we refer the reader to [15] for an excellent review.

5.2 Flat space energy-momentum tensor correlators: massive fields

Despite the fact that massless fields are pathological in our formalism, massive fields are

well behaved as we explain in this section. Let us define Πµν(p0,p) and Π̄µν(p0,p) as

Πµν(p0,p) = p(µtν)a2...a2spa2 . . . pa2s , Π̄µν(p0,p) = p(µt̄ν)a2...a2spa2 . . . pa2s . (5.14)

Then, using (3.18) we obtain

〈Tµν(k, tx)Tαβ(k′, ty)〉c =
−i
2
α2
sm

4−8sδ3(k + k′)

∫
d3p

ω(p)ω(p− k)
eiϑ(p,k,tx,ty)

TR

{[
0 Πµν(p0,p)

Π̄µν(p0,p) 0

][
m2sI Π(p0,p)

Π̄(p0,p) m2sI

]

×

[
0 Παβ((p− k)0,p− k)

Π̄αβ((p− k)0,p− k) 0

]

×

[
m2sI Π((k − p)0,k − p)

Π̄((k − p)0,k − p) m2sI

]}
. (5.15)
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The trace is over the Dirac indices in the representation (s, 0) ⊕ (0, s). Expression (5.15)

is one of the main results in this work. One then can project (5.15) along the polarization

tensors to obtain the amplitude Mλλ′ as in (5.5). Since both fields, the left and right

handed, are present, we expect to have M++ =M−−.

We can perform the matrix multiplication and take the Dirac traces of (5.15) to find

〈Tµν(k, tx)Tαβ(k′, ty)〉c =
−i
2
α2
sm

4−8sδ3(k + k′)

∫
d3p

ω(p)ω(p− k)
eiϑ(p,k,tx,ty)

×
(
Zµν;αβ
L + Zµν;αβ

R

)
, (5.16)

where

Zµν;αβ
L = Πµν(p0,p)Π̄(p0,p)Παβ((p− k)0,p− k)Π̄((k − p)0,k − p)

+m4sΠµν(p0,p)Π̄αβ(p0 − k0,p− k) , (5.17)

Zµν;αβ
R = Π̄µν(p0,p)Π(p0,p)Π̄αβ((p− k)0,p− k)Π((k − p)0,k − p)

+m4sΠ̄µν(p0,p)Παβ(p0 − k0,p− k) . (5.18)

In the following, we consider s = 1
2 and s = 1 as examples for the massive case. The

computations for any s ≥ 2 are extremely painful due to the cumbersome algebra of the t

matrices, and we feel that it is necessary to develop group theoretical tricks to deal with

such cases. This task will be left for a future investigation.

Case I: s = 1
2
. The projection of the energy-momentum tensor correlator along the

polarization eigenbases yields

Mλ ,λ′(tx, ty) = α2
1/2δ

λλ′δ3(k + k′)

∫
d3peiϑ(p,k,tx,ty)

× |p|2 sin2 θ

[
1 +

|p| cos θ (|p| cos θ − k)−m2√
(m2 + |p|2) (m2 + |p|2 + k2 − 2|p|k cos θ)

]
. (5.19)

In the m = 0 limit, it is trivial to see that (5.19) is the sum of the contributions from

left-handed (5.12) and right-handed (5.13) fields.

Case II: s = 1. In this case we find

Mλ,λ′(tx, ty) =
α2

1

2m4
δλλ

′
δ3(k+k′)

∫
d3peiϑ(p,k,tx,ty)m

2|p|2

Γ
sin2 θ

×
{

14k2|p|2+7m2|p|2+3|p|4+8k2Γ+4|p|2Γ

− k|p|cosθ
(
8k2+8m2+19|p|2+16Γ

)
+|p|2 cos(2θ)

(
10k2+m2+4|p|2+4Γ

)
− 5k|p|3 cos(3θ)+|p|4 cos(4θ)

}
, (5.20)

where

Γ =
√

(m2 + |p|2) (m2 + |p|2 + k2 − 2k|p| cos θ) . (5.21)
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Now a few points are in order:

1. One should refrain from comparing the result (5.20) with massive electrodynamics.

First, the later theory is based on the representation ( 1
2 ,

1
2) and uses the gauge po-

tential Aµ instead of the physical fields. The ( 1
2 ,

1
2) representation contains s = 1

and s = 0 spin fields and one needs to isolate the s = 1 component by applying the

constraint ∂µAµ = 0. This is in contrast with the (1, 0) ⊕ (0, 1) causal field con-

struction.8 Second, one needs to bear in mind that the energy momentum tensor of

massive electrodynamics (derived from Proca Lagrangian) is different from the one

adopted in this work and given by (3.13).

