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ABSTRACT Predicting student performance as early as possible and analysing to which extent initial student
behaviour could lead to failure or success is critical in introductory programming (CS1) courses, for allowing
prompt intervention in a move towards alleviating their high failure rate. However, in CS1 performance
prediction, there is a serious lack of studies that interpret the predictive model’s decisions. In this sense,
we designed a long-term study using very fine-grained log-data of 2056 students, collected from the first
two weeks of CS1 courses. We extract features that measure how students deal with deadlines, how they
fix errors, how much time they spend programming, and so forth. Subsequently, we construct a predictive
model that achieved cutting-edge results with area under the curve (AUC) of.89, and an average accuracy
of 81.3%. To allow an effective intervention and to facilitate human-Al collaboration towards prescriptive
analytics, we, for the first time, to the best of our knowledge, go a step further than the prediction itself and
leverage this field by proposing an approach to explaining our predictive model decisions individually and
collectively using a game-theory based framework (SHAP), (Lundberg et al., 2020) that allows interpreting
our black-box non-linear model linearly. In other words, we explain the feature effects, clearly by visualising
and analysing individual predictions, the overall importance of features, and identification of typical predic-
tion paths. This method can be further applied to other emerging competitive models, as the CS1 prediction
field progresses, ensuring transparency of the process for key stakeholders: administrators, teachers, and
students.

INDEX TERMS Explainable artificial intelligence, online judges, learning analytics, CS1, computing in
education, early prediction, shapley values.

I. INTRODUCTION As an attempt to alleviate that, multiple recent studies
Introductory programming courses (CS1) are known to have [11], [12], [16], [23], [46], [46], [47], [52], [53], [59]
a high dropout and non-pass rate [28], [53], [58], [70]. proposed methods to predict CS1 students’ performance
early on. Knowing about student performance in advance

The associate editor coordinating the review of this manuscript and can be useful for many reasons, for example, instruc-
approving it for publication was Kok-Lim Alvin Yau" . tors can apply specific actions to help learners who are
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struggling, as well as provide more challenging activities to
high-achievers [11], [58], [67].

Previously, most methods to predict CS1 students’ per-
formance were based on a static analysis of the students’
data, such as their high school grades, age, gender [1].
However, students’ behaviour is dynamic and, hence, can
change over time, supporting the need for data-driven analy-
sis [11], [49], [53], [67]. Along these lines, the use of Machine
Learning (ML) over data collected from e-learning systems
leveraged approaches and methods to tackle the performance
prediction problem [11]. Such studies tended to depict the
CS1 students’ behaviours based on their interaction with the
e-learning systems used to support their classes [11], [12],
[21], [23], [29], [32], [49]. However, the literature still lacked
a reliable method to predict CS1 students’ performance [58].
We thus proposed a potential solution to this gap [45], [47],
[48] by composing a set of data-driven features (collected
from literature and extended with self-devised ones), which
we showed to have a high predictive power to infer the
students’ performance early on (from data from the first two
weeks of the CS1 course).

A limitation of previous studies is that they did not perform
any interpretation of the black-box predictive models. Thus,
this paper advances the state of the art by addressing the chal-
lenge of extracting an explainable, transparent model for Al
in Education for CS1 [7], by demonstrating how to interpret
the predictive model’s decision, in order to better support stu-
dents and instructors (and other stakeholders). Such challenge
is important, because the educational literature [11], [50],
[53], [58] notes the lack studies on early learner behaviours
that can be effective or ineffective. Effective programming
behaviours are those that potentially increase the students’
chances of passing, whereas ineffective behaviours decrease
the students’ chances of success in the course [58]. Hence,
beyond the prediction, it is crucial to explain what leads the
predictive model to make the decisions (e.g., why a given
student s is classified as "passed’), which would allow a better
understanding of what early programming behaviours are to
be encouraged and triggered.

Thus, in this work, our main focus is on understanding
which students’ early programming behaviours are related
to the learner’s success or failure. Moreover, we aim at
analysing students’ behaviours generally, to give stakehold-
ers a high-level of early programming behaviours (’bird’s
eye view’), as well as individually, to provide an anal-
ysis of students’ specificities (’fish-eye view’), allowing
self-regulation and higher self-knowledge for the learner.
To achieve this goal, we constructed a non-linear predictive
model using the features of our previous works [47], [48] and
we applied a game-theory based framework (SHAP method)
[35], [36] that allows interpreting our black-box non-linear
model linearly. The features depict useful information from
fine-grained log-data collected from a home-made online
judge system [49] used in our CS1 classes.
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Briefly, the main contributions of this work are:

« A novel ML pipeline that focuses not only on predic-
tion performance but also on the interpretation of the
model’s decision, towards Explainable Al [39], [41] and
Machine Behaviour [54] study;

o Detecting, for the first time, early effective and
ineffective programming behaviours at single-student
granularity level;

« A new clustering approach to identify and analyse typ-
ical prediction paths for understanding of collective
effective and ineffective behaviours;

« Identification and analysis of feature importance using,
for the first time, instance-level explanation as building
blocks.

Il. CONCEPTS AND BACKGROUND

A. EXPLAINABLE MACHINE LEARNING

Nowadays, ML is mainstream, with great potential to
improve education. However, predictive models often do
not explain their decisions, which might be a barrier to
adoption [39]. There are some simple ML methods, such
as decision trees, linear regressions, decision rules, which
are easily explainable [39], [41]. However, they often lack
predictive power, possibly because higher accuracy for com-
plex datasets is commonly achieved by non-linear black-box
models [36], such as deep learning and ensembles [14], [24].
Consequently, a trade-off appears between performance and
interpretability.

In this sense, the literature has been proposing new
methods for explaining complex ML models at breakneck
speed and it is often unclear how these methods are related
and which one to choose [36], [39], [S5]. As a response
to this, [36] proposed a unified framework for interpret-
ing predictions, SHAP (SHapley Additive exPlanations).
This state-of-the-art method unifies in a single framework
prestigious additive feature attribution methods such as
LIME [57], DeepLIFT [64], classic Shapley value estima-
tion [34], layer-wise relevance propagation [3] and others.
Still, [9] note that, no matter the SHAP implementation used,
Shapley values are challenging to interpret. Thus, as one of
the contributions of our paper, we, for the first time, to the
best of our knowledge, are interpreting a black-box model
to better understand effective and ineffective programming
student behaviours. This allows trust in early performance
predicting, through transparency, as recommendations based
on machines that may impact on human life need to be
tractable and explicit.

SHAP is a method with foundations in game theory [63],
where the features divide rewards in a way which reflects each
of their contributions to the model’s prediction [36], [39]. The
SHAP interpretation method calculates the Shapley values for
each feature at instance-level.

In practice, using SHAP we can compute the magni-
tude of positive or negative effects for each feature on
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individual predictions. To do so, the method tests how the
prediction changes when feature j is withheld from the model
[36]. In other words, SHAP calculates the feature importance
of a feature j € F, for a given local instance x, in a given
predictive model f, by evaluating the marginal contribution
of that feature j for all subsets S C F, where F is the set of all
features. Thus, the marginal contribution of j (Shapley value)
is calculated by the weighted average of fsugj (xsugy) —fs(xs)
for all subsets S € F, where xg depicts the values of the input
features in the subset S. Formally, the contribution of a given
feature j is measured by the following equation, that is the
weighted average for all possible differences, computed as
the combination function:

SII(F] =S| — D!
¢ = Z ol ||F||' =D Usugy(xsugy) — fs(xs)]
SCF\() )

where ¢; is the marginal contribution of feature j on the model
output fsuyj)(xsugj))- To calculate the feature contributions in
a fair way, SHAP keeps fairness properties called additivity,
missingness, and consistency [36], [39], [63].

Additivity means that the sum of the feature contributions
together should match the output of f for the simplified input
x’ (which corresponds to the original input x). More formally,
SHAP keeps the additivity property as:

M
f) =Gy =¢o+ )Y x| (1)

J=1

where g is the explanation model, x' € {0, 1}M is the sim-
plified feature vector, M is the maximum simplified features
vector size, and ¢; € R is the feature contribution, for a
feature j, of Shapley values [36], [39]. Here, ¢ represents the
expected value with no prior information about the features
(similar to the intercept in a regression model). In practice,
¢o is the average of predictions in the training set.

The second fairness property is missingness. This is a
trivial property, defined as:

=0 = ¢;=0

This trivial property requires features missing in the origi-
nal input to have no impact [36].

Finally, consistency means that if one feature contributes
more to the model output, it cannot get a lower Shapley value.
It is worth noting the feature contribution calculated by SHAP
is the only possible explanation model that satisfies these
3 fairness properties (see the theorem proof in [36]).

