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argue that Z(1)
N is broken on the wall, and hence, Wilson loops obey the perimeter law. The

breaking of the worldvolume center symmetry implies that bulk p-strings can end on the
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k-wall theory is saturated by a topological quantum field theory. We also find interesting
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1 Introduction

Domain walls (DW) are ubiquitous in field theory as they appear in many natural phe-

nomena, ranging from condensed matter physics to cosmology, due to the spontaneous

breaking of global symmetries. Among the plethora of field theories, SU(N) Yang-Mills

(YM) theory and its N = 1 supersymmetric generalization (SYM) stand out as they play

an important role in the Standard Model and its extensions. These theories are invariant

under a Z(1)
N discrete one-form global symmetry known as center symmetry.1

At temperature T below the deconfinement temperature Tc (of order the strong scale

Λ) the expectation value of the Polyakov loop P — which is charged under Z(1)
N — vanishes,

signalling that the theory is in the confined phase. At temperature greater than Tc the

theory deconfines and the center symmetry breaks spontaneously, giving rise to DW that

1We use a superscript Z(1)
N to distinguish one-form symmetries from ordinary zero-form symmetries such

as the discrete chiral Z2N . For an introduction to center symmetry and to its relevance as an order parameter

for confinement, from lattice and continuum perspectives, see [1, 2].
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interpolate between N distinct vacua, which are distinguished by the expectation value of

the Polyakov’s loop: 〈P 〉 = Ne−i
2πk
N , and k = 0, 1, 2, . . . , N − 1.

These DW are closely related to center vortices, which are thought to be responsible

for disordering the vacuum and giving rise to confinement as the temperature is decreased

below Tc, see [1] for an introduction and review. Therefore, one hopes that a close exam-

ination of the DW will shed light into the role of center vortices in the strong dynamics.

Fortunately enough, DW are amenable to perturbative analysis at T � Tc, which makes

them excellent objects to study compared to their low-temperature counterparts, the center

vortices.2

Despite the fact that DW in Yang-Mills theory are well studied in the literature, in the

perturbative regime [3–12], on the lattice [13, 14], via holography [8, 10, 15, 16], or with

an emphasis on DW in supersymmetric Yang-Mills theory [17–22], the DW worldvolume

theory and the interplay between the bulk and DW physics remain, in many cases, a

largely unexplored territory.3 A renewed impetus for such studies is provided by the recent

realization that DW must have rich worldvolume dynamics, required by newly discovered

anomalies [2, 23, 24], as discussed further below.

In recent work [25], we studied the DW in high-T SU(2) N = 1 super-YM theory to

find that the two-dimensional (2-D) worldvolume theory is given by the axial version of

the charge-2 Schwinger model. This theory was shown to have a broken Zdχ4 discrete chiral

symmetry4 and a broken Z(1)
2 center symmetry. The broken chiral symmetry on the wall

implies that the fermion bilinear condensate on the wall should be nonzero in the high-T ,

chirally restored and deconfined phase of the bulk. The broken center symmetry on the wall

implies a perimeter law for a fundamental Wilson loop. This behavior on the 2-D worldvol-

ume mirrors many properties of the strongly coupled 4-D low temperature theory, inferred

from its M -theory embedding [26] or from weakly coupled R3× S1 compactifications [27].5

Motivated by the rich structure of the DW in the SU(2) case, in this paper we generalize

our study to the k-walls in SU(N) N = 1 super-YM theory, examine their worldvolume

theory and the fate of the various discrete symmetries. The generalization to N > 2

presents various technical challenges addressed in the appendices. We also fill in many

details left out in [25]. Many of the results we find also apply to YM theory with higher

supersymmetry as well as to their non-supersymmetric versions with multiple adjoint Weyl

fermions, QCD(adj).

An important tool in our study is the use of the ’t Hooft anomaly matching condi-

tions [29–32]. Given a global symmetry G of a quantum field theory, the gauging of this

symmetry may be obstructed due to the existence of an anomaly. The obstruction is renor-

malization group invariant and can be used to set constraints on the IR spectrum of the

theory, which are particularly useful in asymptotically free theories. Most relevant to our

2These do not yield to controlled analytic studies, but require lattice simulations or model assump-

tions [1].
3Many of these studies focused on the k-wall tension, argued to exhibit Casimir scaling as in (2.11).
4The “dχ” superscript is a reminder of the nature of the discrete symmetry.
5These calculable compactifications are in many cases continuously connected to the R4 strongly coupled

theory, see [28] for a recent review and references.
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study is the fact that a new type of ’t Hooft anomaly was recently discovered in [2, 23, 24].

This is a mixed anomaly between two discrete global symmetries such that one becomes

anomalous as we gauge the other. One of the two is a 0-form symmetry, which means

that it acts on local operators, while the other is a 1-form symmetry that acts on line

operators, e.g., Wilson loops. Anomalies of this new type have been the subject of many

recent investigations (for an incomplete list, see [33–49]).

One of the striking findings in this work is that various 2-D gauge theories with Dirac

fermions, thought to be just “toy models” extensively studied for their similarity with 4-D

QCD (see [50, 51] for reviews) are tied to the full-fledged 4-D super Yang-Mills theory and

its various supersymmetric and nonsupersymmetric extensions via its DW worldvolume

theory. In particular, we show that the worldvolume of the k-wall is a 2-D U(1)× SU(N −
k) × SU(k) YM theory with Dirac fermions, charged under the U(1) and transforming

in the bi-fundamental representation of SU(N − k) × SU(k). We show that this theory

has an anomaly free 0-form Zdχ2N discrete chiral symmetry, while fundamental Wilson loops

transform under a Z(1)
N center symmetry. We argue that fundamental Wilson loops exhibit a

perimeter law, and hence, the fundamental quarks are deconfined on the wall. The bulk, on

the other hand, is a strongly coupled non-Abelian 3-D gauge theory which possesses a mass

gap and confines.6 Consequently, one can turn on p-flux tubes in the bulk, sourced by N -

ality p probe quarks, and examine their behavior as they join the wall. We argue that these

tubes will terminate on the wall as a consequence of the screening of fundamental charges

(perimeter law) on the wall: as a p-tube joins the wall it will break into representations of

U(1)×SU(k)×SU(N−k), which are screened by the DW fermions. That confining strings

can end on domain walls was first discovered in the context of M-theory [26], for low-T DW

associated with the breaking of the discrete chiral R-symmetry of super-YM theory, and

via holography in N = 4 super-YM [15], for the high-T DW studied here. Our study gives

the first weakly coupled high-T field theory dynamical explanation of this phenomenon.

Previously, a weakly coupled field theory mechanism explaining how confining strings

can end on low-T DW (due to R symmetry breaking) was found in [27] in the context

of R3 × S1 compactifications. Here, we find that there are many similarities between the

properties of DW in the two small-S1 cases — small spatial circle vs. high-T — due to the

similar ways that ’t Hooft anomalies are saturated, see section 4 for further discussion (as

well as figure 1). Obtaining a better understanding of the microscopic mechanism allowing

strings to end on DW and of its relation to anomalies and inflow in more general cases

than considered so far (for example, on R4 [17]; see [52] for topological arguments within

QFT) is an interesting task for future studies.

The fate of the discrete chiral symmetry on the k-wall is more subtle since the k-wall

worldvolume theory for SU(N), as opposed to SU(2), is not exactly solvable. However,

arguments based on bosonization and gauged Wess-Zumino-Witten models suggest that

Zdχ2N is spontaneously broken to Zdχ2 (the latter is part of the Lorentz symmetry) giving

rise to N distinct vacua on the k-wall, which are needed to saturate the mixed discrete

chiral/center anomaly. This means that the IR theory is “empty”, i.e., it has no massless

6This has nothing to do with confinement of real heavy quarks in the original 3 + 1-D theory.
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degrees of freedom, and the ’t Hooft anomalies are matched by a topological quantum field

theory (TQFT).

This paper is organized as follows. In section 2 we examine the DW in high-T super

Yang-Mills and derive the worldvolume theory (we do not consider the decoupled center of

mass degrees of freedom). We then study the discrete symmetries of the k-wall worldvol-

ume theory, and show that it has a 0-form/1-form mixed ’t Hooft anomaly, which is also

consistent with the bulk/wall anomaly inflow. In section 3, we study the realization of the

Z(1)
N center symmetry on the wall and show that it is broken, hence Wilson lines obey the

perimeter law. We then argue that the bulk p-string can end on the DW. We study the

fate of the discrete chiral symmetry and discuss the IR TQFT saturating the anomaly in

section 4, while in section 5 we comment on the k-walls in adjoint QCD.

Many important technical details are relegated to appendices. We summarize our

group theory conventions in appendix A and work out the details of the DW fermion zero-

modes in appendix B. Results crucial for understanding the anomalies of the chiral and

center symmetry of the k-wall theory — the U(1)-flux quantization and ’t Hooft fluxes —

are derived in appendix C, where we study the properties of the SU(N −k)×SU(k)×U(1)

bundle7 on the torus, and in appendix D using a projection of constant flux backgrounds.

2 Domain walls, anomalies, and inflow

2.1 Adjoint QCD at high temperature

We consider SU(N) Yang-Mills theory endowed with nf adjoint Weyl fermions at finite

temperature T :

S =
1

g2

∫
R3×S1β

1

2
trF (FµνFµν) + itrF

(
λ̄σ̄µDµλ

)
, (2.1)

where µ, ν = 1, 2, 3, 4 and the fundamental trace is normalized as trF
(
tatb
)

= δab. In this

normalization the roots have length α2 = 2. S1β is the thermal circle, which is taken along

the x4-direction and has circumference β = 1/T . The covariant derivative is given by

Dµ = ∂µ− i[Aµ, ] and σ̄ = (σ,−i), where σ are the spacetime Pauli matrices. In addition,

the fermion field λ carries an implicit flavor index.

At temperatures larger than Λ, the strong coupling scale of the theory, many aspects

of the theory become amenable to semiclassical treatment owing to asymptotic freedom.

In this case we can dimensionally reduce the action (2.1) to 3-D after integrating out a

tower of heavy Matsubara excitations of the gauge and fermion fields along Sβ1 . To one-loop

order, the resulting bosonic part of the action [53] reads

Sboson
3−D =

β

g2(β)

∫
R3

(
1

2
trF (FijFij) + trF (DiA4)

2 + g2V (A4) +O
(
g4
))

, (2.2)

where i, j = 1, 2, 3 and V (A4) is the one-loop effective potential for the Matsubara zero

mode of the x4-component of the gauge field written in terms of its Cartan subalgebra

7More precisely, the k-wall worldvolume gauge group is SU(N − k)× SU(k)×U(1)/(ZN−k × Zk).
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component A4:

V (A4) =
4T 4

π2

∑
β+

∑
n=1

−1 + nf (−1)n

n4
cos

[
nA4 · β
T

]
, (2.3)

and the sum is over all positive roots β+ (to not be confused with the inverse temperature

β = 1/T ). Our group theory conventions are detailed in appendix A. In the rest of this

paper we consider SYM (i.e., nf = 1), while we discuss nf > 1 in section 5.

2.2 Vacua and domain walls

The potential (2.3) has N vacua, all with SU(N) unbroken:

〈A4〉(a)β ≡ Φ0 = 2πωa, a = 0, 1, 2, . . . , N − 1 , (2.4)

where ω0 ≡ 0 and ω1, . . . ,ωN−1 are the fundamental weights of SU(N). One can calculate

the expectation value of the fundamental Polyakov loop at these vacua to find

trF
[
eiΦ0·H] ∣∣∣∣

Φ0=2πωa

= Ne−i
2πa
N , (2.5)

where we used the fact that the trace can be expressed as a sum over the weights of the

fundamental representation νb, using the formulae given in section A. The nonvanishing of

the Polyakov loop expectation value (2.5) shows that the zero-form ZN center symmetry

is broken in the vacua (2.4), which are permuted by its action.8

We shall call a “k-wall” a DW configuration in the 3-D theory (2.2), which is a (e.g.)

z-dependent kink interpolating between the vacua Φ0 = 0 and Φ0 = 2πωk, k > 0. In other

words, a k-wall satisfies the boundary conditions:

ADW
4 (z) = TΦDW(z), ΦDW(z → −∞) = 0, ΦDW(z → +∞) = 2πωk, k > 0. (2.6)

The SU(N) gauge group is spontaneously broken on the domain wall by the nontrivial wall

profile ΦDW(z), while it gets restored at the wall boundaries |z| → ∞. A fundamental DW

separates two distinct vacua, and hence, there are CN2 = N(N−1)
2 fundamental DWs.

