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1 Introduction

Anomaly matching conditions provide a rare exact constraint on the infrared (IR) behavior

of strongly coupled gauge theories [1]. To study the matching of anomalies, one probes

the theory with nondynamical (background) gauge fields for its anomaly-free global sym-

metries. Any violation of the background gauge invariance due to the resulting ’t Hooft

anomalies should exactly match between the ultraviolet (UV), usually free, and IR descrip-

tions of the theory. In the past, these consistency conditions have been applied to “0-form”

symmetries, acting on local fields. For example, anomaly matching was instrumental in

the study of models of quark and lepton compositeness in the 1980s (see the review [2]) or

of Seiberg duality in the 1990s [3].

Recently, it was realized that the scope of anomaly matching is significantly wider

than originally thought [4–6]. Turning on general background fields — corresponding to

global, spacetime, continuous, discrete, 0-form, or higher-form symmetries, consistent with

their faithful action — was argued to lead to new UV-IR anomaly matching conditions.

We refer to them as “generalized ’t Hooft anomalies.” The study of these generalized
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anomalies is a currently active area of research with contributions coming from the high-

energy, condensed matter, and mathematical communities. We do not claim to be in

command of all points of view and only give a list of references written from a (largely)

high-energy physics perspective and pertaining to theories somewhat similar to the ones

discussed in this paper [7–19].

Summary: We continue our study [20] of the generalized ’t Hooft anomalies in SU(Nc)

gauge theories with Nf flavors of Dirac fermions in representations Rc of Nc-ality nc.

These theories have exact global discrete chiral symmetries. Considering these theories on

T4 and turning on the most general ’t Hooft flux [21] backgrounds for the global symmetries,

consistent with their faithful action, we found a mixed anomaly between the discrete chiral

symmetry and the U(Nf )/ZNc baryon-color-flavor, or “BCF”, background. We showed that

matching this BCF anomaly imposes new constraints on possible scenarios for IR physics,

in addition to those imposed by the “traditional” 0-form ’t Hooft anomalies. When these

theories are coupled to axions, the axion theory is also constrained by anomalies [22].

In this paper, we consider the fate of the BCF anomalies in the same class of the-

ories, but now formulated on non-spin manifolds. We are motivated by the study of

QCD(adj) [23], which showed that ’t Hooft anomalies in theories with fermions on non-spin

backgrounds impose additional constraints. It is known that manifolds that do not permit

a spin structure [24, 25] can accommodate theories with fermions, but only if appropriate

gauge fluxes are turned on [26]. These fluxes can correspond to dynamical or background

fields, as in the recent studies [23, 27–29]. We focus on the canonical example of non-spin

manifold, CP2. It has the advantage of allowing for an explicit (and pedestrian1) discussion

of the salient points. We describe in detail how to turn on background U(Nf )/ZNc fluxes

on CP2 and derive the resulting BCF anomaly on non-spin backgrounds. The final result

of our analysis is that the BCF anomaly matching conditions on CP2 are equal or stronger

than those obtained on T4. We use several examples to show that the BCF anomaly on

CP2 further constrains various scenarios for the IR dynamics.

Organization of this paper: in section 2.1, we define the class of theories we study. In

section 2.2, inviting the reader to also consult appendices A and B, we explain how to turn

on ’t Hooft fluxes on CP2 for the baryon, color, and flavor gauge fields, consistent with the

faithful action of the global symmetries in the representation Rc.
In section 2.3, we temporarily divert to show how to put chiral gauge theories in

non-spin backgrounds; however, we leave their study for the future.

In section 3, we study the mixed ’t Hooft anomalies of the discrete chiral symmetry

with the BCF fluxes on CP2, discuss the conditions imposed on the IR spectrum, and

compare with the case of T4 studied previously.

1See appendix A for details of CP2 and appendix B for an explicit description of how to consistently turn

on ’t Hooft fluxes on CP2 in theories with fermions in general representations. This discussion complements

the more abstract mathematical descriptions existing in the literature. At the end, the anomaly depends

only on topological information. However, considering explicit gauge and gravity backgrounds (’t Hooft

fluxes in a CP2 background) provides a more “pedestrian” route to see the anomaly, which might be more

familiar for many physicists.
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In section 3.1, we present several examples. In section 3.1.1 we discuss QCD(adj).

Our intention is to use the present study to investigate the various scenarios for IR be-

havior, whose consistency has been recently elaborated upon in [16, 19, 23, 28, 30–32]. In

section 3.1.2, we study an SU(6) gauge theory with a single Dirac flavor in the two-index

antisymmetric representation and, in section 3.1.3, its generalization to SU(4k + 2) with

a single flavor of two-index symmetric or antisymmetric representations. In both cases,

we argue that scenarios for IR physics consistent with the 0-form ’t Hooft anomalies are

further constrained by studying them on CP2. In particular, we focus on exotic phases2

with massless composite fermions, and argue that the TQFT which must accompany the

massless composites has to reproduce a more restrictive anomaly on CP2.

Appendices A and B contain many relevant formulae regarding CP2 and fermions.

At the end of appendix B, we find several classes of theories which can be formulated

on CP2 by turning on of only dynamical gauge backgrounds, i.e. by only modifying the

gauge bundles summed over. These gauge theories share a feature common with examples

discussed in [27, 28]: they have only bosonic gauge invariant operators and can be taught

as emergent descriptions near quantum critical points of purely bosonic systems.

2 Baryon-Color-Flavor (BCF) ’t Hooft fluxes on CP2 for vector-like the-

ories

In this section, we describe in great detail (in conjunction with appendices A and B) how

to introduce background fluxes in the baryon-number, color, and flavor directions on CP2.

We carry out our construction for vector-like theories. However, this setup can be easily

adapted for chiral theories (such as the Standard Model), as we show at the end of this

section.

2.1 Vector-like theories

We consider SU(Nc) gauge theories with Nf flavors of Dirac fermions transforming in a

representation Rc of N-ality nc.
3 The gauge group that faithfully acts on the fermions is

SU(Nc)
Zp , where p = gcd(Nc, nc); thus, the fermions are charged under a ZNc

p
subgroup of the

center of SU(Nc). After modding out the redundant symmetries, we find that the 0-form

global symmetry of the theory is

Gglobal =
SU(Nf )L × SU(Nf )R ×U(1)B × Z2 dim(Rf )TRc

ZNc
p
× ZNf × Z2

, (2.1)

where TR is the Dynkin index of the representation, R and dim(R) is its dimension. Here,

we assume that Z2 dim(Rf )TRc
is a genuine symmetry of the theory; thus, it cannot be

absorbed in the continuous part of Gglobal (this can be checked on a case by case basis).

Z2 above denotes fermion number and ZNc
p

is in the center of SU(Nc).

2The examples of sections 3.1.2 and 3.1.3 were also studied in refs. [16, 19], which argued that an IR

gapped phase with unbroken global symmetries cannot occur.
3The N -ality of a representationR of SU(N) is the number of boxes of the Young tableau ofRmodulo N .
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In addition, the theory has a 1-form center symmetry Z(1)
p that acts on non-contractible

Wilson loops, provided that gcd(Nc, nc) = p > 1. Notice that the ultraviolet fermions are

taken to transform in the defining representation of the flavor group SU(Nf ), and hence,

we should use nf = 1. Nevertheless, we keep the N -ality of the fermions under SU(Nf ) an

arbitrary integer for the sake of generality.

2.2 Generalized ’t Hooft fluxes on CP2

Next, we turn on ’t Hooft fluxes (twists) in the baryon-number, color, and flavor directions,

which are compatible with CP2 and at the same time lead to consistent transition functions.

See appendix A for a collection of relevant formulae for CP2.

We first address the compatibility condition. As we point out in appendix B, back-

ground gauge fields (both abelian and nonabelian) on CP2 need to be (anti)self-dual, oth-

erwise they will have a nonvanishing energy-momentum, and hence, backreact on the man-

ifold. In order to achieve the (anti)self-duality, we take the gauge fields to be proportional

to the Kähler 2-form K of CP2, eqs. (A.2), (A.9):

T aF a ∼ T aCaK , (2.2)

where T a stands for the color, flavor, or baryon-number generators, and Ca are constants

that will be determined momentarily.