2. It is easy to check that 〈T−(k)T−(−k)〉 > 0 and 〈T+(k)T+(−k)〉 > 0 for both s = 1
2

and s = 1, and therefore, our theory respects unitarity in the checked cases. Even-

though one could have expected the s = 1
2 theory to be unitary, the higher spin case

is far from obvious.

3. Since both fields (0, 1) and (1, 0) are present on equal footing, we have 〈T−(k)T−(−k)〉
= 〈T+(k)T+(−k)〉. This is attributed to the fact that both the left (5.17) and

right (5.18) amplitudes enter the calculations of Mλ ,λ′ with the same weight. In

principle, one could imagine a mechanism9 that prefers the left over the right compo-

nent, or vice versa. In this case the sum
(
Zµν;αβ
L + Zµν;αβ

R

)
in (5.16) is replaced by

the weighted sum
(
WLZµν;αβ

L +WRZµν;αβ
R

)
, where WL,R is the left(right) weight.

Thus, we conclude that in general 〈T−(k)T−(−k)〉 6= 〈T+(k)T+(−k)〉. Such signal

violates the macroscopic parity symmetry [36, 37].

5.3 Energy-momentum tensor correlators in curved space: massless

s = 1
2

field

In the remaining of this section we calculate the energy-momentum tensor in FRW back-

ground for the massless s = 1
2 field. The energy-momentum tensor correlator is

〈Tµν(x)Tαβ(y)〉 = 2i〈Oµν(x)G0(x, y)Oαβ(y)G0(y, x)〉 , (5.22)

where Oµν is given by (4.17). To compute this correlator, we first consider the quantity

DaG0, which appears from the action of the vertex on G0. Recalling that the Green’s

function is a bispinor with indices G0
MN such that M,N = −1/2, 1/2, we have

DaG0
NM = ηabV ρ

b

[
∂ρδ

P
N + (Γρ)

P
N

]
G0
PM . (5.23)

As we pointed out in section 2.5, the best strategy to compute this quantity in de Sitter

background is to perform the Weyl transformation ηµν → ḡµν = ηµνΩ2, Ω = 1
Hτ . After

some algebra we find

D̄aG0
NM = Ω−1

[
∂aδPN − (Ω)−1 (T 0a

)P
N

Ω,0

]
G0
PM , (5.24)

8It was also shown in [26] that the conformal anomalies of (1, 0) and ( 1
2
, 1
2
) fields are different.

9For example, coupling to axions can lead to the preference of one component over the other [33–35]. A

similar effect can be obtained by turning on parity-violating operators.
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where T 0a = σa are the Lorentz generators of s = 1/2 representation. Taking this into

account, we obtain

ŌijMNG
0
PN =

i

2
Ω−3

[(
σiMN∂

j + σjMN∂
i
)
G0
PN +

δij

τ
G0
PM

]
, (5.25)

where we limited our computation to the spatial components of Oij since these are the only

components that survive after projecting the energy-momentum tensor along the helicity

eigenstates. After straightforward algebra we find

Mλ,λ′(τx, τy) = 2α1/2Ω−3(τx)Ω−3(τy)δ
3(k + k′)

∫
d3p

(2π)3
p · ε(k)p · ε(−k)nc(p)nd(k − p)

× ελi (k)ελl (−k)tr
[
σiσcσlσd

]
u∗(p, τx)u(p, τy)v

∗(p− k, τy)v(p− k, τx) .

After taking the trace we finally obtain

Mλ,λ′(τx, τy) = 2α1/2Ω−3(τx)Ω−3(τy)δ
3(k + k′)

∫
d3p

(2π)3
|p|2 sin2 θ

× u∗(p, τx)u(p, τy)v
∗(p− k, τy)v(p− k, τx)

×
(

1− λ+ λ′

2
cos θ

)(
1− λ+ λ′

2

|p| cos θ − k√
k2 + |p|2 − 2k|p| cos θ

)
, (5.26)

which exactly matches the result obtained previously in [2] via canonical quantization

methods.

