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Abstract

A new extended isogeometric boundary element method (XIGABEM) formulation is proposed for
simulating multiple fatigue crack propagation in two-dimensional domains. The classical use of
NURBS in isogeometric formulations is further extended by repeated knot insertion to introduce a
C−1 continuity within the approximation space as an elegant approach to representing geometrical
discontinuities at crack intersections. This strategy is also used to restrict the enrichment term
to the portion of the NURBS defining the tip, where it is necessary. At this near-tip zone, the
linear elastic fracture mechanics solutions are embedded into the displacement approximation to
represent the theoretical square root behaviour. The enrichment procedure introduces just two
degrees of freedom per crack tip, and a tying constraint is used to yield a square linear system. In
this direct approach, the stress intensity factors (SIFs) are found as terms in the solution vector
without requiring post-processing techniques.

Several examples are presented to illustrate the application of the XIGABEM. The accur-
acy of the results compares favourably against those from the literature, and also against solutions
obtained from unenriched and enriched indirect methods that employ the J-integral for SIF extrac-
tion. Furthermore, the proposed direct approach is capable of significantly reducing the execution
time.
Keywords: Extended isogeometric boundary element method, Isogeometric analysis, NURBS,
Enriched formulations, Linear elastic fracture mechanics, Fatigue crack growth

1. Introduction

Since the seminal paper of Hughes et al. [1], the isogeometric analysis (IGA) concepts have been
extensively embedded in different numerical methods for applications in several fields. In IGA, the
same functions employed by computer-aided design (CAD) packages are used for both accurate
geometry description and approximation of the unknown quantities. One of the advantages of this
approach over the conventional polynomial-based formulations is the remarkable reduction of effort
for the mesh generation process since the discretisation is provided directly by the CAD model.
This is particularly beneficial for industrial applications, in which the mesh generation can take
up to 80% of overall analysis time [1, 2]. Moreover, the basis functions adopted by IGA facilitate
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the refinement process using knot insertion or degree elevation without changing the geometry or
its parametrisation.

Engineering components are commonly expressed in CAD systems in the form of surface models
or boundary representations. Therefore, the coupling between IGA and domain-based methods,
such as the finite element method (FEM) [2–9], requires the definition of an additional paramet-
risation direction to define the domain discretisation, which can be a quite complex task [10]. Al-
ternatively, boundary-based numerical techniques, such as the boundary element method (BEM),
provide a more natural and direct link between CAD models and numerical analysis since both
formulations deal with quantities solely on the boundary. Early application of IGA into the BEM
was made by Politis et al. [11], in which an exterior planar Neumann problem was analysed. Later,
Simpson et al. [12, 13] introduced the fundamentals and implementation aspects of IGA for elasto-
static BEM. In these works, the term IGABEM was coined for the numerical approach. The use of
the IGABEM has since expanded, and the method has been applied to several problems involving
geomechanics [14, 15], acoustics [16–18], shape optimization [19–21], potential flow [22, 23], heat
transfer [24] and fracture [25–28]. Additionally, studies concerning the accurate evaluation of the
singular and near-singular integrals arising in IGABEM can be found in [29–31].

When dealing with linear-elastic crack problems, the IGA basis functions are not themselves
capable of accurately representing the mechanical behaviour in the singular zone near the crack
tips. This drawback can be overcome with an enrichment strategy, in which the displacement
approximation is augmented with functions based on the analytical near-tip solution [32–34]. The
development of numerical methods combining the benefits of extended and isogeometric analysis
(XIGA) has received much attention, especially in the FEM framework [35–39]. Meanwhile, the
use of XIGA in the BEM context - resulting in the XIGABEM, also denoted as XIBEM in the
literature - is still incipient. The first applications of XIGABEM were reported by Peake et al.
[40, 41], in which 2D and 3D Helmholtz problems were analysed. Regarding crack problems, Peng
et al. [42] adopted a crack tip enrichment based on the partition of unity (PU) similar to the
approach used by Simpson and Trevelyan [43] in an extended BEM (XBEM) formulation. Some
shortcomings of PU-based enrichment are the number of additional degrees of freedom and the
ill-conditioning of the resulting system of equations. Also, new collocation points are required to
retrieve a square system of equations, and the optimal location of these points is not clear.

Noting that the additional degrees of freedom in the PU-based enrichment for XBEM are all
proxies for the SIFs, an alternative was proposed by Simpson and Trevelyan [44], in which the
displacement approximation was augmented in a similar fashion to the early work of Benzley [45].
In this strategy, the number of additional degrees of freedom introduced by the enrichment is
limited to two per tip for planar problems. Including a crack tip tying constraint in this approach,
Alatawi and Trevelyan [46] were able to accommodate the additional degrees of freedom without
additional collocation points, and also showed how the SIFs could be obtained directly from the
system of equations with sufficient accuracy. This later feature is particularly beneficial in bound-
ary element formulations, since indirect approaches for computing the SIFs, such as the J-integral
[47], are computationally costly due to the need for evaluating internal fields. Notwithstanding this
additional cost, the enrichment strategy can also be combined with post-processing techniques to
markedly improve the accuracy of computed SIF values for cases in which highly accurate solutions
are required [46, 48].

In this paper, we develop an XIGABEM formulation for the direct evaluation of SIFs. A
propagation scheme considering the enriched approach is also proposed for the analysis of fatigue
crack growth in two-dimensional bodies. As is usual in IGA formulations, non-uniform rational
B-splines (NURBS) basis functions are applied. The higher-order continuity provided by NURBS
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facilitates the definition of collocation points on the crack with the required continuity for the
existence of the finite part integrals presented in the dual boundary element formulation [49, 50]
adopted here. For crack propagation analysis, the new crack surfaces are created from the exten-
sion of existing NURBS. A C−1 continuity for the rational basis is enforced between the new and
old surfaces to limit the enrichment term to the portion near the crack tip, where it is necessary.
The availability of C−1 continuity is also elegantly exploited to represent the geometrical discon-
tinuity in elements intersected by cracks simply by inserting the required knots. Therefore, the
description of the NURBS is maintained and the use of more elaborate strategies for introducing
the discontinuity, such as an enrichment based on the Heaviside function, can be dismissed. Two
sets of examples are presented to demonstrate the accuracy of the proposed XIGABEM formula-
tion. The first set is concerned with the evaluation of SIFs, whereas the second deals with fatigue
crack propagation problems, including the prediction of fatigue life. The results are compared
with analytical, experimental and numerical solutions available in the literature. Besides, the dir-
ect XIGABEM approach is contrasted with unenriched and enriched indirect methods that employ
the J-integral for SIF extraction.

The novel aspects of the present work are as follows:

• the direct evaluation of stress intensity factors in the solution vector in an IGABEM formula-
tion, which extends the state of art in this framework. The XIGABEM approach allows the
computation of accurate solutions, including for curved cracks, with reduced computational
effort and using coarse meshes. These accurate results are found without the further expense
of post-processing techniques such as a J-integral. Additionally, if we choose to incur the
extra cost of such post-processing, results of very high accuracy can be recovered.

• the modelling of fatigue crack growth using an XIGABEM formulation. The proposed en-
riched approach introduces small modifications to the unenriched formulation and BEM
matrices, which facilitates its implementation in existing IGABEM codes.

• the introduction of a C−1-continuous (i.e. discontinuous) NURBS basis to facilitate isogeo-
metric modelling of discontinuities such as the intersection of cracks with other boundaries.
This strategy allows the representation of geometrical gaps simply by the application of a
standard knot insertion algorithm to the existing NURBS definition. The C−1 continuity
is also applied to facilitate the crack extension and the definition of the enriched portion of
NURBS describing the crack tips.

The remainder of this paper is structured as follows: Section 2 briefly describes the NURBS basis
functions. The inclusion of C−1 continuity in the NURBS basis through knot insertion is also
discussed. Section 3 presents the novel XIGABEM formulation used to improve the response
near crack tips and to define the SIFs directly from the system of equations. Section 4 shows
how XIGABEM is applied for simulating fatigue crack growth. Several examples are presented in
Section 5. Finally, Section 6 draws some conclusions about the extended isogeometric approach
developed in this study.

2. NURBS

2.1. NURBS definitions
NURBS have been extensively applied in CAD software for geometry modelling. Among their

advantages are the exact representation of conic sections and quadric surfaces and the ability to
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describe complex forms, such as industrial components. In the present investigation, NURBS
basis functions are adopted in the isogeometric formulation, and a brief description is given in
what follows. Further details about NURBS can be obtained in Piegl and Tiller [51] and Hughes
et al. [1].

Firstly, we define the B-spline basis functions, which are used to construct the NURBS. Given
a knot vector Ξ = {ξ1, ξ2, ..., ξn+p+1}, the B-spline functions of order p are evaluated by the Cox-de
Boor recursion formula [52, 53]:

Ni,0(ξ) =

{
1, ξi ≤ ξ < ξi+1

0, otherwise
, (1)

for p = 0 (constant B-spline) and:

Ni,p(ξ) =
ξ − ξi
ξi+p − ξi

Ni,p−1(ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ) (2)

for p ≥ 1. Ni,p indicates the i-th B-spline function, with i = 1, . . . , n, while n represents the
number of basis functions defined over the parametric space ξ ∈ [ξ1, ξn+p+1]. In the applications
of this paper we assume that the initial and final knots are repeated p + 1 times at the start and
end of Ξ. In this case, the knot vector is termed as open knot vector.

Using Eqs. (1) and (2) and considering a set of positive weights Υ = {w1, w2, ..., wn}, in which
each value wi is associated with Ni,p, the NURBS basis functions become:

Ri,p(ξ) =
Ni,p(ξ)wi∑n
j=1Nj,p(ξ)wj

(3)

The NURBS basis functions defined in Eq. (3) are non-negative and form a partition of unity,
i.e.,

∑n
i=1Ri,p(ξ) = 1, ∀ξ. Moreover, it can be noted that they degenerate into the B-spline

functions if all weights are equal.
The NURBS derivatives can also be computed recursively by the expressions given in Ap-

pendix A. In general, NURBS functions are Cp−1 continuous over [ξ1, ξn+p+1]. However, if a knot
value appears q times in the knot vector (i.e. has multiplicity equal to q), the continuity of the
NURBS at that knot becomes Cp−q.

After defining the NURBS basis functions, a 2-D NURBS curve can be obtained by the linear
combination of products of Ri,p and the positions of a set of n control points as:

x̃j(ξ) =
n∑
i=1

Ri,p(ξ)x
i
j (4)

where x̃j(ξ) (j = 1, 2 for 2-D) denotes the coordinates of the NURBS curve at ξ and pi = (xi1, x
i
2)

are the coordinates of the i-th control point.
To illustrate the NURBS concepts, Fig. 1a shows the distribution of the rational basis functions

obtained with the knot vector and weights presented in the figure and considering p = 2. It can be
observed that the functions are C0 continuous in knots with multiplicity q = p. Figure 1b shows
how the rational functions from Fig. 1a can be associated with the control points to describe a
unit circle exactly.
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Figure 1: Representation of (a) the NURBS basis functions and (b) the NURBS curve representing a unit circle.
The order of the NURBS is p = 2.
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Figure 2: (a) NURBS basis functions after p + 1 knot insertions at ξ̄ = 1.5. (b) Representation of the NURBS
curve and new control points positions. Control points 5 and 6 end up in the same position after the successive
knot insertions; however, the NURBS curve may be discontinuous at this point if the coincident control points are
moved to different locations.

2.2. Knot insertion and continuity of NURBS basis

When adopting the isogeometric approach in a numerical method, the refinement of NURBS is
often required to increase the mesh density for the analysis. In this paper, the refinement process
is performed with the knot insertion strategy, which is analogous to h-refinement of conventional
isoparametric elements. There are some other alternatives for NURBS refinement, such as order
elevation or k-refinement [1], but they are not considered in the present investigation.

In the knot insertion strategy, knots are introduced into the knot vector and the control point
locations and weights modified to preserve the exact geometry of the resulting spline. Given an
open knot vector Ξ = {ξ1, ξ2, ..., ξn+p+1}, let ξ̄ ∈ [ξa, ξa+1[ be a desired new knot. The new n + 1
rational basis functions are constructed in the standard way by applying Eq. (3) considering the
new knot vector Ξ̄ =

{
ξ1, ξ2, ..., ξa, ξ̄, ξa+1, ...ξn+p+1

}
. To define the new control points positions

and weights for the 2-D NURBS, we firstly define the coordinate Qi = (xi1w
i, xi2w

i, wi) ∈ R3

considering the position pi = (xi1, x
i
2) and weight wi of the i-th original control point. Then, the

modified coordinates Q̄i are computed as follows [51]:

Q̄i = αiQi +
(
1− αi

)
Qi−1 (5)
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where:

αi =


1, 1 ≤ i ≤ a− p
ξ̄−ξi

ξi+p−ξi , a− p+ 1 ≤ i ≤ a

0, a+ 1 ≤ i ≤ n+ p+ 2

(6)

After application of Eq. (5), the modified coordinates Q̄i = (x̄i1w̄
i, x̄i2w̄

i, w̄i) are obtained. This
new set of points in R3 can be projected back to R2 to recover the new set of control points and
weights for the given NURBS after the knot insertion. Hence, the new control points positions are
given by p̄i = (x̄i1, x̄

i
2), with corresponding weight equals to w̄i.

Successive knot insertions can also be applied to introduce discontinuities into a NURBS when
necessary. This is achieved by performing multiple knot insertions until a knot value reaches
multiplicity q = p + 1. In other words, if a particular knot ξ̄ has multiplicity p + 1, the rational
basis becomes C−1 continuous (i.e. discontinuous) at ξ̄. In this study, the C−1 continuity is used
to facilitate the remeshing process during crack propagation. Details about this strategy are given
in Section 4.2.

Considering the illustrative example shown in Fig. 1a, the NURBS basis functions presented in
Fig. 2a are obtained after three successive knot insertions at ξ̄ = 1.5. Note that the knot insertions
modify the rational functions defined over the knot span [1.0, 2.0[, which contains the considered ξ̄.
Three new basis functions are created - each one introduced by a knot insertion - while the former
three rational functions defined over the interval are altered. Essentially, the knot spans on the left
and right of ξ̄ = 1.5 behave as two independent NURBS due to the C−1 continuity that has been
introduced. Figure 2b presents the new control point positions generated after the knot insertions
for the unit circle geometry. At the end of the process, control points 5 and 6 are coincident.
Since the NURBS basis functions are discontinuous at this point, a geometric discontinuity may
be represented if the coincident control points are moved to different locations.