Second, we come to the problem of defining a consistent gauge theory with matter

fields on a manifold M. Let G be a direct product of semi-simple Lie groups and Ψ a

fermionic matter field transforming under specific representations of G. A quantum field

theory of Ψ is described in terms of a collection of covers {Ui} ofM (in {Ui}, Ψ is denoted

Ψi), along with transition functions gij ∈ G, defined on the overlap Ui ∩ Uj and relating

Ψi to Ψj

Ψi = GijΨj , (2.3)

where

Gij = gBijg
Rc
ij g

Rf
ij g

L
ij , (2.4)

such that gB,R
c,Rf

ij are the transition functions of the baryon, color, and flavor groups, while

gLij is the transition function associated to the spacetime Lorentz group. The matter field

in general will transform under representation Rc of the color group and representation Rf

of the flavor group. However, only the N-ality of the representations will matter in what

follows. Consistency requires that the transition functions satisfy the cocycle conditions

on the triple overlap Ui ∩ Uj ∩ Uk:

GijGjkGki = 1 . (2.5)

The above cocycle condition does not necessary imply that the strong conditions gaijg
a
jkg

a
ki =

1 should be met for each of the transition functions in (2.4), where a refers to the baryon-

number, flavor, color, or Lorentz groups.
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Let gcij and gfij be the transition functions in the defining representations of the color

and flavor groups, respectively. One, then, may relax the condition (2.5) to the following

set of conditions

gcijg
c
jkg

c
ki = ei

2π
Nc
n
(c)
ijk , gfijg

f
jkg

f
ki = e

i 2π
Nf

n
(f)
ijk ,

gBijg
B
jkg

B
ki = e

−iπ−inc 2π
Nc
n
(c)
ijk−inf

2π
Nf

n
(f)
ijk , (2.6)

on the triple overlap. In this expression nc (nf ) is the color (flavor) N-ality, n
(c)
ijk (n

(f)
ijk)

are integers modulo Nc (Nf ), while the factor e−iπ that appears in the last cocycle con-

dition cancels the minus sign arising from parallel transporting the spinor fields around

appropriate closed paths in CP2, see appendix B and [24–26].

Thus, the U(1)B bundle provides the flux that is necessary to render the fermions

well-defined on the non-spin manifold. As a side remark, we note that this is by no means

is the unique choice to put spinors on CP2: one could also use the fluxes in the color (or

flavor) directions to perform the same job. Examples of using only gauge backgrounds

(i.e. modifying only the gauge bundles being summed over in the path integral) are known

in the literature [27–29] and we give a few more at the end of appendix B; a common

feature of gauge theories where this can be done is their possible interpretation as emergent

descriptions near quantum critical points in theories of only bosons [28].

The consistency conditions (2.5) or (2.6) guarantee that the Dirac index will always

be an integer. Since the Dirac index counts the number of the fermion zero modes in a

given gauge/gravity background, the integrality of the index is a necessary condition for

the consistency of a given theory in the background of baryon-color-flavor ’t Hooft fluxes

in CP2. The integrality of the index will be manifest in all the examples we discuss in

this paper.

Having all the ingredients necessary to turn on compatible fluxes on non-spin manifolds,

we now choose the color and flavor fluxes in the Cartan directions of the respective groups.

Using (2.2) we write:

T a(c)F a(c) = Hc · νcmcK ,

T a(f)F a(f) = Hf · νfmfK ,

FB =

(
1

2
+
nc

Nc
mc +

nf

Nf
mf

)
K . (2.7)

Here Hc/f are the fundamental representation Cartan generators of SU(Nc/f ), obeying

tr
[
HaHb

]
= δab, and ν are the weights of the corresponding defining representation,

νa · νb = δab − 1
N (where N stands for Nc or Nf ). The fluxes (2.7), with integer mc and

mf , are compatible with the cocycle conditions (2.6), see (B.7), and the Dirac index is

integer in their background. The topological charges are given by

Q =
1

8π2

∫
tr [F ∧ F ] . (2.8)
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Then, substituting (2.7) into (2.8) and using
∫
CP2

K∧K
8π2 = 1

2 , we find:

Qc =
(mc)2

2

(
1− 1

Nc

)
, Qf =

(
mf
)2

2

(
1− 1

Nf

)
,

QB =
1

2

(
1

2
+
nc

Nc
mc +

nf

Nf
mf

)2

. (2.9)

Adding to this list the gravitational topological charge of CP2

QG =
1

192π2

∫
tr [R ∧R] = −1

8
, (2.10)

we finally obtain the Dirac index:

JD = TRcdimRfQ
c + TRfdimRcQ

f + dimRfdimRc
(
QB +QG

)
, (2.11)

which is an integer for all the examples we consider below.

Before moving to examples, it is instructive to compare and contrast the above results

with the BCF fluxes on the four-torus T4 that we considered before [20]. CP2 has one

two-cycle CP1, and hence, we were able to turn on fluxes along this single cycle (the color

and flavor fluxes are labeled by mc,f in (2.9)). In contrast, T4 has six two-cycles (it suffices

to turn on fluxes in the 1-2 or 3-4 planes, respectively, hence we have two integers m12 and

m34 that label the fluxes).4 Since there are more ways to turn on fluxes on T4 compared to

CP2, this may imply that putting the theory on T4 can give us more constraining conditions

on the IR spectrum. We will see in the next section that this is not true: although CP2 has

only one cycle, it always imposes conditions that are either stronger or at least as strong

as the conditions we obtain by putting the theory on T4.

2.3 Comment on chiral theories and the Standard Model with νR

Here, we slightly divert from our main presentation to note, for the sake of complete-

ness, that by turning on global anomaly-free U(1) fluxes, chiral gauge theories can also be

formulated on non-spin manifolds.

As an example, consider an SU(5) gauge theory with 5∗ and 10 left-handed Weyl

fermions:5 λ in the anti-fundamental and ψ in the two-index anti-symmetric representa-

tions. This theory has an anomaly-free global U(1) that acts on the fermions as ψ → ei2παψ

and λ→ e−i2π(3α)λ. Then, one can easily check that the flux

T a(c)F a(c) = Hc · νcmcK ,

FU(1) = −
(

1

2
+

2

5
mc

)
K , (2.13)

4For the sake of completeness, we give Qc,f,B on T4 [20]:

Qc = mc
12m

c
34

(
1− 1

Nc

)
, Qf = mf

12m
f
34

(
1− 1

Nf

)
,

QB =

(
nc
mc

12

Nc
+ nf

mf
12

Nf

)(
nc
mc

34

Nc
+ nf

mf
34

Nf

)
. (2.12)

5For a discussion of its conjectured IR dynamics, see [33].

– 6 –



J
H
E
P
0
4
(
2
0
2
0
)
0
9
7

is consistent with the cocycle condition (2.5) for both ψ and λ. This can be seen by

considering the consistency condition (B.7) on CP2 for fermions in these two representa-

tions, taking into account their different U(1) charges and SU(5) representations. One

can also check the consistency by calculating the Dirac indices for both ψ and λ: using

Qc = 1
2(mc)2

(
1− 1

5

)
and QU(1) = 1

2

(
1
2 + 2

5m
c
)2

, we obtain

Jψ = TψQ
c + dimψ

(
QU(1) − 1

8

)
= 2mc(1 +mc) ,

Jλ = TλQ
c + dimλ

(
(3)2QU(1) − 1

8

)
= 5 + 9mc + 4(mc)2 , (2.14)

which are integers. Notice that the total number of upper minus lower SU(5) indices of

the zero modes is a multiple of 5 (and the total number of zero modes is even for odd mc),

so that a gauge invariant “’t Hooft vertex” using the zero modes can be written.