DW (k-wall) configurations have been studied in the literature, both in the high tem-

perature limit βΛQCD � 1, where higher loop effects have been also included [3–10], and

on the lattice at lower temperatures [14]. In particular, the k-wall profiles and the k-wall

tensions have been studied in theories with massless adjoint fermions and scalars, such as

N = 4 super-Yang-Mills [8], and two-index fermions [10].

To us, the fact of crucial importance is that in the high-T limit, the stable9 k-wall

profile takes the form

A
DW (k)
4 (z) = TQ(k)(z)H̃N−k , (2.7)

8These vacua lie at the vertices of the affine Weyl chamber, which is defined via the inequalities αa ·Φ > 0

for a = 1, 2, . . . , N − 1 and −α0 · Φ < 2π, where α0 is the lowest, or affine, root. The SU(N) gauge

symmetry is unbroken at the vertices of the Weyl chamber (which can be pictured as a triangle for SU(3)

and a tetrahedron for SU(4)), is partially broken on the faces, and completely abelianizes in the bulk of the

Weyl chamber.
9There exists a number of metastable DWs which can be numerically found for specific values of N .
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where H̃N−k denotes the Cartan generator

H̃N−k =
1√

kN(N − k)
diag

k, k, . . . , k︸ ︷︷ ︸
N−k times

, k −N, k −N, . . . , k −N︸ ︷︷ ︸
k times

 , (2.8)

see also (A.8) in appendix A. The wall profile function Q(k)(z) obeys the boundary condi-

tions

Q(k)(z → −∞) = 0, Q(k)(z → +∞) = −2π

√
k(N − k)

N
. (2.9)

To obtain the solution of the k-wall profile, we substitute the ansatz (2.7) into (2.2), taking

nf = 1, and use the change of variables

q(z) ≡ − 1

2π

√
N

k(N − k)
Q(k)(z) , z′ ≡ T

√
g2N

π2
z , (2.10)

along with the fact that the (N–k)-th component of the roots that contribute to the

potential V (A4) is given by γ(N−k) =
√

N
k(N−k) . Then, the k-wall action (nf = 1) reads

Sk-wall = 4AT 2 (N − k)k√
g2N

∫ ∞
−∞

dz′

{(
∂q(z′)

∂z′

)2

+
∑
n=1

−1 + (−1)n

n4
cos
(
2πnq(z′)

)}
,

(2.11)

where A is the wall area, and the boundary conditions (2.9) translate into q(z′ → −∞) = 0

and q(z′ →∞) = 1. From (2.11), (2.10) it is easily seen that the k-wall tension follows the

Casimir scaling Sk-wall
S1−wall

= k(N−k)
N−1 , while its width ∼ 1

T
√
g2N

is independent of k.

Two comments are now in order. First, the k-wall (2.7) interpolates between the two

vacua

A
DW (k)
4 (−∞) = diag [0, 0, . . . , 0] , (2.12)

A
DW (k)
4 (+∞) = 2πTdiag

− k

N
,− k

N
, . . . ,− k

N︸ ︷︷ ︸
N−k times

, 1− k

N
, 1− k

N
, . . . , 1− k

N︸ ︷︷ ︸
k times

 .
It is then easily seen that as one crosses the k-wall, the trace of the Polyakov loop interpo-

lates between tr eiβA
DW (k)
4 (−∞) = N and tr eiβA

DW (k)
4 (∞) = Ne−i

2πk
N , as in (2.5), hence the

k-wall obeys the desired boundary conditions.

Second, as the form of the DW profile (2.7) shows, the SU(N) group breaks to U(1)×
SU(k)×SU(N −k) on the k-wall. The mass of the off-diagonal gauge bosons on the k-wall

will be seen, see the following section 2.3 and appendix B, to be of order T
√

N
k(N−k) . The

massless gauge bosons are localized near the DW due to the fact that the bulk gauge theory

has a mass gap ∼ g2T due to 3-D confinement in the bulk. Thus, there is an unbroken

U(1)× SU(k)× SU(N − k) 2-D gauge theory on the k-wall worldvolume.

As the bulk confinement scale (g2T )−1 is much larger than the DW width (T
√
g2N)−1,

the validity of the semiclassical treatment of the DW solution and the appearance of lo-

calized fermion zero modes (section 2.3) is beyond doubt. The k-wall gauge coupling,

– 6 –
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however, is not precisely calculable, since the mechanism responsible for the localization

of the massless gauge bosons on the wall is nonperturbative, due to bulk confinement, as

in [54, 55]. As we already remarked in [25], introducing a localization length δ of the DW

gauge fields, whose (not precisely known) value is between the DW width and the bulk con-

fining scale, the strong coupling scale of the worldvolume theory is estimated as ( g
2T
δ )1/2.

If this scale were of the order of the bulk mass gap g2T , a 2-D QFT treatment would not

be appropriate as there would be significant mixing between 3-D bulk and 2-D DW strong

coupling physics, a difficult problem awaiting a dedicated study. With the above remarks

in mind, in what follows, we continue with a 2-D treatment of the k-wall theory to derive

an IR 2D TQFT matching the k-wall ’t Hooft anomalies and consistent with anomaly

inflow (sections 2.4.2 and 4). We stress, however, that our prediction of a nonvanishing

bilinear condensate on the DW and the associated breaking of the Zdχ2N chiral symmetry

(section 4) as well as of the screening of fundamental quarks on the wall (section 3) is

a likely consequence of the presence of fermion zero modes, irrespective of the details of

the localization of the worldvolume gauge fields. The uncertainties just discussed make a

strong case for a lattice study, continuing [13, 14].

2.3 Fermions and the k-wall worldvolume theory

The k-wall worldvolume theory, apart form the massless U(1)× SU(N − k)× SU(k) gauge

fields, also involves the normalizable fermion zero modes in the k-wall background. Thus,

we now turn to fermions on the k-th DW.

We begin with introducing some necessary notation; more details are given in ap-

pendix A. The unbroken U(1) generator was already given in (2.8) and satisfies tr
[
H̃N−k

· H̃N−k
]

= 1 (we use the tilde to stress that this is not one of the SU(N) generators given

in (A.1)). Further, we break the Lie-algebra generators of SU(N) as follows10

T =

[
T a(N−k)×(N−k) Eβ (N−k)×k

E−β k×(N−k) T Ak×k

]
, (2.13)

where the subscript indicates the matrix dimensionality. We expand the fermions and

gauge fields using the basis of U(1) × SU(N − k)× SU(k) generators:

λ = λN−kH̃N−k + λaT a + λAT A +
∑
CC′

λβCC′EβCC′ + λ−βCC′E−βC′C , (2.14)

Aµ = AN−kµ H̃N−k +AaµT a +AAµT A +
∑
CC′

A
βCC′
µ EβCC′ +A

−βCC′
µ E−βCC′ , (2.15)

where the sums over C and C ′ run over 1, . . . , N − k and 1, . . . , k, respectively; for brevity,

the ranges of these sum as well as those over a (the SU(N − k) generators) and A (the

SU(k) generators) are not explicitly shown.

We now note that AN−kµ includes the k-wall background (2.7). The first commutation

relation in (A.13) then implies that the “W -bosons” A
−βCC′
µ (the gauge field component

10For brevity, omitting H̃N−k of (2.8), which commutes with the SU(N − k) and SU(k) hermitean

generators T a and T A.
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fermion field ψ+ ψ−

2-D chirality left mover right mover

gauge U(1) γ(N−k) ≡
√

N
k(N−k) −γ(N−k)

gauge SU(k) � �

gauge SU(N − k) � �

global U(1)R 1 1

Table 1. The massless fermions of the k-wall worldvolume theory and their charges under the

U(1) × SU(N − k) × SU(k) gauge group and the bulk global U(1)R chiral symmetry. Opposite

chirality fermions are in conjugate representations, thus the 2-D k-wall theory is axial, while the

bulk U(1)R chiral symmetry is vectorlike on the 2-D worldolume. A Z2N subgroup of U(1)R is

anomaly free on the k-wall worldvolume, as in the 4-D bulk, see (2.19), (2.20).

along the broken generators E±βCC′ ) obtain mass of order Tγ(N−k) = T
√

N
k(N−k) on the

k-wall, as already noted. Thus, we ignore the W -boson fields in what follows. Further, the

behavior of the fermions is determined by their covariant derivative Dµλ = ∂µλ− i[Aµ, λ].

From (2.14) and the fact that the DW background commutes with H̃N−k, T a, and T A,

it follows that the fields λN−k, λa, and λA do not couple to the DW. These fields would

remain massless, were it not for the antiperiodic boundary conditions associated with the

compact Euclidean time direction, which give them a 3-D mass of order T . Since they do

not couple to the DW, they remain massive in the k-wall background and we also ignore

them in what follows.

Since, as explained above, all other fermions are massive, the object of our interest is

the coupling of the zero modes of the λβCC′ fermions to the massless gauge fields on the

wall. The detailed derivation is given in appendix B. Here we just summarize the resulting

k-wall worldvolume theory: it has massless U(1) × SU(N − k) × SU(k) gauge fields and

fermions ψ+ and ψ− with quantum numbers given in table 1. The matter part of the

Lagrangian of the k-wall theory can be written as:

Lk-wall = i tr ψ̄+(∂−ψ+ − iγ(N−k)AN−k− ψ+ − iAa−T a ψ+ + iψ+ AA−T A)

+i tr ψ̄−(∂+ψ− + iγ(N−k)AN−k+ ψ− − iAA+T A ψ− + iψ− A
a
+T a) , (2.16)

where ψ+ is represented as a (N − k) × k matrix and ψ− as a k × (N − k) matrix. The

SU(N − k) and SU(k) generators T a, T A are the ones from (2.13) and ∂± = ∂1 ± i∂2.
In addition to the zero-form symmetries discussed above and shown in table 1, the

k-wall theory inherits the reduction of the Z(1)
N 1-form global symmetry of the underlying

SU(N) bulk theory to the 2-D worldvolume. Its action on the transition functions for the

gauge fields on the torus is given in appendix C.

2.4 Anomalies on the k-wall and anomaly inflow

The two-dimensional anomaly-free axial theory (2.16) has a classical global (vectorlike)

U(1)R symmetry, where ψ± have the same charge, as per table 1. This symmetry is
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inherited from the classical bulk chiral U(1)R symmetry. Recall that in the 4-D bulk SU(N)

theory the chiral anomaly breaks U(1)R → Zdχ2N . Similarly, the 2-D vectorlike global U(1)R
of table 1 is anomalous. There is no 2-D mixed U(1)R–SU(N−k) or U(1)R–SU(k) anomaly,

but only a U(1)R–U(1) anomaly. Under a U(1)R transformation, ψ± → eiχψ±, the 2-D

fermion measure, denoted by Dψ, changes as11

Dψ → J Dψ, where J ≡ exp

[
i 2χ(N − k)k γ(N−k)

∮
FN−k12 dx1dx2

2π

]
, (2.17)

where
∮ FN−k12 dx1dx2

2π is the U(1) flux through the 2-D torus (as usual, to study anomalies, we

imagine that the k-wall plane is compactified to a two-torus x1 ∈ (0, L1] and x2 ∈ (0, L2]).

In order to determine the anomaly-free chiral symmetry, we need to understand the

U(1) flux quantization. This entails understanding the boundary conditions for the U(1)×
SU(N−k)×SU(k) ∈ SU(N) gauge bundle on the torus, a question addressed in appendix C.