3. Extended isogeometric boundary element method

3.1. Boundary integral equations for elastostatic
The applications in this paper are based on 2-D linear elastostatic formulation. Let Ω denote

an isotropic and elastic domain with enclosing boundary Γ, as illustrated in Fig. 3. The linear
elastostatic boundary value problem may expressed in terms of boundary integral equations by
considering a point-load problem in an infinite domain. Details about the derivation can be found
in Aliabadi [54].

When analysing bodies containing cracks, as illustrated in Fig. 3, the application of the same
boundary integral equation at coincident source points x′ and x̄′ on the opposing crack surfaces
leads to degeneracy in the resulting system of algebraic equations. One approach to overcome this
deficiency is the use of two independent boundary integral equations: the Displacement Boundary
Integral Equation (DBIE) and the Traction Boundary Integral Equation (TBIE) [49, 50]. The
DBIE is applied to x′ on the upper crack surface Γ+, and its expression - neglecting body forces -
is given by:

cij(x
′)uj(x

′) + cij(x̄
′)uj(x̄

′) +−
∫

Γ

P ∗ij(x
′,x)uj(x)dΓ =

∫
Γ

U∗ij(x
′,x)pj(x)dΓ (7)

in which uj and pj represent the displacement and traction components, respectively; U∗ij and P ∗ij
are the displacement and traction fundamental solutions, respectively, and Appendix B presents

6



n

x

x′

p̄= 0p̄

Ω

Γ

Γu

Γp

Γc

D
et
ai
lA

r

DetailA

x′ Γ+
c

Γ−c

n+ n−

x̄′

Figure 3: Representation of a cracked body.

their expressions for 2-D problems; −
∫

denotes an integral to be evaluated in the Cauchy principal
value sense; cijuj represents the jump arising from the integration of the strongly singular kernel
P ∗ij. The explicit expressions to compute cij can be found in Guiggiani and Casalini [55] and, for
x′ at smooth boundaries, cij = δij/2, where δij is the Kronecker delta. It is worth mentioning that
Eq. (7) is also applied to source points x′ placed at the non-crack boundaries. In this case, the
jump term cij(x̄

′)uj(x̄
′) vanishes since there is no coincident point x̄′.

The TBIE can be obtained after differentiation of the DBIE (7) with respect to x′ and further
substitution into generalised Hooke’s law. This process increases the order of the singularity of
the integral kernels presented in the integral equation. For the existence of the resulting finite
part integrals, the TBIE must be applied to locations at which the displacement derivatives are
continuous. This constrains us to place x′ at a smooth boundary and to ensure that the basis
functions at that point exhibit the required continuity. Then, considering x′ to be located on a
smooth portion of the lower crack surfaces Γ−, the TBIE is written as:

1

2
[pj(x

′)− pj(x̄′)] + ni(x
′) =

∫
Γ

S∗kij(x
′,x)uk(x)dΓ = ni(x

′)−
∫

Γ

D∗kij(x
′,x)pk(x)dΓ (8)

where =
∫
stands for the Hadamard principal value integral; ni(x′) are the components of the outward

unit normal vector at the source point; D∗kij and S∗kij are obtained from the derivatives of U∗ij and
P ∗ij, respectively. The expressions for D∗kij and S∗kij are also given in Appendix B.

3.2. Numerical implementation of XIGABEM
3.2.1. Approximations

For an accurate numerical integration of the DBIE (7) and TBIE (8), the NURBS describing
the geometry may be subdivided into boundary elements, following a concept similar to the con-
ventional isoparametric BEM. For the isogeometric analysis, a boundary element is defined in the
parametric space as the span between two distinct knots of a NURBS, or formally ξ ∈ [ξa, ξa+1[ :
ξa 6= ξa+1. From the recursive nature of the rational basis functions presented in Section 2.1,
the only non-zero functions over an element are Ra−p,p, Ra−p+1,p, ..., Ra,p (see Figs. 1a and 2a for
graphical examples). It is interesting to note that the number of non-zero basis functions is equal
to p+ 1, as observed when adopting Lagrangian elements in BEM, and the control points to which
they are associated define the connectivity of the isogeometric element. Hence, the coordinates
over an element e can be evaluated from:
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x̃ej(ξ) =

p+1∑
m=1

φem(ξ)xemj ξ ∈ [ξa, ξa+1[ : ξa 6= ξa+1 (9)

where the terms φem(ξ) = Ri,p(ξ) represent the m-th shape function of order p from element e,
with i = m+ a− p− 1. Additionally, xemj denotes the coordinates of the m-th local control point
of the element.

Figure 4 highlights an element along a NURBS curve defined from the parametric space. How-
ever, it is suitable to define the boundary elements over the parent space ξ̂ ∈ [−1, 1] (see Fig. 4) in
order to apply the Gauss-Legendre quadrature for numerical integration. The linear transformation
that maps the parameter ξ to ξ̂ is given by:

ξ =
(ξa+1 − ξa) ξ̂ + (ξa+1 + ξa)

2
(10)

and the Jacobian of the transformation from the parent space ξ̂ to the Cartesian coordinate system
is evaluated by the chain rule as:

Je(ξ̂) =
dΓe

dξ

dξ

dξ̂
(11)

with dΓe

dξ
(ξ) =

√(
dx̃e1
dξ

(ξ)
)2

+
(
dx̃e2
dξ

(ξ)
)2

and dξ

dξ̂
= (ξa+1−ξa)

2
.

When considering the isogeometric approach, the unknown boundary fields along the elements
are also approximated through the same rational bases used for representing the geometry involved.
However, the NURBS basis functions, as the Lagrange polynomials in conventional BEM, fail to
accurately represent the square root behaviour near crack tips predicted by the LEFM theory. To
capture the analytical behaviour and, consequently, improve the near-tip numerical solution, an
extended formulation may be employed. In this paper, we adopt the displacement approximation
enrichment introduced by Simpson and Trevelyan [44] within the XBEM framework, which was
based on the early work of Benzley [45]. Extending this strategy to an XIGABEM approach, the
displacement approximation for an element e over a crack surface defining a tip λ is written as:

ũeλj (ξ) =

p+1∑
m=1

φem(ξ)demj +
∑

M=I,II

K̃λ
MT

λ
jkψkM(xλ,x(ξ)) (12)
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The first term on the right-hand side of Eq. (12) is the standard IGABEM expansion of the
displacement into products of the NURBS basis functions φem and the displacement control vari-
ables demi associated with the m-th local control point. This term is responsible for capturing any
non-zero displacement at the crack tip. It should be noted that, since the NURBS basis functions
are usually not interpolatory, i.e. do not exhibit the Kronecker delta property at the control points
(see, for example, the NURBS curve in Fig. 4), the displacement control variables do not directly
represent displacements on the boundary of the body. The second term of the right-hand side
of Eq. (12) exactly represents the leading-order term from Williams expansion for displacements
[56] (see Eq. (D.1)), and it is introduced in the approximation to capture the near-tip behaviour.
This term contains the additional parameters K̃λ

M = K̃λ
I , K̃

λ
II included by the enrichment, and

these become unknowns that, when found as part of the BEM solution vector, provide the stress
intensity factors. We note that they become accurate approximations only if we enforce continuity
of displacement at the crack tip (see Section 3.2.2), which is the exact same condition observed in
the analytical solution. The crack tip functions ψkM are extracted directly from the asymptotic
solution given by Williams [56], and they are expressed in matrix notation as:[

ψ1I ψ1II

ψ2I ψ2II

]
=

1

2µ

√
ρ

2π

[
cos
(
θ
2

)
(κ− cos θ) sin

(
θ
2

)
(κ+ 2 + cos θ)

sin
(
θ
2

)
(κ− cos θ) − cos

(
θ
2

)
(κ− 2 + cos θ)

]
(13)

where ρ is the distance to the tip and θ is the angular variation according to the local coordinate
system positioned at the crack tip xλ, as shown in Fig. 5. κ represents the Kolosov constant defined
as κ = 3− 4ν for plane strain and κ = (3− ν) / (1 + ν) for plane stress.

To transform the contribution of the enrichment functions from the local to the global coordin-
ate system, the components T λjk of the rotation matrix are also included in the enrichment term of
Eq. (12), in which: [

T λ11 T λ12

T λ21 T λ22

]
=

[
cosω − sinω
sinω cosω

]
(14)

where ω is the angle between the local and global coordinates systems (see Fig. 5).
The displacement approximation expressed in Eq. (12) is used only for boundary elements on

NURBS defining the crack tips. Then, the square root behaviour observed in the near-tip solution
can be captured through the enrichment term. For the other elements, only the rational basis
contribution is considered in the displacement approximation.

Although the stress components in the leading-order term of Williams expansion present the
well-known O(1/

√
ρ) singularity, the tractions obtained from these components are zero over the

crack surfaces. This result is expected since the analytical solution contemplates traction-free
cracks. Therefore, the approximation used for elements at cracks, as well as for elements along the
external boundary, is expressed solely through the NURBS basis functions as:

p̃ej(ξ) =

p+1∑
m=1

φem(ξ)temj (15)

where temj denotes the traction parameters associated with the m-th local control point from
element e.

Equations (9), (12) and (15) can be substituted into Eqs. (7) and (8) to define the discrete
forms of the boundary integral equations. Special attention should be given to the jump terms,
since both uj and pj at the source point x′ (or at the coincident point x̄′, if it exists) must be
written considering, respectively, the displacement and traction approximations for the element e′
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containing x′ (or element ē′ containing x̄′). Hence, the discrete form of the DBIE can be written
as follows:

p+1∑
m=1

cij(x
′(ξ′))φe

′m(ξ′)de
′m
j +

p+1∑
m=1

cij(x̄
′(ξ̄′))φē

′m(ξ̄′)dē
′m
j + (16)

+
Ne∑
e=1

p+1∑
m=1

P em
ij d

em
j +

Nt∑
λ=1

∑
M=I,II

K̃λ
M

Nλ
e∑

e=1

P̃ eλ
iM =

Ne∑
e=1

p+1∑
m=1

U em
ij t

em
j

where Ne is the total number of elements, Nt is the number of enriched crack tips and Nλ
e is the

number of elements enriched in the vicinity of the tip λ. It is worth mentioning that the enrichment
functions do not modify the jump term in the DBIE (12) since the crack tip functions ψkM for
coincident source points x′ and x̄′ cancel each other out during implementation. The boundary
integrals P em

ij and U em
ij , written in terms of the parent space ξ̂, are given by:

P em
ij = −

∫ 1

−1

P ∗ij(x
′,x(ξ̂))φem(ξ̂)Je(ξ̂)dξ̂ (17)

U em
ij =

∫ 1

−1

U∗ij(x
′,x(ξ̂))φem(ξ̂)Je(ξ̂)dξ̂ (18)

and the boundary integral containing the enrichment functions is computed from:

P̃ eλ
iM = −

∫ 1

−1

P ∗ij(x
′,x(ξ̂))T λjkψkM(xλ,x(ξ̂))Je(ξ̂)dξ̂ (19)

Analogously, the discrete TBIE is determined as:

ni(x
′(ξ′))

 Ne∑
e=1

p+1∑
m=1

Semkijd
em
k +

Nt∑
λ=1

∑
M=I,II

K̃λ
M

Nλ
e∑

m=1

S̃eλijM

 = (20)

= −1

2

[
p+1∑
m=1

φe
′m(ξ′)te

′m
j −

p+1∑
m=1

φē
′m(ξ̄′)tē

′m
j

]
+ ni(x

′(ξ′))
Ne∑
e=1

p+1∑
m=1

Dem
kij t

em
k

where:

Semkij = =

∫ 1

−1

S∗kij(x
′,x(ξ̂))φem(ξ̂)Je(ξ̂)dξ̂ (21)

Dem
kij = −

∫ 1

−1

D∗kij(x
′,x(ξ̂))φem(ξ̂)Je(ξ̂)dξ̂ (22)

S̃eλijM = =

∫ 1

−1

S∗kij(x
′,x(ξ̂))T λkpψpM(xλ,x(ξ̂))Je(ξ̂)dξ̂ (23)

The use of the enriched displacement approximation in Eq. (12) only introduces the terms
related to the enrichment parameters K̃λ

I and K̃λ
I in Eqs. (16) and (20), while the other terms are

exactly the same as they would be in an unenriched formulation. Therefore, the number of degrees
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of freedom introduced by the enrichment is limited to two per crack tip, regardless of the number
of enriched elements, which is an advantage of the applied strategy over PU-based enrichments
[42, 43]. This reduced number of enrichment parameters is also beneficial for the conditioning of
the system of equations. The next section presents the additional relations adopted in the proposed
XIGABEM formulation that accommodate the additional enrichment parameters and allow the
direct evaluation of the SIFs.

3.2.2. Crack tip tying constraint
To accommodate the degrees of freedom introduced by the enrichment and, consequently,

recover a square system of equations, the crack tip tying constraint proposed by Alatawi and
Trevelyan [46] is extended to the XIGABEM framework. This condition aims to enforce the
continuity of the displacements between the upper and lower crack surfaces at the tip, which is
not guaranteed in the unenriched approach as independent NURBS are used to model each crack
surface (see Fig. 5). When compared to XBEM, the definition of the constraint is simplified by
the use of NURBS functions to replace the conventional Lagrangian basis.

Using the displacement approximation shown in Eq. (12), and since open knot vectors are used
in the definition of the basis functions, the displacement at the crack tip considering the NURBS
at the upper surface (θ = π) is ũUj (ξn+p+1) = d

Utip
j , where dUtipj is the displacement parameter of

the control point positioned at the end of the upper NURBS. Similarly, the displacement at the
crack tip considering the NURBS at the lower surface (θ = −π) is ũLj (ξ1) = d

Ltip
j , where dLtipj is the

displacement parameter of the control point positioned at the start of the lower NURBS. Thus,
the displacement continuity condition at the tip is simply expressed as:

d
Utip
j − dLtipj = 0 (24)

Equation (24) provides two supplementary equations per crack tip and this is exactly sufficient
to yield a square system of equations. Since the continuity condition at the tip is the same as
observed in the Williams expansion, the additional parameters K̃λ

I and K̃λ
II represent a good

approximation for mode I (Kλ
I ) and mode II (Kλ

II) SIFs. Therefore, the proposed XIGABEM
strategy allows the SIFs to be computed directly from the system of equations, eliminating the need
for computationally expensive post-processing techniques, such as the widely applied J-integral.