Let us also mention that the Standard Model can be formulated on a non-spin manifold,

provided that right-handed neutrinos are added.6 In this case one can turn on a fractional

flux in the global U(1)B−L in order to cancel the eiπ ambiguity that results from putting

the quarks and leptons on CP2. By computing the indices, as above, it is easy to see that

gauge and Lorentz invariant terms can be constructed out of the zero modes. The U(1)B−L
can further be promoted to a gauge symmetry, broken by a charge-2 Higgs. For related

discussions see [34, 35] as well as the remarks on the Spin(10) grand unified theory in [27].

In the two examples mentioned in this section, formulating the theory on CP2 does

not lead to new ’t Hooft anomalies of the type discussed here, as these theories only have

continuous chiral symmetries whose anomalies are matched irrespective of the integrality

of the topological charges.7 Further study of chiral theories is left for the future.

3 Anomalies in the background of BCF fluxes on CP2

We now return back to our main theme and examine the fate of the axial symmetries of

vector-like theories as we put them in the background of BCF fluxes. In order to reduce

notational clutter, we assume that the theory enjoys a genuine discrete Zqg axial global sym-

metry, which becomes anomalous in the background of BCF fluxes. We denote by Dc,f,B,G

the anomaly coefficients that accompany the color, flavor, baryon-number, and gravita-

tional topological charges. The UV values of these coefficients, Dc
UV, D

f
UV, D

B
UV, D

G
UV, are

equal to twice the pre-factors that multiply Qc,f,B,G, respectively, in the Dirac index (2.11):

these are group-theoretical values and they do not depend on whether we turn on integer or

fractional fluxes or whether we put the theory on spin or non-spin manifolds. To summa-

rize, upon performing a global Zqg axial transformation on the fermions, the UV partition

function acquires the phase

ZUV|Zqg → Ze
i 2π
qg

(
DcUVQ

c+DfUVQ
f+DBUVQ

B+DGUVQ
G
)

= Zei
2π
qg

2JD , (3.1)

6In the absence of right-handed neutrinos one finds that U(1)B−L is broken by gravitational instantons.
7See [20] for a lucid explanation why continuous chiral symmetry transformations in BCF backgrounds

do not impose further constraints.
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where JD is the Dirac index (2.11). This phase is a manifestation of a ’t Hooft anomaly

between the 0-form Zqg symmetry and a general BCF background.

Now, we assume that the 0-form (“traditional”) ’t Hooft anomalies, which correspond

to integer values of Qc,f,B,G, can be matched by a set of fermion composites deep in the

IR on a spin manifold. Upon performing a Zqg transformation in the IR, the partition

function transforms as

ZIR|Zqg → Ze
i 2π
qg

(
DcIRQ

c+DfIRQ
f+DBIRQ

B+DGIRQ
G
)
, (3.2)

where Dc
IR, D

f
IR, D

B
IR, D

G
IR are the anomaly coefficients computed using the IR spectrum of

composites. Since we are matching a discrete anomaly, the coefficients Dc,f,B,G need not

be exactly matched between the UV and IR. Instead, Dc,f,B are matched modulo qg:

Dc,f,B
UV −Dc,f,B

IR = qg`
c,f,B , (3.3)

for integers `c,f,B. The coefficients DG are matched only modulo qg/2: there is an integer

`G such that

DG
UV −DG

IR =
qg
2
`G . (3.4)

This is true since the gravitational topological charge of a spin manifold is an even number.8

Now, we would like to check whether the same set of IR composite fermions can also

match the BCF anomaly as we turn on fractional fluxes on a non-spin manifold. Before

doing that, we first note that if a non-spin manifold admits an elementary spinor Ψ, then

by virtue of (2.5) and (2.6) a composite of these spinors can always be defined. Also, one

can easily see the spin-charge relation of the composites: a fermion (boson), made of an

odd (even) number of Ψ, carries an odd (even) charge under U(1)B.

Thus, using (3.1), (3.2), (3.3), and (3.4), we obtain the matching condition:

ZUV|Zqg
ZIR|Zqg

= e
i2π
(
`cQc+`fQf+`BQB+ `G

2
QG
)

= 1 , (3.5)

or in other words

`cQc + `fQf + `BQB +
`G

2
QG ∈ Z (3.6)

for all fractional charges Qc,f,B,G given in (2.9) and (2.10). The condition (3.6) can be

translated into the following set of conditions on `c,f,B,G, which can be obtained by turning

on and off the fluxes in the various directions:

(i) `cNc(Nc − 1) + `Bnc(nc +Nc) ∈ 2N2
c Z ,

(ii) `fNf (Nf − 1) + `Bnf (nf +Nf ) ∈ 2N2
f Z ,

(iii) `cN2
fNc(Nc − 1) + `fN2

cNf (Nf − 1) + `B(ncNcN
2
f + nfNfN

2
c )

+ `B (ncNf + nfNc)
2 ∈ 2N2

cN
2
f Z ,

(iv) 2`B − `G ∈ 16Z . (3.7)

8Notice that qg is an even number, since Zqg has to contain Z2 as a subgroup in any theory that preserves

its Lorentz symmetry.
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The importance of the above conditions is as follows: if no integers `c,f,B,G that satisfy (3.7)

can be found, then composite fermions cannot solely match the BCF anomaly. Thus, either

the composites do not form in the IR, or they are accompanied by a partial breaking of

Zqg , due to some higher dimensional fermion condensate that leaves the continuous flavor

symmetries intact, and/or an IR TQFT.

For example, setting9 `c = 1, it is straightforward to check that no integers `c,f,B,G

exist that satisfy (3.7) if Nf ≥ 2 and one of the following two conditions are met:

(i) gcd(Nc, Nf ) > 1 ,

(ii) gcd(Nc, nc) > 1 . (3.8)

We call the inequalities (3.8) the “no-go condition” on the composites (we stress that they

apply provided that Nf ≥ 2 and recall that nf = 1). In the special case Nf = 1, one needs

to replace (3.8) by other sets of conditions that we do not quote here; they can be checked

on a case by case basis using the first and last conditions in (3.7).

Now a few comments are in order:

1. The first three conditions (3.7) are functions of `c,f,B, while the fourth condition is

a function of two variables only, `G and `B. Therefore, if `c,f,B can be found to

satisfy conditions (i) to (iii), then it is always trivial to find `G ∈ Z that satisfies

condition (iv).

2. Given 1 above, one expects that turning on gravitational background does not alter

the conditions that are needed to find a set of composites in the IR matching all

anomalies. At this point, it is instructive to compare the set of conditions (i) to (iii)

in (3.7) with those that result from turning on BCF fluxes on T4, as was considered

before10 [20]. Although the two sets of conditions appear to be unrelated, they give

the exact same no-go condition (3.8).

3. However, as we shall show in the examples in section 3.1, putting the theory on a non-

spin manifold can give rise to a more restrictive phase in the partition function, and

hence, imposes more constraints on the IR TQFT that accompanies the composites.

4. As in [13, 14], we can also turn on a SU(Nf ) invariant mass term that breaks

SU(Nf )L × SU(Nf )R down to the diagonal vector subgroup. We will take the

mass to be smaller than the strong-coupling scale of the theory and also intro-

duce a θ parameter. Now, we examine how the partition function transforms un-

der a shift of θ by multiples of 2π, i.e., we ask whether the theory suffers a θ-

9Notice that gauge invariant composites have `c = 1 in the vectorlike theories we consider: using Dc
IR = 0,

since the composites are color singlets, we have `c =
Dc

UV
qg

=
TRcdimRf

TRcdimRf

= 1.