In more recent work, [35] show that combining many
local explanations allows capturing global patterns from the
representation of the predictive model whilst retaining local
faithfulness to the original model, which can be used for
detailed and accurate representations of model behaviour.
Figure 1 illustrates the workflow of the SHAP method, which
can be used to analyse local feature effects and to combine
local explanations of individual predictions, in order to gener-
ate global explanations (data insights, model summarisation,
collective feature effects).
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B. MACHINE LEARNING MODELS

To develop our predictive model we used the popular eXtreme
Gradient Boosting method (XGBoost) [13]. XGBoost is
an optimised implementation of the Gradient Tree Boost-
ing (GTB) ML algorithm, an ensemble method based on
decision trees. Specifically, XGBoost utilises the boosting
principle in an iterative way, wherein at each iteration the
algorithm attempts to correct the errors of the previous itera-
tion, by optimising specific loss functions as well as applying
several regularisation techniques. We opted for XGBoost,
as this model has been shown to compete and even outperform
standard deep learning models on tabular-style databases,
such as ours, in which the attributes are meaningful and they
lack strong multiscale temporal or spatial structure [13], [35].
However, it is important to experiment more ML techniques
(No-Free-Lunch Theorem - ML [72]).

In previous works [45], [47], [48], we have composed a
set of data-driven features that, in conjunction, have a high
predictive power to infer the students’ performance, even
when using early data, from the first two weeks of a course.
Our previous ML model [48] achieved an average accuracy
of 78.2% with this early data, outperforming cutting edge
results for this task [1], [12], [18], [20], [30], [33], [53],
[68], [71]. Reference [48] used a state-of-the-art genetic algo-
rithm to create an optimised shallow ML pipeline to pre-
dict student performance. Their results pointed to tree-based
ensembles being more suitable for our data. As an extension,
in [45] we surpassed [48], obtaining an average accuracy
of 82.2%, by using a deep learning architecture. Between
the model presented in this current paper using XGBoost
(with average accuracy of 81.3%) and our previous best result
using deep learning, we did not find statistical significance
(p-value>0.05). Thus, here we can state that there are no sig-
nificant performance drawbacks or advantages in our choice
of XGBoost instead of a state-of-the-art Deep Learning
model.

Notice that tree-based ensembles and deep neural network
are non-linear techniques that construct complex models, that
is, typical black-box models. As our goal is mainly interpre-
tation, we need to ‘open’ such a black-box to explain the
model’s decision. To do so, as mentioned in the previous
subsection, we used a state-of-the-art unified approach to
interpret model predictions, SHAP method [36]. There are
several implementations of SHAP, such as TreeSHAP, which
is designed for tree-based models, and KernelSHAP, which
is a model-agnostic designed for a variety of ML pipelines,
such as deep neural networks. Nonetheless, [9] explain there
are several caveats of KernelSHAP such as: i) KerneISHAP
requires access to the entire dataset to calculate the Shapley
values; ii) KernelSHAP is procedurally slower when calculat-
ing Shapley values of large datasets; iii) KernelSHAP ignores
feature dependency; iv) using KernelSHAP, the Shapley val-
ues are not exactly computed, instead they are only estimated.
Indeed, KernelSHAP performs a sampling of features when
evaluating the possible subsets S < F. The TreeSHAP
implementation solves all of these issues, by calculating the
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FIGURE 1. Workflow of how we used the SHAP method [35] for computing local predictions to create individual
and collective explanations of the predictions from our tree-based black-box model.

exact Shapley values in polynomial time (see [35]). Thus, as a
final justification for our choice for XGBoost instead of deep
learning, we used this tree-based model with the TreeSHAP
implementation, because it gives us more interpretative power
of the models’ decision, with no drawbacks with regards to
the predictive model performance.

Additionally, please note that to calculate the Shapley val-
ues we need to run the predictive model many times with
missing features [35], [36]. Thus, there is a need to supply a
background dataset [35]. In our case, we use the training set
as user-supplied background dataset, by relying only on the
path coverage information stored in the tree-models, as rec-
ommended by the authors of the method [35].

lIl. RELATED WORK

Typically, educational data-driven researches identify pat-
terns of behaviour based on data collected from the students
learning process [4]. In general, there are many works [11],
[12], [16], [23], [45], [46], [46], [47], [52], [53], [59] in this
field that use ML to construct predictive models. However,
there is a lack of studies that use such analyses to improve
instruction and pedagogy. In other words, there is a need for
a learning analytics infrastructure that provides information
to support teachers and students. Recently, Carter et al. [11]
stated that there were relevant open questions concerning
what learning data should be collected within an e-learning
environment for programming courses, in order to provide a
foundation for improving student learning and how the learn-
ing data should be analysed to provide useful information on
student learning. In this section, we will both explore how
relevant works conducted studies in this direction and what
we bring in terms of novelty.

First, a systematic review [28] on learning analytics using
data from e-learning environments for programming classes
revealed that, despite the growth of works in this field,
many of them use post-hoc analysis (e.g. analysing features
extracted from the environment after the class has ended)
with no long-term data (as ours). The review also highlighted
the necessity of reproducing and evaluating the methods and
results of previously published research in other educational
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contexts. In response to that, we next discuss relevant works
that proposed features related to programming students per-
formance that we employed in our ML pipeline.

In terms of analysis of data collected from Integrated
Development Environments (IDEs) or learning environ-
ments targeted for programming students, Jadud [30] first
observed a cycle of edition, compilation and execution from
a novice programming environment called BlueJ. To allevi-
ate this, the author proposed a metric called ErrorQuotient,
allocating higher penalty when students repeat the same
compilation error. Watson et al. [71] propose an extension
of the ErrorQuotient, called WatwinScore, which consid-
ers the time spent by students on the problem, for each
pair of compilation errors. Estey and Coady [20] anal-
ysed other data, such as frequency of the use of hints,
submissions, and compilations in an online judge. Addition-
ally, Ahadi et al. [2] and Castro-Wunsch et al. [12] studied
learners’ attempts and correctness, and Leinonen et al. [33]
analysed behaviours of typing patterns and keystroke latency.
Edwards et al. [19] tracked the submissions of learners to
evaluate the amount of change between code submissions,
and procrastination behaviours. All these studies analysed
the relationship between programming students behaviours
and their performance, mainly by using ML techniques to
construct predictive models. However, such works did not
explain why these code metrics were helpful to predict the
students’ performance and how they can be useful to improve
their learning and instructions.

Importantly, when predicting students performance, it is
vital to do so as soon as possible, in order to allow an early
intervention [23], [29], [32], [53], [59]. With this in mind,
many features proposed by the aforementioned works [2],
[2], [12], [19], [20], [30], [33], [71] reported a generally low
predictive power at the beginning of the course (e.g., based
on data gathered from the first two weeks). However, we have
lately improved this by reporting a high predictive power in
our most recent previous work [45], [48]. To achieve this,
we collected not only all programming behaviour indicators
from past research that could be applied in an educational
context [2], [2], [12], [19], [20], [30], [33], [71], but also
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proposed additional self-devised features as input to machine
learning models, to predict, based on early data, whether stu-
dents would pass or fail. In the current paper, we extend these
works [45], [48], by using our previously proposed features
and database, not only with early prediction purpose, but also
with the goal of interpreting the model’s decision, to create
the foundation for improving student learning and to provide
useful information for stakeholders related to CS1 classes.

In brief, what is already known about this topic is that
data collected from programming environments (e.g., IDEs
or online judges) can be used to predict students perfor-
mance; however, there is a need for interpretation of these
programming behaviours, firstly, to justify potential recom-
mendations, to allow tracing of the decision process, and
to underpin responsible decisions. Ultimately, we aim to
support students’ learning process and teachers’ instruction
and pedagogy. In this sense, we go further than the early
prediction task, by analysing which general behaviours of
programming students are desirable and which need to be
improved. Moreover, we explore and interpret individual stu-
dent programming behaviour, which could allow the learner
to reflect on what they are doing and how likely it would be
for this to lead to success or failure.

IV. RESEARCH DESIGN

A. TEACHING SETTINGS

The CS1 course is compulsory to 16 STEM degrees at the
Federal University of the Amazonas (UFAM) that do not
have Computing as their major. Learners originate thus from
non-CS courses from five major areas: Mathematics, Physics,
Engineering, Statistics and Geology. Specifically, three of the
degrees belong to Mathematics, two to Physics, eight to Engi-
neering, one to Statistics and one to Geology. In particular,
CS1 is offered during the first term in 11 of these 16 courses,
whilst offered in the second term for the other 5 courses.
In such a situation (non-CS students learning to program),
the literature [17], [22], [61] suggests that some students may
be less motivated to learn, as they might fail to see the purpose
that programming can have in their professional lives. Our
own observations confirm this: we have collected learners’
data from 2016 to 2018. Generally, we can notice a high
non-pass rate (about 50%).