3.2.3. Assembly of the system of equations
With the discrete forms of the DBIE (16) and the TBIE (20), the algebraic system of equations

obtained by the XIGABEM is assembled by applying the collocation method. The positions of
the collocation points in the parametric space are defined through the Greville abscissae [57, 58]
defined as:

ξ′i =

∑p
j=1 ξi+j

p
(25)

in which ξ′i is the knot corresponding to the i-th collocation point along the NURBS. The Cartesian
coordinates of this point can be determined by Eq. (9).

For the analysis of crack problems, the DBIE (16) is used for the collocation points at the
external boundary and at one of the crack surfaces, whereas the TBIE (20) is applied for the
collocation points at the other surface to obtain a non-singular system of equations. During
the collocation process, the collocation points become the source point x′(ξ′) of their respective
boundary integral equations.

11



The existence of the Hadamard principal value in the TBIE requires the continuity of the
displacement derivatives at the collocation points. Thus, the continuity feature of the NURBS
facilitates the positioning of the collocation points over the crack surfaces. Adopting NURBS
basis functions with p > 2 is sufficient to ensure the smoothness of the displacements along the
entire surface, except at points in which the continuity is reduced by repeated knots. At these
particular points, as the initial and final points of the NURBS, the collocation points must be
shifted inside the curve. To satisfy the continuity condition in these cases, the corresponding
Greville abscissa must be modified. For example, when considering the first and last collocation
points on the NURBS, their coordinates in the parametric space are updated to ξ′1 = ξ′1+χ (ξ′2 − ξ′1)
and ξ′n = ξ′n−χ

(
ξ′n − ξ′n−1

)
, respectively, where χ is a shifting parameter. In this paper, we assume

χ = 0.2. We note that different values for χ may affect the numerical solutions near the crack tips,
particularly when considering IGABEM. In XIGABEM, as the enrichment term is responsible
for representing the square root behaviour near the tip, the choice of χ is found not to have a
significant effect on the results.

Due to the singularities of the fundamental solutions when the field point x(ξ) approaches the
source point x′(ξ′) (see expressions in Appendix B), the integral kernels in Eqs. (17), (18), (19),
(21), (22) and (23) must be evaluated with different strategies depending on the position of the
source point in relation to the integrated element. When the source point is far from the element,
the integrands are regular and standard Gauss-Legendre quadrature is applied for numerical eval-
uation. For source points close to the integrated element, the integrands become quasi-singular. In
this case, Telles’ third-degree polynomial transformation [59, 60] is used to improve the accuracy of
the integration. To evaluate the integral kernels for an element that contains the source point, the
integrand must be firstly regularised. For the weakly singular kernel U em

ij given in Eq. (18), Telles’
third-degree polynomial transformation is applied for regularisation. However, a special integra-
tion scheme should be considered for the strongly singular and hypersingular integrals. In these
situations, the singularity subtraction method (SSM) may be used, and Appendix C.1 presents the
expression implemented in this study to compute the conventional and enriched singular kernels.

After the collocation process is carried out for each collocation point in the mesh, and including
the crack tip tying constraint given by Eq. (24), the resulting algebraic system of equations defined
by XIGABEM is assembled as:

[
H Hλ

C

Hλ
R 0

]{
d

K̃

}
=

[
G
0

]
{t} (26)

in which H is determined from the boundary integrals P em
ij and Semkij and from the distribution of

the jump terms in the DBIE. G is obtained from the boundary integrals U em
ij and Dem

kij and from
the distribution of the jump terms in the TBIE. d and t are vectors containing, respectively, the
displacement and traction control parameters, while K̃ is a vector storing the additional unknowns,
K̃λ
I and K̃λ

II for each crack tip λ, introduced by the enrichment. The sub-matrix related to the
enriched parameters Hλ

C is composed of the enriched integrals P̃ eλ
iM and S̃eλijM , whereas Hλ

R is defined
from the crack tip tying constraints. It is important to point out that the crack tip enrichment
given by Eq. (12) only introduces the sub-matrices Hλ

C and Hλ
R into the system of equations. The

other components of the system (H, G, d and t) are the same as they would be in an unenriched
IGABEM formulation.

Imposing the prescribed boundary conditions to the system in Eq. (26), the final system of
linear equations is determined as follows:
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[
A Hλ

C

Hλ
R 0

]{
x

K̃

}
=

{
f
0

}
(27)

where A is a 2N × 2N matrix composed of the coefficients from H and G related to the unknown
control variables, withN being the total number of collocation points in the model. x is a 2N vector
containing the unknown control parameters and f is a 2N vector obtained from the multiplication
of the known control values and their respective influence coefficients from matrices H and G. For
completeness, the dimensions of the other terms are given as follows: Hλ

R and Hλ
C are, respectively,

a 2Nt × 2N and a 2N × 2Nt matrix, while K̃ is a 2Nt vector.
The solution of the linear system of equations defined by XIGABEM, Eq. (27), yields values

for the unknown control parameters and also for the SIFs without the need of a post-processing
scheme since they appear in the solution vector, represented by the term K̃. The mechanical fields
at any point x(ξ) on the boundary, including the collocation points, can be recovered element-wise
from Eqs. (12) (or its unenriched counterpart) and (15) considering the approximation for the
element e containing ξ.

4. XIGABEM for fatigue crack growth

For the XIGABEM analyses described in this paper, the structural boundary is imported
directly from CAD software. The cracks are then inserted in the model, with each surface defining
one crack tip given by a NURBS, as illustrated in Fig. 6a. The knot vector for the NURBS at
the upper surface is defined over ξU ∈ [0, 1], whereas at the lower surface it is described over
ξL ∈ [−1, 0]. Therefore, the parameters ξ for corresponding points at each crack surface satisfy
ξU = −ξL. As also illustrated in Fig. 6a, the whole NURBS containing a crack tip in the initial
configuration is enriched with the tip functions.

Then, the NURBS are refined by splitting the knot vector in uniform knot spans corresponding
to the boundary elements. Furthermore, if a crack is defined such that it intersects a geometric
boundary, a knot refinement at the intersection point is performed until a C−1 continuity is reached
for the crossed NURBS. Therefore, this scheme utilises the intrinsic properties of NURBS and is
an elegant way to represent the discontinuity at the crack mouth.

After defining the boundary element mesh, the linear system of equations can be assembled
following the formulation described in Section 3. The solution of the system given by XIGABEM
leads to direct evaluation of the SIFs for the crack tips. The XIGABEM can also be employed in
conjunction with post-processing techniques, such as the ones based on the J-integral, to improve
the accuracy of the indirect method, as will be discussed in the examples in Section 5.

4.1. Fatigue analysis
In the applications of this paper, we consider oscillatory loadings in the structure that induce

fatigue crack growth. High-cycle fatigue is assumed, in which the stress levels introduced by the
oscillatory loading are well below the material’s yield strength and the strains observed within
the structure are predominantly elastic. To define the crack growth rate in these applications, we
adopt the Paris law [61]:

da

dN
= C (∆Kef )

m (28)

where da/dN represents the crack extension per load cycle, in which a is the crack length and N is
the number of load cycles, C and m are material constants. The range of effective stress intensity
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factors for mixed-mode can be computed, according to Tanaka [62], as ∆Kef = 4
√

∆K4
I + 8∆K4

II ,
in which ∆KM = Kmax

M − Kmin
M , with Kmax

M and Kmin
M representing, respectively, the maximum

and minimum values of the considered SIF within a load cycle. For simplicity, we assume that
the crack propagation follows the power law in Eq. (28) throughout the analyses. Alternatively,
another growth law could also be coupled to the XIGABEM formulation developed herein.

For applications involving multiple cracks, each crack tip grows proportionally to its growth
rate following the relationship:

∆a = ∆L
C (∆Kef )

m

[da/dN ]λd
(29)

where ∆a is the crack length increment, ∆L is the standard crack length increment defined in the
analysis and [da/dN ]λd is the highest crack growth rate observed during one load cycle and related
to the dominant tip λd.

It is worth emphasising that in mechanical problems involving multiple cracks, some of them
may grow faster than others. Different crack growth rates may lead to very small crack length
increments and, consequently, collocation points may be positioned very close to their neighbours.
This situation introduces numerical instabilities into the final system of algebraic equations given
by the boundary integral formulation because of the singular nature of the fundamental solutions.
To avoid such issue, the virtual crack extension scheme proposed by Price and Trevelyan [63] is
adopted in the numerical approach. In this strategy, the crack tip only propagates if the crack
length increment is higher than a prescribed ratio of ∆L, assumed here as 0.1∆L. If this condition
is not satisfied, then ∆a is accumulated as a virtual length. During the course of the analysis, if
the total virtual extension satisfies the growth condition, the crack is extended by the accumulated
length.

The number of load cycles ∆Ni+1 to extend a crack by ∆a = ai+1 − ai can be computed by
integration of the Paris law (28). Assuming a linear variation of ∆Kef between ai and ai+1, the
following discrete expression is defined [64]:

∆Ni+1 =
∆a

C (m− 1)

[
(∆Ki)

1−m − (∆Ki+1)1−m]
(∆Ki+1 −∆Ki)

(30)

where ∆Ki and ∆Ki+1 are the values of ∆Kef at the crack lengths ai and ai+1, respectively.

4.2. Propagation and remeshing
To define the direction of the discrete length increment given by Eq. (29), we adopt the

predictor-corrector scheme proposed by Portela et al. [65]. This strategy aims to take into ac-
count the variation of the SIFs during the stable fatigue crack growth to obtain the same crack
path independently of the selected crack length increment. The prediction of the propagation angle
at each iteration of the algorithm is computed with the maximum circumferential stress criterion
[66] as follows:

θp = sin−1

(
KIKII − 3KII

√
8K2

II +K2
I

9K2
II +K2

I

)
(31)

The steps of the predictor-corrector scheme are listed below:

1. For the current crack configuration η, compute the propagation direction θip(η) for the first
iteration considering Eq. (31).
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2. Extend the crack tip by ∆a, computed from Eq. (29), along the direction determined in the
previous step.

3. Compute the SIFs for the new crack configuration η + 1.

4. Evaluate a new propagation direction θip(η+1) from Eq. (31) considering the new SIFs obtained
from step 3.

5. Define the correction angle βi = θip(η+1)/2.

6. Correct the crack tip increment defined in the second step to the new growth direction given
by θi+1

p(η) = θip(η) + βi.

7. Return to step 2 while |βi| < |βi−1| and
∣∣∣βi/θip(η)

∣∣∣ > δ, where δ = 10−3 in the present study.

After evaluating the propagation direction, the NURBS defining the growing tip are extended
to the new tip position, as shown by Fig. 6b. This is achieved by expanding the corresponding
knot vectors by a unit and defining new control points that represent the geometry of new crack
surfaces. In the example given in Fig. 6b, after the propagation of tip λ = 1, the NURBS at
the upper and lower surfaces become defined over ξU ∈ [0, 2] and ξL ∈ [−2, 0], respectively.
Additionally, the multiplicity of the knot corresponding to the former tip is kept equal to p + 1,
so that a C−1 continuity occurs between the new and old crack surfaces. This discontinuity is
adopted in the present work to make the approximations over the newly created crack surfaces
completely independent from the quantities in the existing surfaces. As illustrated in Fig. 6b, the
enrichment is applied only to the elements over the new crack surfaces, where the dominant square
root behaviour is captured by the enriched displacement approximation given in Eq. 12. For the
elements defining the old crack surfaces, the unenriched approximation is adopted, which is able
to represent the displacement fields since there is no singular behaviour along this region.

The changes in the geometry during the crack propagation are accompanied by modifications
to the system of equations given by Eq. (27). After a crack increment, as illustrated in Fig. 6b,
most of the system remains unaltered since a C−1 continuity is enforced between the old and new
crack surfaces. As represented by the graphical representation of the algebraic system in Fig. 7a,
only the enrichment sub-matrices related to the growing tip need to be reconstructed in this case,
whereas the other terms are expanded to include the degrees of freedom associated with the new
crack surfaces.

If a crack tip intersects a boundary during propagation, as shown by Fig. 6c, successive knot in-
sertions are considered for the crossed NURBS until a C−1 continuity is obtained at the intersection
point so that a displacement discontinuity may be represented. The additional columns and rows
associated with the enrichment parameters of the intersecting tip are removed from the system of
equations as the tip becomes inactive and no longer benefits from enrichment (Fig. 7b). Moreover,
the positions related to the modified control and collocation points in intersected NURBS are also
reconstructed in the original system.

As a final remark before moving on to study some numerical applications, we comment that
the implementation of knot insertion to achieve C−1 continuity along the growing crack and at
crack intersections appears a particularly elegant use of the properties of NURBS and is restricted
to IGABEM. This simple expedient removes the need for the definition of discontinuous and semi-
discontinuous elements in Lagrangian formulations, and therefore saves a considerable amount of
careful data management and the use of different sets of shape functions.
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(a) (b)

(c)

Figure 6: (a) Representation of enriched NURBS for an interior crack. In this example, the basis functions are
assumed with order p = 2 and each NURBS is initially discretised into two elements (two knot spans in the knot
vector). (b) NURBS and their enriched parts after a crack tip propagation. Each new NURBS segment is discretised
into one element (one additional knot span in the knot vector) and the multiplicity for the knot at the former tip is
kept equals to p+1. (c) Intersection between the crack tip λ = 1 with another NURBS, which is initially discretised
into one element in the illustrative example. In this case, the respective crack NURBS no longer benefit from
enrichment. Besides, the crossed NURBS is made discontinuous at the intersection by increasing the multiplicity
of the intersection knot ξ̄ to p+ 1 through successive knot insertions. After this processed, the intersected NURBS
becomes discretised into two elements, each defined by independent control points.