There, we show that in the SU(N) theory the U(1) flux is quantized in units of γ(N−k)∮
FN−k12 dx1dx2

2π
= γ(N−k) n, n ∈ Z. (2.18)

A physical way to interpret this quantization condition is as follows. A fundamental of

SU(N) decomposes into two representations under the unbroken U(1)×SU(N−k)×SU(k)

gauge group: q1∼
(
k
N γ

(N−k),�,1
)

and q2∼
((

k−N
N

)
γ(N−k),1,�

)
, as seen from (2.8), (2.13).

The SU(N − k)-singlet “baryons” (q1)
N−k and their SU(k) counterparts (q2)

k both have

the same absolute value of U(1) charge 1/γ(N−k). The flux quantization condition (2.28) is

precisely the one appropriate for particles of charge 1/γ(N−k). The condition (2.18) is also

discussed in section 2.4.1 using constant flux backgrounds and derived from considering

the boundary conditions on the 2-D torus in appendix C.

Substituting (2.18) into the measure transformation (2.17) we find that the Jacobian

of a U(1)R transformation is

J = e2iχNn . (2.19)

The anomaly-free subgroup of U(1)R is determined by the condition that J = 1 for all n,

hence χ = 2π
2N gives a unit Jacobian and there is an anomaly free Zdχ2N ∈ U(1)R discrete sym-

metry on the k-wall worldvolume — inherited from the bulk anomaly free chiral symmetry.

As the 2-D k-wall theory is axial, the anomaly free subgroup of U(1)R is vectorlike:

Zdχ2N : ψ± → ei
π
N ψ± . (2.20)

Before we continue the discussion of anomalies, we pause and, in the following sec-

tion 2.4.1 give a perhaps more transparent derivation of (2.18), making use of a particular

constant flux background; a more formal derivation is in appendix C. The reader interested

in the mixed zero-form/one-form anomaly can proceed to section 2.4.2.

11The factor of 2 in the exponent occurs because the 2-D left- and right- movers ψ+ and ψ− have opposite

signs of the Jacobian, but also opposite gauge-U(1) charges, while the (N − k)k factor counts the number

of charged fermion components.
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2.4.1 Flux quantization from a constant flux background

Here, we consider constant field strength backgrounds on the 2-D torus, which can be

rotated into the Cartan subalgebra. The constant field strength background we use here

to motivate the flux quantization (2.18) (and (2.24) below) is an example of configurations

obeying the twisted boundary conditions discussed in the appendix, see (C.12).12 We

denote the gauge field in these flux backgrounds Ai (here and below i = 1, 2, ε12 = 1)

and take

Ai(x1, x2) =
π n12 εij xj

L1L2
u ·H , (2.21)

where n12 is an integer, u is a vector in the Cartan subalgebra of SU(N) whose possible

values will be discussed shortly, and H are the SU(N) Cartan generators defined in (A.1).

For unconstrained u, (2.21) represents general constant field strength (F12 = ∂1A2−∂2A1)

backgrounds. The gauge backgrounds (2.21) are periodic up to gauge transformations Ω1,2:

Ai(x1 + L1, x2) = Ω1(x2)[Ai(x1, x2) + i∂i]Ω
†
1(x2), Ω1(x2) ≡ e

i
πn12x2
L2

u·H
,

Ai(x1, x2 + L2) = Ω2(x1)[Ai(x1, x2) + i∂i]Ω
†
2(x1), Ω2(x1) ≡ e

−iπn12x1
L1

u·H
. (2.22)

The matrices Ω1,2 are the transition functions of a SU(N − k) × SU(k) × U(1) bundle on

the torus [56–58] and obey a consistency condition at the corners of the torus, the cocycle

condition, which reads (z in (2.23) is a ZN phase):

Ω1(L2)Ω2(0) = z Ω2(L1)Ω1(0) (2.23)

=⇒ ei2πn12u·H = z =⇒

{
u ∈ {α1, . . . ,αN−1}, if z = 1,

u ∈ {ω1, . . . ,ωN−1}, if z ∈ ZN , z 6= 1,
(2.24)

where we used the specific form of Ω1,2 from (2.22) in (2.24). Notice that only the product

of the SU(N −k), SU(k), and U(1) transition functions Ω1,2 corresponding to the constant

flux background (2.21), but not the individual ones, obeys the cocycle condition (2.23)

(recall the earlier remark from footnote 7 that the gauge group of the k-wall theory is

SU(N − k) × SU(k) × U(1)/ (ZN−k × Zk)). In the SU(N) theory, only z ≡ 1 is allowed,

hence u should be an element of the SU(N) root lattice, recall (A.3), i.e. u = αa, any of

the simple roots, or an integer valued linear combination thereof.13 On the other hand,

nontrivial z factors describe ’t Hooft fluxes in the SU(N) theory, i.e. nontrivial two-form

center symmetry gauge backgrounds. Thus, a generic ’t Hooft flux background also permits

u = ωk, for any weight vector ωk, so that u is an element in the weight lattice as indicated

in (2.24). The backgrounds with u = ωk are considered explicitly in appendix D. In this

section, we are after the U(1)-flux quantization in the SU(N) theory and consider in detail

the u = αk case.

12For example, the background (2.21) below with u = αN−k is a gauge field configuration of the SU(N)

theory that is summed over in the k-wall theory path integral.
13To see this recall from appendix A that αa = νa − νa+1 and that ν1, . . . ,νN , are the eigenvalues of

H (A.1). Thus ei2παa·H is a diagonal matrix with eigenvalues ei2π(νa−νa+1)·νc = 1 for all a, c.
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We now compute the field strength flux of the background (2.21) through the torus∮
F12dx

1dx2

2π
= −n12 u ·H . (2.25)

It is clear from (2.24) that the eigenvalues of (2.25) are integers for u = αa (i.e. u in the root

lattice) and are valued in Z
N for u = ωa (i.e. u in the weight lattice). We now project the

SU(N) Cartan subalgebra flux (2.25) onto the H̃N−k generator (2.8) (as this is the only

part of the SU(N) flux appearing in the Jacobian of the U(1)R transformation (2.17)).

To this end we note that the generators Ha of (A.1) form a complete orthonormal set

of traceless diagonal N × N matrices; a different orthonormal set can be found, which

includes the unit-norm (A.8) generator H̃N−k as one of its elements. Thus, the projection

of Ha (A.1) on H̃N−k (A.8) is

trHaH̃N−k = −

√
N

k(N − k)

N∑
A=N−k+1

λaA . (2.26)

Our interest is really in the projection of u ·H onto H̃N−k. Thus, we find that (2.25),

projected on H̃N−k equals (recalling from (A.2) that λaA = (νA)a)∮
FN−k12 dx1dx2

2π
= −n12 u · trHH̃N−k (2.27)

= n12

√
N

k(N − k)

N∑
A=N−k+1

N−1∑
a=1

(νA)a(u)a = n12 γ
(N−k)

N∑
A=N−k+1

νA · u .

We recall from (A.3), (A.4) that the roots are differences of fundamental weights, thus

νA ·αa = νA · νa− νA · νa+1 = δA,a− δA,a+1; thus, the sum
∑N

A=N−k+1 ν
A ·αa appearing

in (2.27) is 0 unless a = N − k when it equals −1. Finally, we obtain the U(1)-flux

quantization condition (2.25), (2.27) in the form∮
FN−k12 dx1dx2

2π
= γ(N−k) × n , n ∈ Z, (2.28)

which agrees with the one quoted earlier in (2.18); see also the more general discussion in

appendix C.

2.4.2 Mixed discrete chiral-center anomaly

Backgrounds for the discrete Z(1)
N one-form center symmetry are nontrivial ’t Hooft fluxes of

the SU(N) theory. The corresponding boundary conditions in the U(1)×SU(N−k)×SU(k)

theory are studied in appendix C, where the general rule for U(1) flux quantization in a

nontrivial SU(N) ’t Hooft flux is found. Explicit constant flux examples are given in

appendix D. Introducing nontrivial topological backgrounds for the one-form symmetry is

equivalent to introducing ’t Hooft fluxes, labeled by p ∈ Z (mod N).

Consider now the fate of an anomaly-free Z2N chiral symmetry transformation (2.20).

The measure transforms with a Jacobian (2.17)

J = ei
2π
N
k(N−k)γ(N−k)α , (2.29)
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where α denotes the U(1) flux, α =
∮ FN−k12 dx1dx2

2π , seeeq. (C.17). The solution for α for

a general nonzero ’t Hooft flux14 p ≡ pN , from (C.13), is given by αγ(N−k)k(N − k) =

p(N−k)−NpN−k−N(N−k)m4. Substituting into (2.29), we obtain a nontrivial Jacobian

of the Zdχ2N transformation in the ’t Hooft flux background

J = ei
2π
N
p(N−k) = e−i

2π
N
kp . (2.30)

We conclude that the k-wall theory has a ’t Hooft anomaly between the Z2N discrete chiral

symmetry and the 1-form ZN center symmetry of the 4-D theory projected on the DW

plane.

Also, for further use (section 4), note that the effect of turning on a single unit of

’t Hooft flux in the x1–x2 plane has the effect of turning on k units of fractional (recall the

U(1) quantization condition (2.18)) U(1) flux −γ(N−k)

N in the k-wall worldvolume theory:

eq. (2.30) follows from (2.29) with α = kp
(
−γ(N−k)

N

)
. One way to physically understand

this is that the k-wall can be thought of as the result of the merging of k 1-walls into the

minimal action configuration, with each of the k 1-walls contributing equally to the total

anomaly, thus multiplying the result by k.

The appearance of the extra factor of k in the phase of the Jacobian for the k-wall is

also naturally expected from the anomaly inflow argument. The Zdχ2N–(Z(1)
N )2 anomaly in

the 4-D theory is the variation of a 5d Chern-Simons term:

S5−D = i
2π

N

∫
M5 (∂M5=M4)

2NA(1)

2π
∧ NB

(2)

2π
∧ NB

(2)

2π
, (2.31)

such that the 4-D spacetime M4 is the boundary of M5. Here A(1) and B(2) are 1-form and

2-form gauge fields, respectively, gauging the Zdχ2N 0-form chiral and Z(1)
N center symmetries

of the 4-D theory. As in [59], they are defined as pairs: for the discrete chiral Zdχ2N , we have

(A(1), A(0)): 2NA(1) = dA(0) (
∮
A(0) ∈ 2πZ, so that ei

∮
A(1)

= ei
2π
2N

Z), while for the Z(1)
N

center symmetry (B(2), B(1)) obey NB(2) = dB(1) (
∮
B(1) ∈ 2πZ, so that ei

∮
B(2)

= ei
2π
N

Z),

where the integrals are over closed 1- and 2-cycles as appropriate. Under chiral symmetry

δZ2N
A(1) = dφ(0),

∮
dφ(0) ∈ 2πZ, so the closed A(1) Wilson loop is invariant.15

Then, under a Z2N chiral symmetry transformation with parameter φ(0)|M4 = 2π
2N , the

variation of the Chern-Simons action (2.31) localizes to the physical boundary M4

δχS5−D = i
2π

N

2Nφ(0)|M4

2π

∫
M4

NB(2)

2π
∧ NB

(2)

2π
= i

2π

N
m, (2.32)

and is equal to the variation of the phase of the 4-D partition function under a discrete

chiral symmetry in a nontrivial ’t Hooft flux background, where
∫
M4

NB(2)

2π ∧
NB(2)

2π = m ∈ Z
is nonzero.