The CS1 instructors have applied various methods to
improve this situation. For instance, since 2015 they have
adopted a blended learning methodology to encourage
students to learn programming ’by doing’ [58]. That is,
students needing to solve many problems to improve their
skills. However, besides practising, it is vital that the stu-
dents receive quick feedback, in order to locate their errors,
understand their source and fix them. Ihantola et al. [28] state
that the continuous evaluation during a programming course
ensures that students practice more, as long as they receive
feedback on the quality of their solutions. This happens
because the assessment guides learning and serves as feed-
back for both the student and the instructor. Nonetheless, only
increasing the number of problems for students to solve also
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increases the instructors’ workload in correcting the learners’
solutions. To illustrate, in an assignment with 10 questions
for a class of 100 students, the instructor would need to
evaluate 1000 pieces of code. Thus, we opted for using a
way of automatically evaluating students’ codes, in order to
offer them instantaneous feedback. To do so, as well as to
be able to both trace all student progress and improve the
offer based on it, we built and used a home-made online
judge called CodeBench (see Figure 2), created by one of
the authors, to support the blended learning methodology.
CodeBench offers similar features as other online judges (e.g.
URI [8], Jutge [51], UVa [56]), exercises comprising a variety
of programming skills, such as code tracking, error identifica-
tion and correction, code building, code reuse, among others,
as recommended by the programming research literature [26].
In CodeBench, among other facilities, students solve the
problems in an embedded IDE and receive instantaneous
feedback about their code solution.

CS1 classes at UFAM involved 60 classroom hours, equiv-
alent to 30 lessons, and were organised to start with an
introductory module of two lessons, allowing learners to
familiarise themselves with CodeBench; followed by seven
thematic modules, containing four lessons each. The first and
fourth lesson of each thematic module was compulsory and
run face-to-face, whilst the second and the third lesson was
optional and online, requiring the use of CodeBench. The
thematic content included: variables and sequential struc-
ture, conditionals, nested conditionals, while-loop structures,
arrays and strings, for-loop structures, and bi-dimensional
arrays. The sessions were structured so that questions became
gradually harder. Each session had the following sequence
of activities: one opening lecture, two practice classes, and
an exam. All face-to-face classes were held in computer
laboratories. The examples and exercises discussed in each
session were cumulative. To illustrate, the main topic of the
fourth module is while-loop structures; however, it includes
concepts from all previous sessions. The final grade was
calculated based on 7 partial exams, 7 assignments, and one
final exam. The grades from the partial exams had increasing
weights (6.1% to 18.2%) towards the final grade. The grades
from all assignments had the same weight on the final grade
(1.3%), as students were aware. Students solved program-
ming problems from the assignments and the exams using
Python.

B. DATA COLLECTION

For the prediction and analysis in this paper, we use
data! from 2058 students over 6 semesters (2016-2018),
as CodeBench was only introduced in 2016. During
this period, these students were exposed by CodeBench
to 893 different problems during assignments, and to
107 problems during exams. In total, the learners submitted

N description of the data, examples of test codes and logs, and
the dataset used in this study can be found in codebench.icomp.
ufam.edu.br/edu_dataset/
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(*) CoDEBENCH

Introduction to Computer Programming

Programming Exercises

Home » ESO1 > Homeworks

Materials

Homeworks Messages

Start Description File Edit Search Run Tools
Oo1 * main.py
3 program that checks o srx _— - .

Ooz2 ol erierest byt ef is_palindrome(string):

e y il 2 left_pos = @
[Jo3 useris palindrome or not. right_pos = len(string) - 1
Oo4 .

Tips while right_pos >= left_pos:
Oos if not string[left_pos] == string[right_pos]:

Grades A palindrome is a word, ph return False

or other sequence of ch
that reads the same ba

forward, such as level or radar.

Input/Output Example

left_pos += 1
right_pos -= 1
1@ return True

12 str = input('Please enter a string: ")
13 print(is_palindrome(str))

nput  kayak [ |

Console

Shell

$ python3 main.py

Qutput True
True

Please enter a string: madam

FIGURE 2. Screenshot of the student interface of CodeBench, showing a programming assignment that comprises
5 exercises (left), the description and the tips of question 01 (middle), the embedded IDE with an example of code
(right), the menu (right top), and the Python console, running this program (right bottom).

8 2016-7-28 10:04:18.826#change#{"from":{"line":@,"ch":0},"to":
9 2016-7-28 10:84:18.826#keyHandled#"Backspace"

10 2016-7-28 10:04:42.332#change#{"from":{"line":

11 2016-7-28 10:04:42.492#change#{"from":{"line"

12 2016-7-28 10:04:42.677#change#{"from":{"line":

13 2016-7-28 10:04:42.828#change#{"from":{"line":@,"

14 2016-7-28 10:04:42.988#change#{"from "line"

15 2016-7-28 10:04:43.635#change#{"from":{"line":0,"

16 2016-7-28 10:04:43.635#keyHandled#"Enter"”

-

"line":0,"ch":1}, "text":

[""],"removed”:["n"],"origin":"+delete"}

"1,"removed":[""],"

"1, "removed": ["

"1,"removed": ["
,"removed": ["

"removed":["

o000

FIGURE 3. Example of log data collected from the student in Figure 2, when solving a programming problem in CodeBench.

150,314 pieces of code, as solutions to our assignments/
exams.

For analysis, we perform a fine-grained source code snap-
shot data collection annotated with events, such as tests,
submissions, executions, keystroke, and so on, extracted from
our online judge. To illustrate, we stored each student action
of inserting or removing characters, pasting text, mouse right-
clicks, etc. Additionally, each log is timestamped.

For a better understanding of the data used in this work,
in Figure 3 we show sample logs collected from CodeBench,
when a student was writing a Python instruction in the embed-
ded IDE (see Figure 2).

C. REPRESENTATION OF STUDENT

PROGRAMMING BEHAVIOUR

Reference [11] proposed a taxonomy to classify the way to
extract useful information from user data, based on three
levels. The first, Count, represents features that can be
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extracted by counting events in raw log files or source codes;
Math represents features that need a mathematical formula
to be computed; and Algo represents those features that need
an algorithm applied. In this sense, Table 1 shows all features
(programming behaviours) used in our new ML model (which
were extracted from the data presented in section IV-B),
as well as their description and classification using the
taxonomy from [11]. All these features were validated in our
previous works [45], [47], showing high predictive power for
early performance prediction.

D. DATA CLEANING

Firstly, the data from registered students that did not attend
the course was removed from this analysis, since they did
not have any interaction with the online judge. Second,
we collected data from the very beginning of the course to
predict whether the student will pass or not. In the mean-
while, a student might change her/his attitude in the course.
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TABLE 1. Features (programming behaviour) used in our ML models [45].

Features (Program-  Description Type

ming behaviour)

procrastination Time (in days) between first code edit and programming assignment deadline [11], [19]  Count
multiplied by -1 after the z-score transformation;

amountOfChange Amount of code added/changed between submissions [11], [19]; Count

attempts Average number of submission attempts (regardless of whether correct or not) for each ~ Math
problem [12];

lloc Total number of logical lines for each submitted code [42]. Imports, comments, and blank Math
lines were not counted;

systemA ccess Total number of student logins between the beginning and the end of the second week; Count

firstExamGrade Student grades for the first exam taken at the end of the second week of the course; Count

events Number of log lines on the attempt to solve problems. To illustrate, each time the student = Count
presses a button in the embedded IDE of CodeBench, this event is stored as a line in a log file
(adapted from [12], [33])

eventActivity A binary self-devised feature, where 1 is assigned when the student solves a problem with ~ Algo
less than an amount” of logRows. To aggregate the feature, we calculate the probability of a
student having a value 1;

correctness Number of problems solved correctly from the programming assignment realised in the first ~ Count
four weeks [12];

correctnessCodeAct  Represents the same as correctness, but in this case, we consider ‘correct’ only student’s  Algo
solutions with more than 50 events. To illustrate, if a student submits a correct solution by
copying and pasting (only 1 event), for this problem it will be assigned O to the feature
correctnessCodeAct, however for the feature correctness will be assigned 1;

copyPaste A self-devised feature, the proportion between pasted characters ("ctrl+V’) and characters ~ Math
typed;

syntaxError A self-devised feature, ratio between the number of submissions with syntax error™ and the ~ Math
number of attempts [20];

ideUsage Total time spent, in minutes, by the students solving problems in the embedded IDE (counted ~ Algo
only when students were typing - we removed downtime);

keystrokeLatency Keystroke average latency of the students when typing in the embedded IDE (we also  Algo
removed downtime) - adapted from [33];

errorQuotient Compute a score based on the number of code errors and repeated errors [30] (more Algo
explanation in related work - Section III);

watWinScore An extension of errorQuotient taking into account the problem solving time [71] (more  Algo
explanation in related work - Section III);

deleteAvg Average of deleted characters for each problem; Count

comments Total number of comment lines on source codes; Count

countVar Total number of variables in the source codes [11]. Count

*One standard deviation minus the median of the numbers of logRows for a problem
*“*SyntaxError is a common and generic exception in python.