A

H1
R 0 0

H2
R 0 0

H1
C H2

C
×

x

K̃1

K̃2

=
f

0

0

(a) (b)

Figure 7: Graphical representation of the changes in the sub-matrices from the system of equations resulting from
(a) the crack propagation illustrated in Fig. 6b and (b) the crack propagation followed by the intersection of a
NURBS depicted in Fig. 6c. Note that most of the sub-matrices remain unaltered (represented by solid lines). The
changes in the system (represented by dashed lines) are related to the enrichment parameters related to the growing
tip and the new control/collocation points defined along the new crack surfaces and intersected NURBS.
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5. Numerical applications

Two sets of examples are presented to illustrate the application of the proposed direct XIGABEM
formulation to simulate crack problems. In the first group, we analyse the effect of the enrich-
ment in the accuracy and the convergence rate of the SIF values. In the second set of problems,
we use the numerical approach for fatigue crack propagation modelling. The results obtained by
the enriched method are compared with those determined using unenriched IGABEM and other
solutions available in the literature. Additionally, the run times determined by the enriched and
unenriched approaches are compared in some of the examples to demonstrate the benefit of the
proposed direct method.

For the numerical analyses, the order of these NURBS functions is selected as 2. Moreover, we
assume a 30-point Gaussian quadrature rule for the evaluation of the integral kernels, the same
amount used by Peng et al. [42]. The use of this high order scheme is motivated by a desire to
present errors as those resulting from the formulation and its discretisation, i.e. with negligible
pollution of the results from integration errors. All numerical simulations are performed on a
personal computer with Intel® Core™ i7-8750H @ 2.20GHz processor and 16 GB of RAM.

We emphasise that in our proposed direct approach the stress intensity factors are found directly
in the solution vector (see terms K̃λ

I and K̃λ
II at the bottom of the solution vector in Figure 7a,

for example). We show how these direct evaluations of the SIFs are of appropriate engineering
accuracy without the requirement for further post-processing, e.g. a J-integral, which can save
a significant amount of computational time as will be demonstrated by several applications that
follow. However, we also investigate the further enhancement of the accuracy of our predictions of
the SIFs that can be realised by including such a post-processing stage, and it is for this purpose
that we also compute the SIFs indirectly using the interaction integral strategy [67] based on the
J-integral [47]. When considering the unenriched formulation, the SIFs are also computed using
this scheme. For this post-processing strategy, the integration path is considered circular, centred
at the crack tip and starting at the third collocation point counting from the tip. Consistent with
the isogeometric philosophy, the integration path is defined as a NURBS discretised into sixteen
elements.

5.1. Evaluation of SIFs

5.1.1. Square plate with an edge crack
In this first example, we analyse the square plate containing an edge crack shown in Fig. 8.

Pure mode loadings are considered by prescribing the analytical displacements given by Eq. (D.1)
as Dirichlet boundary conditions along the edges of the plate, while the crack surfaces are treated
as traction-free. For the analyses, we assume a = 1, L = 2, E = 1, ν = 0.3 and a plane strain
state. The numerical solutions are compared with the exact solutions and also with the results
provided by Peng et al. [42], in which the IGABEM and an XIGABEM formulation based on
PU-enrichment were applied.

Initially, we assess the accuracy and convergence rate of the proposed XIGABEM formulation
with respect to the displacements in a pure mode I problem (KI = 1 and KII = 0). A fixed
number of eight elements is used in the discretisation of each edge of the plate, while the number of
elements along the crack surfaces is varied. Figure 9 shows the deformed shape for the upper crack
surface determined by the unenriched and enriched formulations considering five elements along the
crack. It can be noted that the result obtained by IGABEM differs from the analytical solution
particularly near the crack tip since the NURBS basis functions are not capable of capturing
the square root behaviour in this region. On the other hand, the enriched approximation can
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Figure 8: Square plate with an edge crack.
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Figure 9: Deformed shape for the upper crack surface determined by IGABEM and XIGABEM.

approximate the exact response with remarkable precision. Figure 10 shows the convergence of
the errors in the relative L2 displacement error norm eL2, which we define as:

eL2 =
‖unum − uana‖L2(Γc)

‖uana‖L2(Γc)

(32)

in which unum and uana are the displacement solutions given numerically and analytically, re-
spectively, and Γc denotes the crack surfaces. The L2 norm of a vector quantity g = (gx, gy)

T is
evaluated using ‖g‖L2(Γc)

=
√∫

Γc
gTgdΓ.

The results in Fig. 10 show that the accuracy and convergence rate obtained by the unen-
riched IGABEM model are similar to those determined by Peng et al. [42]. Regarding the enriched
formulations, the PU-enrichment approach used by Peng et al. [42] is capable of improving the con-
vergence rate to 1.53 for a sufficiently fine mesh. This strategy includes the square root behaviour
of the displacements near the tip, which improves the accuracy when compared to the unenriched
approach, but continuity at the crack tip is not guaranteed. In the proposed XIGABEM formula-
tion, the crack tip function embedded into the displacement approximation can markedly improve
the accuracy of the results, giving errors around 2.0×10−5 even for coarse crack meshes. The errors
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Figure 10: Relative L2 displacement error norm eL2 (Eq. (32)) along the crack surfaces. The reference results are
taken from Peng et al. [42].

in this case depend fundamentally on how well the analytical displacement can be represented by
the basis functions along the external boundary. This can be observed by the curve presented in
Fig. 10 for an enriched model considering just four elements along each edge of the plate, in which
the errors are increased to approximately 2.0× 10−4.

The reason for the errors in displacements to be practically constant in the XIGABEM model
is that the displacements along the crack surfaces are fundamentally given by the enrichment
term in the displacement approximation (see Eq. (12)), whereas the contribution from the NURBS
basis functions is negligible. Consequently, the crack mesh refinement has little effect on the error
convergence. The contribution of each term in the displacements is illustrated in the sequence
depicted in Fig. 11. Figures 11a and 11b present the deformed shape considering the contribution
from the NURBS basis functions and the enrichment term, respectively, while the superposition of
both responses gives the deformed shape in Fig. 11c. From the sequence, it can be noted that the
displacements along the crack are indeed controlled by the enrichment term, while the deformed
shape of the external boundary is exclusively given by the basis functions since the corresponding
NURBS are not enriched.

Considering now a mixed-mode problem in which KI = 1 and KII = 1, we analyse the accuracy
of the SIF values determined by the numerical models. The SIFs are computed directly from
the system of equations by the proposed XIGABEM formulation and also indirectly with the J-
integral approach. Figure 12 shows the convergence for KI and KII with the number of DOF in the
numerical model. As in the displacement analysis, the accuracy and convergence rate for IGABEM
are similar to the solutions obtained by Peng et al. [42]. Moreover, the direct approach is capable
of giving very accurate solutions, with errors in the order of 0.011% for both SIFs even for coarse
meshes. Furthermore, the combination of the enriched formulation and the J-integral approach
can significantly improve the accuracy, giving errors as low as 0.0004%, but at the expense of
computing internal points fields. Again, the mesh refinement has little effect in the convergence of
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(a) (b) (c)

Figure 11: Deformed shapes considering the contribution from (a) the NURBS basis functions and (b) the enrichment
term. (c) Final deformed shape for pure mode I problem, given by the superposition of solutions from (a) and (b).
The enriched NURBS are depicted in blue (please refer to the coloured version).

the SIFs values since the near-tip behaviour is mainly controlled by the enrichment term.
It is, of course, expected that for these pure mode problems the enriched formulation should

give excellent results because the solution is contained in the approximation space. We now move
on to explore examples in which this is not the case.

5.1.2. Finite rectangular plate with an edge crack under bending
The rectangular plate containing an edge crack shown in Fig. 13 is considered in this second

example. The structure is submitted to pure bending applied through linearly varying distributed
loads ranging from -σ̄ to σ̄, as depicted in Fig. 13. The dimensions of the plate and the crack
are related by h = 2.5w and a = 0.5w, and we take the values σ̄ = 1, w = 2, E = 1 and v = 0
to perform the analyses. Alatawi and Trevelyan [46] also simulated this problem considering an
XBEM formulation similar to the one adopted here, but instead of the NURBS basis functions, they
applied the conventional Lagrange polynomials in the displacement approximation. The reference
solution provided by Fett [68] is used to assess the accuracy of the numerical models.

Figure 14a presents the evolution of KI (normalised by σ̄
√
πa) with mesh refinement. It can be

noted that the solutions obtained by the present study and by Alatawi and Trevelyan [46] tend to
converge towards the reference value given by Fett [68], plotted as a horizontal dashed line. Fig-
ure 14b shows the convergence pattern in each scenario. Concerning the unenriched formulations,
the IGABEM is able to increase both the accuracy and the convergence rate when compared to
conventional BEM. Besides, the enriched formulations increase the accuracy and convergence rate
over their unenriched counterparts. Regarding the direct method for SIF extraction, XIGABEM
solutions are more accurate than those determined using XBEM. However, the convergence rates
obtained by these formulations are similar. For both XBEM and XIGABEM, the lowest errors
and highest convergence rate are given by associating the enriched formulation with the J-integral
technique. When the XIGABEM is considered in this case, the error in KI is around 0.25% for
the coarsest mesh used, reducing to 0.0016% with mesh refinement.

The contribution of each term in the displacement approximation to the deformed shape of the
structure is illustrated in Fig. 15. Unlike the previous example, there is now a non-zero contribution
from the NURBS basis functions to the crack response since the enrichment functions are unable

20



150 225 300 375 450
Number of degrees of freedom

10-3

10-2

10-1

100

R
el

at
iv

e 
er

ro
r 

in
 K

I
 (%

)

1.29
1.26

IGABEM
XIGABEM - Direct

XIGABEM - Indirect
Peng et al. (2016)

(a)

150 225 300 375 450
Number of degrees of freedom

10-3

10-2

10-1

100

R
el

at
iv

e 
er

ro
r 

in
 K

II
 (%

)

1.511.43

IGABEM
XIGABEM - Direct

XIGABEM - Indirect
Peng et al. (2016)

(b)

Figure 12: Convergence of (a) mode I and (b) mode II SIF.

to describe the behaviour over the entire crack. However, the near tip behaviour continues to be
strongly influenced by the enrichment term.

5.1.3. Crack in an infinite domain
In this example, we analyse two cases of cracks immersed in an infinite domain and subjected to

a far-field vertical loading p̄. Case (a) presents the problem of an inclined crack, whereas Case (b)
shows the analysis of a circular arc crack. The infinite domain formulation presented in Brebbia
et al. [69] is applied, so only the crack surfaces are discretised. For all analyses, we assume 2a = 1,
p̄ = 1, E = 1, v = 0.3 and plane strain condition. The results for the SIFs are compared with the
analytical solutions that can be found in Tada et al. [70]:{

KI

KII

}
= p̄
√
πa cos θ

{
cos θ
sin θ

}
(33)

for the inclined crack problem and:{
KI

KII

}
=

p̄
√
πa

2
[
1 + sin2

(
θ
2

)] { cos
(
θ
2

) [
2− 4 sin2

(
θ
2

)
− 3 sin4

(
θ
2

)]
sin
(
θ
2

) [
4− 2 sin2

(
θ
2

)
− 3 sin4

(
θ
2

)] } (34)

for the circular arc crack problem.

Case (a): Inclined crack
In Case (a), we analyse the inclined crack shown in Fig. 16a. The variations of KI and KII

(normalised by p̄
√
πa) with the crack orientation θ are presented in Fig. 17a. The numerical results

are obtained considering ten elements along each crack surface. The responses provided by Liu
et al. [71] using an XFEM formulation to extract the SIFs directly are also shown in Fig. 17a.
Good agreement is observed between the solutions determined by IGABEM and XIGABEM and
the analytical responses given by Eq. (33). Furthermore, it can be noted that, in general, the
results determined here better approximate the analytical results when compared to the XFEM
approach. This occurs especially because the boundary integral formulation allows the simulation
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Figure 13: Rectangular plate with an edge crack under uniform loading.
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Figure 14: Variation of (a) mode I SIF (normalised by σ̄
√
πa) and (b) relative error with the mesh refinement

obtained by the present work and by Alatawi and Trevelyan [46]. The reference value for normalised KI is taken
from Fett [68].
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(a) (b) (c)

Figure 15: Deformed shapes considering the contribution from (a) the NURBS basis functions and (b) the enrichment
term. (c) Final deformed shape for pure mode I problem, given by the superposition of solutions from (a) and (b).
The enriched NURBS are depicted in blue (please refer to the coloured version).

θ

2a

p̄
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Figure 16: Cracks in an infinite domain submitted to far-field vertical loading: (a) Inclined crack and (b) circular
arc crack.
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Figure 17: (a) Results for normalised SIFs for inclined crack considering 10 elements in each crack surface. (b)
Relative error evolution with crack mesh refinement.

of the infinite domain, whereas a finite plate was considered in Liu et al. [71], which introduced
errors due to the mesh truncation.

Figure 17b shows the curves for the error variation in the SIFs with crack mesh refinement
considering θ = 30°, which are similar to the curves obtained for other crack orientations. As in
the previous examples, the combination of the enriched formulation with the J-integral significantly
improves the convergence rate and the accuracy of the SIFs recovered. On the other hand, the
direct method is less accurate than the unenriched IGABEM due to the interaction between the
crack tips. However, the errors obtained by the direct approach remain low, with the same order
of magnitude observed in the previous example, ranging from 1% down to 0.2%.

Although providing higher SIFs errors than the indirect approaches for this problem, the direct
method is capable of substantially reducing the analysis time by avoiding the calculation of mech-
anical fields on internal points. Figure 18a presents the run times obtained by the conventional
IGABEM and by the direct and indirect XIGABEM for the different discretisations of the crack
surfaces. The execution time values t are normalised by t0 = 10.9 ms, the smallest run time ob-
served that corresponds to the direct XIGABEM for the coarsest mesh. Note that for all meshes,
the lowest run times are obtained by the direct approach, followed by the indirect IGABEM and
lastly by the indirect XIGABEM. The percentage differences between the processing times are
presented in Fig. 18b, taking the IGABEM results as reference. On average, the direct method is
45% faster than the conventional IGABEM that applies the J-integral to evaluate the SIFs, which
demonstrates the advantage of the proposed formulation from the computational cost standpoint.
On the other hand, the simultaneous use of the enriched formulation and J-integral increases the
processing time by 80% on average, since the enriched integral kernels must be computed both for
construction of the system of equations and for definition of the internal quantities - and for this
particular problem, the increase tends to be more pronounced since all the elements are enriched.
Nevertheless, this increment in computational cost leads to a significant gain in the accuracy of
the SIFs, as presented in the Fig. 17b.
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Figure 18: (a) Variation of execution time with crack mesh refinement. The values are normalised by t0 = 10.9 ms,
which is the smallest time observed and corresponds to the run time of the direct XIGABEM for the coarsest
discretisation. (b) Relative differences between run times considering the indirect IGABEM results as reference.