14In appendix C, the ZN twist corresponding to nontrivial ’t Hooft flux is denoted by pN = 1, . . . , N − 1.
15For use below, under center symmetry we have B(1) → Nλ(1), B(2) → dλ(1) with

∮
dλ(1) ∈ 2πZ, so

that ei
∮
B(2)

is gauge invariant (and, as already mentioned, valued in ei
2π
N

Z) [59].
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Turning on a B(2) background
∮
Mx3x4

B(2)N
2π = k corresponds to k units of ’t Hooft flux

in the x3–x4 plane denoted by Mx3x4 (x4 is the compact time direction). In the center

broken high-T phase, this induces a k-wall configuration with worldvolume perpendicular

to x3 and separating two center-breaking vacua.16 In this background, the 5d CS term

reduces to a 3-D one, with ∂M3 = M2, the k-wall world volume:

S3−D = i
2πk

N

∫
M3 (∂M3=M2)

2NA(1)

2π
∧ NB

(2)

2π
. (2.33)

The Zdχ2N variation of S3−D localizes to the k-wall worldvolume and is given by

δχS3−D = i
2πk

N

2Nφ(0)|M2

2π

∫
M2

NB(2)

2π
= i

2πkp

N
, (2.34)

where, in the last equality, we turned on p units of ’t Hooft flux in the 12 plane of the

k-wall
∫
M2

NB(2)

2π = p, as in obtaining (2.30). The variation (2.34) of the 3-D Chern-Simons

“anomaly inflow” term (2.33) is equal to the one obtained from the k-wall theory.

3 Screening and strings ending on walls

To probe the confinement properties of the k-wall theory (2.16), we turn to the behavior

of Wilson loops. As already noted, a fundamental of SU(N) decomposes into two repre-

sentations under the unbroken U(1) × SU(N − k)× SU(k) gauge group:

q1 ∼
(
k

N
γ(N−k),�,1

)
, q2 ∼

((
k −N
N

)
γ(N−k),1,�

)
. (3.1)

Further, the trace of an SU(N)-fundamental Wilson loop, WSU(N), when reduced to the

massless sector of the k-wall theory,17 becomes

WSU(N) 'Wq1 +Wq2 . (3.2)

Explicit expressions for the Wilson loops Wq1 and Wq2 , for definiteness taken to wind in

the x1 direction of the k-wall wordlvolume, are

Wq1(x2) = tr

ei L1∫
0

A1 [N−k]dx
1

Ω1 [N−k](x2)

 e
i k
N
γ(N−k)

L1∫
0

AN−k1 dx1

eiω1(x2)
k
N
γ(N−k) ,

Wq2(x2) = tr

ei L1∫
0

A1 [k]dx
1

Ω1 [k](x2)

 e
i k−N
N

γ(N−k)
L1∫
0

AN−k1 dx1

eiω1(x2)
k−N
N

γ(N−k) , (3.3)

16This procedure is equivalent to imposing twisted boundary conditions and has been used in lattice

simulations [14]. The k-wall is the minimum action configuration in the background with k units of ’t Hooft

flux. A stack of k 1-walls also obeys the boundary conditions but has higher action (recall the Casimir

scaling (2.11)).
17When considering the worldvolume theory in isolation, one could also introduce separate Wilson loops

for the three k-wall gauge groups; however, these loops do not probe the center symmetry of the bulk SU(N)

theory.
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where, as described in appendix C, to insure gauge invariance we inserted appropriate

U(1), SU(N − k), and SU(k) transition functions eiω1 , Ω1 [N−k], Ω1 [k]. Under a Z(1)
N center

symmetry transformation, see (C.22), (C.23), in the i = 1 direction, the Wilson loops (3.3)

transform as Wq1 (q2)(x2)→ ei
2π
N
p(1)Wq1 (q2)(x2), as appropriate for a Z(1)

N 1-form symmetry.

It has been argued a long time ago [60] that nonabelian gauge theories with massless

fermions in 2-D are in the screening rather then the confining phase. One argument for

screening in a massless adjoint theory is based on the equivalence of the effective actions

(or fermion determinants, which are exactly calculable in 2-D) for massless Majorana ad-

joint fermions to that of N -fundamental Dirac flavors. Since the latter screen fundamental

charges, the equivalence of the effective actions implies that the adjoint theory also screens,

i.e. breaks its 1-form center symmetry. For more general theories with massless fermions,

one can use the observation of [61–63] that the effect of an external source in any rep-

resentation of the gauge group can be removed by a judiciously chosen chiral rotation of

the fermions. This argument also holds for our U(1) × SU(N − k) × SU(k) k-wall theory

with massless left-moving fermions ψ+ ∼ (γ(N−k),�,�) and right-moving fermions in the

conjugate representation. The screening also holds for the simplest case of k = 1 walls in

an SU(2) gauge theory, where the worldvolume theory is abelian, see [25].

The fact that fundamental charges are screened on the k-wall means that confining

strings can end on these hot DW. Consider an N -ality p flux due to a probe quark in the

bulk. As the flux approaches the k-wall, due to the Higgsing of the gauge group on the

wall, the flux reduces to a U(1)× SU(N − k)× SU(k) flux, which is screened by the wall’s

massless fermions, allowing thus the flux tube to end on the DW. This effect is interesting

from several points of view.

To the best of our knowledge, it was first observed in the strong coupling limit of T > 0

N = 4 super-YM (we consider the infinite spatial volume limit) via holography [15]. There,

the deconfined phase DW are represented by Euclidean D1-branes on which fundamental

strings can end (see [8, 10] for discussions of k-walls with k ∼ N/2). In this paper, we found

a semiclassical explanation of this in supersymmetric (as well as nonsupersymmetric) YM

theory with massless adjoints, based on the screening properties of the 2-D DW theories

containing massless fermions. We note that our semiclassical findings also apply to the

case of T > 0 deconfined phase of weakly coupled N = 4 super-YM.18

The second observation is about the intriguing similarities between the 2-D physics on

the high-T DW and the physics on the 3-D (or, sometimes, 2-D, see below) DW associated

with the broken discrete chiral R-symmetry in the low-T confined phase of super-YM

theory. That confining strings can end on these low-T domain walls was shown first using

the M -theory embedding (in the essentially R4 setup of [26], the worldvolume of these DW

is 3-D). Recently, such behavior has also been explained semiclassically, using only weakly

coupled semiclassical quantum field theory arguments, in the low temperature phase of

super-YM and QCD(adj) on R3 × S1 [27]. Here, the DW worldvolume is 2-D, similar to

the high-T domain walls discussed in this article. In both cases, quarks are deconfined and

18The only difference is the number of massless fermions. There is also no discrete chiral symmetry

in N = 4 SYM (as it is broken by various Yukawa couplings) but only a nonabelian SU(4) flavor (R-)

symmetry, as in QCD(adj) with nf = 4.
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therefore the one-form bulk center symmetry is broken on the worldvolume of these DW. In

the calculable R3×S1 setup, the physics of deconfinement on the walls is quite explicit and

well understood, especially in the case of k = 1 walls between neighboring chiral-broken

vacua (the semiclassical understanding of k > 1 DW between R-symmetry breaking vacua

on R3 × S1 is not yet complete); see figure 1 for illustration. Achieving a microscopic

quantum field theory understanding of the mechanism leading to deconfinement on the

3-D walls in R4 [17] and of its relation to that on k = 1 walls on R3 × S1, as understood

in [27], and on general k > 1 walls, would be of interest.19

4 Discrete chiral symmetry and the IR matching of the anomaly

In order to answer the question of how the mixed discrete-chiral/center anomaly of sec-

tion 2.4.2 is matched by the IR physics of the k-wall theory, we need to be cognizant of

the IR behavior of the 2-D worldvolume theory given in table 1 and eq. (2.16). As op-

posed to the SU(2) case [25], where the worldvolume theory was exactly solvable, we can

not rigorously show how the theory behaves. However, arguments involving nonabelian

bosonization and gauged Wess-Zumino-Witten (WZW) models, along the lines of [50, 51],

suggest that the k-wall U(1)×SU(N−k)×SU(k) theory develops a nonvanishing bi-fermion

condensate (in SYM).

The nonabelian bosonization [64] is a set of rules that map fermionic to bosonic op-

erators, see [50, 51] for reviews. Using these rules one can show that the action of N free

Majorana fermions, which is invariant under some global symmetry G, is equivalent to a

WZW model of a nonabelian bosonic field U , which is a matrix in G. One can also gauge

an appropriate H ⊂ G, which yields 2-D QCD with gauge group H and fermions in the

fundamental representation of H. The gauge theory is then mapped to a gauged version of

WZW model. To be more specific, we consider the worldvolume theory of the k = 1-wall,

which, from (2.16), is 2-D QCD with gauge group20 U(1)× SU(N − 1). It was argued that

the bosonization rule for the fermion bilinear ψ̄+ψ− in this theory is given by

ψ̄a+ψ−b = µhab e
−i
√

4π
N−1

φ
, (4.1)

where µ is a normalization scale and h and e
−i
√

4π
N−1

φ
are bosonic fields, SU(N − 1)

and U(1) group elements, respectively. In the gauged U(1) × SU(N − 1) theory, if the

fermions are very light or massless (as is the case in our worldvolume theory), the h and

φ sectors of the theory become strongly coupled and acquire a mass gap. The correla-

tors 〈e−i
√

4π
N−1

φ(x)
e
i
√

4π
N−1

φ(y)〉 and
〈
trh†(x) trh(y)

〉
approach constants, determined by the

strongly coupled dynamics [65],21 in the limit |x − y| → ∞. This, in turn, implies that

19We thank Zohar Komargodski for discussions of unpublished work on this topic.
20To avoid confusion, note that the correlators in the following paragraph refer to the vectorlike version

of the axial worldvolume theory, obtained by relabeling ψ+ ↔ ψ̄+ in (2.16).
21For a calculation of the condensate in the large-N limit, see [66].
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〈
trψ̄+(x)ψ−(x) trψ̄−(y)ψ+(y)

〉
∼ constant.22 Therefore, from cluster decomposition, we

conclude that

〈tr ψ̄+ψ−〉 6= 0 : Zdχ2N → Z2 , (4.2)

breaking the Zdχ2N discrete chiral symmetry (2.20) to fermion number Z2. Similar arguments

apply to the k-wall theory, but the bosonization rules are more involved [50, 51] and we

simply assume (4.2) holds. We note that tr ψ̄+ψ− is the only fermion bilinear which is gauge

and Euclidean invariant (it equals trψ+ψ− in the axial worldvolume theory of (2.16)). The

scenario (4.2) with broken discrete chiral symmetry is similar to what was rigorously shown

to be the case for N = 2, where only k = 1-walls exist [25].

If (4.2) is true, the IR limit of the DW theory is “empty” with no massless degrees of

freedom. Thus, the mixed anomaly has to be matched by a TQFT describing the N vacua.

Recall from (2.33) that the mixed anomaly (2.30) can be obtained from the variation of

the 3-D Chern-Simons action, (2.34), which we repeat here, taking k = 1:

S3−D = i
2π

N

∫
M3 (∂M3=M2)

2NA(1)

2π
∧ NB

(2)

2π
, (4.3)

under δZ2N
A(1) = dφ(0), with φ(0)|M2 = 2π

2N in a background
∫
M2

NB(2)

2π = p.

A 2-D TQFT whose quantization gives rise to N vacua and matches the anomalous

variation of (4.3) is, see [59]

S2−D = i
N

2π

∫
M2

ϕ(0)da(1) . (4.4)

The action (4.4) has two gauge symmetries, one shifting the scalar ϕ(0) by 2πZ (this gauge

symmetry can be thought to be responsible for its compactness) and the other a usual 0-

form gauge transformation of the one-form gauge field a(1). The gauge field a(1) is compact,∮
da(1) ∈ 2πZ. The gauge invariant observables are eiϕ and ei

∮
a(1) and powers thereof,

with correlation function (on R2) 〈eiϕ(x)ei
∮
C a

(1)〉 = ei
2π
N
lx,C , with lx,C the linking number

of x and C (the N -th powers eiNϕ, eiN
∮
a(1) have trivial correlation functions).