10For the sake of completeness, we recall that the conditions (3.7) are replaced on T4 by:

Nc`
c − `Bn2

c ∈ N2
cZ , Nf `

f − `Bn2
f ∈ N2

fZ , `B ∈ QNcNf
ncnf

Z , (3.9)

where Q is the smallest integer that makes QNcNf

ncnf
an integer.
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periodicity anomaly. To this end, we introduce, in addition to the θ term, gen-

eral background field dependent counter terms. The topological part of the La-

grangian becomes Ltop. = θQc + ΘfQ
f + ΘBQ

B + ΘG
2 QG, where the coefficients

of the counterterms, Θf ,ΘB,
ΘG
2 , are general real numbers. They can, however,

depend on θ and we demand that they shift by 2πZ under 2πr shifts of θ, so

that they do not destroy the θ periodicity in backgrounds with integer Qc, Qf , QB

and even QG. In other words, we have that under θ → θ + 2πr (where r ∈ Z),

∆Ltop. = 2πrQc + 2πsQf + 2πtQB + 2πu
2 QG, where s, t, u ∈ Z.

Finally, we ask whether the transformation of the counter terms can compensate

for the phase of the partition function under shifts of θ in the BCF background

fluxes on CP2, i.e., we demand that under θ → θ + 2πr, Ltop. → Ltop. + ∆Ltop., with

∆Ltop. = 2πZ. Carrying out this exercise, we find that the requirement ∆Ltop. = 2πZ
(the absence of a θ-periodicity anomaly) is met for general BCF fluxes if and only

if conditions (3.7) are satisfied after replacing `c,f,B,G → r, s, t, u. Therefore, the

conditions that exclude massless composites are the exact same conditions that give

rise to θ-periodicity anomaly: they are given, for Nf ≥ 2, by the same conditions (3.8)

found earlier in [14]. The anomaly implies that as one varies θ between 0 and 2π, the

IR theory should either have domain walls or an IR TQFT that saturates the anomaly.

3.1 Examples

In this section, we consider two examples of vector-like theories and check whether putting

them on non-spin manifolds and turning on the most general background fluxes imposes

further restrictions on various scenarios for their IR dynamics. Many aspects of what we

find have been previously recognized in [16, 19, 23, 28, 31], especially in the framework of

QCD(adj), our first example below. Nonetheless, we include it in order to show how it fits

in the present more general and explicit framework.

3.1.1 QCD(adj)

As a first example, we consider QCD(adj), an SU(Nc) Yang-Mills theory endowed with Nf

massless Dirac flavors in the adjoint representation. The Dirac fermion is equivalent to two

undotted Weyl massless fermions ψ, ψ̃, both transforming in the adjoint representation.

The global symmetry of this theory that we shall utilize is

GGlobal ⊃
SU(Nf )L × SU(Nf )R ×U(1)B × Z4NcNf

ZNf × Z2
× Z(1)

Nc
, (3.10)

where we included the 1-form Z(1)
Nc

center symmetry that acts on Polyakov loops. The

massless Dirac theory above is equivalent to the theory of 2Nf massless Weyl adjoints11 λi,

which has a larger global SU(2Nf ) chiral symmetry, containing the SU(Nf )L×SU(Nf )R×
U(1)B shown above. While studying the BCF anomaly on non-spin manifolds, however,

we shall make use of the backgrounds (2.7) for the symmetry (3.10).

11Here i = 1, . . . , 2Nf and all λi are undotted SL(2,C) spinors.
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This class of theories has been extensively studied in the continuum [36–38] and on

the lattice [39–47], for general theoretical interest, but also because it includes theories of

interest for model building beyond the Standard Model. The usual lore is that these theories

will either flow to an IR conformal field theory or break their global symmetries, including

the discrete chiral symmetry Z4NcNf . However, more exotic scenarios have recently been

discussed in [23, 28, 30–32].12

In [30], we conjectured that the theory with Nc = 2 and a single Nf = 1 Dirac fermion

will form a massless composite, schematically given by (λ)3, a doublet under the enhanced

SU(2Nf ) = SU(2) flavor symmetry, accompanied by the breaking Z8 → Z4, due to an

SU(2) invariant four-fermion condensate. This IR scenario has to be supplemented by a

TQFT that matches a mixed anomaly between the 0-form discrete chiral and 1-form center

symmetries on non-spin backgrounds [23], further studied in [16, 19, 31].

Another exotic scenario, applicable to all Nc, Nf , is the proposal of [32], where the

IR phase of the theory contains (N2
c − 1)× 2Nf massless fermions (essentially providing a

gauge invariant copy of the UV fermion spectrum) which can be thought of as created by

operators of the form:

Oi1 = tr
[
Fµνγ

µνλi
]
, . . . ,OiN2

c−1 = tr

Fµα . . . Fρν︸ ︷︷ ︸
N2
c−1

γµνλi

 . (3.11)

This class of composites match all the 0-form anomalies. In addition, there is a TQFT

that matches the discrete chiral-center anomaly. Clearly this is also required by the “no-go

condition” (ii.) from (3.8) as gcd(Nc, nc = Nc) = Nc > 1.

It will be instructive to check whether putting QCD(adj) on CP2 can impose further

constraints on the above IR scenarios. To this end, we first examine the transformation

of the partition function in the UV under the Z4NcNf discrete chiral symmetry. The

index (2.11) is now given by

JD = 2NcNfQ
c + (N2

c − 1)Qf +Nf (N2
c − 1)(QB +QG) , (3.12)

where Qc,f,B are given in (2.9) after setting nc = 0 and nf = 1. This index is always an

integer for all mc and mf , as can be easily checked. Then, under a Z4NcNf transformation

the partition function acquires the phase13

(
ZUV|Z4NcNf

)
CP2
→ Ze

i 2π
2NcNf

[
Nf (mc)2(Nc−1)+(N2

c−1)

(
mf (mf+1)

2
+mBmf+Nf

mB(mB+1)
2

)]
.

(3.13)

Thus, ZUV transforms by a Z2NcNf phase for general values of the background BCF fluxes.

12We stress that while comparing the results in these references to the ones given here, one should keep

in mind that Nf in this paper denotes the number of Dirac, not Weyl flavors. Thus, the discussion here

applies to even numbers of Weyl flavors.
13The U(1)B background is taken to have an extra flux mB ∈ Z, FB = ( 1

2
+mB + nf

Nf
mf )K, cf. (2.7).
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Now, we first examine the IR scenario [30] for Nc = 2 and a single Dirac fermion Nf =

1. The IR composite Dirac fermion has unit charge under U(1)B and charge 3 under the Z8

discrete chiral symmetry.14 The Dirac index in the IR is obtained by setting Qc = Qf = 0

in (2.11), which gives JD = 1
2m

B(mB + 1). Thus, we find (ZIR|Z8)CP2 → ei
2π×3

8
mB(mB+1),

and hence, from (3.13) we find the ratio(
ZUV|Z8

ZIR|Z8

)
CP2

= ei
2π
4

(mc)2 . (3.14)

We note that on a non-spin manifold, this is a Z4 phase, while it is a Z2 phase on a spin

manifold. On T4, the computation follows the same steps, taking SU(Nc) ’t Hooft fluxes

(see footnote 4), with Qc = mm′

2 , Qf = 0, and taking QB = mb (m,m′,mb ∈ Z), we have

(
ZUV|Z8

ZIR|Z8

)
T4

=
e
i 2π

4

(
4mm

′
2

+3mb

)
ei

2π
4

3mb
= ei

2π
2
mm′ (3.15)

The fact that the UV and IR partition functions with massless composite fermions

transform differently under Z8 means that the massless composites cannot be all there is in

the IR. In particular, as (3.14), (3.15) show, there is a mixed anomaly between the discrete

chiral and center symmetries (the ’t Hooft fluxes m,m′,mc) which cannot be matched by

the IR fermions. This was already recognized in [30], where it was proposed that there

is spontaneous breaking of the chiral symmetry, Z8 → Z4, by a four-fermion condensate

〈detλiλj〉,15 and that domain walls, via a TQFT coupled to the background fields and

describing the two Z8 → Z4 vacua, match the mixed discrete-chiral center anomaly.