To illustrate, a learner might start the course engaged, doing
the exercises and interacting in an effective way with the
online judge. However, for some reasons outside of our con-
trol, the student might get disengaged during the course and
end up failing. Such a change will potentially produce a false
positive for our predictive model. Notice that the same rea-
soning can explain false negatives, where a learner might start
with ineffective behaviours, but change and end up passing.
Third, as we are dealing with features extracted from very
fine-grained log-data, collected from students’ interactions
with an online system, this might cause server-side problems.
For example, if a student loses internet connection while
solving a problem on the IDE, then her/his logs will not be
sent properly to the server. As such, our database might have
some outliers.

Aiming to decrease the biases of the classifiers due to the
presence of outliers, we automatically removed 100 instances
from the majority class (students who passed) that form
Tomek’s links [69]. This approach using Tomek’s links is rec-
ommended in situations like ours, requiring undersampling
for balancing [5]. Our database is subtly unbalanced, having
56.7% of students who passed and 43.3% who failed, so we
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removed from the majority class. Thus, our data cleaning
process does not only remove potential outliers, but at the
same time, it reduces the unbalanced nature of the dataset,
which also decreases the biases of the classifiers.

A Tomek’s link is defined between two samples x; and x;
of different classes cl and c2, respectively, such that, for any
sample y, d(x1,x2) < d(x1,y) and d(x1,x2) < d(x2,y),
where d(.) is the Euclidean distance between the two samples.
Hence, a Tomek’s link is represented by two samples from
different classes that are each other’s nearest neighbours,
which might confuse the ML model when creating the deci-
sion boundaries to separate the instances of classes [5].

To further deal with other balance aspects of the dataset,
we next divided the instances into homogeneous subgroups
called stratum (stratified sampling), so that the right number
of instances is sampled from each stratum, in order to keep the
same class proportion in the training and validation sets [24].
To do so, we used the StratifiedKFold from scikit-learn [44],
using a total of 10 folds.

Finally, in ML, it is important that, once the features are
selected, they are all mapped onto a similar scale, for a fair
way of processing them together [24]. Here, we standardised
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the features using the popular z-score (z;), i.e., assigning
zero to the mean and replacing values x; with the number of
standard deviations o (x;) from this mean. This transformation
was used, as it allows an arguably "natural’ predictive model
interpretation, by relying on the mean and the standard devi-
ation, to verify whether a programming behaviour (Table 1),
represented by a feature value, might be effective or ineffec-
tive for a given student.

E. CLASSIFICATION AND VALIDATION

In this work, as said, we used XGBoost, which has parameters
to control the ensemble training, such as the number of trees
(n_estimators), as well as parameters to control the growth of
trees (e.g., max_depth, min_samples_leaf , etc.). Moreover,
an important parameter is the learning rate, which scales the
contribution of each tree. To train our model, we used a pop-
ular regularisation technique called shrinkage [24], in which
we set a low value to the learning rate (e.g. 0.05), and a high
number of decision trees (100 estimators). Finally, we used
the early-stopping technique with at most 100 rounds, mean-
ing that we stopped training when the validation error stopped
decreasing, to avoid overfitting.

As a baseline state-of-the-art for our model, we used the
deep learning model presented in [45] and the promising
classifier using genetic algorithms in [48]. The deep learning
model was a feed-forward Multilayer Perceptron (MLP) with
two hidden dense layers with 64 nodes each. As activation
function, RELU was used and the biases and weights of
the MLP were initialised randomly, following a normal dis-
tribution. Additionally, [45] used 50% of dropout to avoid
overfitting and ADAM was used for the gradient descent
optimisation. On the other hand, a regularised Random For-
est (RF) with 100 estimators was found as one of the best
models by the genetic algorithm in [48]. Notice that these
recent works [45], [48] achieved state-of-the-art results for
the classification task of early performance prediction of
introductory programming students.

In closing, the models were evaluated using several statisti-
cal measures, to ensure a comprehensive picture of the results:
recall, precision, F1-score, ROC curves, and accuracy.

V. RESULTS AND DISCUSSION
A. CHARACTERISATION OF STUDENTS’

PROGRAMMING BEHAVIOURS

For a general picture of the original values from the program-
ming behaviours used as features by the ML models, we first
show distributions of these features in Figure 4, before the
z-score transformation. Overall, we can observe the lack of
symmetry in most of the cases, by seeing that most features
have high positive skewness (skewness > 1.0) (procrasti-
nation, amountOfChange, comments, systemAccess, events,
copyPaste, syntaxError, ideUsage, deleteAvg, errorQuotient,
watWinScore) with long tails (kurtosis > 1.0), which means
that they tend to be concentrated in lower values of the
distribution. Indeed, only the eventActivity has a high negative
skewness (skewness < —1.0), which means the values
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tend to be concentrated in the higher values. On the other
hand, the other features (attempts, lloc, firstExamGrade,
correctness, correctnessCodeAct, keystrokeLatency, count-
Var, deleteAvg, finalGrade) have low or moderate skewness.
Moreover, we notice an overall high variation in the features,
which indicates heterogeneity in the students’ behaviours.>

B. PREDICTIVE MODELS COMPARISON

We constructed our predictive model using XGBoost,
as described in subsection I'V-E. It is intrinsic for XGBoost
to automatically select the best feature as the root of the
constituting tree of the predictive model (and, similarly, for
sub-trees); using this algorithm performs an automatic feature
importance analysis [13]. As such, we opted for not using any
additional feature selection technique in our work.

To analyse the competitiveness of our XGBoost model
results, we compared them to the current state-of-the-art
works [45], [48]. For each predictive model, we ran the
stratified cross-validation 20 times with 10 folds (as recom-
mended by [18], [45]), varying the seed in a range from
1 to 20, in order to shuffle the database in different ways,
to ensure reliable results. Hence, we report outcomes from
the 200 results for each metric (20 x 10, one outcome for
each fold). All models were trained using data from the very
first two weeks of the course, for early prediction.

The results of each method are presented in Table 2,
where Random Forest (RF) is the model found by the genetic
algorithm in [48] and DL is the deep learning model found
in [45]. Our predictive model (XGB) achieved an accuracy
ranging from 81.1% to 81.6% (C.L. 95%). Indeed, our current
model statistically significantly surpasses [48], even with
Bonferroni correction (p-value < 0.05/3) in all evaluation
metrics (accuracy, Fl-score, precision and recall). Moreover,
our XGB model surpassed the DL model presented in [45] in
terms of precision, whilst it is surpassed by the DL model in
terms of accuracy, and there is a draw for the other metrics
(F1-score and recall). Still, this difference is not statistically
significant for the Fl-score (p-value = 0.625) and recall
(p-value = 0.05), whilst there are statistical differences
for accuracy (p-value < 0.05/3) and precision (p-value <
0.05/3). Notice that we are dealing here with a database
that is slightly unbalanced and, hence, our XGBoost may
have some advantage, since the XGB model achieved higher
results for precision, and accuracy might be misleading, even
for such subtly unbalanced databases [5], [24]. Moreover,
we can also see that our XGBoost model is more stable in
terms of accuracy, since the standard deviation and interquar-
tile range of accuracy are lower than in the DL model. In addi-
tion, as explained in section II-B, we opted for XGBoost
because TreeSHAP [35], which is designed for tree-based
models, solved several issues of KernelSHAP [36], which is
typically used for DL models.

2For more details about the distributions of the programming behaviours,
see Appendix A.
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FIGURE 4. Distributions of programming behaviours (features) and distribution of our dependent variable (final grade) before

discretisation.

TABLE 2. Comparison of our prediction model and our baselines.