(a) (b) (c)

Figure 19: Deformed shapes for inclined crack (θ = 30◦) considering the contribution from (a) the NURBS basis
functions and (b) the enrichment term. (c) Final deformed shape for inclined crack, given by the superposition of
solutions from (a) and (b). Enriched NURBS are depicted in blue (please refer to the coloured version).

Figure 19 illustrates the interaction between displacement solutions for the two crack tips
considering the XIGABEM formulation. The enrichment term provides a deformed shape for each
tip considering both tips in isolation, as shown in Fig. 19b. The addition of the contribution from
the NURBS basis functions, depicted in Fig. 19a, allows the scheme to recover the ellipse-like
deformed shape in Fig. 19c. This is a good illustration of the role that the NURBS basis functions
are required to play over enriched portions of the boundary; this role can be viewed as the capturing
of the difference between the pure mode behaviour (expressed in the enrichment terms) and the
true solution we seek.

Case (b): Circular arc crack
In Case (b), we analyse the circular arc crack presented in Fig. 16b. The use of the isogeometric

analysis is especially beneficial for solving this problem since the NURBS approximation allows
the exact representation of the curved crack geometry.

For curved crack paths, the accuracy of the SIFs computed by the interaction integral method
is compromised when assuming the asymptotic crack tip solutions as auxiliary fields, unless the
integration contour is contracted to the tip to disregard the effect of the curvature of the crack
surfaces [72]. On the other hand, the direct method proposed in this paper does not suffer from
this drawback since the near-tip solution - which is related to the SIFs obtained by the method -
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Figure 20: (a) Results for normalised SIFs for circular arc crack considering 16 elements in each crack surface. (b)
Relative error evolution with crack mesh refinement.

is properly represented by the enrichment term. The application of the direct XIGABEM for the
evaluation of the SIFs for the circular arc crack is illustrated by Fig. 20a, which shows the variation
of KI and KII (normalised by p̄

√
πa) for different crack angles 2θ. For the simulations, the crack

surfaces are discretised into sixteen elements. Good agreement is attained between the results
obtained here and the analytical solutions given by Eq. (34), which demonstrates the accuracy of
the proposed method. The results are also in accordance with the numerical solutions obtained by
Yan [73] using BEM and by Choi and Cho [74] using isogeometric FEM.

Figure 20b presents the convergence of the SIFs determined by the direct XIGABEM consid-
ering different crack angles 2θ. This set of results demonstrates the stability of the method for the
analysis of curved cracks. Despite the differences between the convergence patterns when different
crack curvatures are considered, note that most of the errors are below 1% even for coarse meshes,
which is a behaviour similar to Case (a).

The role of each term in the enriched displacement approximation for the solution of the
circular arc crack problem is illustrated in Fig. 21. As in the previous examples, the enrichment
term (Fig. 21b) is responsible for representing the near-tip behaviour, while the NURBS basis
(Fig. 21a) captures the difference between the asymptotic solution and the real solution of the
problem. The superposition of both contributions allows the recovery of the final response depicted
in Fig. 21c.

5.2. Fatigue crack growth

5.2.1. Titanium plate with a central inclined crack
Figure 22 shows a rectangular titanium plate containing a central crack of length 2a = 13.462 mm

inclined of an angle θ = 47◦ with respect to the horizontal direction. The dimensions of the struc-
ture are w = 76.2 mm and h = 304.8 mm. A fatigue test of such a plate was conducted by
Pustejovsky [75] considering a loading amplitude σ̄ ranging from 17.24 to 172.37 MPa. This ex-
periment is reproduced numerically with the XIGABEM model considering the following Paris
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(a) (b) (c)

Figure 21: Deformed shapes for circular arc crack (2θ = 60◦) considering the contribution from (a) the NURBS
basis functions and (b) the enrichment term. (c) Final deformed shape for curved crack, given by the superposition
of solutions from (a) and (b). Enriched NURBS are depicted in blue (please refer to the coloured version).
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Figure 22: Rectangular specimen of a titanium plate with a central inclined crack.

law parameters : C = 3.781 × 10−15 and m = 3.81, with da/dN given in mm/cycles and ∆Kef

in MPa × mm0.5. To perform the numerical analysis, each crack surface is discretised in fifteen
elements, while fifty elements are adopted along the external boundary. A crack length increment
∆a = 0.5 mm is used for the fatigue growth, while two elements inserted along each new crack
surface.

Figure 23 shows the propagation path determined by the XIGABEM model considering the
direct method for evaluating the SIFs. The experimental result obtained by Pustejovsky [75] and
the numerical response provided by Pereira et al. [76] generalised FEM (GFEM) are also depicted in
the figure. Good agreement is attained between the solution determined by the proposed enriched
formulation with the experimental and numerical results found in the literature.

The crack length evolution with the number of loading cycles is presented in Fig. 24. There is
a good correspondence between the unenriched and enriched formulations adopted in the present
study. At the end of 14 increments, the fatigue life determined by the numerical approaches is
approximately 16 thousand cycles, which agrees particularly well with the experimental results for
the right tip given by Pustejovsky [75].

5.2.2. Open spanner
In this example, we explore the advantage of using the isogeometric formulation to deal with

geometries taken directly from CAD. For this purpose, we consider the open spanner subjected to
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obtained by Pereira et al. [76] using GFEM is also provided.
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Figure 24: Crack length evolution with number of load cycles. The solutions obtained experimentally by Pustejovsky
[75] are also provided.
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Figure 25: Open spanner with an edge crack. The repeated knot 5.478 in the knot vector defining the external
boundary indicates the position of the crack mouth. Besides, the weights associated with the control points are
taken as a unit.

a cyclic loading p̄ with range 0 ∼ 10, as illustrated in Fig. 25. The knot-vector and the positions
of the main control points for the definition of the B-spline representing the external boundary
are also presented in the figure. An initial edge flaw with length a = 0.15 is located in a region of
high stress concentration given by an elastostatic analysis [12]. The geometry of this problem was
originally proposed by Simpson et al. [12], and a crack propagation analysis was later conducted
by Peng et al. [42]. Here, we perform a fatigue analysis with the proposed XIGABEM formulation
considering the following parameters: C = 10−13, m = 2.6 and ∆a = 0.1. Each crack surface is
initially discretised in three elements, and two new elements are added after each crack increment.

Figure 26 illustrates the deformed shape after ten crack increments determined by the direct
XIGABEM model. Good agreement is noted between the crack paths obtained here and the
reference solution given by Peng et al. [42]. The variation of the SIF values with crack length is
presented in Fig. 27a. At the initial configuration, the magnitude of KII is significant; however, as
the crack grows, the magnitude ofKII remains low, and the propagation becomes mode I dominant.
A small difference can be observed between the values obtained by IGABEM and XIGABEM, a
difference also reflected in the results for the evolution of the crack length with the number of
load cycles, as shown in Fig. 27b. For the XIGABEM models, the final configuration is achieved
after approximately 3.74 million load cycles, whereas this number is around 3.68 million cycles
considering IGABEM.

5.2.3. Perforated plate with an edge crack
Figure 28 shows a rectangular plate containing two holes of diameter φ = 0.4 and subjected to

an uniform cyclic loading p̄ with magnitude 0 ∼ 10. The length and height of the structure are 2L
and L, respectively, with L = 1. A vertical crack emanates from the bottom edge and has initial
length a = 0.05. In this example, we consider different values for l, the parameter defining the
initial position of the defect, to assess its effect on the crack path and fatigue life. The following
values are adopted: l = {0.95, 1.025, 1.1, 1.175, 1.25}. Furthermore, we take the parameter values
C = 10−10, m = 3.0 and ∆a = 0.025 for the fatigue analysis.

Figures 29a to 29e show the deformed shapes for the different values of l obtained with
XIGABEM considering the direct approach for SIF extraction. Figures 29a, 29d and 29e present,
respectively, the cases where l = 0.95, l = 1.175 and l = 1.25, in which the crack is attracted
to, and ends up intersecting one of the openings. The successive knot insertion to achieve C−1

continuity at the intersection point in the NURBS representing the hole is capable of modelling
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Figure 26: Deformed shape after ten crack increments obtained with the XIGABEM model considering the direct
method for SIF extraction. The segments near the crack tip containing the enrichment term for the displacement
approximation are depicted in blue (please refer to the coloured version). The solution provided by Peng et al. [42]
is also shown for comparison.
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Figure 27: Variation of (a) SIFs and (b) the number of load cycles with crack evolution.
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Figure 28: Tensioned rectangular plate with two holes and an edge crack.

the displacement discontinuity at the crack mouth. In the cases represented by Figures 29b and
29c, where l = 1.025 and l = 1.1, respectively, the crack path tends to deviate toward the holes,
but then moves away following a direction perpendicular to the applied load. The final crack paths
determined in each one of these scenarios are grouped in Fig. 29f.

The evolution of the crack length with load cycles, for each initial crack position, is illustrated in
Fig. 30, where the results obtained by the IGABEM and XIGABEM formulations are compared.
The stress concentration caused by the left hole increases the crack growth rate as the initial
crack position is moved to the left (lower values of l), decreasing the fatigue life. The responses
determined with the different formulations are very similar, differing by less than 1.0%. The final
number of load cycles for each case, given in ascending order of l, is approximately: 0.65, 1.27,
2.07, 3.52 and 5.93 million cycles.

To illustrate the reduction in computational cost when considering the proposed direct method,
the execution times for the different approaches to simulate the crack growth for l = 1.1 are
presented in Fig. 31a. The figure shows the variation of the accumulated run time with the number
of degrees of freedom, which are introduced in the numerical models when discretising the new
surfaces after each crack extension. The results of processing time are normalised by t0 = 93.7 ms,
the smallest time observed among the analyses of the initial configuration, which corresponds to
that obtained in the direct XIGABEM. When the proposed direct method is considered, the run
times to obtain the responses for each crack configuration are significantly lower than those of
the indirect methods. In percentage terms, as presented in Fig. 31b, the direct XIGABEM is, on
average, 40% faster than the conventional IGABEM coupled with the J-integral for computing the
SIFs. This result demonstrates the advantage of the proposed formulation since it is able to provide
answers with high accuracy, with small differences compared to the indirect methods as presented in
the Fig. 30, at a significantly lower computational cost. When the indirect XIGABEM is considered
for the analysis, the processing time takes, on average, 16% longer than conventional IGABEM due
to the consideration of the enriched integral kernels in the formulation. Nevertheless, this increase
in computational cost is compensated by very accurate solutions for the SIFs, as demonstrated by
the examples in Section 5.1.

5.2.4. Perforated panel with multiple cracks
In this example, we analyse the perforated panel shown in Fig. 32. The structure contains

three holes of diameter φ = 10 mm, with cracks of length a = 3 mm emanating from the top and
bottom of each hole. The length in Fig. 32 is taken as L = 100 mm. A cyclic load with components
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Figure 29: Deformed shape for the configuration considering (a) l = 0.95, (b) l = 1.025, (c) l = 1.1, (d) l = 1.175
and (e) l = 1.25. The scale factor λ used in each figure is also indicated. The NURBS segments near the crack
tip containing the enrichment term for the displacement approximation are depicted in blue (please refer to the
coloured version). Note that in the models where the crack crosses a boundary, the enrichment is removed from
the near-tip elements since the analytical square root behaviour no longer exists once the intersection occurs. (f)
Crack paths determined for each initial crack position.

0 1 2 3 4 5 6

Number of cycles (×106)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
ra

ck
 le

ng
th

l= 1.25

l= 1.125l= 1.1l= 1.025

l= 0.95

IGABEM XIGABEM - Direct XIGABEM - Indirect

Figure 30: Crack length evolution determined by the unenriched and enriched formulations considering the different
values of l.
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Figure 31: (a) Accumulated run time to obtain the solution for each crack configuration. The values are normalised
by t0 = 93.7 ms, which is the smallest time observed among the analyses of the initial configuration and corresponds
to that obtained in the direct XIGABEM. (b) Relative differences between accumulated run times considering the
indirect IGABEM results as reference.
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Figure 32: Perforated panel containing multiple cracks.

p̄x = 9 MPa and p̄y = 1 MPa is applied to the right edge of the panel, with a stress ratio of zero,
while the left edge remains fixed. For the fatigue analysis, the Paris law constants are taken as
C = 10−13 and m = 2.6, assuming da/dN given in mm/cycles and ∆Kef in MPa×mm0.5. During
the crack growth, the crack length increment for the fastest growing tip is ∆a = 1 mm, with the
others growing proportionally to their respective growth rates. For the initial geometry, each crack
surface is discretised with four elements, with a minimum of two elements being added to the new
surfaces after propagation.

Figure 33a presents the evolution of ∆Kef for the tips after each crack increment. The results
are obtained by XIGABEM considering the direct approach for SIF computation. The curves in
the figure can be interpreted in conjunction with the sequence illustrating the crack propagation
in Fig. 34. For initial geometries (Fig. 34a), tip 1 has the greatest ∆Kef , and consequently the
highest growth rate, due to the bending effect in the plate. However, as the cracks start to grow,
the stress concentration caused by the interaction between tips 2 and 3 (Fig. 34b) soon makes
them surpass tip 1 as the most dominant, with both developing similar growth rates. However,
the growth at tips 2 and 3 becomes retarded as they start to overlap each other in the classical
fashion for opposing cracks (Fig. 34c), and tip 1 regains its dominance. At later crack increments,
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Figure 33: Variation of ∆Kef with (a) crack increment and (b) crack length.

tips 2 and 3 develop small growth rates, whereas tips 4 and 5 move towards each other at faster
rates (Fig. 34d). As happened for tips 2 and 3, the pair 4 and 5 also experience retardation in their
crack growth rates as they overlap (Fig. 34d). Tip 1 continues to be the fastest growing tip and
moves towards the bottom edge of the panel (Fig. 34e), finally intersecting the external boundary.
Figure 34f shows the final deformed shape for the structure, in which the discontinuities in the
NURBS representing the perforations and the bottom edge are clearly visible.