The action also has 0-form and 1-form global symmetries. The ϕ(0) compact scalar

(
∮
dϕ(0) ∈ 2πZ) shifts under the 0-form global ZN as ϕ0 → ϕ(0) + 2π

N ; the action remains

invariant due to a(1) flux quantization. This scalar can be thought of as describing the

phase of the fermion condensate (4.2). The a(1) gauge field shifts under 1-form global Z(1)
N

as a(1) → a(1) + 1
N ε

(1), where ε(1) is a closed form with
∮
ε(1) ∈ 2πZ. The gauge invariant

observables eiϕ and ei
∮
a(1) transform by ZN phases under the global 0-form and 1-form

ZN symmetries, respectively: eiϕ → ei
2π
N eiϕ, ei

∮
a(1) → ei

1
N

∮
ε(1)ei

∮
a(1) = ei

2πZ
N ei

∮
a(1) .

The TQFT (4.4) can be thought of as a “chiral lagrangian” describing the IR physics

of the N chiral-symmetry breaking vacua (the assumed vacua (4.2) are gapped). This can

be seen more explicitly upon quantizing the TQFT (4.4) on a finite spatial circle S1. In the

22Notice that the gauging of the U(1) factor is crucial for this conclusion. As the above is a finite-N

consideration, a nonvanishing condensate breaking a continuous global symmetry (the anomaly free chiral

U(1) of 2-D QCD) in 2-D would contradict the Coleman theorem [67].
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temporal gauge, a
(1)
0 = 0, one obtains the quantum mechanical action23 for the compact

variables a(t) ≡
∮
S1 a

(1) and ϕ(t):

SRt×S1 =
N

2π

∫
dt ϕ

da

dt
, (4.5)

leading to the canonical commutation relations [ϕ̂, â] = −i2πN , a vanishing Hamiltonian,

and the centrally extended algebra24 eiϕ̂eiâ = ei
2π
N eiâeiϕ̂; as already noted, eiNϕ̂ and eiNâ

are trivial operators. The Hilbert space, treating ϕ̂ as coordinate, is that of N states |P 〉
such that eiϕ̂|P 〉 = |P 〉ei

2πP
N and eiâ|P 〉 = |P + 1(modN)〉.

The |P 〉 states are the N finite volume ground states due to the breaking Zdχ2N →
Z2 (4.2), described by the expectation value of ϕ. On the other hand, a, the spatial Wilson

loop of N -ality one, is an operator facilitating transitions to a neighboring vacuum. As

in the case of the Schwinger model (N = 2) there are no physical (i.e. an intrinsic part

of the gauge theory dynamics) DW in the k-wall theory. The role of DW on the k-wall

worldvolume is played by insertions of static Wilson loops e
i
∫
Rt
a(1)

, which are now defects

localized in x, in the path integral. The correlation function 〈eiϕ(x)ei
∮
C a

(1)〉 = ei
2π
N
lx,C

discussed earlier, taking a loop C consisting of two infinite lines some distance apart (or,

consider a compact time direction and have C consist of two Wilson loops winding in

opposite directions around Rt), implies that one finds neigboring vacua of the DW theory

on the two sides of the static unit N -ality defect.

We pause to note that essentially the same picture — different vacua on the DW

worldvolume are separated by probe quarks — was found, by an explicit semiclassical

analysis, to hold on DW between chirally broken vacua of super-YM in the calculable

regime on R3×S1. While a TQFT description was not given in [27], here we note that (4.4)

can also be used there, with the 0-form ZN of the TQFT being the 0-form center symmetry

along the compact S1 (unbroken in the bulk, but broken on the DW). The 1-form ZN is

the same bulk-R3 center symmetry as in the present high-T discussion, see figure 1 for an

illustration.

Continuing with the high-T theory, in order to see that the topological “chiral la-

grangian” (4.4) matches the mixed anomaly, consider gauging the 1-form center symmetry

via the 2-form ZN gauge field B(2) (reverting back to Euclidean space and rearranging

factors of N and 2π in (4.4) for convenience):

S2−D = i
2π

N

∫
M2

Nϕ(0)

2π
∧ N(da(1) −B(2))

2π
, (4.6)

consistent with the gauged 1-form invariance a(1) → a(1) + λ(1) and B(2) → B(2) + dλ(1).

As per our earlier discussion (see footnote 15) the 1-form transformation parameter has

23The spatial Wilson loop of the compact U(1) field a(1) is a compact variable, due to large gauge

transformations around the S1. Gauss’ law in the temporal gauge implies that ϕ ≡ ϕ(0) is independent of

x. Note also that the action (4.5) is written in Minkowski space, hence the absence of i.
24In ref. [25], we explicitly showed that, in the charge-N massless Schwinger model, this is the algebra of

the operators implementing discrete chiral and center symmetry transformations. One can thus view this

map as an explicit derivation of the IR TQFT from the microscopic physics.
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>P   vacuum-th P+1   vacuum-th

W
Figure 1. Two DW vacua (4.2) separated by a fundamental quark worldline (Euclidean). As

explained in section 3, W can be viewed as the end of a confining string worldsheet extending into

the R3 bulk. The picture holds in the high-T DW on R3 × S1
β , associated with center symmetry

breaking. It also applies in the zero-T R3 × S1L, in the semiclassically calculable ΛNL� 1 regime,

where the DW is associated with chiral symmetry breaking. In both the small-β and small-L

case, the DW worldvolume is 2-D. In the small-L case, the N P -vacua are represented by distinct

semiclassical DW solutions (N such solutions are known to exist for k = 1), each carrying one-half

the fundamental quark flux, see [27, 68–70] for details. The resemblance between the small-β and

small-L cases is because the relevant ’t Hooft anomalies on the DW are saturated in a similar mode.

Note that on R3 × S1L, confinement in the R3 bulk is abelian [71], in contrast to the small-β case.

quantized flux
∮
dλ(1) ∈ 2πZ and

∮
B(2) = 2πZ

N .25 Under a chiral transformation δϕ(0) = 2π
N ,

in the background of p units of ’t Hooft flux,
∮
M2

NB(2)

2π = p, we have

δZdχN
S2−D = i

2π

N

∫
M2

N(da(1) −B(2))

2π
= −i 2πp

N
, (4.7)

as required by the anomaly (2.30).

Assuming that the Zdχ2N → Z2 breaking pattern (4.2) holds for all k-walls, the TQFT

describing the IR k-wall physics should also be given by (4.4), as the k > 1 theory has the

same number of vacua. As noted in the paragraph after (2.30), turning on a unit ’t Hooft

flux in the bulk theory corresponds to k units of fractional U(1) flux on the k-wall, i.e.∮
M2

NB(2)

2π = k, so the anomaly (2.30) is also matched.

5 k-walls in QCD(adj)

Finally, we comment on the k-walls in SU(N) QCD(adj), which is a Yang-Mills theory

endowed with nf adjoint Weyl fermions. As in SYM, the UV Lagrangian of this theory is

25Now the a(1) Wilson loop observable ei
∮
C a

(1)

requires a surface Σ bounding C (C = ∂Σ) in order to

preserve the 1-form gauge invariance ei(
∮
C a

(1)−
∫
Σ B

(2)). Its N -th power, on the other hand, is a genuine

local operator, ei(N
∮
C a

(1)−
∮
C B

(1)), see footnote 15.
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invariant under a global U(1)R axial symmetry. This symmetry, however, is anomalous and

breaks down to the anomaly-free Zdχ2Nnf discrete chiral symmetry.26 In addition, the theory

is invariant under a global SU(nf ) symmetry, such that the adjoint fermions transform in

the fundamental representation of SU(nf ).27

Everything we said about the wall action in SYM transcends naturally to QCD(adj);

the only difference is an additional factor of nf multiplying (−1)n in (2.11), which amounts

to scaling the wall tension by a trivial numerical coefficient. The worldvolume of the k-wall

is also a 2-D QCD with gauge group U(1) × SU(N − k) × SU(k) and fermions charged

under U(1) and transforming in the bi-fundamental representation of SU(N − k)× SU(k).

In addition, as in the UV theory, the fermions transform in the fundamental representation

of the global SU(nf ).28 Under an axial U(1)R transformation ψ± → eiχψ± the measure

transforms as in (2.17), with J now replaced by

J ≡ exp

[
i 2nfχ(N − k)k γ(N−k)

∮
FN−k12 dx1dx2

2π

]
, (5.1)

i.e., there is an extra factor of nf in the Jacobian. Repeating the same steps from (2.17)

to (2.19), one can easily see that there is an anomaly-free Zdχ2nfN discrete chiral symmetry

on the DW. Similarly, it is straightforward to see that there is a mixed discrete ’t Hooft

anomaly upon turning on a p-twist of SU(N): J = e−i
2π
N
kp.

Yet, the most interesting part of the story is the fate of the discrete Zdχ2nfN and global

SU(nf ) symmetries on the wall. Since our theory lives in 2-D, one expects that SU(nf )

remains unbroken in the IR, as suggested by the Coleman theorem [67]. Interestingly, one

can use the nonabelian bosonization and WZW model, discussed in section 4, to show that

this is indeed the case. Let us for simplicity consider the k = 1-wall. Now, since there is

an extra SU(nf ) global symmetry, the bosonization rule (4.1) should be replaced by29

ψ̄a i+ ψ−b j = µhab g
i
j e
−i
√

4π
nf (N−1)

φ
, (5.2)

where, as before, h and e
−i
√

4π
nf (N−1)

φ
are boson fields, SU(N − 1)- and U(1)-group valued,

respectively, while g is a global-SU(nf ) group-valued boson-field matrix. There are well-

known subtleties with the above multi-flavor bosonization rule, which, however, have been

argued to be not important for studying the low-energy physics in the strong coupling limit

e � m → 0 (e is the 2-D gauge coupling and m the fermion mass) [50, 65]. This is also

the limit considered here and, for our qualitative considerations, we shall assume that (5.2)

26The breaking of U(1)R to Zdχ2Nnf can be easily seen from the action of U(1)R in the background of a

Belavin-Polyakov-Schwarz-Tyupkin (BPST) instanton.
27The zero-temperature theory is thought to be conformal for a range of nf (1 < n∗f ≤ nf < 6) but

the precise value of n∗f is not known; see [72, 73] and [44, 45, 47] for recent lattice results and theoretical

discussions, respectively.
28As in the N = 2 case [25], for nf > 1 four-fermion terms on the k-wall worldvolume reduce the

SU(nf )+×SU(nf )− chiral symmetry of the kinetic terms of the worldvolume theory to the diagonal SU(nf )

of the bulk.
29Again, as in section 4, the correlators here refer to the vectorlike version of the axial worldvolume

theory, obtained by relabeling ψ+ ↔ ψ̄+.
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holds. As before, the correlators 〈e
−i
√

4π
nf (N−1)

φ(x)
e
i
√

4π
nf (N−1)

φ(y)
〉 and

〈
trh†(x) trh(y)

〉
ap-

proach constants in the limit |x − y| → ∞, thanks to the gauging of U(1) × SU(N − 1).

The correlator 〈gji (x)glk(y)〉, however, behaves as [74]〈
gji (x)glk(y)

〉
=

δliδ
j
k

[M |x− y|]
n2
f
−1

nf (nf+N−1)

, (5.3)

and M is a mass scale. Next, we define the SU(N − 1) color-singlet operator

O(1) i
j ≡ ψ̄a i+ ψ−a j , (5.4)

which transforms non-trivially under SU(nf ). Then, we can use (5.2) and (5.3) to show

that 〈O(1) †i
j (x)O(1) i

j (y)〉 → 0 as |x− y| → ∞. Therefore, we find

〈ψ̄a i+ ψ−a j〉 = 0 , (5.5)

and conclude that SU(nf ) is unbroken in the IR, in accord with the Coleman theorem.