Accuracy Recall F1-Score Precision
XGB DL RF XGB DL RF XGB DL RF XGB DL RF

Mean 0.813 | 0.823 | 0.797 | 0.850 | 0.860 | 0.838 | 0.821 | 0.818 | 0.792 | 0.794 | 0.782 | 0.751
95% C I for Mean Lower Bound | 0.811 | 0.819 | 0.794 | 0.844 | 0.854 | 0.833 | 0.816 | 0.814 | 0.789 | 0.791 | 0.777 | 0.747

Upper Bound | 0.816 | 0.827 | 0.800 | 0.857 | 0.865 | 0.843 | 0.826 | 0.822 | 0.795 | 0.797 | 0.787 | 0.756
Median 0.809 | 0.827 | 0.798 | 0.841 | 0.864 | 0.835 | 0.809 | 0.821 | 0.792 | 0.797 | 0.781 | 0.747
Std. Deviation 0.018 | 0.027 | 0.022 | 0.049 | 0.039 | 0.034 | 0.033 | 0.027 | 0.022 | 0.023 | 0.037 | 0.032
Minimum 0.774 | 0.754 | 0.742 | 0.787 | 0.739 | 0.766 | 0.775 | 0.746 | 0.746 | 0.750 | 0.692 | 0.684
Maximum 0.839 | 0.895 | 0.855 | 0.936 | 0.966 | 0.915 | 0.882 | 0.888 | 0.847 | 0.835 | 0.886 | 0.830
Interquartile Range 0.031 | 0.037 | 0.030 | 0.079 | 0.053 | 0.047 | 0.047 | 0.037 | 0.028 | 0.022 | 0.052 | 0.038

Moreover, when analysing other relevant works that also
have the goal of early performance prediction in introductory
programming, [33] achieved an accuracy of 65.8%, using
data from 226 students in their first two weeks of the course.
In an extension of that work, using more data, they achieved
72% accuracy [18]. Using data from 897 learners in their first
four weeks,> Reference [12] achieved an accuracy of 71.81%.
[53] achieved an average accuracy of 71% using early data
from 692 students. Reference [68] achieved 78% of accuracy.
Indeed, our result is superior to all related works that per-
formed early performance prediction (section III). Although
all these works were conducted in different educational sce-
narios, their performance provides us with the intuition that
the problem of early prediction is complex. Nevertheless,
our XGBoost model achieves high performance. Moreover,

3The performance in the first two weeks is not reported in [12].
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we are the first, to the best of our knowledge, to apply
explainable artificial intelligence to interpret the predictions
of the predictive CS1 model’s decision.

C. RELIABILITY OF THE XGBOOST MODEL

To demonstrate the reliability of our XGBoost model,
we analysed its learning curves for an increasing number of
instances (students) using 10 fold cross-validation, as rec-
ommended by the literature [24]. We plotted the average
cross-validation performance (analysing a comprehensive set
of evaluation measures: accuracy, Fl-score, recall, and pre-
cision) and the standard deviation in the shaded areas of
Figure 5. We started with 180 instances and then incremented
in increments of 400 instances, for the cross-validation of
our XGBoost. We stopped this process at 1760 (as one more
increment would exceed our total number of our instances).
Notice that from 580 instances on, the predictive model
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FIGURE 5. Learning curve of our predictive model for different metrics (accuracy, F1-score, precision and recall) taking into consideration

varied numbers of instances for training.

achieves a score close to 80% in all performance measures.
As such, 580 instances is potentially the number of students
needed for convergence, which endorses the possibility that
our model could be used even for a lightweight database.
Moreover, from a visual inspection of the plots, we can
observe that our model generalises well on the validation set,
as the continuous lines (red and green) are close to each other,
which indicates that our model did not overfit the training set.
Furthermore, analysing the trade-off between bias and vari-
ance, we can state that our model potentially found a balance
between these errors, since the variability around the training
score and cross-validation score curves are almost stable from
the convergence point and the curves are similar (see [24]).
Next, Figure 6 shows the precision and recall curve (a) and
ROC curve (b) of students who passed and students who
failed on the validation sets. The micro-average takes into
consideration the class proportion of students who passed and
failed, whereas the macro-average treats each class indepen-
dently. In Figure 6 (a), the recall and precision curves are
plotted for different thresholds, whilst in Figure 6 (b) (ROC
curves) the false positive rates and the true positive rate
are also plotted for different thresholds, where positives are
represented by students who passed and negative by failed
students. The area under the curve achieved was 0.89 (for both
classes) and the precision/recall curve obtained was 0.85 for
class 1 (passed) and 0.92 for class O (failed). These results
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indicate that the binary classifier segregated students well,
even when the threshold was different from the central value.
This can be seen by analysing how close the continuous lines
(green and black) are in both graphs from Figure 6.

D. INTERPRETATION OF THE PREDICTIVE MODEL

As previously argued, obtaining an accurate predictive
model is important, but not enough, if its decisions are
obscure - especially when working with a vulnerable pop-
ulation such as that of learners. Thus, after ensuring a
competitive performance of our model, we show here how
to interpret its decisions. Next, we use the SHAP method
(as explained above) to explain effective and ineffective
behaviours behind individual predictions, prediction paths,
and collective behaviours.

E. INDIVIDUAL ANALYSIS

To provide a general idea of how we can evaluate which
learner programming behaviours are effective and ineffective,
we can inspect graphically the Shapley values of each learner,
individually. Figure 7 shows decision plots with coloured
lines (vertical), where a light brown line represents an indi-
vidual prediction of a student that failed in CS1, whilst a
dark purple line depicts a student who passed in the course.
The students were chosen at random. The x-axis represents
the model’s output: in this case, the probability of a student
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FIGURE 6. Precision and recall curve (a) and ROC curve (b) of students who passed (class 1) and students who failed (class 0).

passing.* The students’ coloured line cross the (top) x-axis at
our model’s predicted probability value. To classify the stu-
dents, we used as threshold the base value,’ which is approx-
imately 0.46. Hence, if the probability of students passing
is higher than this threshold, then they will be classified as
passed, otherwise as failed. To illustrate, in Figure 7 (a),
our model predicted that the probability of the highlighted
student passing is close to 0.05 (5%) and, hence, the student
is classified as failed, whilst in Figure 7 (b), the probability
of the highlighted learner passing is close to 0.85 (85%), thus
classified as passed.

The y-axis of the decision plot lists our features in descend-
ing order of importance. Each feature’s importance is spe-
cific for the student plotted in that particular decision plot.
Moreover, the straight vertical grey line marks the model’s
base value. Finally, from the bottom to the top of the plot,
the decision plot shows cumulative Shapley values (feature
effects - see section II) for each student’s programming
behaviour, i.e., for a given prediction we show how each
student’s programming behaviour (feature value) contributes
to the overall prediction over the model’s base value. We also
show the feature values next to the coloured student predic-
tion line, for reference. Remember that the feature values are
standardised with the z-score, representing, for each feature,
how far a student is from its mean value.

1) EXPLAINING INDIVIDUAL PROGRAMMING BEHAVIOURS
OF A LEARNER WITH A HIGH CHANCE OF PASSING

With information as above, we can perform a deep expla-
nation of individual predictions, i.e., we are able to uncover
notable patterns of programming behaviours that can be use-
ful for a better understanding of what might lead to success
or failure. In Figure 7 (b), we can see that this student has a
high probability of passing (*=85%).

4In order to calculate the probability of failing we just subtracted: (1—pp),
with py, probability of passing.

5The base value is the average prediction over the training set. This value
represents the overall value that would be predicted if we did not know any
features of the current output [36].
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Observing the decision plot, we can notice that the
features eventActivity, attempts, watWinScore, countVar, syn-
taxError, events, and keystrokeLatency had no effect for
this learner. Indeed, feature values that push the prediction
higher (effective behaviours) are the learner’s moderately
low deleteAvg (—0.5), low copyPaste (—1.1), moderately
high correctnessCodeAct (0.72), moderately low errorQuo-
tient (—0.6), average systemAccess (0.1), average ideUsage
(—=0.2), low procrastination (—1.0), moderate high Iloc
(0.81), high correctness (1.0) and high firstExamGrade
(1.1). Considering the effective behaviours of this student,
we notice that the student deleted parts of their code less
frequently than her/his peers, which might indicate that
this student is not struggling, or rewriting the code many
times. This can also be seen by observing that the negative
errorQuotient increases the student’s chances of passing.
Moreover, s/he makes low use of copyPaste and, hence, s/he
is potentially writing the code from scratch. Finally, s/he
achieved a high grade in the first assignment list and exam.
On the other hand, the features that push the prediction lower
(ineffective behaviours) are the high value of comments (1.0)
and amountOfChange (1.0), which is somewhat unexpected.
A high value of amountOfChange as ineffective might be
explained by the fact that this learner has a moderately low
errorQuotient and, thus, theoretically, would not need to
make many changes between submissions. About the com-
ments, it seems to be a hidden pattern that the predictive
model uncovers for this learner. That is, a high number of
comments in the beginning of the course is not increasing the
learner’s chances of passing. This may potentially be because
the (Python) code required is too easy and brief at this point
of the CS1 course (first two weeks), without great need of
documentation. Mnemonic variable names might be enough
to explain such code.