6 Comments on the gravitational wave spectrum

In the previous sections we determined the form of the energy-momentum tensor correlator,

Mλλ′ , for a general causal field with spin s. Given Mλλ′ , we now can calculate the metric

tensor correlator, and hence, the gravitational waves (GW) power spectrum. This is a

standard procedure that can be found in various places in the literature, see e.g., [2, 3].

However, we choose to review it here for the sake of completeness. To this end, we write

the full metric as gµν=a2(τ) (ηµν + hµν), where the background is taken to be FRW and

a(τ) is the scale factor. After gauge fixing, the linearized equations of motion for the tensor

perturbations hµν are

(
∂2
τ + 2H∂τ −∇2

)
hµν(x, τ) =

2

m2
p

Tµν(x, τ) , (6.1)

where H = da
adτ is the conformal Hubble parameter and mp is the reduced Planck mass.

One can also take the spatial Fourier transform of the above equation to obtain

(
∂2
τ + 2H∂τ + k2

)
hµν(k, τ) =

2

m2
p

Tµν(k, τ) . (6.2)
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The gravitational perturbations hµν can be expressed in terms of the two circular helicity

modes h± as

hµν(k, τ) =
∑
λ=±

εµλ(k)ενλ(k)hλ(k, τ) . (6.3)

This decomposition is consistent with the transverse and traceless conditions h00 = h0i =

hii = hii,j = 0, and hence, it projects only the physical degrees of freedom. One then

uses the projection operator Πµν,αβ(k) = Pµα(k)Pνβ(k) − 1
2Pµν(k)Pαβ(k) along with the

identity εµνλ (k) Π αβ
µν (k) = εαβλ (k) to project out the physical components of the tensor

perturbations hλ=±. Finally, we find that the equation of motion of hλ=± reads(
∂2
τ + 2H∂τ + k2

)
hλ(k, τ) =

1

m2
p

εµν−λ(k) Tµν(k, τ) . (6.4)

The solution of (6.4) is given by

hλ(k, τ) = hhom
λ (k, τ) +

2

m2
p

∫
dτ ′Gk(τ, τ

′) εµν−λ(k) Tµν(k, τ ′) , (6.5)

where hhom
λ (k, τ) is the homogeneous solution of (6.4) and Gk(τ, τ

′) is the retarded Green’s

function of the differential operator on the left hand side of (6.4), i.e.,(
∂2
τ + 2H∂τ + k2

)
Gk(τ, τ

′) = δ(τ − τ ′) . (6.6)

Finally, with the aid of definition (5.5), the correlator 〈hλ(k, τ)hλ′(k, τ)〉 is given by the

expression:

〈hλ(k, τ)hλ′(k
′, τ)〉 = −i 4

m4
p

δ(k − k′)
∫
dτ ′τ ′′Gk(τ, τ

′)Gk′(τ, τ
′′) Mλλ′(τ ′, τ ′′) . (6.7)

Expression (6.7) gives the GW spectrum in terms of a complicated functionMλλ′(τ ′,τ ′′).

Irrespective of these complications, the conformal symmetry of de Sitter space is sufficient

to determine the GW correlators. For a Hubble parameter much larger than the particle

mass, H � m, the general form of the GW correlators take the form

〈h−(k, τ)h−(k, τ)〉 ∼=
H2

π2m2
p

[
1 +N1

H2

m2
p

(
k

k0

)n−]
,

〈h+(k, τ)h+(k, τ)〉 ∼=
H2

π2m2
p

[
1 +N2

H2

m2
p

(
k

k0

)n+
]
, (6.8)

where the first term is the vacuum contribution (the homogeneous term), N1(2) are

left (right) coefficients, k0 is a reference wavevector, and n± are exponents that quan-

tify the deviation from an exact scale invariance. In a quasi de Sitter space we expect

to have |n±| � 1. In addition, any imbalance between the production of (s, 0) and (0, s)

fields translates into N1 6= N2. Therefore, an observation of parity violation in the primor-

dial GW power spectrum, i.e., 〈h−(k, τ)h−(k, τ) 6= 〈h+(k, τ)h+(k, τ)〉, will point to parity

violating physics in the early Universe. The coefficients N1,2 are proportional to αs that
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appears in the vertex operator (4.13). Although in this work we do not give a detailed

particle physics model that explains the origin of αs, we expect on general grounds that a

sufficient mechanism can produce higher spin bosonic fields from vacuum with an effective

αs � 1. On the other hand, the production of fermionic higher spin fields from vacuum

yields αs ∼ 1, which is a result of the Pauli exclusion principle.