What remains is to examine the discrete chiral symmetry Zdχ2nfN . To this end we

consider the color-singlet and SU(nf )-singlet operator

O(2)(x) ≡ det
i,j
ψ̄a i+ (x)ψ−a j(x). (5.6)

It is trivial to see that O(2) acquires a phase ei
2π
N under a Zdχ2nfN transformation, and

hence, it can be used to examine the breaking of Zdχ2nfN . As it is an SU(nf ) singlet, it is

possible that the correlator (5.3) of the SU(nf )-valued bosonic field gij , which disorders the

fermion bilinear (5.4), does not similarly affect the O(2) two-point correlation function. If

so, 〈O(2)(x)O(2) †(y)〉 would approach constant at infinite |x − y|. Then, Zdχ2nfN is broken

down to Zdχ2nf on the k = 1-wall leading to N distinct vacua on the wall, a result that

also generalizes to the k-wall. In this scenario, the IR spectrum of the k-wall in QCD(adj)

would be free from massless excitations, and the mixed anomaly would be matched by a

TQFT describing the N vacua, exactly as in SYM.
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A Group theory conventions

We denote the fundamental SU(N) generators by Ha, a = 1, . . . , N − 1. An explicit form

is Ha = diag[λa1, . . . , λaN ], where

Ha = diag[λa1, . . . , λaN ] =
1√

a(a+ 1)
diag[1, 1, . . . , 1︸ ︷︷ ︸

a times

,−a, 0, 0, . . . 0︸ ︷︷ ︸
N−1−a times

] (A.1)

λaA ≡ 1√
a(a+ 1)

(θaA − aδa+1,A), a = 1, . . . , N − 1, A = 1, . . . , N, θaA ≡

{
1, a ≥ A
0, a < A .
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The only utility in introducing λaA in (A.1) is to note that the weights of the fundamental

representation νA can be expressed in this N − 1-dimensional basis (we denote its a-th

component by (νA)a) as:

(νA)a = λaA, νA · νB ≡
N−1∑
a=1

λaAλaB = δAB − 1

N
,

N∑
A=1

λaAλbA = δab , (A.2)

where we also noted the properties of the λaA implying that trHaHb = δab.

Furthermore, the fundamental weights and simple roots of SU(N) which we denote by

ωa and αa, respectively, are

ωa =
a∑

A=1

νA, a = 1, . . . N − 1, (A.3)

αa = νa − νa+1, a = 1, . . . N − 1.

We also define the positive roots βAB, A < B:

βAB ≡ νA − νB , A,B = 1, . . . N. (A.4)

The simple roots are a subset, αa = βa a+1 and the affine root is α0 = −
∑N−1

k=1 α
k. We

shall need several relations that follow from the definitions (A.1), (A.2), (A.3):

ωa · ωb = min(a, b)− ab

N
(A.5)

ωb ·H =
N−1∑
a=1

(ωb)aH
a = diag

1− b

N
, 1− b

N
, . . . , 1− b

N︸ ︷︷ ︸
b times

,− b

N
,− b

N
, . . .− b

N︸ ︷︷ ︸
N−b times

 (A.6)

ωb · βAB =
b∑

k=1

δkA − δkB =


0, b < A

1, A ≤ b < B

0, b ≥ B
. (A.7)

Next, as will be seen below, on the DW the SU(N) group breaks to U(1) × SU(k) ×
SU(N − k). Here we introduce some algebraic notation that will be useful to study the

DW theory. We define the unbroken U(1) generator as

H̃N−k =
1√

kN(N − k)
diag

k, k, . . . , k︸ ︷︷ ︸
N−k times

, k −N, k −N, . . . , k −N︸ ︷︷ ︸
k times

 , (A.8)

satisfying tr
[
H̃N−kH̃N−k

]
= 1 (we use the tilde to stress that this is not one of the Ha

previously introduced in (A.1), but can be expressed as their linear combination). Further,

we break the Lie-algebra generators of SU(N) as follows (omitting H̃N−k (A.8), which

commutes with the SU(N − k) and SU(k) hermitean generators T a and T A)

T =

[
T a(N−k)×(N−k) Eβ (N−k)×k

E−β k×(N−k) T Ak×k

]
, (A.9)
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where the subscript indicates the matrix dimensionality. There are a = 1, 2, . . . , (N−k)2−1

SU(N − k) generators T a, A = 1, 2, . . . , k2 − 1 SU(k) generators T A, and 2k(N − k)

generators E±β corresponding to 2k(N − k) different roots of SU(N). This adds up to the

original N2 − 1 generators of SU(N). We shall not need to explicitly define the T a and

T A generators.

Explicitly, we define the (N − k) × k matrix Eβ as follows. First, to enumerate the

roots β, we denote them as βAA′ , with A = 1, . . . , N−k and A′ = 1, . . . ,K. Next, regarding

EβAA′ as an (N − k)× k matrix, we define its matrix elements as

(EβAA′ )BB′ = δABδA′B′ , B = 1, . . . , N − k, B′ = 1, . . . , k. (A.10)

Clearly, these are k(N−k) linearly independent generators. The matrices E−β are similarly

defined: these are k × (N − k) matrices, labeled by −βAA′ , with matrix elements

(E−βAA′ )B′B = δABδA′B′ , B = 1, . . . , N − k, B′ = 1, . . . , k. (A.11)

In matrix form, we have that E−βAA′ = (EβAA′ )
T .30 The explicit form (A.10), (A.11) of

E±β implies the following relations that we shall use in the following:

tr (EβCC′E−βBB′ ) = δCBδC′B′

tr (EβCC′T
AE−βBB′ ) = δCBT AC′B′ (A.12)

tr (E−βCC′T
aEβBB′ ) = δC′B′T aCB.

It is now straightforward to prove the relations that follow (the index convention below

is the one from the previous paragraph: primed indices range from 1, . . . , k and unprimed

from 1, . . . , N − k):

[
H̃N−k, E±βAA′

]
= ±γ(N−k)E±βAA′ , γ(N−k) ≡

√
N

k(N − k)
,

(
[
T a, EβAA′

]
)BB′ ≡ (T aEβAA′ )BB′ =

∑
C

(T a)BC(EγAA′ )CB′ ,

(
[
T a, E−βAA′

]
)B′B = −(E−βAA′T

a)B′B = −
∑
C

(E−βAA′ )B′C(T a)CB , (A.13)

(
[
T A, EβAA′

]
)BB′ = −(EβAA′T

A)BB′ = −
∑
C′

(EβAA′ )BC′(T
A)C′B′ ,

(
[
T A, E−β

]
)B′B = (T AE−β)B′B =

∑
C′

(T A)B′C′(E−βAA′ )C′B .

We kept the top equation in (A.13) in matrix form, where we extended the (N − k) × k
matrix Eβ to an N × N matrix by embedding as in (A.9). The rest of the equations

representing the action of the SU(N − k) and SU(k) generators was shown explicitly using

index notation, consistent with the definitions (A.10), (A.11), (A.9).

30We note that the roots βAA′ just defined should not be confused with βAB of (A.4) (they can be related

but it is notationally challenging). We avoid introducing special notation to distinguish them, other than

denoting them with lower-subscript indices.
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B Fermion zero modes

To find the fermion zero modes, we begin with the covariant derivative containing the λβ

fermions, as explained in section 2.3 of the main text. Using the decompositions (2.14),

and recalling the action of T a,A on E±β of (A.13) which we use below in matrix form (a

summation over C is from 1, . . . , N − k and C ′ from 1, . . . , k is understood below), it is

given by

∂µλ− i[Aµ, λ] = ∂µλ
βCC′EβCC′ + ∂µλ

−βCC′E−βCC′

−iγ(N−k)AN−kµ (λβCC′EβCC′ − λ
−βCC′E−βCC′ )

−iAaµ (T aEβCC′λ
βCC′ − E−βCC′T

aλ−βCC′ )

+iAAµ (EβCC′T
AλβCC′ − T AE−βCC′λ

−βCC′ ) . (B.1)

Because the matrices Eβ, T aEβ, EβT A and the matrices E−β, T AE−β, E−βT a are in

orthogonal subspaces of SU(N), we can write the equations of motion for λβ and λ−β

separately as follows:

σ̄µ(∂µλ
βCC′EβCC′ − iγ

(N−k)AN−kµ λβCC′EβCC′

−iAaµ T aEβCC′λ
βCC′ + iAAµ EβCC′T

AλβCC′ ) = 0 ,

σ̄µ(∂µλ
−βCC′E−βCC′ + iγ(N−k)AN−kµ λ−βCC′E−βCC′

+iAaµ E−βCC′T
aλ−βCC′ − iAAµ T AE−βCC′λ

−βCC′ ) = 0 . (B.2)

We now multiply the first equation in (B.2) by E−βBB′ and take the trace to obtain the

equation for λβBB′ :

0 = σ̄µ
(
∂µλ

βBB′ − iAN−kµ γ(N−k)λβBB′ − iAaµT aBDλβDB′ + iAAµλ
βBD′T AD′B′

)
. (B.3)

Eq. (B.3) shows that λβBB′ , considered as the BB′-th element of a (N − k)× k matrix λβ,

transforms as λβ → UN−k λ
β U †k under SU(N − k)× SU(k) gauge transformations, where

UN−k = eiω
aT a , Uk = eiω

AT A . It is easy to see that the (B.3) is invariant under these trans-

formation, along with AaµT a → UN−k(A
a
µT a+i∂µ)U †N−k and AAµT A → Uk(A

A
µT A+ i∂µ)U †k .

Next, proceeding as in the derivation of (B.2), multiplying the second equation by

EβBB′ and taking the trace, we obtain the equation of motion for λ−βBB′ :

0 = σ̄µ
(
∂µλ

−βBB′ + iAN−kµ γ(N−k)λ−βBB′ + iλ−βDB′T aDBAaµ − iAAµT AB′D′λ−βBD′
)
. (B.4)

Considering λ−βBB′ as the B′B-th entry of a k× (N − k) matrix λ−β, we conclude that it

transforms as λ−β → Uk λ
−βU †N−k under SU(N − k)× SU(k) gauge transformations.

Finally, the transformation of λβ, λ−β under the U(1) as λ±β → e±iωγ
(N−k)

λ±β , with

AN−kµ → eiω(AN−kµ +i∂µ)e−iω; these are inherited from the SU(N) transformation eiωH̃
N−k

.

The transformation properties of the fermions under the unbroken gauge group on the k-

wall are summarized in table 2.

To find the fermion zero modes in the k-wall background, we now restrict the gauge

backgrounds in the equations of motion (B.3), (B.4) to the k-wall background (2.7).
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λβ λ−β

gauge U(1) γ(N−k) =
√

N
k(N−k) −γ(N−k) = −

√
N

k(N−k)

gauge SU(k) � �

gauge SU(N − k) � �

2-D chirality left mover right mover

global U(1)R 1 1

2-D field ψ+ ψ−

Table 2. Charges of the fermions λβ (see (2.14)) under the unbroken gauge group on the k-wall. In

the bottom two rows, we show the normalizable zero modes’ 2-D chirality and their charge under the

anomalous 4-D U(1)R chiral symmetry. The bottom line in the table introduces the 2-D notation

for the Weyl fermions of the k-wall theory, see also eq. (B.7).

We also decompose the fermions into Matsubara modes, λ±βp , defined as λ±β(x4, xi) =∑
p∈Z λ

±β
p (xi)ei2πTp

′x4 , where p′ ≡ p + 1/2. In the k-wall background, the equations of

motion for the different Matsubara modes decouple.

The k-wall is orthogonal to the z = x3 direction, with worldvolume along x1,2 and,

recalling that σ̄µ = (σ,−iσ0), we obtain the z-dependent Weyl equation

0 =
[
σ3∂z + σ0

(
2πp′T ∓ TQ(k)(z)γ(N−k)

)]
λ±βp , (B.5)

where the signs are correlated. The solution of this equation is

λ±βp (z) = e
σ3

[
−2πp′Tz±Tγ(N−k)

z∫
0

Q(k)(z′)dz′
]
λ±βp (0). (B.6)

We now recall from (2.9) that Q(k)(z) vanishes as z → −∞ and
∫ z→−∞
0 Q(k)(z′)dz′ con-

verges. Thus normalizability of the solutions as z → −∞ is only determined by the first

term in the exponent of (B.6), requiring that only wave functions λ±βp (0) which are eigen-

states of σ3 with σ3p′ < 0 lead to a zero mode normalizable as z → −∞. On the other

hand, as z →∞, the boundary conditions imply that γ(N−k)
∫ z→+∞
0 Q(k)(z′)dz′ → −2πz.