2) EXPLAINING INDIVIDUAL PROGRAMMING BEHAVIOURS
OF A LEARNER WITH A HIGH CHANCE OF FAILING
Conversely, in Figure 7 (a) we show an example of a
student who has a high chance of ending up failing. Over-
all, this learner has ineffective behaviours, such as a high
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FIGURE 7. Decision plots to explain the potential leading factors (early programming behaviours) for passing or failing.
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FIGURE 8. Force plot of a given student.

errorQuotient (1.6), low ideUsage (—1.3), high procrastina-
tion (' 1.0), and moderately high copyPaste (0.80). Moreover,
s/he has low correctness (—1.9), correctnessCodeAct (—1.5),
and firstExamGrade (—1.0). As an effective behaviour, s/he
accesses the system more than the average: systemAccess =
0.7. Thus, we can assume that this learner expends little effort
in trying to solve the problems from the assignment. Some
indicators of that are the low ideUsage, high procrastination,
high copyPaste, and low correctnessCodeAct.

We can also visualise an individual explanation of the
model prediction as a force plot [37], presented in Figure 8.
Similarly to the decision plot, the force plot presents a pre-
diction for a student (here, chosen at random). The f(x)
function is the model output (the predicted probability for
that student), and the base value follows the same reason-
ing of the decision plot (average of model predictions).
The features that push the prediction higher are shown
in dark purple, whilst the ones which push the predic-
tion lower are in light brown. To be more meaningful,
the dark purple features are right arrows, whereas the light
brown ones are left arrows. The arrow’s size represents the
effect of that feature. Given that, from a visual inspection
of Figure 8, we can observe that the leading factors that
are pushing the prediction lower are that s/he has a low
firstExamGrade (—1.02), correctness (—1.9), lloc (—1.7),
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and correctnessCodeAct (—1.5). However, similar to the
learner from Figure 7 (a), s/he has a high systemAccess (2.7)
value, which is slightly increasing the learners’ chance of
passing.

Based on such individual explanations, we can generate
automatic, customised, fine-grained suggestions to a student;
or provide this detailed information to the teacher, who can
use it in talking (face to face) with the student, to encourage
the learner to better use her/his potential; e.g., guiding them
towards being more hardworking - by solving more problems
from scratch, and not too close to the deadline. As another
example where there is room for improvement, some learners
are copying and pasting more than 1 standard deviation above
the average, which might not be a desirable behaviour for a
novice student in the first two weeks of the course. Instead,
it is expected that students solve problems from scratch,
to practice more, as recommended by the testing effect theory
[60], which explains the role of effortful processing as a
contributor to the achievement.

Notice that although the force plot might seems more
intuitive for interpretation, it is useful only for a few features,
while the decision plot can present a large number of features
effects clearly. Moreover, in a decision plot, we can visualise
multi-output predictions, as we show in the next subsection,
which allows detecting some prediction paths.
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F. SMALL GROUP ANALYSIS (PASSED VERSUS FAILED)
After an individual analysis of student behaviours,
we join 10 low-achieving students who failed, in Figure 9 (a),
and 10 high-achievers students, who passed, in Figure 9 (b),
to inspect patterns related to the predictions. All students
were chosen at random. Such local explanations can be
useful, as building-blocks for global insights. Here we notice
that the failing students have a similar trajectory (prediction
paths), that is, their learning lines are relatively close for
many features, which shows a similarity in their program-
ming behaviours. However, we can see some exceptions.
To illustrate, we can observe a student who crossed the margin
line, which suggests that this learner was performing well
towards passing the CS1 course, e.g., s’he did not procras-
tinate too much, accessed the online judge (systemAccess)
regularly, with a medium number of events and eventActivity.
Nonetheless, s/he made many mistakes while submitting the
code (see errorQuotient, watWinScore and syntaxError) and
solved a lower number of problems from the assignments
(lower correctness), and then, perhaps for some an unknown
reason (extraneous variables), ended up failing.

Another observation for prediction paths of the successful
students (Figure 9 (b)) is that we note two divisions in the
plot: (i) the first is for students who did not struggle too
much, which is illustrated by the lines which have often been
above the vertical line margin; (ii) the other students have
encountered higher difficulty, but they were still successful.
The lines of these students are on both sides of the margin
line.

From this small sample of learners, although we can
observe similarity in prediction paths of the successful
and unsuccessful learners, there are some nuances in the
behaviours that might lead to success or failure in this cohort.
In the next subsection we will evaluate these nuances in
the prediction paths more holistically, taking into consider-
ation almost the entire dataset, instead of a small sample of
learners.

G. PREDICTION PATHS

To evaluate possible prediction paths, we cluster the Shap-
ley values of all learners using the well-known k-means
algorithm. We use the knee point detection algorithm [62]
to automatically find the potential optimal number of clus-
ters. The metrics used to evaluate the maximum curvature
point (knee point) [62] were the mean silhouette score and
inertia, as recommended in [24]. After running the k-means
algorithm with k ranging from 2 to 10, we found that
5 is the most suitable number of clusters. In other words,
we found five different prediction paths, represented by five
behavioural patterns that might lead to success and failure,
which are shown in Figure 10. These decision plots show
the centroids of each cluster. Notice that the centroids in
k-means are the averages of the instances inside a cluster.
As such, the centroids in this case depict the overall Shap-
ley values (feature effect) of the learners in each cluster.
In Figure 10, we keep the same feature order in the decision
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plots, to make it easier to compare the different prediction
paths.

Following, we give a brief description of each prediction
path that we found (see Figure 10):

o Prediction path 1: students with high chances of passing
and who have mostly effective behaviours. They may
also have some minor ineffective behaviours.

o Prediction path 2: students with moderate to high
chances of passing, who have mostly effective
behaviours, but with a different pattern than prediction
path 1.

« Prediction path 3: students with a high chance of failing
and who have mostly ineffective behaviours. They may
also have some slightly effective behaviours.

o Prediction path 4: students whose chances of passing
are uncertain. In general, their chances are a bit lower
then the base value and, hence, they are borderline
cases, potentially unsuccessful. Indeed, these students
have moderately effective behaviours; however, they
achieved a low grade in the first exam.

o Prediction path 5: students whose chances of passing
are uncertain. Their chances are generally a little higher
than the base value, and hence, similar to the prediction
path 4. They are borderline cases; however, potentially
successful ones. Indeed, whilst these learners have some
moderate effective and ineffective behaviours, they have
a high first exam grade.

Approximately 30.02% of the students follow the predic-
tion path 1, 8.32% follow the prediction path 2, 34.85%
follow the prediction path 3, 13.32% follow the prediction
path 4, and 13.49% follow the prediction path 5. In other
words, 38.34% (30.02% + 8.32%) of the learners have high
chances of passing, 34.85% have high chances of failing,
and 26.81% (13.32% + 13.49%) are borderline cases, for
which the prediction model predicts with moderate to high
level of uncertainty.

For a better understanding of the prediction paths, we anal-
yse the effective and ineffective behaviours present in each
plot from Figure 10. In Figure 10 (a), we can inspect that
the learners from this cluster likely made less common
errors (e.g., syntaxError = -0.25), dealt with the errors better
(errorQuotient = -0.35) and tended to spend less time to
fix errors (watWinScore = -0.28), which is a sign that these
learners were not struggling to solve the problems. Moreover,
they used copyPaste (copyPaste = -0.25) moderately, which
is important for a novice learner. In spite of the importance
of knowing that, these behaviours from this cluster have low
effect (low Shapley value) in the model’s decision. Indeed,
the programming behaviours that have highest impact for this
prediction path are the fact that the learners from this cluster
solved most of the problems from the assignment (correct-
ness = 0.80 and correctnessCodeAct = 0.76), and spent more
than the average time coding in the IDE (ideUsage = 0.78).
Moreover, the students accessed the system regularly and
achieved a moderate to high grade in the first exam (firstEx-
amGrade =0.94). These effective behaviours are the potential
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FIGURE 9. Prediction paths of learners who failed (left) and learners who passed (right).
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FIGURE 10. Cluster centroids of prediction paths of our model prediction for a better understanding of effective and ineffective behaviours.

explanation of why such learners had a probability of passing
(close to 80%). The programming behaviours events (0.25)
and amountOfChange (0.19) have also some minor impact in

the model’s decision. The average value of these features is
somewhat expected, as these effective learners do not make
many errors, even having a moderate to high number of
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attempts (0.46) and correctness (0.80). As a counterexample,
a learner who had a moderate to high number of attempts,
who solved many problems, and who submitted many code
snippets with errors, should have changed her/his code a lot to
fix problems, which would have generated many log events.
Finally, it is expected that these learners have a low value of
procrastination, so that there is still room for improvement
for the students from this cluster.

In Figure 10 (b) we can observe a similar prediction
path (see the trajectory of the coloured line) showed in
Figure 10 (a). That is, the learners from this cluster have also
high chances of passing, potentially because of similar rea-
sons to the learners who follow prediction path 1. The main
difference is that these learners (that follow prediction path
2) have a lower value of systemAccess (—0.62) and procras-
tination (—1.62). However, such a moderately low value of
systemAccess is likely a positive indicator for this prediction
path. Indeed, as the learners solved most of the problems
(correctness = 0.70), with a low value of procrastination,
this suggests them solving problems from the assignment as
soon as the instructors made them available. Hence, after that,
they did not keep accessing the online judge, as they had
already finished their assignment.