Consider, however, a chiral transformation in the unbroken Z4. A look at (3.14)

and (3.15) shows that an unbroken-Z4 transformation (a Z8 transformation applied twice)

generates no phase on T4, but does give rise to a Z2 phase on CP2. The DW theory,

however, is blind16 to the unbroken Z4 group and only matches the anomalies for the

broken symmetries, generated by odd powers of ei
2π
8 . Thus to match the anomaly of the

unbroken Z4 group [23], the scenario proposed in [30] has to be modified. The need for

such modification is only visible — as (3.14), (3.15) show — when the theory is placed in

consistent non-spin backgrounds. It was argued that one would need to supplement the IR

with an extra emergent TQFT and an explicit construction of this TQFT as an emergent

Z2 gauge theory matching the anomaly of the unbroken Z4 on non-spin manifolds (giving

rise to the Z2 phase) was given [16, 19, 23, 31].

Next, we examine the scenario of [32]. The massless composites (3.11) have unit U(1)B
and Z4NcNf charges, hence the index in the IR is JD = (N2

c − 1)
[
Qf +NF (QB +QG)

]
=

14Recall that U(1)B is really the third component of the enhanced SU(2) flavor symmetry of the two-Weyl

theory and that the massless fermion is an SU(2) doublet.
15The determinant is taken in the 2-dimensional space of Weyl flavors.
16A theory with two vacua and domain walls between should be described, in the IR, by a Z2 TQFT

with Euclidean Lagrangian i 2
2π

∫
φ(0)(da(3) + . . .), see [48] for a recent discussion. Here, φ(0) and a(3) are

compact 0-form and 3-form gauge fields (dφ(0) and da(3) have periods 2πZ when integrated over appropriate

cycles) and the dots denote background field couplings. Under the action of the broken Z8 generators, φ(0)

shifts by π, but is inert under the unbroken Z4 generators.
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(N2
c − 1)

mf (mf+1)
2 . Thus, we find, proceeding as above and taking mB = 0 with no loss of

generality, that (
ZUV|Z4NfNc

ZIR|Z4NfNc

)
CP2

= e
i
2π(mc)2

2

(
1− 1

Nc

)
. (3.16)

Again, we find that this phase is half the phase one obtains from the mixed anomaly between

the discrete chiral and center symmetries on spin manifolds. Ref. [32] proposed that a

higher-dimensional condensate breaks Z4NfNc → Z4Nf , but as in the above Nf = 1, Nc = 2

example, this is not sufficient to match the anomaly of the unbroken Z4Nf symmetry on

CP2 (it is clear, by applying (3.16) Nc times, that this is a Z2-valued anomaly). Thus,

we conclude that an additional emergent TQFT, argued to also be an emergent Z2 gauge

theory [16], has to exist in the IR to match the anomaly of the unbroken Z4Nf symmetry

on CP2.

To summarize, in both scenarios [30, 32], the IR theory consists of three decoupled

sectors: massless composite fermions, a ZNc TQFT due to the spontaneous chiral symmetry

breaking (with Nc vacua and domain walls), and an emergent topological Z2 gauge theory.

Here, we shall not speculate on the likelihood of this scenario and simply refer the reader

to [47] for the up-to-date status of the lattice studies.

3.1.2 SU(6) with a Dirac fermion in the two-index anti-symmetric represen-

tation

As our second study of the new anomaly, we consider SU(Nc = 6) vector-like theory with a

single Dirac spinor with R taken to be the two-index antisymmetric representation (N -ality

nc = 2). We denote its two undotted Weyl-fermion components as ψ, ψ̃, transforming in

R and R, respectively. Recalling (2.1), the global symmetry of this theory is

Gglobal =
UB(1)× Z8

Z3 × Z2
× Z(1)

2 , (3.17)

where we modded by the Z3, the discrete group that acts faithfully on fermions, and

the Z2 subgroup of the Lorentz group, while the 1-form center symmetry Z(1)
2 should be

understood as acting on topologically nontrivial Wilson loops.

A possible phase of the theory is one where a bilinear fermion condensate 〈ψ̃ψ〉 forms.

This condensate preserves the vectorlike U(1)B but breaks Z8 down to Z2. The theory is

gapped and in the deep IR the anomaly is matched by a Z4 TQFT describing the four

ground states of the theory. This number of vacua is consistent with the constraints on

gapped phases of such theories recently derived in [19]. This is also the breaking pattern

expected when the theory is coupled to an axion [22].

In what follows, we study the viability of a more exotic scenario for the IR physics,

namely the possibility to match the anomalies via a single massless composite Dirac fermion

of the form17 O ∼ (ψ)3, Õ ∼ (ψ̃)3, which has charge 3 under both U(1)B and Z8. It is a

17Derivative and field strength insertions may be required in the precise definition of O, Õ. These,

however, do not affect the U(1)B and Z8 quantum numbers of relevance here.
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simple exercise to check that all the 0-form anomalies are matched by the O composite.

Using (i) in (3.7), ignoring (ii), (iii), and (iv) since we are dealing with a single Dirac

fermion, one can easily show that there is no integer `c that satisfies (3.7). Hence, additional

IR data to a massless fermions spectrum is needed.

Next, we check whether O matches the BCF ’t Hooft anomaly on CP2. We will also

compare the result with that of the BCF anomaly on a spin manifold. To this end, let us

examine the change of the partition function under a global Z8 chiral transformation in

the background of the BC fluxes on CP2. From (3.1), using (2.9), (2.10) with mf = 0, and

recalling that the anomaly is twice the Dirac index (2.11), JD = 5
2m

c(mc + 1), we find in

the UV:

(ZUV|Z8)CP2 → Zei
2π
8

2JD = Zei2π
mc(mc+1)

8 . (3.18)

In the IR, the Dirac index18 for the composite O is JD = 1 + mc

2 (mc + 3), thus we find

(ZIR|Z8)CP2 → Zei
2π
8

3×2JD = Zei2π
3
4

(
1+

mc(mc+3)
2

)
. (3.19)

Therefore, the ratio between the Z8 chiral transformations of the partition function in the

UV and IR theories in the same BC background (2.7) is(
ZUV|Z8

ZIR|Z8

)
CP2

= ei
2π
4

(−1+(mc)2) . (3.20)

If the massless composite O matches all anomalies, the phase on the r.h.s. of (3.20) should

be unity for all values of the SU(Nc) ’t Hooft fluxes mc. Clearly, this is not the case

and (3.20) implies that there is a π
2 phase mismatch between the UV and IR ’t Hooft

anomalies on CP2. This phase is obtained even if we completely turn off the SU(Nc) ’t

Hooft fluxes by setting mc = 0, hence the anomaly is solely due to putting the theory on

a non-spin manifold, i.e., there is a mixed anomaly between the 0-form Z8 discrete chiral

symmetry and the U(1)B − gravity background required to put the theory on CP2. The

mismatch (3.20) indicates that a single composite in the IR cannot by itself match this

mixed anomaly. In addition to the composite, the theory has to be supplemented by partial

breaking of Z8 and/or an IR TQFT.

It is also important to compare the situation with the BCF anomaly on a spin man-

ifold. One can repeat the above exercise on T4 to find, in the background of BC fluxes

(recall (3.15)) (
ZUV|Z8

ZIR|Z8

)
T4

= eiπmm
′
, (3.21)

instead of (3.20) on CP2. The π phase mismatch can also be obtained as the result of a

mixed anomaly between Z8 and the 1-form Z(1)
2 center symmetry [15]. In both CP2 and T4

cases (3.20), (3.21) we find that one needs to supplement the theory with an emergent IR

18The IR composite only couples to the gravitational and baryon number backgrounds (2.7), hence

Qc = Qf = 0. In addition, since the baryon charge of O is 3, the formula for the index (2.11) has to be

modified by multiplying QB by 32 and taking dimRf dimRc = 1.
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TQFT in order to match the phases in (3.20), (3.21). The T4 UV/IR phase mismatch (3.21),

for the broken Z8 generators, could be due to domain walls from the spontaneous breaking

Z8 → Z4 by a (ψ̃ψ)2-condensate (recall also that Z2 ∈ Z4 is fermion number). This, however

would not match the nontrivial Z2-valued anomaly in the unbroken-Z4 transformation of

the partition function on a non-spin manifold (3.20). Thus, we conclude that, once again,

putting the theory on a non-spin manifold gives more constraints on the IR physics, by

requiring an extra TQFT to match the anomaly of the unbroken Z4 symmetry on CP2

(the phase to be matched is, again, a Z2 phase). The results of [16] imply that such a

Z4 and Z(1)
2 -center symmetric TQFT exists: the anomaly inflow action is nontrivial if one

assumes Z8 and Z(1)
2 unbroken symmetries (precluding the existence of a symmetric gapped

phase [16]), but trivializes for the case of unbroken Z4 and Z(1)
2 . See also the discussion of

the more general case near eq. (3.30) in the following section.