The history of ∆Kef with crack length is shown in Fig. 33b. Since tip 1 is dominant for most
of the analysis, it develops the largest length. For the interacting cracks - tips 2-3 and tips 4-5 -
it can be noted that, as they approach each other, the behaviour for the pair is very similar, with
the crack positioned towards the bottom of the plate having larger lengths due to the bending
effect. The results obtained by Price and Trevelyan [63] using BEM are also given in Fig. 33b.
The reference considered fewer crack increments than the present study, but the solutions provided
are in good agreement with the results obtained by XIGABEM.

The incremental evolution of the fatigue crack growth in the perforated panel is shown in
Fig. 35. Since this problem contains multiple cracks, with different tips dominating as the analysis
progresses, the number of load cycles is related to the number of the crack increment. The dominant
tip in each geometry is also indicated. A sudden decrease in the crack growth rate can be seen
between increments 6 and 7, after tip 1 regains its dominance. This occurs because the value of
∆Kef in increment 6 (related to tip 2) is greater than the value of ∆Kef in increment 7 (related
to tip 1). The solutions obtained by IGABEM and XIGABEM considering the J-integral for SIF
evaluation are also shown in Fig. 35 for comparison. Good agreement is observed between these
results, demonstrating the accuracy of the direct method in solving problems of multiple fatigue
crack propagation.

Finally, Fig. 36a presents the accumulated run time for the analysis of each configuration during
crack growth. The results obtained by the proposed XIGABEM formulation, considering both the
direct and indirect methods for SIF extraction, are compared against those determined by the
conventional IGABEM. The execution time values t are normalised by t0 = 156.2 ms, which is the
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Figure 34: (a)-(e) Evolution of the crack paths and (f) final deformed shape obtained by the direct XIGABEM
formulation. The enriched NURBS segments are depicted in blue (please refer to the coloured version).
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Figure 35: Incremental fatigue process for the perforated panel determined by the unenriched and enriched formu-
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Figure 36: (a) Accumulated run time to obtain the solution for each crack configuration. The values are normalised
by t0 = 156.2 ms, which is the smallest time observed for the analysis of the initial configuration and corresponds
to the run time of the direct XIGABEM. (b) Relative differences between accumulated run times considering the
indirect IGABEM results as reference.

time for the analysis of the initial configuration considering the direct XIGABEM approach. As
in the previous examples, when the direct approach is considered, the run times to simulate the
crack propagation are considerably lower than when the indirect method based on the J-integral
is used for evaluation of the SIFs. Besides, the indirect XIGABEM solutions take slightly longer
to obtain compared to the unenriched IGABEM due to the consideration of the enriched integral
kernels in the isogeometric formulation. Nonetheless, this small increase in computational cost
is accompanied by a large improvement in the accuracy of the SIF solutions, as demonstrated in
Section 5.1.

The relative differences in execution times determined by XIGABEM (direct and indirect)
compared to IGABEM are shown in Fig. 36b. In the case of the indirect XIGABEM, the run
times are 30% to 40% higher than for the conventional IGABEM at the start of the analysis;
however, the absolute values of time are small, in the order of seconds. As the propagation
progresses, these differences diminish and stabilise around 15% towards the end of the analysis.
For the direct XIGABEM, the time saving compared to the unenriched method is substantial: at
the beginning of the analysis, it is around 60% and, at the end, the reduction in computational cost
is approximately 50%. It is worth emphasising that the time saving provided by the direct method
is higher in this example than in Example 5.2.3. This is due to the fact that now multiple cracks
are involved in the analysis and, consequently, the computational cost of using several J-integrals
to calculate the SIFs in the indirect method compared to the direct approach is proportionally
higher than in the previous example.

This application demonstrates the advantage of the proposed direct XIGABEM for the crack
analysis, particularly those involving large-scale problems requiring several computations for the
SIFs. Such method is able to significantly decrease the computational cost while the accuracy of
the results is ensured.

6. Concluding remarks

An enriched isogeometric boundary element (XIGABEM) formulation for simulating fatigue
crack growth was presented. The crack tip functions used for displacement enrichment, associated
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with the crack tip tying constraint, enabled the stress intensity factors (SIFs) to be computed
directly from the system of equations provided by XIGABEM. A key feature of this scheme is the
avoidance of computational costly post-processing techniques for SIF computation such as the J-
integral, since the SIFs are given as terms in the solution vector. We term this the direct approach,
and have shown that it is able to provide SIF values with errors, in most cases, that were lower
than those from an unenriched IGABEM formulation, in which the J-integral was applied for SIF
extraction. Even when the unenriched IGABEM outperformed the direct XIGABEM approach
(inclined crack problem), the errors obtained by the direct approach were satisfactory, being less
than 1%. Moreover, the execution time of the direct method was significantly lower than that of
the conventional indirect method. Alternatively, for cases in which very high accuracy is required, a
J-integral calculation based on the XIGABEM results is able to improve considerably the accuracy
and convergence rate for SIF calculations.

The first set of examples clearly demonstrate the accuracy and convergence benefits of the new
formulation, and these can be seen in the results shown in Figures 10, 12, 14 and 17. Besides, the
direct approach can also be successfully applied to analyse curved cracks, as illustrated in Case
(b) of the last example of the set.

Regarding the fatigue applications, the direct XIGABEM model provided propagation paths,
SIF history and fatigue lives in good agreement with experimental and numerical results available
in the literature. In general, the solutions given by the direct approach better approximated those
found by combining the enriched XIGABEM formulation and the J-integral - which is the most
accurate model - when compared to unenriched IGABEM. Additionally, as demonstrated by the
last two examples, the run times when the direct approach is considered are substantially lower
than those determined when using the indirect J-integral for SIF extraction. Furthermore, an
increase in time savings was noted with the number of crack fronts.

The continuity properties of NURBS, related to the multiplicity of repeated knots in the knot
vector, was exploited in the development of a C−1 continuity strategy that was able to model
discontinuities at boundaries intersected by cracks with a trivial modification of the NURBS defin-
ition. This strategy was also employed to ensure independence between the basis functions over
the new and existing crack surfaces during crack propagation, thus restricting the enriched ele-
ments to the NURBS portion defining the crack tip. The independence along the newly created
surfaces also facilitated the remeshing process and the corresponding modifications in the system
of equations during crack growth.

Finally, the isogeometric boundary element formulation allowed a straightforward integration
between CAD and numerical analysis. Unlike domain-based numerical techniques, for which an
isogeometric volume description is required, the basis functions adopted in the XIGABEM ap-
proach are exactly the same as those used in computational design. The direct link between CAD
and analysis is especially useful when dealing with 3D models, where a considerable amount of
time can be saved from the mesh generation process. The application of the enriched isogeomet-
ric formulation can also be extended to three-dimensional domains, and this is work in progress.
Based on the results of the present paper, the prospect of accurate SIF predictions in 3D without
the expense of multiple J-integral evaluations is highly appealing.
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Appendix A. NURBS basis derivatives

The derivative of order k of NURBS basis functions may be computed from:

R
(k)
i,p (ξ) =

dk

dξk
Ri,p(ξ) =

wiN
(k)
i,p (ξ)−

∑k
l=1

[(
k
l

)∑n
j=1N

(l)
j,p(ξ)wjR

(k−l)
i,p (ξ)

]
∑n

j=1Nj,p(ξ)wj
(A.1)

where
(
k
l

)
= k!

l!(k−l)! and:

N
(k)
i,p (ξ) =

dk

dξk
Ni,p(ξ) = p

(
N

(k−1)
i,p−1 (ξ)

ξi+p − ξi
−

N
(k−1)
i+1,p−1(ξ)

ξi+p+1 − ξi+1

)
(A.2)

Appendix B. Fundamental solutions

Considering a point-force problem, the fundamental solutions in the DBIE (7) are given by:

U∗ij(x
′,x) =

1

8πµ (1− ν)

[
(3− 4ν) ln

(
1

r

)
δij + r,ir,j

]
(B.1)

P ∗ij(x
′,x) = − 1

4π (1− ν) r

{
(1− 2ν) (r,jni − r,inj) +

∂r

∂n
[(1− 2ν) δij + 2r,ir,j]

}
(B.2)

with r := ‖x′ − x‖ representing the distance between the source point x′ and the field point x; nj
are the components of the outward unit normal vector at x and ν is Poisson’s ratio of the material.

Regarding the TBIE (8), the fundamental solutions D∗kij and S∗kij are obtained from the deriv-
atives of U∗ij and P ∗ij, respectively, and their expressions are:

D∗kij(x
′,x) =

1

4π (1− ν) r
[(1− 2ν) (r,iδjk + r,jδik − r,kδij) + 2r,ir,jr,k] (B.3)

S∗kij(x
′,x) =

µ

2π (1− ν) r2

{
2
∂r

∂n
[(1− 2ν) r,kδij + ν (r,iδjk + r,jδik)− 4r,ir,jr,k] + (B.4)

+2ν (nir,jr,k + njr,ir,k) + (1− 2ν) (2nkr,ir,j + niδjk + njδik)− (1− 4ν)nkδij}

where µ = E
2(1+ν)

is the shear modulus of the material, with E being the Young’s modulus.
The above fundamental solutions are valid for plane strain conditions. For plane stress prob-

lems, these expressions must be used considering the corrected values for Young’s modulus Ē =

E
[
1−

(
ν

1+ν

)2
]
and Poisson’s ratio ν̄ = ν

1+ν
.
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Appendix C. Evaluation of singular integrands

Appendix C.1. Conventional integrands
When integrating an element that contains the source point, the strongly singular and hyper-

singular integrals arising in the boundary integral equations are evaluated with the SSM. For this
purpose, we firstly define the following auxiliary coordinate:

ζ(ξ̂, ξ̂′) = Je(ξ̂′)
(
ξ̂ − ξ̂′

)
(C.1)

where ξ̂ ∈ [−1, 1] is the non-dimensional coordinate in the parent space, ξ̂′ is the parameter at the
source point and Je(ξ̂′) is the Jacobian evaluated at the source point.

The kernel P em
ij (17) can be rewritten as:

P em
ij = −

∫ 1

−1

P̄ ∗ij(ξ̂, ξ̂
′)

r(ξ̂, ξ̂′)
φem(ξ̂)Je(ξ̂)dξ̂ (C.2)

where P̄ ∗ij = rP ∗ij is the regular part of the traction fundamental solution. P em
ij can be regularised

by adding and subtracting a kernel with the same order of singularity as follows:

P em
ij =

∫ 1

−1

P̄ ∗ij(ξ̂, ξ̂
′)

r(ξ̂, ξ̂′)
φem(ξ̂)Je(ξ̂)−

P̄ ∗ij(ξ̂
′)

ζ(ξ̂, ξ̂′)
φem(ξ̂′)Je(ξ̂′)dξ̂ −

∫ 1

−1

P̄ ∗ij(ξ̂
′)

ζ(ξ̂, ξ̂′)
φem(ξ̂′)Je(ξ̂′)dξ̂ (C.3)

where P̄ ∗ij(ξ̂′) is determined from P̄ ∗ij(ξ̂, ξ̂
′) when ξ̂ → ξ̂′. Substituting the definition of ζ (C.1) in

Eq. (C.3) results in:

P em
ij =

∫ 1

−1

P̄ ∗ij(ξ̂, ξ̂
′)

r(ξ̂, ξ̂′)
φem(ξ̂)Je(ξ̂)−

P̄ ∗ij(ξ̂
′)

ξ̂ − ξ̂′
φem(ξ̂′)dξ̂ + P̄ ∗ij(ξ̂

′)φem(ξ̂′)CPV (C.4)

The first integral on the right-hand side of equation (C.4) is regular and can be computed
with standard Gauss-Legendre quadrature. The last term contains the Cauchy principal value
computed analytically as follows:

CPV = −
∫ 1

−1

1

ξ̂ − ξ̂′
dξ̂ = ln

∣∣∣∣∣1− ξ̂′1 + ξ̂′

∣∣∣∣∣ (C.5)

Regarding the TBIE, the kernel Dem
kij (22) can be evaluated in a similar manner to P em

ij since
both have the same order of singularity O(r−1). For Semkij (21), it can be firstly rewritten as:

Semkij = =

∫ 1

−1

S̄∗kij(ξ̂, ξ̂
′)

r2(ξ̂, ξ̂′)
φem(ξ̂)Je(ξ̂)dξ̂ (C.6)

where S̄∗kij = r2S∗kij is the regular part of the fundamental solution.
The integrand in Eq. (C.6) can be regularised by the SSM considering the first-order Taylor

expansion around ξ̂′ for the shape functions, resulting in:

Semkij =

∫ 1

−1

S̄∗kij(ξ̂, ξ̂
′)

r2(ξ̂, ξ̂′)
φem(ξ̂)Je(ξ̂)−

S̄∗kij(ξ̂
′)

ζ2(ξ̂, ξ̂′)

[
φem(ξ̂′) +

dφem

dξ̂
(ξ̂′)

(
ξ̂ − ξ̂′

)]
Je(ξ̂′)dξ̂+ (C.7)

+ =

∫ 1

−1

S̄∗kij(ξ̂
′)

ζ2(ξ̂, ξ̂′)

[
φem(ξ̂′) +

dφem

dξ̂
(ξ̂′)

(
ξ̂ − ξ̂′

)]
Je(ξ̂′)dξ̂
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where S̄∗kij(ξ̂′) is obtained from S̄∗kij(ξ̂, ξ̂
′) when ξ̂ → ξ̂′ . Using Eq. (C.1) in Eq. (C.7) results in:

Semkij =

∫ 1

−1

S̄∗kij(ξ̂, ξ̂
′)

r2(ξ̂, ξ̂′)
φem(ξ̂)Je(ξ̂)−

S̄∗kij(ξ̂
′)

Je(ξ̂′)
(
ξ̂ − ξ̂′

)
 φem(ξ̂′)(

ξ̂ − ξ̂′
) +

dφem

dξ̂
(ξ̂′)

dξ̂+ (C.8)

+
S̄∗kij(ξ̂

′)

Je(ξ̂′)

[
φem(ξ̂′)HFP +

dφem

dξ̂
(ξ̂′)CPV

]
Again, the first integral on the right-hand side of Eq. (C.8) can be evaluated numerically

with Gauss-Legendre quadrature. The last term contains the Cauchy principal value presented in
Eq. (C.5) and also the Hadamard finite part given by:

HFP = =

∫ 1

−1

1(
ξ̂ − ξ̂′

)2dξ̂ = − 1

1− ξ̂′
− 1

1 + ξ̂′
(C.9)