On the other hand, Figure 10 (c) shows the students who
follow the third prediction path. The students from this cluster
have more than the average number of code errors (errorQuo-
tient = 0.59), and they were not dealing well with the errors
(watWinScore = 0.38). That is, they potentially were not
trying to fix the problems (see the low amountOfChange =
—0.38), which might explain why they achieved low grades
in the first assignment (correctness = —1.12) and exam (firs-
tExamGrade = —1.01). Additionally, based on the number of
attempts (attempts = —0.6) and time spent to solve problems
(ideUsage = —0.78), we can deduce that these learners are
neither effective nor resilient in trying to fix code errors.
These ineffective behaviours are potential explanations of
why the students from this cluster have their average prob-
abilities of passing close to 10%.

Figure 10 (d), the forth prediction path, are learners with
a similar trajectory to those following prediction path 1. The
main differences are twofold. Firstly, the feature values from
this cluster are almost half of those that follow the first pre-
diction path. Overall, they solved half of the questions from
the assignments, they have half of the lloc value, they spent
half of the time that learners from the first cluster spent in
solving problems. Secondly, these learners might have some
moderate effective behaviours, but achieved a low grade in
the first exam (firstExamGrade = —0.99). This discrepancy
is resulting in the uncertainty of the model for these cases.
Indeed, the second reason (low firstExamGrade) has a high
impact on the model’s decision and changed the direction of
the prediction to the left, decreasing the learners’ chances of
passing.

The learners that follow the prediction path 5 (Figure 10 (e))
have average values for almost all programming behaviours,
which makes the trajectory of the prediction (looking from
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the bottom to the top of the plot) close to the grey vertical
line (base value). Indeed, the direction starts to change from
programming behaviours ideUsage and Illoc, which increase
somewhat the chances of passing. This indicates that average
values of these 2 features might be effective behaviours for
this prediction path. Still, an average correctness associated
with a moderate to low systemAccess and an average pro-
crastination is decreasing the learners’ chances of passing.
A possible reason why an average correctness is potentially
an ineffective behaviour is that the first assignment has
only easy problems and, thus, many learners solved all the
questions (for more details, see the correctness statistical
analysis in Appendix A). Moreover, a moderate/average pro-
crastination,® without a high correctness, might not seem as
an effective behaviour. However, unexpectedly, as an inflec-
tion point, a moderate to high firstExamGrade changed the
direction of this prediction path to the right, raising the overall
chances of these learners above the base value. A possible
explanation is that these students did not access the IDE
regularly (systemAccess = —0.38) and may not have solved
all the exercises from the programming assignments, not
because of lack of knowledge, but because they may already
have known programming, i.e., they might have had contact
with programming before the CS1 course. Another possibility
is simply because of plagiarism in the exam. Notice that
this kind of behaviour might confuse the predictive model
and bring about false negatives. Such outliers are interesting
in themselves to find, to analyse separately (ideally, by an
instructor) as they may have quite distinct needs from the
rest of the cohort.

Finally, for a deeper analysis of each feature importance
based on our model prediction, we make available a link”
with interactive plots. The shared folder has 10 HTML files
with plots for each fold tested in this study. The plots are
a combination of individual force plots, rotated 90 degrees
and stacked horizontally, and ordered by similarity of SHAP
explanation, using the cluster analyses. To illustrate, in
Figure 11 we show the first 1000 instances of the first fold
(cross-validation). The bold value on the y-axis shows the
probability to pass of the student in position §96. Similarly to
the explained force plot, the feature values in purple represent
a positive effect and the light brown ones a negative effect for
this individual student. With such an interactive plot on-hand,
the stakeholders (instructors, monitors, coordinators, etc.) can
preventively evaluate which behaviour should be stimulated
and which should be improved upon, for each student and for
groups of learners, since the plot is sorted by similar Shapley
values.

H. GLOBAL ANALYSIS
Regarding the importance of the features, Figure 12 (a)
presents a bar chart with the average impact (mean of

SNotice that a moderate procrastination means that the learner started
solving the problems between 4 or 5 days before the deadline (Figure 4).
7bit.ly/2PVCCaP
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FIGURE 11. Prediction forceplots rotated 90 degrees, stacked horizontally. Here we highlight the 896th instance, showing her/his feature

values and contributions.

Shapley values) for each feature, in terms of model output
magnitude. As arguably expected, the three most relevant are
firstExamGrade, systemAccess, and correctness. This trans-
lates into the conclusion that if the learner performs badly
in the first exam and in our programming assignment lists,
a ’red flag’ needs raised. Still, it is important to monitor
how regularly students are accessing the online judge, as the
number of accesses (systemAccess) plays an important role
at the beginning of the course. Moreover, the number of
logical lines of code (l/loc) matters in the solution submit-
ted, as lloc is the forth most important feature. A poten-
tial reason is that the total /loc of the solutions sent by
the learners for all problems of the first assignment might
have an expected value, and the predictive model potentially
uncovered the likelihood of the expected value that might
be effective or ineffective. Still, we can see in the plot that
procrastination might be an undesirable behaviour for some
students and can influence their performance negatively.
Finally, as found by Pereira et al. [49], spending more time
solving problems (ideUsage) and being resilient are positive
behaviours. Here, resilience might be measured by the associ-
ation of attempts, ideUsage, lloc, errorQuotient, syntaxError,
amountOfChange, and watWinScore. That is, even when the
solutions are not correct at first (errorQuotient, syntaxError),
it is important to spend qualitative time (ideUsage) trying
to fix the error (attempts, amountOfChange, watWinScore)
more than once. Notice that such attempts will increase the
lloc and countVar, as these features compute the total number
of logical lines of code and variables (respectively) in all
submissions, regardless whether accepted or not.
Additionally, it is important to note that the feature effects
might be different for different students. To illustrate, whilst
general procrastination is associated negatively with per-
formance [66], this effect might be less pronounced or
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even reversed for some students. In this sense, Figure 12 (b)
presents the direction and the distribution of the feature effect.
For some features, there are some medium to long tails,
meaning that those features might have low global impor-
tance, but a high relevance for specific instances. To illus-
trate, systemAccess has a higher total model impact than
procrastination. Nonetheless, for the instances in which pro-
crastination plays an important role (long tail), it has more
impact than systemAccess. Thus, procrastination impacts
a few predictions, by a large amount; whilst systemAccess
affects almost all predictions, by a smaller amount.

VI. IMPLICATIONS, APPLICATIONS AND IMPACT

Our work enriches the research on programming learning
with findings of effective and ineffective early students
behaviours (currently considered an open question [11], [50],
[53], [58]), and the educational data mining field, with an
accurate and explainable ML pipeline that can be useful for
early intervention and student self-regulation.

An important finding from our approach is the notion that
for different learners, a different set of predictors seem to have
an impact on successful learning. As we demonstrated above,
even generally undesirable behaviours, like procrastination
[66] might be more-, or less-harmful, for a particular person.
As psychological and educational research typically applies
linear modelling [25], such a complex nonlinear interplay has
remained undiscovered by prior research applying traditional
methods.

Regarding the different features used for prediction in our
analysis, we need to emphasise that there are some behaviours
that are easier to modify than others. Whilst it is possible
to instruct students to avoid procrastination and increase
total time investment [6], keystroke latency or the number of
deleted characters are less suitable for interventions.
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(a) General feature importance.

FIGURE 12. Summary of features’ importance for the model’s decision.

For a more generalist analysis for adaptation of instruc-
tional decisions, we presented the power of global explana-
tion by the identification and analysis of typical prediction
paths. Moreover, our focus not only on global behaviours,
but also on individual ones, enabled by visualising and
analysing feature effects at single-student granularity level,
can be used in an unprecedented variety of pedagogical
applications. Indeed, this early prediction, empowered by
its explanation, might potentially allow an effective early
intervention by stakeholders. To illustrate, our interactive
force plots (Figure 11) of each student might be shown to
the instructors at the end of the second week of the course,
who in turn might create some proactive way of minimising
the chances of at-risk students ending up failing. What is
more, as the plot is sorted by similar Shapley values, student
behaviours might be grouped, for recommendation purposes.

Notice that, in CS1 classes, each student may have a dif-
ferent timing to learn to program. However, in traditional
non-personalised classes, all students are treated in the same
way. Ideally, students should be challenged to learn as much
as they can, taking into consideration their individual learn-
ing weaknesses and strengths. For example, a student that
solves tasks fast and effortlessly, may be bored and potentially
frustrated. One possible solution for that is creating more
challenging tasks for the students with high probability of
passing. More specifically, more challenging problems may
be recommended for students who have low procrastination,
solve all the exercises on the assignment, and access the sys-
tem regularly. Hence, traditional Intelligent Tutoring Systems
or Adaptive Educational Hypermedia rule-based approaches
[10], [65] can be combined with modern educational data
mining and SHAP-based processing for large-scale person-
alised education.