7 Discussion

Higher spin fields remains one of the most challenging topics in physics. In particular,

their coupling to gravity or electromagnetism has proven to be a highly non-trivial task.

Over the past few years there has been a noticeable progress toward a better understanding

of higher spin fields, their interactions, as well as their behavior in external background

fields, see [38–45] for a non-comprehensive list of references. In this work we argued that

irrespective of these difficulties, general principles of Poincaré covrainace and analaticity

of the Green’s functions are enough to dictate the form of the energy-momentum tensor

correlators and to conclude that the production of massive higher spin fields from vac-

uum is accompanied by large-scale signals that can be printed in the Cosmic Microwave

Background (CMB) or detected in terrestrial or space-based gravitational wave interfer-

ometry (GWI) [46].

The explicit form of the energy-momentum tensor correlator depends on the formalism

used to describe the higher spin particles. There are two main methods in the literature

that are used to describe fields with spin s ≥ 1
2 : the Fronsdal construction, which is based

on the (s, s) symmetric representation, and the general causal (Weinberg-type) fields that

transform under (s, 0), (0, s), or (s, 0) ⊕ (0, s). In this work we chose to use the latter

formalism as it provides a shortcut way to make our points explicit and avoid the hassle of

introducing spurious degrees of freedom and/or auxiliary fields. Weinberg-type fields are

physical, and therefore, no question of inconsistencies or ghosts can appear. The lack of a

Lagrangian formulation of these fields forced us to postulate an energy-momentum tensor.

Its form is inspired by the transformation properties under the Poincaré group.

The fact that we can infer most information about the energy-momentum tensor cor-

relators from general considerations of Poincaré group and analytic structure of Green’s

function may sound puzzling. Here, we provide an argument that elucidates this observa-

tion. The traditional method of computing field theory correlators in cosmology is to start

from the Bunch-Davies vacuum |0〉a and then evolve the field theory operators using the

Bogoliubov transformation. Let {ai, a†i} be a set of annihilation and creation operators,

such that the operators {ai} annihilate the vacuum: ai|0〉a = 0. In the presence of a time

varying background the set {ai, a†i} evolves into a new set of operators {bi, b†i}. The latter

ones are linear combinations of {ai, a†i}. Therefore, an energy-momentum tensor corre-

lator of the form 〈0|
∑

ijkl

(
Ciai + C∗i a

†
i

)(
Cjaj + C∗j a

†
j

)(
Ckak + C∗ka

†
k

)(
Clal + C∗l a

†
l

)
|0〉a,

which is vanishing in the Bunch-Davies vacuum, will evolve into the correlator

α〈0|
∑

ijkl

(
Cibi + C∗i b

†
i

)(
Cjbj + C∗j b

†
j

)(
Ckbk + C∗kb

†
k

)(
Clbl + C∗l b

†
l

)
|0〉a, which is not zero.

Now, one can immediately see that the final product is a collection of correlators of the

form 〈0|b†ibj |0〉a, which are nothing but Green’s functions of on-shell particles. Therefore,
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all information about the energy-momentum tensor correlators are encoded in the analytic

structure of Green’s functions. The coefficients {Ci} are group theoretical constants that

depend on the specific representation at hand, while α is some number that depends on

the specifics of the physical process that lead to the particle production, e.g., parametric

resonance. This is O(1) number for fermions, thanks to the Pauli-blocking. However, one

can have α � 1 for bosonic fields. Thus, one expects that an abundant production of

higher spin bosons can leave an “in principle detectable” imprint on the CMB or GWI.

Another question concerns the parity symmetry of the Universe. We have shown in this

work that any mechanism that causes an imbalance between the on-shell production of (s, 0)

and (0, s) fields leads to imbalance between the left- and right-handed energy momentum

correlators, 〈T−(k)T−(−k)〉 6= 〈T+(k)T+(−k)〉, and hence, a violation of the macroscopic

parity symmetry. This generalizes the previous observation that the production of fermions

with a definite helicity is accompanied by the generation of chiral gravitational waves [2].

General causal fields is useful as a proof of concept for a few ideas that we discussed in

this work. However, we found that this formalism is not suitable to study the production

of massless fields in flat space. In addition, one needs to deal with cumbersome algebra

for s > 1. There are also difficulties regarding the ordering of the covariant derivatives in

curved background. All these questions call for more investigations of the production of

higher spin fields in a cosmological context, either using the general causal field recipe or

by other means.
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