Appendix C.2. Enriched integrands

The SSM can also be used to evaluate the enriched kernels P̃ eλ
iM and S̃eλijM for elements con-

taining the source point. In this case, the equations obtained are similar to Eqs. (C.4) and (C.8),
respectively, since the enrichment functions do not modify the order of singularity of the integ-
rands. To define the expressions to compute the singular kernels, the shape functions φem(ξ̂) are
simply replaced by the enrichment term T λjkψkM(xλ,x(ξ̂)). Hence, for P̃ eλ

iM we obtain:

P̃ eλ
iM =

∫ 1

−1

P̄ ∗ij(ξ̂, ξ̂
′)

r(ξ̂, ξ̂′)
T λjkψkM(xλ,x(ξ̂))Je(ξ̂)−

P̄ ∗ij(ξ̂
′)

ξ̂ − ξ̂′
T λjkψkM(xλ,x(ξ̂′))dξ̂+ (C.10)

+ P̄ ∗ij(ξ̂
′)T λjkψkM(xλ,x(ξ̂′))CPV

For S̃eλijM , the following expression is derived after applying the SSM:

S̃eλijM =

∫ 1

−1

S̄∗kij(ξ̂, ξ̂
′)

r2(ξ̂, ξ̂′)
T λkpψpM(xλ,x(ξ̂))Je(ξ̂)−

S̄∗kij(ξ̂
′)T λkp

Je(ξ̂′)
(
ξ̂ − ξ̂′

)
ψpM(xλ,x(ξ̂′))(

ξ̂ − ξ̂′
) +

dψpM

dξ̂
(xλ,x(ξ̂′))
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(C.11)

+
S̄∗kij(ξ̂

′)T λkp

Je(ξ̂′)

[
ψλpM(xλ,x(ξ̂′))HFP +

dψpM

dξ̂
(xλ,x(ξ̂′))CPV

]

in which the derivative
dψλpM

dξ̂
can be determined by applying the chain rule as follows:

dψλpM

dξ̂
=
∂ψpM
∂ρ

∂ρ

∂ξ̂
+
∂ψpM
∂θ

∂θ

∂ξ̂
(C.12)

If the parameter θ is kept constant along the crack surfaces, as considered in the present study,
the last term of Eq. (C.12) vanishes.
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Appendix D. Williams first-order expansion

According to Williams [56], the first-order solution for the displacement components near a
crack tip is expressed in terms of the SIFs as:

{
u1

u2

}
=

1

2µ

√
ρ

2π

[
cos
(
θ
2

)
(κ− cos θ) sin

(
θ
2

)
(κ+ 2 + cos θ)

sin
(
θ
2

)
(κ− cos θ) − cos

(
θ
2

)
(κ− 2 + cos θ)

]{
KI

KII

}
(D.1)

References

[1] T. Hughes, J. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, ex-
act geometry and mesh refinement, Computer Methods in Applied Mechanics and Engineering
194 (2005) 4135–4195. doi:10.1016/j.cma.2004.10.008.

[2] Y. Bazilevs, V. Calo, J. Cottrell, J. Evans, T. Hughes, S. Lipton, M. Scott, T. Sederberg, Iso-
geometric analysis using t-splines, Computer Methods in Applied Mechanics and Engineering
199 (2010) 229–263. doi:10.1016/j.cma.2009.02.036.

[3] J. Cottrell, A. Reali, Y. Bazilevs, T. Hughes, Isogeometric analysis of structural vibrations,
Computer Methods in Applied Mechanics and Engineering 195 (2006) 5257–5296. doi:10.
1016/j.cma.2005.09.027.

[4] J. A. Cottrell, T. J. Hughes, Y. Bazilevs, Isogeometric analysis: toward integration of CAD
and FEA, John Wiley & Sons, 2009.

[5] H.-J. Kim, Y.-D. Seo, S.-K. Youn, Isogeometric analysis for trimmed CAD surfaces, Computer
Methods in Applied Mechanics and Engineering 198 (2009) 2982–2995. doi:10.1016/j.cma.
2009.05.004.

[6] D. Benson, Y. Bazilevs, M. Hsu, T. Hughes, Isogeometric shell analysis: The reissner–mindlin
shell, Computer Methods in Applied Mechanics and Engineering 199 (2010) 276–289. doi:10.
1016/j.cma.2009.05.011.

[7] M. J. Borden, M. A. Scott, J. A. Evans, T. J. R. Hughes, Isogeometric finite element data
structures based on bézier extraction of NURBS, International Journal for Numerical Methods
in Engineering 87 (2010) 15–47. doi:10.1002/nme.2968.

[8] C. V. Verhoosel, M. A. Scott, R. de Borst, T. J. R. Hughes, An isogeometric approach
to cohesive zone modeling, International Journal for Numerical Methods in Engineering 87
(2010) 336–360. doi:10.1002/nme.3061.

[9] M. A. Scott, M. J. Borden, C. V. Verhoosel, T. W. Sederberg, T. J. R. Hughes, Isogeometric
finite element data structures based on bézier extraction of t-splines, International Journal
for Numerical Methods in Engineering 88 (2011) 126–156. doi:10.1002/nme.3167.

[10] H. A. Akhras, T. Elguedj, A. Gravouil, M. Rochette, Towards an automatic isogeometric
analysis suitable trivariate models generation—application to geometric parametric analysis,
Computer Methods in Applied Mechanics and Engineering 316 (2017) 623–645. doi:10.1016/
j.cma.2016.09.030.

41

http://dx.doi.org/10.1016/j.cma.2004.10.008
http://dx.doi.org/10.1016/j.cma.2009.02.036
http://dx.doi.org/10.1016/j.cma.2005.09.027
http://dx.doi.org/10.1016/j.cma.2005.09.027
http://dx.doi.org/10.1016/j.cma.2009.05.004
http://dx.doi.org/10.1016/j.cma.2009.05.004
http://dx.doi.org/10.1016/j.cma.2009.05.011
http://dx.doi.org/10.1016/j.cma.2009.05.011
http://dx.doi.org/10.1002/nme.2968
http://dx.doi.org/10.1002/nme.3061
http://dx.doi.org/10.1002/nme.3167
http://dx.doi.org/10.1016/j.cma.2016.09.030
http://dx.doi.org/10.1016/j.cma.2016.09.030


[11] C. Politis, A. I. Ginnis, P. D. Kaklis, K. Belibassakis, C. Feurer, An isogeometric BEM
for exterior potential-flow problems in the plane, in: 2009 SIAM/ACM Joint Conference on
Geometric and Physical Modeling on - SPM 09, ACM Press, 2009. doi:10.1145/1629255.
1629302.

[12] R. Simpson, S. Bordas, J. Trevelyan, T. Rabczuk, A two-dimensional isogeometric bound-
ary element method for elastostatic analysis, Computer Methods in Applied Mechanics and
Engineering 209-212 (2012) 87–100. doi:10.1016/j.cma.2011.08.008.

[13] R. Simpson, S. Bordas, H. Lian, J. Trevelyan, An isogeometric boundary element method for
elastostatic analysis: 2d implementation aspects, Computers & Structures 118 (2013) 2–12.
doi:10.1016/j.compstruc.2012.12.021.

[14] G. Beer, B. Marussig, C. Duenser, Isogeometric boundary element method for the simulation
of underground excavations, Géotechnique Letters 3 (2013) 108–111. doi:10.1680/geolett.
13.00009.

[15] G. Beer, C. Duenser, Advanced 3-d boundary element analysis of underground excavations,
Computers and Geotechnics 101 (2018) 196–207. doi:10.1016/j.compgeo.2018.05.005.

[16] R. Simpson, M. Scott, M. Taus, D. Thomas, H. Lian, Acoustic isogeometric boundary element
analysis, Computer Methods in Applied Mechanics and Engineering 269 (2014) 265–290.
doi:10.1016/j.cma.2013.10.026.

[17] L. Coox, O. Atak, D. Vandepitte, W. Desmet, An isogeometric indirect boundary element
method for solving acoustic problems in open-boundary domains, Computer Methods in
Applied Mechanics and Engineering 316 (2017) 186–208. doi:10.1016/j.cma.2016.05.039.

[18] Y. Sun, J. Trevelyan, G. Hattori, C. Lu, Discontinuous isogeometric boundary element (IG-
ABEM) formulations in 3d automotive acoustics, Engineering Analysis with Boundary Ele-
ments 105 (2019) 303–311. doi:10.1016/j.enganabound.2019.04.011.

[19] H. Lian, P. Kerfriden, S. Bordas, Shape optimization directly from CAD: An isogeometric
boundary element approach using t-splines, Computer Methods in Applied Mechanics and
Engineering 317 (2017) 1–41. doi:10.1016/j.cma.2016.11.012.

[20] S. Sun, T. Yu, T. Nguyen, E. Atroshchenko, T. Bui, Structural shape optimization by IG-
ABEM and particle swarm optimization algorithm, Engineering Analysis with Boundary
Elements 88 (2018) 26–40. doi:10.1016/j.enganabound.2017.12.007.

[21] H. L. Oliveira, H. C. Andrade, E. D. Leonel, An isogeometric boundary element approach for
topology optimization using the level set method, Applied Mathematical Modelling 84 (2020)
536–553. doi:10.1016/j.apm.2020.03.047.

[22] Y. Gong, C. Dong, X. Qin, An isogeometric boundary element method for three dimensional
potential problems, Journal of Computational and Applied Mathematics 313 (2017) 454–468.
doi:10.1016/j.cam.2016.10.003.

[23] L. S. Campos, É. L. de Albuquerque, L. C. Wrobel, An ACA accelerated isogeometric bound-
ary element analysis of potential problems with non-uniform boundary conditions, Engin-
eering Analysis with Boundary Elements 80 (2017) 108–115. doi:10.1016/j.enganabound.
2017.04.004.

42

http://dx.doi.org/10.1145/1629255.1629302
http://dx.doi.org/10.1145/1629255.1629302
http://dx.doi.org/10.1016/j.cma.2011.08.008
http://dx.doi.org/10.1016/j.compstruc.2012.12.021
http://dx.doi.org/10.1680/geolett.13.00009
http://dx.doi.org/10.1680/geolett.13.00009
http://dx.doi.org/10.1016/j.compgeo.2018.05.005
http://dx.doi.org/10.1016/j.cma.2013.10.026
http://dx.doi.org/10.1016/j.cma.2016.05.039
http://dx.doi.org/10.1016/j.enganabound.2019.04.011
http://dx.doi.org/10.1016/j.cma.2016.11.012
http://dx.doi.org/10.1016/j.enganabound.2017.12.007
http://dx.doi.org/10.1016/j.apm.2020.03.047
http://dx.doi.org/10.1016/j.cam.2016.10.003
http://dx.doi.org/10.1016/j.enganabound.2017.04.004
http://dx.doi.org/10.1016/j.enganabound.2017.04.004


[24] Z. An, T. Yu, T. Q. Bui, C. Wang, N. A. Trinh, Implementation of isogeometric boundary
element method for 2-d steady heat transfer analysis, Advances in Engineering Software 116
(2018) 36–49. doi:10.1016/j.advengsoft.2017.11.008.

[25] B. Nguyen, H. Tran, C. Anitescu, X. Zhuang, T. Rabczuk, An isogeometric symmetric galerkin
boundary element method for two-dimensional crack problems, Computer Methods in Applied
Mechanics and Engineering 306 (2016) 252–275. doi:10.1016/j.cma.2016.04.002.

[26] X. Peng, E. Atroshchenko, P. Kerfriden, S. Bordas, Isogeometric boundary element methods
for three dimensional static fracture and fatigue crack growth, Computer Methods in Applied
Mechanics and Engineering 316 (2017) 151–185. doi:10.1016/j.cma.2016.05.038.

[27] S. G. F. Cordeiro, E. D. Leonel, Mechanical modelling of three-dimensional cracked structural
components using the isogeometric dual boundary element method, Applied Mathematical
Modelling 63 (2018) 415–444. doi:10.1016/j.apm.2018.06.042.

[28] F. Sun, C. Dong, H. Yang, Isogeometric boundary element method for crack propagation
based on bézier extraction of NURBS, Engineering Analysis with Boundary Elements 99
(2019) 76–88. doi:10.1016/j.enganabound.2018.11.010.

[29] M. Taus, G. J. Rodin, T. J. R. Hughes, Isogeometric analysis of boundary integral
equations: High-order collocation methods for the singular and hyper-singular equations,
Mathematical Models and Methods in Applied Sciences 26 (2016) 1447–1480. doi:10.1142/
s0218202516500354.

[30] M. Taus, G. J. Rodin, T. J. Hughes, M. A. Scott, Isogeometric boundary element methods and
patch tests for linear elastic problems: Formulation, numerical integration, and applications,
Computer Methods in Applied Mechanics and Engineering 357 (2019) 112591. doi:10.1016/
j.cma.2019.112591.

[31] Y. Gong, J. Trevelyan, G. Hattori, C. Dong, Hybrid nearly singular integration for isogeomet-
ric boundary element analysis of coatings and other thin 2d structures, Computer Methods in
Applied Mechanics and Engineering 346 (2019) 642–673. doi:10.1016/j.cma.2018.12.019.

[32] J. Melenk, I. Babuska, The partition of unity finite element method: Basic theory and
applications, Computer Methods in Applied Mechanics and Engineering 139 (1996) 289–314.
doi:10.1016/s0045-7825(96)01087-0.

[33] I. Babuska, J. M. Melenk, The partition of unity method, International Journal for Numerical
Methods in Engineering 40 (1997) 727–758. doi:10.1002/(sici)1097-0207(19970228)40:
4<727::aid-nme86>3.0.co;2-n.

[34] T. Belytschko, T. Black, Elastic crack growth in finite elements with minimal remeshing,
International Journal for Numerical Methods in Engineering 45 (1999) 601–620. doi:10.1002/
(sici)1097-0207(19990620)45:5<601::aid-nme598>3.0.co;2-s.

[35] D. J. Benson, Y. Bazilevs, E. D. Luycker, M.-C. Hsu, M. Scott, T. J. R. Hughes, T. Belytschko,
A generalized finite element formulation for arbitrary basis functions: From isogeometric
analysis to XFEM, International Journal for Numerical Methods in Engineering (2010) 765–
785. doi:10.1002/nme.2864.