Thus normalizability of (B.6) at z → +∞ requires that λ±βp (0) also be eigenvalues of σ3

with −σ3p′ ∓ σ3 < 0.

To proceed, we recall that λ±βp are two-component Weyl spinors. We denote their

upper components λ±βp,1 (with +1 eigenvalue of σ3) and the lower components by λ±βp,2
(with −1 eigenvalue of σ3). We further note that the upper λ±βp,1 (lower λ±βp,2 ) components

obey a positive (negative) two-dimensional chirality Weyl equation, as follows from our

definition of σ̄µ.31 The two conditions for normalizability stated after (B.6) admit (recalling

31The 2-D positive chirality, or left mover, Euclidean Weyl equation is (∂1 + i∂2)ψ+ = 0 (the negative

chirality, or right mover, one is (∂1 − i∂2)ψ− = 0).
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p′ = p+ 1/2) only the following solutions:

λβp=−1,1 : ψ+, left mover, (γ(N−k),�,�) under (U(1), SU(N − k), SU(k)),

λ−βp=0,2 : ψ−, right mover, (−γ(N−k),�,�) under (U(1), SU(N − k), SU(k)), (B.7)

where we also display their quantum numbers under the unbroken gauge group on the

k-wall. The information contained in (B.7) is also shown in table 2. There, we also note

that the zero modes have the same charge under the anomalous chiral symmetry of the

bulk 4-D theory as they originate in the same 4-D Weyl fermion. Finally, as in the case

of the SU(2) theory of ref. [25], the 2-D k-wall worldvolume theory is an axial one: the

R− and L-moving fermions have opposite charges under all gauge groups; nonetheless, it

is clear that the 2-D U(1) × SU(N − k) × SU(k) gauge theory with matter content given

in (B.7) is gauge anomaly free. For brevity, we rename the two 2-D Weyl fermions ψ+ and

ψ− as shown also in table 2.

C U(1) flux quantization

In order to understand U(1) charge quantization, we need to recall the description of

boundary conditions on the torus as in [56, 58]. We begin by recalling the description of

gauge bundles in the U(1) × SU(N − k) × SU(k) theory on the two-torus (0 ≤ x1 ≤ L1,

0 ≤ x2 ≤ L2). These are described by transition functions Ωi [1],Ωi [N−k],Ωi [k], where

[1], [N−k], [k] indicates the gauge group and i = 1, 2 the direction on the torus. The gauge

fields obey the boundary conditions:

A [b](L1, x2) = Ω1 [b](x2)
(
A [b](0, x2) + id

)
Ω†1 [b](x2) ,

A [b](x1, L2) = Ω2 [b](x1)
(
A [b](x1, 0) + id

)
Ω†2 [b](x1) , (C.1)

where [b] = [1], [N − k], [k]. The transition functions Ωi [b] are gauge group elements (the

U(1) boundary conditions are also given in (C.10) below). For SU(N − k) and SU(k), they

are group elements in the defining representation. For later use, we embed them in SU(N)

as in (A.9):

Ω̂i [N−k] =

[
Ωi [N−k] 0

0 Ik

]
, (C.2)

where we indicated by Ω̂ that the transition function is embedded into SU(N) and Ik is a

k × k unit matrix (in the following, we shall often omit the hat and the context will show

whether the above embedding is used). Similarly, for SU(k), we have

Ω̂i [k] =

[
IN−k 0

0 Ωi [k]

]
, (C.3)

while the transition functions for U(1) follow from the form of its generator,eq. (A.8)

Ωi [1] =

[
ei2πωi

k
N
γ(N−k)IN−k 0

0 ei2πωi
k−N
N

γ(N−k)Ik

]
. (C.4)
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Further, from (C.1) it follows that under gauge transformations g[b](x1, x2) (0 ≤ x1 ≤
L1, 0 ≤ x2 ≤ L2) the transition functions transform

A [b] → g[b](A [b] + id)g†[b]

Ω1 [b](x2) → g[b](L1, x2) Ω1 [b](x2) g
†
[b](0, x2) , (C.5)

Ω2 [b](x1) → g[b](x1, L2) Ω2 [b](x1) g
†
[b](x1, 0) .

The above gauge transformations and boundary conditions imply also that a fundamental

Wilson loop winding the i-th direction of the torus requires an insertion of a transition

function in order to be gauge invariant. For example, for i = 1,

W[b](x2) = tr

ei L1∫
0

A1 [b](x1,x2)dx
1

Ω1 [b](x2)

 . (C.6)

The transition functions must further obey the consistency conditions known as cocycle

conditions, following from requiring that A [b](L1, L2) be well defined (i.e. obtained from

A [b](0, 0) along the two paths reaching (L1, L2) from (0, 0)). We begin with the cocycle

conditions for the transition functions for SU(N − k) and SU(k)

Ω1 [N−k](L2) Ω2 [N−k](0) =

[
ei

2π
N−k pN−kIN−k 0

0 Ik

]
Ω2 [N−k](L1) Ω1 [N−k](0) (C.7)

Ω1 [k](L2) Ω2 [k](0) =

[
IN−k 0

0 ei
2π
k
pkIk

]
Ω2 [k](L1) Ω1 [k](0) . (C.8)

In SU(N−k) and SU(k) gauge theories, taken in isolation,32 the center elements appearing

on the r.h.s. of (C.7), (C.8) equal unity, i.e. pN−k = pk = 0.

We also recall that in SU(N) gauge theories, there is a global one-form Z(1)
N center

symmetry acting on the transition functions. The boundary conditions for all fields are

invariant under this symmetry if there are no fields in the fundamental representation (the

boundary conditions for fundamental fields explicitly break the symmetry). The same

holds for SU(N − k) or SU(k) gauge theories with only adjoint fields. For example, for

SU(N − k) there is a 1-form Z(1)
N−k acting on the SU(N − k) transition functions as

Ωi [N−k] → zi [N−k] Ωi [N−k] , i = 1, 2, (C.9)

where zi [N−k] ∈ ZN−k is an x-independent constant. The cocycle conditions (C.7) and all

boundary conditions (in a theory without fundamental fields) are invariant under (C.9).

The fundamental representation Wilson line operator (C.6) is the only one transforming

under (C.9). This follows from the explicit appearance of the transition function in its gauge

invariant definition, implying W[N−k](x2) → z1 [N−k]W[N−k](x2); similarly, a loop winding

32Our theory arises from the adjoint-Higgs breaking SU(N) → U(1) × SU(N − k) × SU(k). The gauge

group of the k-wall worldvolume theory is SU(N−k)×SU(k)×U(1)
ZN−k×Zk

.
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in the x2 direction transforms by z2 [N−k]. We shall return to the one-form symmetries

below when we consider the boundary conditions for the fermions in the k-wall theory.

We next write the U(1) cocycle condition using the group element eiωi as the i-th U(1)

transition function. Notice that (C.1), written for the U(1) field AN−k as defined in (2.14)

is simply

AN−k(L1, x2) = eiω1(x2)
(
AN−k(0, x2) + id

)
e−iω1(x2) ,

AN−k(x1, L2) = eiω2(x1)
(
AN−k(x1, 0) + id

)
e−iω2(x1) , (C.10)

eiω1(L2) eiω2(0) = ei2πα eiω2(L1) eiω1(0)

while on the last line we wrote the U(1) cocycle condition on the torus determined by a

for now arbitrary phase. In terms of the SU(N)-embedded representation (C.4), the above

U(1) cocycle condition becomes

Ω1 [1](L2) Ω2 [1](0) =

[
ei2πα

k
N
γ(N−k)IN−k 0

0 ei2πα
k−N
N

γ(N−k)Ik

]
Ω2 [1](L1) Ω1 [1](0) . (C.11)

The main point we want to stress now is that when the U(1) × SU(N − k) × SU(k)

theory arises from the adjoint-Higgs mechanism from the SU(N) theory, the individual

twists (nontrivial phases in the cocycle conditions) in (C.7), (C.8), (C.11) do not have to

vanish, but can instead conspire to lead to zero twist in SU(N). In other words, we consider

the transition functions embedded in the SU(N) theory and impose the cocycle condition

for vanishing SU(N) twist

ei
2π
N pN IN =

[
eiα

2πk
N γ(N−k)

IN−k 0

0 eiα
2π(k−N)

N γ(N−k)

Ik

][
ei

2π
N−k pN−kIN−k 0

0 Ik

][
IN−k 0

0 ei
2π
k pkIk

]

=

[
eiα

2πk
N γ(N−k)

ei
2π
N−k pN−kIN−k 0

0 eiα
2π(k−N)

N γ(N−k)

ei
2π
k pkIk

]
. (C.12)

Above, we allowed for nonvanishing SU(N) twist, pN 6= 0 for future use; imposing vanishing

SU(N) twist corresponds to taking pN = 0. The above cocycle conditions, keeping pN 6= 0,

have the following general solution for α, given below in one of many possible forms

α γ(N−k) k(N − k) = pN (N − k)−NpN−k −N(N − k)m4 (C.13)

pk = pN − pN−k − km5 − (N − k)m4 (mod N) (C.14)

where m4 and m5 are arbitrary integers. On the top line we chose to express the U(1) twist

α in terms of the SU(N) twist pN and the SU(N − k) twist pN−k. Note that the SU(k)

flux is determined by pN , pN−k and by the integers m4 and m5.

For further use, we also write the solution (C.13) in an equivalent way:

αγ(N−k)k(N − k) = (N − k)pk − kpN−k −m4 +m5 (C.15)

pk + pN−k = pN − km5 − (N − k)m4 (mod N) . (C.16)
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The form (C.13) above is convenient to address our first task: what U(1) fluxes are

possible in the SU(N) theory, i.e. for pN = 0 and varying pN−k? The relation between α

and U(1) flux follows from using (C.10) to express the U(1) flux through the torus in terms

of the transition functions∮
FN−k12 dx1dx2

2π
=

1

2π
[ω1(L2)− ω1(0)− ω2(L1) + ω2(0)] = α . (C.17)

where we used the U(1) cocycle condition in the form (C.10). The above equation gives

the U(1) flux quantization condition: explicitly, we have, putting pN = 0 in (C.13):

α = −γ(N−k)(pN−k + (N − k)m4) , (C.18)

i.e. completely equivalent toeq. (2.18) from the main text, which was used to conclude that

the k-wall theory has a Z2N anomaly free global symmetry inherited from the bulk theory.

Another derivation of flux quantization, using constant flux backgrounds, is given in the

main text, section 2.4.1.

Before continuing our discussion of ’t Hooft flux backgrounds, we recall that the 2-

D fermions ψ± also satisfy a consistency condition on the corners of the torus (single

valuedness of ψ±(L1, L2)) given by

ψ±(L1, L2) = Ω1(L2) Ω2(0) ◦ ψ±(0, 0) = Ω2(L1) Ω1(0) ◦ ψ±(0, 0), (C.19)

where ◦ denotes the action of the U(1) × SU(N − k) × SU(k) gauge transformations

on the fermions and Ω collectively denotes the transition functions for the three gauge

groups. Recalling the discussion after (B.3), (B.4) of the gauge transformation proper-

ties of the fermions, we have explicitly Ω ◦ ψ+ = eiωγ
(N−k)

Ω[N−k] ψ+ Ω†[k], Ω ◦ ψ− =

ε−iωγ
(N−k)

Ω[k] ψ+ Ω†[N−k]. Thus the cocycle condition for ψ+ (the ψ− condition does not

bring new constraints) becomes

ψ+(L1, L2) (C.20)

= eiω1(L2)γ(N−k) eiω2(0)γ(N−k) Ω1 [N−k](L2) Ω2 [N−k](0) ψ+(0, 0) Ω†2 [k](0) Ω†1 [k](L2)

= eiω2(L1)γ(N−k) eiω1(0)γ(N−k) Ω2 [N−k](L1) Ω1 [N−k](0) ψ+(0, 0) Ω†1 [k](0) Ω†2 [k](L1) .