3.1.3 SU(4k + 2) with fermions in the two-index (anti)-symmetric represen-

tation

Here, we generalize the SU(6)-theory analysis to SU(4k + 2) with a single Dirac fermion

in the two-index symmetric (S) or anti-symmetric (AS) representation.19 The conclusion,

with regards to an IR phase with composite massless fermions, is essentially the same as

in the SU(6) theory of section 3.1.2. Below, we give the details for completeness.

We turn on color and baryon-number fluxes and use (2.11) to calculate the Dirac index

in the UV. Recalling that Qc = (mc)2

2

(
1− 1

4k+2

)
, QB = 1

2

(
1
2 + 2mc

4k+2

)2
, TS,AS = 4k+2±2,

and dimS,AS = 1
2(4k + 2)(4k + 2± 1)), we find

J UV
D =


mc

2
(3 + 5mc + 4k(1 +mc)) S ,

mc

2
(mc + 1)(4k + 1) AS ,

(3.22)

from which one can readily find that the partition function receives the following phases

upon performing a discrete chiral symmetry transformation Z2(4k+2±2):(
ZUV|Z2(4k+2±2)

)
CP2
→ Zei

2π
4k+2±2

JUV
D . (3.23)

As above, we focus on the anomaly constraints on an exotic scenario for the IR physics.

We assume that the 0-form anomalies are saturated in the IR by a set of massless com-

posites. This can be achieved in the AS case by a single composite O ∼ (ψ)2k+1 and

single anti-composite Õ ∼ (ψ̃)2k+1, while in the S case we need20 3 + 4k composites

O ∼ (ψ)2k+1 and anti-composites Õ ∼ (ψ̃)2k+1, possibly with appropriate insertions of

derivatives and/or gluonic fields. Since all the IR composites are color singlets, only the

baryon flux will contribute to the Dirac index:

J IR
D = (2k + 1)2QB − 1

8
=

1

2
[k(k + 1) +mc(1 + 2k +mc)] (3.24)

19Notice that SU(4k) with fermions in the two-index S or AS does not admit color-singlet fermions in

the IR. Hence, we exclude this case from our discussion.
20To match the 0-form anomalies involving Z2(4k+4).
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for each of the symmetric and anti-symmetric Dirac composites, and we used the fact

that the U(1)B charges of the composites is 2k + 1. Using this information, we obtain the

following phases in the partition function upon performing a discrete chiral transformation:

(
ZIR|Z2(4k+2±2)

)
CP2
→ Z ×


ei2π

(2k+1)(3+4k)J IR
D

4k+4 S

ei2π
(2k+1)J IR

D
4k AS

, (3.25)

where we used the fact that we need 3 + 4k composites in the symmetric case. Finally,

after some algebra we obtain the ratios:(
ZUV|Z2(4k+2±2)

ZIR|Z2(4k+2±2)

)
CP2

=


ei2π

−3k−10k2−12kmc+2(mc)2

8 S

ei2π
−1−2k2+2(mc)2−k(3+4mc)

8 AS

. (3.26)

This phase mismatch between the UV and IR implies that turning on BC fluxes on CP2

rules out the set of composites as the sole spectrum in the IR. For the S case, we obtain a

Z8-valued anomaly on CP2 for odd values of k, and a Z4-valued one for even values of k,

while for the AS case we obtain a Z4 phase for odd-k and a Z8 phase for even-k.

Before we continue with studying the implications of (3.26), let us contrast the situation

on CP2 with that on T4. In the latter case we can turn on general color and baryon fluxes

in the 1-2 and 3-4 planes: Qc = mc
12m

c
34

(
1− 1

4k+2

)
, QB =

4mc12m
c
34

(4k+2)2
. Then, the Dirac index

in the UV is given by

J UV
D = mc

12m
c
34(4k + 3± 2) , (3.27)

for the S and AS cases, respectively. In the IR the composites are color singlets, they have

charge 2k + 1 under U(1)B, and therefore, the index is

J IR
D = (2k + 1)2 4mc

12m
c
34

(4k + 2)2
= mc

12m
c
34. (3.28)

Repeating the above steps, we obtain the following phases upon performing a Z2(4k+2±2)

discrete chiral transformations in the BC fluxes:(
ZUV|Z2(4k+2±2)

ZIR|Z2(4k+2±2)

)
T4

=

 eiπm
c
12m

c
34 S

eiπm
c
12m

c
34 AS

. (3.29)

Here, the phase we obtain is the exact same Z2 phase one encounters from the discrete-

chiral/1-form Z2-center anomaly.

The symmetry breaking scenario consistent with the above massless composite spec-

trum is as follows. For the case of symmetric tensor (S) representation, we assume a

nonvanishing (ψψ̃)2k+2 condensate (with all other condensates zero) breaking the chiral

symmetry Z2(4k+4) → Z4k+4. The anomaly inflow 5d action has the form

e
i 2π

2

∫
M5

2(4k+4)A(1)

2π
∧ 2B(2)

2π
∧ 2B(2)

2π , (3.30)

with A(1) a 1-form gauge field for Z2(4k+4) and B(2) a 2-form gauge field for the Z(1)
2 center

symmetry.21 The chiral variation of (3.30) reproduces the Z2-valued mixed anomaly (3.29).

21The normalization and transformation properties of A(1) and B(2) are as in [4–6].
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In addition, (3.30) evaluates to eiπ on S1×S2×S2, thus, according to [16] no Z2(4k+4)- and

Z(1)
2 -symmetric unitary TQFT exists to match this anomaly, implying that the symmetry

has to suffer at least partial breakdown. However, when
∮ 2(4k+4)A(1)

2π = 2, i.e. with the

background restricted to the unbroken Z4k+4, the expression (3.30) evaluates to unity and a

symmetric TQFT matching the unbroken symmetries anomaly is not excluded.22 A similar

scenario with Z8k → Z4k symmetry breaking, due to a nonzero (ψψ̃)2k condensate, holds

for the AS case.

As in the composite-fermion QCD(adj) scenarios discussed in the previous section,

there are three decoupled sectors in the IR: massless composite fermions, domain walls and

multiple vacua due to the symmetry breaking, and a TQFT to match the anomaly of the

unbroken chiral symmetry. As before, we shall not dwell on the likelihood of these exotic

IR phases appearing in the nonabelian gauge theories under consideration.

3.2 Comments on future studies

In this section, we studied a few examples illustrating the utility of the mixed chiral/BCF

anomaly on non-spin backgrounds. Our main focus was on exotic phases where massless

composite fermions saturate the “traditional” 0-form ’t Hooft anomalies. The main lesson

we take is that the new generalized ’t Hooft anomalies on both spin and non-spin manifolds

yield further constraints.