43

http://dx.doi.org/10.1016/j.advengsoft.2017.11.008
http://dx.doi.org/10.1016/j.cma.2016.04.002
http://dx.doi.org/10.1016/j.cma.2016.05.038
http://dx.doi.org/10.1016/j.apm.2018.06.042
http://dx.doi.org/10.1016/j.enganabound.2018.11.010
http://dx.doi.org/10.1142/s0218202516500354
http://dx.doi.org/10.1142/s0218202516500354
http://dx.doi.org/10.1016/j.cma.2019.112591
http://dx.doi.org/10.1016/j.cma.2019.112591
http://dx.doi.org/10.1016/j.cma.2018.12.019
http://dx.doi.org/10.1016/s0045-7825(96)01087-0
http://dx.doi.org/10.1002/(sici)1097-0207(19970228)40:4<727::aid-nme86>3.0.co;2-n
http://dx.doi.org/10.1002/(sici)1097-0207(19970228)40:4<727::aid-nme86>3.0.co;2-n
http://dx.doi.org/10.1002/(sici)1097-0207(19990620)45:5<601::aid-nme598>3.0.co;2-s
http://dx.doi.org/10.1002/(sici)1097-0207(19990620)45:5<601::aid-nme598>3.0.co;2-s
http://dx.doi.org/10.1002/nme.2864


[36] E. D. Luycker, D. J. Benson, T. Belytschko, Y. Bazilevs, M. C. Hsu, X-FEM in isogeomet-
ric analysis for linear fracture mechanics, International Journal for Numerical Methods in
Engineering 87 (2011) 541–565. doi:10.1002/nme.3121.

[37] S. S. Ghorashi, N. Valizadeh, S. Mohammadi, Extended isogeometric analysis for simula-
tion of stationary and propagating cracks, International Journal for Numerical Methods in
Engineering 89 (2011) 1069–1101. doi:10.1002/nme.3277.

[38] V. P. Nguyen, C. Anitescu, S. P. Bordas, T. Rabczuk, Isogeometric analysis: An overview
and computer implementation aspects, Mathematics and Computers in Simulation 117 (2015)
89–116. doi:10.1016/j.matcom.2015.05.008.

[39] S. Singh, I. Singh, B. Mishra, G. Bhardwaj, T. Bui, A simple, efficient and accurate bézier
extraction based t-spline XIGA for crack simulations, Theoretical and Applied Fracture
Mechanics 88 (2017) 74–96. doi:10.1016/j.tafmec.2016.12.002.

[40] M. Peake, J. Trevelyan, G. Coates, Extended isogeometric boundary element method
(XIBEM) for two-dimensional helmholtz problems, Computer Methods in Applied Mech-
anics and Engineering 259 (2013) 93–102. doi:10.1016/j.cma.2013.03.016.

[41] M. Peake, J. Trevelyan, G. Coates, Extended isogeometric boundary element method
(XIBEM) for three-dimensional medium-wave acoustic scattering problems, Computer Meth-
ods in Applied Mechanics and Engineering 284 (2015) 762–780. doi:10.1016/j.cma.2014.
10.039.

[42] X. Peng, E. Atroshchenko, P. Kerfriden, S. P. A. Bordas, Linear elastic fracture simulation
directly from CAD: 2d NURBS-based implementation and role of tip enrichment, International
Journal of Fracture 204 (2016) 55–78. doi:10.1007/s10704-016-0153-3.

[43] R. Simpson, J. Trevelyan, A partition of unity enriched dual boundary element method for
accurate computations in fracture mechanics, Computer Methods in Applied Mechanics and
Engineering 200 (2011) 1–10. doi:10.1016/j.cma.2010.06.015.

[44] R. Simpson, J. Trevelyan, Evaluation of j1 and j2 integrals for curved cracks using an enriched
boundary element method, Engineering Fracture Mechanics 78 (2011) 623–637. doi:10.1016/
j.engfracmech.2010.12.006.

[45] S. E. Benzley, Representation of singularities with isoparametric finite elements, Interna-
tional Journal for Numerical Methods in Engineering 8 (1974) 537–545. doi:10.1002/nme.
1620080310.

[46] I. Alatawi, J. Trevelyan, A direct evaluation of stress intensity factors using the extended dual
boundary element method, Engineering Analysis with Boundary Elements 52 (2015) 56–63.
doi:10.1016/j.enganabound.2014.11.022.

[47] J. R. Rice, A path independent integral and the approximate analysis of strain concentration
by notches and cracks, Journal of Applied Mechanics 35 (1968) 379. doi:10.1115/1.3601206.

[48] H. Andrade, E. Leonel, An enriched dual boundary element method formulation for linear
elastic crack propagation, Engineering Analysis with Boundary Elements 121 (2020) 158–179.
doi:10.1016/j.enganabound.2020.09.007.

44

http://dx.doi.org/10.1002/nme.3121
http://dx.doi.org/10.1002/nme.3277
http://dx.doi.org/10.1016/j.matcom.2015.05.008
http://dx.doi.org/10.1016/j.tafmec.2016.12.002
http://dx.doi.org/10.1016/j.cma.2013.03.016
http://dx.doi.org/10.1016/j.cma.2014.10.039
http://dx.doi.org/10.1016/j.cma.2014.10.039
http://dx.doi.org/10.1007/s10704-016-0153-3
http://dx.doi.org/10.1016/j.cma.2010.06.015
http://dx.doi.org/10.1016/j.engfracmech.2010.12.006
http://dx.doi.org/10.1016/j.engfracmech.2010.12.006
http://dx.doi.org/10.1002/nme.1620080310
http://dx.doi.org/10.1002/nme.1620080310
http://dx.doi.org/10.1016/j.enganabound.2014.11.022
http://dx.doi.org/10.1115/1.3601206
http://dx.doi.org/10.1016/j.enganabound.2020.09.007


[49] H.-K. Hong, J.-T. Chen, Derivations of integral equations of elasticity, Journal of Engineering
Mechanics 114 (1988) 1028–1044. doi:10.1061/(asce)0733-9399(1988)114:6(1028).

[50] A. Portela, M. H. Aliabadi, D. P. Rooke, The dual boundary element method: Effective im-
plementation for crack problems, International Journal for Numerical Methods in Engineering
33 (1992) 1269–1287. doi:10.1002/nme.1620330611.

[51] L. Piegl, W. Tiller, The NURBS Book, Springer Berlin Heidelberg, 1995. doi:10.1007/
978-3-642-97385-7.

[52] M. G. Cox, The numerical evaluation of b-splines, IMA Journal of Applied Mathematics 10
(1972) 134–149. doi:10.1093/imamat/10.2.134.

[53] C. De Boor, On calculating with b-splines, Journal of Approximation theory 6 (1972) 50–62.
doi:10.1016/0021-9045(72)90080-9.

[54] M. H. Aliabadi, The boundary element method, volume 2: applications in solids and struc-
tures, volume 2, John Wiley & Sons, 2002.

[55] M. Guiggiani, P. Casalini, Direct computation of cauchy principal value integrals in advanced
boundary elements, International Journal for Numerical Methods in Engineering 24 (1987)
1711–1720. doi:10.1002/nme.1620240908.

[56] M. Williams, On the stress distribution at the base of a stationary crack, Journal of Applied
Mechanics 24 (1957) 109–114.

[57] T. Greville, Numerical procedures for interpolation by spline functions, Journal of the Society
for Industrial and Applied Mathematics, Series B: Numerical Analysis 1 (1964) 53–68. doi:10.
1137/0701005.

[58] R. W. Johnson, Higher order b-spline collocation at the greville abscissae, Applied Numerical
Mathematics 52 (2005) 63–75. doi:10.1016/j.apnum.2004.04.002.

[59] J. C. F. Telles, A self-adaptive co-ordinate transformation for efficient numerical evaluation
of general boundary element integrals, International Journal for Numerical Methods in En-
gineering 24 (1987) 959–973. doi:10.1002/nme.1620240509.

[60] J. Telles, R. Oliveira, Third degree polynomial transformation for boundary element integ-
rals: further improvements, Engineering analysis with boundary elements 13 (1994) 135–141.
doi:10.1016/0955-7997(94)90016-7.

[61] P. C. Paris, A rational analytic theory of fatigue, The trend in engineering 13 (1961) 9.

[62] K. Tanaka, Fatigue crack propagation from a crack inclined to the cyclic tensile axis, Engin-
eering Fracture Mechanics 6 (1974) 493–507. doi:10.1016/0013-7944(74)90007-1.

[63] R. Price, J. Trevelyan, Boundary element simulation of fatigue crack growth in multi-site
damage, Engineering Analysis with Boundary Elements 43 (2014) 67–75. doi:10.1016/j.
enganabound.2014.03.002.

45

http://dx.doi.org/10.1061/(asce)0733-9399(1988)114:6(1028)
http://dx.doi.org/10.1002/nme.1620330611
http://dx.doi.org/10.1007/978-3-642-97385-7
http://dx.doi.org/10.1007/978-3-642-97385-7
http://dx.doi.org/10.1093/imamat/10.2.134
http://dx.doi.org/10.1016/0021-9045(72)90080-9
http://dx.doi.org/10.1002/nme.1620240908
http://dx.doi.org/10.1137/0701005
http://dx.doi.org/10.1137/0701005
http://dx.doi.org/10.1016/j.apnum.2004.04.002
http://dx.doi.org/10.1002/nme.1620240509
http://dx.doi.org/10.1016/0955-7997(94)90016-7
http://dx.doi.org/10.1016/0013-7944(74)90007-1
http://dx.doi.org/10.1016/j.enganabound.2014.03.002
http://dx.doi.org/10.1016/j.enganabound.2014.03.002


[64] H. C. Andrade, E. D. Leonel, The multiple fatigue crack propagation modelling in nonhomo-
geneous structures using the DBEM, Engineering Analysis with Boundary Elements 98 (2019)
296–309. doi:10.1016/j.enganabound.2018.10.026.

[65] A. Portela, M. Aliabadi, D. Rooke, Dual boundary element incremental analysis of crack
propagation, Computers & Structures 46 (1993) 237–247. doi:10.1016/0045-7949(93)
90189-k.

[66] F. Erdogan, G. C. Sih, On the crack extension in plates under plane loading and transverse
shear, Journal of Basic Engineering 85 (1963) 519. doi:10.1115/1.3656897.

[67] F. H. K. Chen, R. T. Shield, Conservation laws in elasticity of the j-integral type, Zeitschrift
für angewandte Mathematik und Physik 28 (1977) 1–22. doi:10.1007/bf01590704.

[68] T. Fett, Stress Intensity Factors - T-Stresses - Weight Functions, Technical Report, Karlsruher
Institut für Technologie (KIT), 2008. doi:10.5445/KSP/1000007996.

[69] C. A. Brebbia, J. C. F. Telles, L. C. Wrobel, Boundary element techniques: theory and
applications in engineering, Springer-Verlag, 1984.

[70] H. Tada, P. C. Paris, G. R. Irwin, The Stress Analysis of Cracks Handbook, Third Edition,
ASME, 2000. doi:10.1115/1.801535.

[71] X. Y. Liu, Q. Z. Xiao, B. L. Karihaloo, XFEM for direct evaluation of mixed mode SIFs in
homogeneous and bi-materials, International Journal for Numerical Methods in Engineering
59 (2004) 1103–1118. doi:10.1002/nme.906.

[72] P. O. Judt, A. Ricoeur, Consistent application of path-independent interaction integrals to
arbitrary curved crack faces, Archive of Applied Mechanics 85 (2014) 13–27. doi:10.1007/
s00419-014-0897-z.

[73] X. Yan, A boundary element analysis for stress intensity factors of multiple circular arc
cracks in a plane elasticity plate, Applied Mathematical Modelling 34 (2010) 2722–2737.
doi:10.1016/j.apm.2009.12.008.

[74] M.-J. Choi, S. Cho, Isogeometric analysis of stress intensity factors for curved crack problems,
Theoretical and Applied Fracture Mechanics 75 (2015) 89–103. doi:10.1016/j.tafmec.2014.
11.003.

[75] M. A. Pustejovsky, Fatigue crack propagation in titanium under general in-plane loading—i:
Experiments, Engineering Fracture Mechanics 11 (1979) 9–15. doi:10.1016/0013-7944(79)
90025-0.

[76] J. P. Pereira, C. A. Duarte, X. Jiao, Three-dimensional crack growth with hp-generalized
finite element and face offsetting methods, Computational Mechanics 46 (2010) 431–453.
doi:10.1007/s00466-010-0491-3.

46

http://dx.doi.org/10.1016/j.enganabound.2018.10.026
http://dx.doi.org/10.1016/0045-7949(93)90189-k
http://dx.doi.org/10.1016/0045-7949(93)90189-k
http://dx.doi.org/10.1115/1.3656897
http://dx.doi.org/10.1007/bf01590704
http://dx.doi.org/10.5445/KSP/1000007996
http://dx.doi.org/10.1115/1.801535
http://dx.doi.org/10.1002/nme.906
http://dx.doi.org/10.1007/s00419-014-0897-z
http://dx.doi.org/10.1007/s00419-014-0897-z
http://dx.doi.org/10.1016/j.apm.2009.12.008
http://dx.doi.org/10.1016/j.tafmec.2014.11.003
http://dx.doi.org/10.1016/j.tafmec.2014.11.003
http://dx.doi.org/10.1016/0013-7944(79)90025-0
http://dx.doi.org/10.1016/0013-7944(79)90025-0
http://dx.doi.org/10.1007/s00466-010-0491-3

	Introduction
	NURBS
	NURBS definitions
	Knot insertion and continuity of NURBS basis

	Extended isogeometric boundary element method
	Boundary integral equations for elastostatic
	Numerical implementation of XIGABEM
	Approximations
	Crack tip tying constraint
	Assembly of the system of equations


	XIGABEM for fatigue crack growth
	Fatigue analysis
	Propagation and remeshing

	Numerical applications
	Evaluation of SIFs
	Square plate with an edge crack 
	Finite rectangular plate with an edge crack under bending
	Crack in an infinite domain

	Fatigue crack growth
	Titanium plate with a central inclined crack
	Open spanner
	Perforated plate with an edge crack
	Perforated panel with multiple cracks


	Concluding remarks
	NURBS basis derivatives
	Fundamental solutions
	Evaluation of singular integrands
	Conventional integrands
	Enriched integrands

	Williams first-order expansion