The bulk SU(N) theory has a Z(1)
N 1-form global symmetry. The part of this 1-form

symmetry projected to the 2-D k-wall worldvolume is unbroken by the adjoint Higgsing and

should still be manifest as a symmetry acting on transition functions, as described earlier.

The transition functions Ωi [1],Ωi [N−k],Ωi [k], collectively denoted by Ωi, embedded into

SU(N) are:

Ωi =

[
ei2πωi

k
N
γ(N−k)Ωi [N−k] 0

0 ei2πωi
k−N
N

γ(N−k)Ωi [k]

]
, i = 1, 2. (C.21)
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Consider now the 1-form symmetry action (say, in the xi direction) on the transition

functions:

eiωi → ei2πζ(i) eiωi ,

Ωi [N−k] → ei
2π
N−k q(i)N−k Ωi [N−k], (C.22)

Ωi [k] → ei
2π
k
q(i)k Ωi [k] .

In order that (C.21) transform by a ZN phase zi[N ] ≡ ei
2π
N
p(i) , i.e., Ωi → ei

2π
N
p(i)Ωi as

appropriate to a 1-form ZN symmetry, the following conditions should hold33

ei2πζ(i)
k
N
γ(N−k) ei

2π
N−k q(i)N−k = ei

2π
N

p(i) (C.23)

ei2πζ(i)
k−N
N

γ(N−k) ei
2π
k
q(i)k = ei

2π
N

p(i) .

These conditions are formally equivalent to the ones in (C.12) determining the cocycle

conditions for the U(1) field (we stress that here they have a different meaning), upon the

replacement α → ζ(i), pN−k → q(i) N−k, pk → q(i) k, pN → p(i), and we can borrow their

solutions. We express the solution (C.15), (C.16) for ζ(i) as follows (setting m4 and m5

to zero)

ζ(i)γ
(N−k) =

q(i)k

k
−
q(i)N−k

N − k
(C.24)

q(i)k + q(i)N−k = p(i) (mod N) .

These conditions ensure that (C.23) represent the action of a ZN symmetry. It is easy to see

that the k-wall fermion boundary conditions (C.20), are invariant under the Z(1)
N symmetry

action (C.23), (C.24). To further check (C.23), (C.24), consider the action on a fundamental

SU(N) Wilson loop. A fundamental of SU(N) decomposes into two representations under

the unbroken U(1) × SU(N − k) × SU(k) gauge group: q1 ∼
(
k
N γ

(N−k),�,1
)

and q2 ∼((
k−N
N

)
γ(N−k),1,�

)
, as seen from (A.8), (A.9). A Wilson loop of, say q1, along the x1

direction of the k-wall wordlvolume has the form

Wq1(x2) = tr

ei L1∫
0

A1 [N−k](x1,x2)dx
1

Ω1 [N−k](x2)

 e
i k
N
γ(N−k)

L1∫
0

AN−k1 (x1,x2)dx1

eiω1(x2)
k
N
γ(N−k)

(C.25)

where we recalled (C.6) and inserted appropriate SU(N − k) and U(1) transition func-

tions Ω1 [N−k], e
iω1

k
N
γ(N−k) . Under (C.22) with i = 1, we have Wq1(x2) → ei2πζ(1)

k
N
γ(N−k)

ei
2π
N−k q(1)N−kWq1(x2) = ei

2π
N
p(1)Wq1(x2), using (C.23), (C.24), as appropriate for a Z(1)

N 1-

form symmetry.

33Note also that (C.23) with arbitrary p(i) (not necessarily quantized) represents the most general one-

form transformations (C.22) that leave the fermion cocycle conditions (C.20) invariant. This follows upon

inspection; also recall that the cocycle conditions have to respect the 1-form symmetry. Hence, this is

the most general ansatz for an unbroken 1-form symmetry of the k-wall theory. Using the solution given

in (C.13), also valid for arbitrary p(i), one can show that the Z(1)
N found below is the only 1-form symmetry

in the k wall theory.

– 29 –



J
H
E
P
0
5
(
2
0
1
9
)
1
5
1

D ’t Hooft fluxes and projection of constant flux backgrounds

The discussion that follows is an explicit demonstration that the constant flux back-

grounds (2.21) with u = ωb are examples of backgrounds obeying the twisted boundary

conditions (C.12) with nonzero SU(N) twists, pN 6= 0.

We begin with (2.23), which gives the SU(N) twist associated to the constant flux

background (2.21) as

t(u) = ei2πu·H . (D.1)

Here, we project that twist t onto SU(N−k) and SU(k). The projection on the U(1) factor

was done before, see section 2.4.1. The result is:

t(u)U(1) =

e−i 2π
N−k

N∑
A=N−k+1

u·νA
IN−k, e

i 2π
k

N∑
A=N−k+1

u·νA
Ik

 . (D.2)

In particular, for u = αb, there we found that
∑N

A=N−k+1α
b · νA = −δb,N−k, thus

t(αN−k)U(1) =
(
ei

2π
N−k IN−k, e

−i 2π
k Ik

)
, t(αb 6=N−k)U(1) = IN . (D.3)

To continue, we introduce some notation. We let indices ã, b̃, . . . = 1, . . . N −k−1, and

Ã, B̃, . . . = 1, . . . N − k. Primed indices are a′, b′ . . . = 1, . . . k − 1, and A′, B′, . . . = 1, . . . k.

Finally, as before, a, b, . . . = 1, . . . N −1 and A,B, . . . = 1, . . . N . We denote the SU(N −k)

Cartan generators by H̃ ã. These are (N − k) × (N − k) diagonal matrices whose Ã-th

eigenvalue we denote by (H̃ ã)Ã = λãÃ = (νÃ)ã. The SU(k) generators are H ′a
′
, k × k

matrices with eigenvalues (H ′a
′
)A
′

= (νA
′
)a
′
. The set of SU(N) generators consisting of

H̃ ã, H ′a
′
, H̃N−k, embedded into SU(N) as in (A.9), are an orthonormal basis of SU(N)

generators suited for the SU(N)→ U(1)× SU(N − k)× SU(k) breaking pattern.

We first project (D.1) onto the SU(N − k) subgroup. We define the projection onto

SU(N − k) as34

t(u)SU(N−k) ≡ ei2πu
atr (HaH̃ ã)H ã

, (D.4)

hence the Ã-th eigenvalue of tN−k is

t(u)ÃSU(N−k) ≡ e
i2πuatr (HaH̃ ã)(H ã)Ã = ei2πu

a(νB̃)a(νB̃)ã(νÃ)ã , (D.5)

where the sums in the exponent in the last term are over the appropriate ranges indicated

above (a = 1, . . . N − 1, B̃ = 1, . . . , N − k, ã = 1, . . . N − k − 1). We now note that

(νB̃)ã(νÃ)ã = δÃB̃ − 1
N−k , as (νÃ)ã are the weights of the fundamental for SU(N − k).

Thus, we have

t(u)ÃSU(N−k) = e
i 2πua(νÃ)a−i 2π

N−k u
a
N−k∑̃
B=1

(νB̃)a

, (D.6)

where we explicitly indicated the sum over B̃ in the second term (the sum over a is still in

the appropriate range 1, . . . , N − 1).

34Taking the trace entails embedding the generators into SU(N) as in (A.9). Expressing the result through

the weights yields tr (HaH̃ ã) =
∑N−k
B̃=1

(νB̃)a(νB̃)ã.
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We now imagine that u = αb = νb−νb+1 is a SU(N) root vector. Thus, recalling that

αb · νÃ ∈ Z,

t(αb)ÃSU(N−k) = e
i 2π(αb)a(νÃ)a−i 2π

N−k (αb)
a
N−k∑̃
B=1

(νB̃)a

= e
−i 2π

N−k

N−k∑̃
B=1

(νb−νb+1)·νB̃

= e
−i 2π

N−k

N−k∑̃
B=1

(δbB̃−δb+1B̃)

= e−i
2π
N−k δ

bN−k
. (D.7)

As promised earlier, for u = αb there is a nontrivial twist in SU(N − k), cancelled by the

twist in the U(1) factor, for b = N − k only (recall discussion after (2.27)).

Next, we consider nontrivial ’t Hooft fluxes and take u = ωb =
∑b

B=1 ν
B. The

SU(N − k) twist becomes

t(ωb)ÃSU(N−k) = e
i 2π

b∑
B=1

νB ·νÃ−i 2π
N−k

N−k∑̃
B=1

b∑
B=1

νB ·νB̃

(D.8)

= e
i 2π

b∑
B=1

(
δBÃ− 1

N

)
−i 2π

N−k

N−k∑̃
B=1

b∑
B=1

(
δBB̃− 1

N

)

= e
−i 2π

N−k

N−k∑̃
B=1

b∑
B=1

δBB̃

= e−i
2π
N−kmin(b,N−k) . (D.9)

Before calculating this expression, we notice that this is a twist in the center of SU(N −k),

for all ωb (as it is Ã-independent) and that it is only non-unity for b < N − k.

Let us now calculate the same twist for the U(1) factor (D.2). We need

N∑
A=N−k+1

b∑
B=1

νB · νA =

N∑
A=N−k+1

b∑
B=1

(
δAB − 1

N

)
=

{
−kb
N , b ≤ N − k

(N − k)
(
b
N − 1

)
, b > N − k

.

(D.10)

Thus we find

t(ωb)U(1) =


(
ei

2π
N−k

k
N
b IN−k, e

−i 2πb
N Ik

)
, b ≤ N − k(

e−i
2π
N
b IN−k, e

i 2π
k
N−k
N

(b−N) Ik

)
, b > N − k

. (D.11)

We notice that the SU(N − k) twist in (D.8) and the U(1) twist above conspire to produce

a twist, e−i
2πb
N , in the center of SU(N) for all values of b.

Finally, we show that the same “conspiracy” holds for the SU(k) and U(1) twists. The

projection on SU(k) is

t(u)SU(k) ≡ ei2πu
atr (HaH

′a′ )Ha′
, (D.12)

whose A′-th (recall A′, B′ . . . = 1, . . . k, a′, b′ . . . = 1, . . . k− 1) component (recalling (νA
′
)a
′

are the SU(k) weights of the fundamental) is

t(u)A
′

SU(k) = ei2π(u·ν
N−k+B′ )(νB

′
)a
′
(νA
′
)a
′

= e
i2π

k∑
B′=1

(u·νN−k+B′ )
(
δA
′B′− 1

k

)

= e
i2πu·νN−k+A′−i 2π

k

k∑
B′=1

u·νN−k+B′

. (D.13)

– 31 –
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We first take a root lattice u = αb = νb − νb+1 and find

t(αb)A
′

SU(k) = e
i2π(νb−νb+1)·νN−k+A′−i 2π

k

k∑
B′=1

(νb−νb+1)·νN−k+B′

= e
−i 2π

k

N∑
A=N−k+1

(δb,A−δb+1,A)

= ei
2π
k
δb,N−k . (D.14)

Thus, as expected, for root lattice u, the SU(k) twist exactly cancels the ∼ Ik part of the

U(1) twist (D.3). We finally take a weight lattice u and find from (D.13)

t(ωb)A
′

SU(k) = e
i2π

b∑
p=1

νp·νN−k+A′−i 2π
k

k∑
B′=1

b∑
p=1

νp·νN−k+B′

(D.15)

= e
i2π

b∑
p=1

(
δp,N−k+A

′− 1
N

)
−i 2π

k

k∑
B′=1

b∑
p=1

(
δp,N−k+B

′− 1
N

)
(D.16)

= e
−i 2π

k

N∑
A=N−k+1

b∑
p=1

δp,A

=

{
1, b ≤ N − k

e−i
2π
k
(b−N), b > N − k

, (D.17)

thus, comparing with the U(1) twist (D.11) we see that the U(1) twist cancels the Zk SU(k)

twist and a ZN twist e−i
2πb
N is left over for all values of b.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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