It is clear that generalized ’t Hooft anomalies will also have implications on the physics

of “vanilla” phases where fermion bilinears obtain expectation values maximally breaking

the chiral symmetries. As the analysis [23] of SU(2) QCD(adj) with a single Dirac flavor

showed, the structure of the IR theory, its domain walls, and confining strings can reflect

the anomalies in an intricate way. It would be interesting to understand the implications

of anomaly matching for similar phases in more general theories, including chiral theories

or the ones studied in [14]. Constructing the IR TQFTs that must accompany the various

exotic phases mentioned here is also of interest (we also note that their UV origin remains

mysterious). Anomalies should also have implications for the finite temperature phase

structure, as in [5, 7, 50–52].
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A Some useful formulae for CP2

In this appendix, we review important facts about the complex projective space CP2. Our

notation largely follows [53, 54]. CP2 is the set of lines in the three-dimensional complex

22The recent ref. [49] asserts that all symmetric TQFTs not excluded by [16] do in fact exist.
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space, C3, passing through the origin. CP2 can be described by the complex coordinates

Ξ = (ξ1, ξ2, ξ3) 6= (0, 0, 0) (here ξ1,2,3 ∈ C) modulo the identification Ξ ≡ λΞ for any

complex number λ 6= 0. One can cover CP2 with three patches Ui (i = 1, 2, 3, where Ui
covers ξi 6= 0) such that the transition functions on the overlap Ui ∩ Uj are holomorphic.

CP2 is a Kähler manifold, with a Kähler 2-form given by

K = i ∂ ∧ ∂̄ K , (A.1)

where ∂ is defined as ∂f ≡
∑

α
∂f
∂zαdz

α (and similarly for ∂̄) and K is the Kähler potential:

K = log

(
1 +

2∑
α=1

zαz̄α

)
, (A.2)

where z1,2 cover one of the patches Ui. Taking z1 ≡ ξ1/ξ3, z2 ≡ ξ2/ξ3, this is the U3 patch

with ξ3 6= 0. At the points ξ3 = 0 in CP2, we have (ξ1, ξ2) ≡ λ(ξ1, ξ2), i.e. a two-sphere

S2 = CP1. In the coordinates used in (A.2), the S2 is at |z|α →∞. (This is also clear from

the explicit expression for the metric (A.5), shown in polar coordinates in (A.10).)

The Kähler 2-form (A.1) is closed, dK = 0, and co-closed, δK = 0, and is associated

to the metric tensor gαβ̄ :

K = i gαβ̄dz
α ∧ dz̄β . (A.3)

Therefore, we immediately find

gαβ̄ =
δαβ

1 +
∑2

α=1 z
αz̄α
− z̄αzβ(

1 +
∑2

α=1 z
αz̄α

)2 . (A.4)

Now, one can set z1 = x+ iy and z2 = z+ it to find that the metric on CP2 can be written

in the Fubini-Study form:

ds2 = gαβ̄dz
αdz̄β =

dr2 + r2σ2
z

(1 + r2)2
+
r2
(
σ2
x + σ2

y

)
1 + r2

, (A.5)

where r2 = x2 + y2 + z2 + t2 and σx,y,z are the left-invariant 1-forms on the manifold of the

group SU(2) = S3, obeying dσx = 2σy ∧ σz (plus cyclic). The latter are given in terms of

the x, y, z, t coordinates by:

σx =
−tdx− zdy + ydz + xdt

r2
, σy =

zdx− tdy − xdz + ydt

r2
,

σz =
−ydx+ xdy − tdz + zdt

r2
.

For our explicit calculations of appendix B, we introduce polar coordinates r, θ, φ, ψ

z1 = x+ iy = r cos
θ

2
ei
ψ+φ
2 , z2 = z + it = r sin

θ

2
ei
ψ−φ
2 , (A.6)
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where 0 ≤ r <∞, 0 ≤ θ < π, 0 ≤ φ < 2π, 0 ≤ ψ < 4π. The 1-forms σx,y,z are now

σx =
− cosψ sin θdφ+ sinψdθ

2
, σy = −cosψdθ + sin θ sinψdφ

2
,

σz =
dψ + cos θdφ

2
. (A.7)

One also can write the metric in terms of the vierbein 1-forms as ds2 = eaebηab , where ηab
is the flat Euclidean metric. Then, by inspecting (A.5) one immediately finds:

e0 =
dr

1 + r2
, e1 =

rσx√
1 + r2

, e2 =
rσy√
1 + r2

, e3 =
rσz

1 + r2
. (A.8)

In terms of the vierbein (A.8), the Kähler 2-form (A.1) is

K = 2
(
e0 ∧ e3 + e1 ∧ e2

)
=

r

(1 + r2)2
dr ∧ (dψ + cos θdφ)− 1

2

r2

1 + r2
sin θdθ ∧ dφ, (A.9)

from which one can see that K is anti-self-dual ?K = −K (ε1230 = 1). We use the

Kähler form K in polar coordinates in the calculations of fluxes and topological charges in

appendix B. In particular, note that
∫
CP2 K ∧K = 8π2

2 .

The Fubini-Study metric (A.5), explicitly written using polar coordinates (A.6), is

ds2 =
dr2

(1 + r2)2
+

r2

4(1 + r2)2
(dψ + cos θdφ)2 +

r2

4(1 + r2)
(dθ2 + sin2 θdφ2) . (A.10)

To study the points at r → ∞, one can introduce a new coordinate u = 1/r and observe

that at u = 0 there is a S2 of area π (the metric is well behaved at u = 0; the singularity

apparent in the first two terms of (A.10) at 1/r = u→ 0 is only a coordinate one, see [53]).

The Ricci tensor of the Fubini-Study metric (A.10) is Rab = 6δab, so it is a solution

of the Einstein’s equation Rab − 1
2δabR = −Λδab with the energy-momentum tensor being

that of a cosmological constant Λ = +6. This holds for the form of K given in (A.2), with

dimensionless coordinates zα. If, instead of (A.2), we take K = 6
Λ log

(
1 + Λ

6

∑2
α=1 z

αz̄α
)

,

we shall find Rab = Λδab, for arbitrary Λ.

Thus the compact manifold CP2 has a size scaling as Λ−
1
2 . It can be taken to have

any size, in particular it can be larger than Λ−1
QCD, the inverse strong-coupling scale of the

gauge theory. Taking Λ→ 0 approaches an infinite volume limit. As in the T4 case, this is

the limit of interest from the point of view of constraining infinite volume nonperturbative

dynamics via anomaly matching.

B Gauge fields and fermions on CP2

In order to turn on a U(1) gauge field (which can be embedded into SU(Nc), see below)

of two-form strength F on CP2, one needs to ensure that the field will not backreact on

the manifold, and hence, destroy CP2. This can be achieved by demanding that F is an

(anti)self-dual 2-form field, since in this case the field has a vanishing energy-momentum
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tensor.23 Therefore, the simplest way to find a consistent solution of the Einstein-Maxwell

equations on CP2 is by writing F in terms of the Kähler 2-form as F = CK for some

constant C ∈ R. Below, we will see that defining spinors on CP2 demands that C be

quantized in half-integer units.

It is well known that fermions are ill-defined on CP2; we say that CP2 is a non-spin

manifold. Briefly,24 to see that spinor fields Ψ are not globally well defined, one consid-

ers a family of closed contours γ(s), with s ∈ [0, 1] parameterizing the different contours.

This family of contours wraps the S2 in CP2, such that γ(0) and γ(1) are the trivial con-

tours. Then one considers the parallel transport of tetrads, and the corresponding uplift to

spinors, along each contour belonging to this family. The SO(4) holonomies corresponding

to parallel transporting tetrads along the family γ(s), considered as a function of s, form

a closed non-contractible loop in SO(4) (recall that γ(0) and γ(1) are trivial contours).

Correspondingly, the uplift of the SO(4) holonomies (for the s = 0 and s = 1 curves)

to its double cover Spin(4), responsible to transporting the spinors, differ by minus sign.

Schematically, one obtains

Ψ(s = 1) = eiπΨ(s = 0), (B.1)

showing the global inconsistency (recalling that γ(0) and γ(1) are both the trivial contour)

in defining spinors.25

One can also see the problem of formulating spinors on CP2 by computing the index

of a Dirac spinor on CP2:

JD =
1

192π2

∫
CP2

tr [R ∧R] = −1

8
. (B.2)

The fractional value 1/8 one obtains for an integer-valued quantity (the Dirac index) is

another manifestation of the failure of CP2 to accommodate spinor fields.

One can define spinor fields on CP2 if one turns on a U(1) gauge bundle that eats up

the iπ phase in (B.1), which renders the spinors well-defined [26]. In this case one finds

that the eiπ factor in (B.1) gets modified to:

ei2π(
1
2

+e
∮
CP1

F
2π ) = 1 , (B.3)

where e is the U(1) charge of the fermions and we used Gauss’ law. Then the minus sign

that arises from parallel transporting the spinors can be cancelled by the minus sign arising

from propagating the U(1) charges. Thus, one can consistently define charged spinors in

this U(1) background. This generalized spin structure is called a spinc structure.

To obtain the quantization condition on the U(1) flux, we use F = CK, as discussed

above, along with the expression of the Kähler 2-form in (A.9). We take the limit r →∞
and integrate eq. (B.3) over the S2 parametrized by θ and φ, recall (A.10). We find

23The kinetic term is
∫
CP2 F ∧ ?F , which, using (anti) self-duality of F , becomes ±

∫
CP2 F ∧F . The latter

is a metric-independent topological term, and hence, its energy-momentum tensor vanishes identically.
24For more detail see [24–26].
25In a more mathematical language, the second Stiefel-Whitney class of CP2 is non-zero, indicating that

there is a sign ambiguity when spinors are parallel-transported around some paths in CP2 [54].
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∮
CP1 K = −2π, and obtain

1 = ei2π(
1
2

+ eC
2π

∮
CP1 K) = ei2π(

1
2
−eC) . (B.4)

Thus, the quantization condition is eC = m+ 1
2 with m ∈ Z. Without loss of generality we

take e = 1 and conclude that the necessary condition to define spinors on CP2 is to turn

on the quantized monopole field

F =

(
m+

1

2

)
K . (B.5)

As described in the main text, we also consider turning on the color, flavor, and baryon

backgrounds (2.7), reproduced here for convenience

F (c) = Hc · νcmcK , F (f) = Hf · νfmfK , FB =

(
1

2
+
nc

Nc
mc +

nf

Nf
mf

)
K . (B.6)

Notice that these are embedded into the Cartan subalgebras of SU(Nc) and SU(Nf ) and

represent a generalization of the BCF ’t Hooft flux backgrounds on T4 studied in [20].

When the U(1) background F = CK is replaced by (B.6), we obtain, instead of (B.1), for

Ψ of unit charge under baryon number, in a representation of Nc-ality nc and Nf -ality nf ,

Ψ(s = 1) = e
i2π

(
1
2

+
∮
CP1

FB+nfF
(f)+ncF

(c)

2π

)
Ψ(s = 0) (B.7)

= e
i2π

(
1
2
−( 1

2
+ nc

Nc
mc+ nf

Nf
mf )−ncHc·νcmc−nfHf ·νfmf

)
Ψ(s = 0)

= Ψ(s = 0) ,

where the last equality follows from the fact that the fractional part of the eigenvalues of

Hc · νc is −1/Nc (and similar for c → f). Thus the background (B.6), or eq. (2.7) of the

main text, is consistent with parallel transport on CP1.

The Pontryagin number of the U(1) bundle, using
∫
CP2 K ∧K = 8π2

2 , is given by

P =
1

8π2

∫
CP2

F ∧ F =
1

2

(
m+

1

2

)2

, (B.8)

which combines with (B.2) to give the full Dirac index in the combined U(1) and CP2

background

JD =
1

8π2

∫
CP2

F ∧ F +
1

192π2

∫
CP2

tr [R ∧R] =
m

2
(m+ 1) ∈ Z , (B.9)

which now has integer values.26

Likewise, the Dirac index for the fermions of (B.7), in the background (B.6), is

JD = TRcdimRfQ
c + TRfdimRcQ

f + dimRfdimRc
(
QB +QG

)
, (B.10)

26The zero modes of the Dirac operator on CP2 were studied and explicitly constructed in [55].
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also given in (2.11) of the main text, which is also an integer. Here, QB = 1
8π2

∫
FB ∧ FB

and Qc/f = 1
8π2

∫
tr
[
F (c)/(f) ∧ F (c)/(f)

]
, explicitly given by

Qc =
(mc)2

2

(
1− 1

Nc

)
, Qf =

(
mf
)2

2

(
1− 1

Nf

)
, QB =

1

2

(
1

2
+
nc

Nc
mc +

nf

Nf
mf

)2

.

(B.11)

Finally, we note that one can use equations (B.7), (B.10), (B.11) to identify gauge

theories that can be consistently formulated on CP2 without turning on global symmetry

backgrounds, i.e. by only modifying the conditions on the gauge bundles being summed

over in the path integral. Constructions of this type were recently used to uncover a new

SU(2) anomaly [27] on non-spin manifolds (note that in our examples all fermions can be

given gauge invariant mass and there is no analogue of the new SU(2) anomaly).

The simplest such case [28] is that of an SU(2) theory with Nf Dirac fundamental

flavors. To see this from our equations, take Nc = 2,mc = 1, nc = 1, QB = Qf = 0, and

check that (B.7) holds and (B.10) is an integer (for any single flavor). This SU(2) QCD(F)

with Nf flavors was interpreted in [28] as emerging near a quantum critical point of a theory

of only bosons (heuristically, this is because all gauge invariant operators are bosonic).

Other examples (involving both SU(2) and other gauge groups) are discussed in [27, 29].

Within the class of theories considered in this paper (specified in section 2.1) the ones

that do not require global symmetry backgrounds to be consistently formulated on CP2

must obey

1

2
+
ncm

c

Nc
∈ Z , TRc

(mc)2

2

(
1− 1

Nc

)
− 1

8
dimRc ∈ Z , (B.12)

where the second condition, the integrality of the index, should hold once the first is obeyed.

We have not exhaustively studied the solutions of the above conditions for general nc, Rc
and will only note a few simple cases. The first is QCD(F) with Nf Dirac flavors and

an SU(Nc = 2k) gauge group. As in the SU(2) theory of [28], it is easy to see that all

gauge invariant operators are bosons (or that (B.12) holds). The second set of theories

where (B.12) is easily seen to hold is QCD(S/AS) with Nf S/AS Dirac flavors and an

SU(Nc = 4k) gauge group. As in the other examples, here also all gauge invariants (e.g.

baryons and mesons) are bosons.
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any medium, provided the original author(s) and source are credited.

References

[1] G. ’t Hooft, Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking, NATO

Sci. Ser. B 59 (1980) 135.

[2] J.L. Rosner, Explorations of compositeness, Comments Mod. Phys. A 1 (1999) 11

[hep-ph/9812537] [INSPIRE].

– 22 –

https://creativecommons.org/licenses/by/4.0/
https://arxiv.org/abs/hep-ph/9812537
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9812537


J
H
E
P
0
4
(
2
0
2
0
)
0
9
7

[3] N. Seiberg, Electric-magnetic duality in supersymmetric nonAbelian gauge theories, Nucl.

Phys. B 435 (1995) 129 [hep-th/9411149] [INSPIRE].

[4] D. Gaiotto, A. Kapustin, N. Seiberg and B. Willett, Generalized global symmetries, JHEP

02 (2015) 172 [arXiv:1412.5148] [INSPIRE].

[5] D. Gaiotto, A. Kapustin, Z. Komargodski and N. Seiberg, Theta, time reversal and

temperature, JHEP 05 (2017) 091 [arXiv:1703.00501] [INSPIRE].

[6] D. Gaiotto, Z. Komargodski and N. Seiberg, Time-reversal breaking in QCD4, walls and

dualities in 2 + 1 dimensions, JHEP 01 (2018) 110 [arXiv:1708.06806] [INSPIRE].

[7] Z. Komargodski, T. Sulejmanpasic and M. Ünsal, Walls, anomalies and deconfinement in
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[12] C. Córdova, D.S. Freed, H.T. Lam and N. Seiberg, Anomalies in the space of coupling

constants and their dynamical applications I, SciPost Phys. 8 (2020) 001

[arXiv:1905.09315] [INSPIRE].
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