In addition, for instructors, managers, and educators,
a visualisation dashboard, including our force plots, decision
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plots (and so forth) might contribute for a more formative
assessment. As such, not only the learner product is eval-
uated, but also the process behind, that is, not only their
codes are evaluated, but also their learning paths and effort
to produce their codes. Formative feedback might be sent
to students, to improve student attainment, in response to a
request from the literature for such works [15], [31], [38].
For example, an automatic notification might be sent to each
learner, showing them their own force plots with their most
important behaviours that should be encouraged, and the ones
which need improved upon. An individual decision plot might
be also sent to students for self-reflection of all analysed
behaviours. This would empower the students to better guide
their own study. Such metacognitive strategies, which get the
students to think about their own learning, have been proven
efficient in many areas of education. Indeed, [60] showed
that metacognitive strategies may be worth the equivalent of
an additional 7x times greater progress than that used in a
traditional environment. The study explains that the major
reason for such progress is that the learners were aware of
their strengths and weaknesses, which motivated them to
engage in and improve their learning. Such metacognitive or
self-regulatory strategies can also be trained via web-based
training [6].

Furthermore, this dashboard can increase the chances of
the instructor reflecting and diagnosing potential causes of
the students’ lack of success. For example, an instructor
might explore in the dashboard a plot like in Figure 11,
where forceplots are clustered. Using that Al-based infor-
mation combined with classroom experience, the instructor
might schedule a meeting with specific groups, to discuss
how certain programming behaviours they are having are
potentially jeopardising their learning. In other words, this
could amplify the instructor’s ability to implement effective
interventions.
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Indeed, based on such a dashboard we can intervene
on many design dimensions [11], such as providing to the
learners Al-based information, critique, suggestions, and
encouragement. Such intervention content might be shown
in our dashboard visually, or through text notification,
with the intention of positively affecting their programming
behaviours, learning process and outcomes. Moreover, stu-
dents might also explore visually and interactively their learn-
ing process and progress. A dashboard might allow triggered
intervention as well, in which a notification or plot might
to be shown to the learner in response to her/his actions.
Another option would be performing intervention on demand,
in which the learner must explicitly require some feedback or
suggestion on effective and ineffective behaviours.

Finally, another possibility for interventions is to use the
log file data for group formation. As heterogeneity has been
proven as beneficial for collaborative learning in many sce-
narios [40], one pedagogical approach would be to form
groups of learners with force plots differing from each other.

VII. LIMITATIONS

It is indisputably important to provide human-friendly feed-
back to improve the students learning. Here we are going in
this direction. However, our model is not 100% accurate and,
hence, the model’s feedback might not be precise in some
cases. That is, it is important to highlight that there are two
models being used in this work: the predictive model and the
explanatory model. Both of them have an error component.
Thus, the instructor (or other stakeholders) who will receive
the feedback from the explanatory model have a crucial
role in analysing and interpreting the model’s explanation.
In this sense, we believe that a first attempt to employ our
model should be done by combining humans and our Al,
that is, our pipeline could be later validated with a human
pipeline of experts. It is noteworthy that the combination of
human skills with AI, with the use of hybrid systems, can
achieve results superior to those achieved by Al and humans
separately [27], [43].

Moreover, in this work, we performed statistical inference
and not causal inference. Our interpretable pipeline using
Shapley values, however, offers clear insights to formulate
causal hypotheses that could be assessed in future works.
In addition, some of the limitations of this work are related
to the dataset. In terms of external validation, our sample
may not represent the general population. Nonetheless, given
that the data was obtained from several years of CS1 courses
and students from numerous undergraduate programs, this
constraint could be minimised. As a potential internal threat,
we did not tackle plagiarism in-depth, and some success-
ful programming behaviours may have been misclassified.
We used some features to try to encode plagiarism, such as
attempts, eventsActivity, copyPaste and ideUsage, since our
experience shows that learners who copy codes from other
students usually do so as their first attempts (lower number of
attempts) and actually spend little time programming (low use
of IDE). To confirm that, we plan to carry out further studies.
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Finally, the following features had low impact on the model
output: deleteAvg, events, comments, attempts, syntaxError,
countVar, keystrokeLatency, watWinScore, and eventActivity.
This is interesting, since the literature [11], [19], [30], [33],
[49], [71] reported that these features are related to student
performance. A possible reason is that, again, we are dealing
with data from the first two weeks of the course and, hence,
some patterns are still not evident yet.

VIil. CONCLUSION AND FUTURE WORKS

In this paper, we developed an explainable ML pipeline
that competes in performance with current state-of-the-art
(inexplicable) black-box models. We have also shown that
there are significant benefits in using fine-grained data-driven
code metrics to extract features using insightful algorithms,
since this allows, besides predicting student performance
early, to analyse behaviours that are related to struggling
and successful students. Moreover, we trained our model
using data from the first two weeks of classes, allowing early
intervention.

For replication purposes, we provide our fine-grained
dataset (see Section IV-B). Moreover, for works that want
to replicate our work but use only globally relevant fea-
tures, the most important features for early prediction were
firstExamGrade, systemAccess, correctness, lloc, procrasti-
nation, ideUsage, correctnessCodeAct, and copyPaste (see
Figure 12 (a)). This translates into: if some students perform
badly in the first exam and in the early programming assign-
ments, by procrastinating, do not spend appropriate time solv-
ing the problems, then a 'red flag’ needs raised, as it has likely
negative consequences for the students’ final performance.
Furthermore, we have shown also the local impact of features
for each individual student, where less important features
could have high relevance for some learners (Figure 12 (b)).
As such, researchers that want to replicate this work could
consider this local importance of features, additionally to the
global one.

Additionally, our high-performance predictive model is
explainable, which can facilitate human-Al collaboration
towards prescriptive analysis, where the instructors/monitors
will have access to individual and collective analysis on
which student behaviours should be encouraged, and which
ones should be inhibited. On the student side, such analysis
can promote self-regulation and awareness of their strengths
and their chances for improvement. To illustrate the useful-
ness of the approach from a student’s point of view, they may
trust more a recommendation if they understand why they
have received it. From the instructors’ side, understanding
why students are failing or passing would allow them to apply
effective efforts to tailor pedagogical materials, instructions
and interventions for future classes.

As future work, we will investigate plagiarism behaviour
in-depth and its influence in the model’s decision. Moreover,
we envision to analyse how the data-driven approach used
in this paper can model students who begin the course with
successful behaviours, but end up with failure behaviours and
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grades. Similarly, we will analyse students who change their
programming behaviour during the course and the impact of
these changes on learning.

Furthermore, a possible extension of the present approach
would be to not only create differential explainable models
for different learners, but to also investigate whether different
situations experienced by the same person have a different
impact on the person’s learning success, thereby applying
a process perspective on learning [73]. In order to do so,
it would be necessary to collect time series data over a longer
period, and to include information about the order of events
into the prediction model.

APPENDIX A

DESCRIPTIVE STATISTICS OF

PROGRAMMING BEHAVIOURS

Following, we show the explanation and overall analysis
results for each feature defined in Table 1 and presented
in Figure 4:

o procrastination: Here we are analysing the feature
before the z-score transformation and multiplication by
—1, thus, a higher value means lower procrastination
(and vice-versa). In this feature, there is a high positive
skewness (skewness > 1.0 and kurtosis > 1.0), indi-
cating asymmetric distribution with a long tail. Indeed,
some students solve the problems close to the deadline,
however, most of the learners started to solve the prob-
lems around 5 days before the deadline (mean = 4.93,
median = 4.45). Moreover, we can notice a high vari-
ation (std = 3.48, Coefficient of Variation (CV) =.71,
and Inter Quartile Range (IQR) = 1.71) in this feature
endorsing what we claimed about the heterogeneity of
the students’ behaviours.

o amountOfChange: High positive skewness and kurtosis
(skewness > 1.0 and kurtosis > 1.0). This sug-
gests that students tend to change their code slightly
between submissions to the same problem (mean =.72,
median =.67). This happens typically when students
have not had their code accepted in the first submission.
A high variation (std =.51, CV =.77, and IQR = 0.55)
was observed.

o eventActivity: High negative skewness and positive
kurtosis (skewness < —1.0 and kurtosis < —1.0). Most
students (mean =.69, median =.75) solve the problems
with few events (line of logs, see Figure 3). The variation
(std =.23, CV =.31, and IQR = 0.18) is moderate to
high.

o attempts: Symmetric distribution (skewness = 0.31),
however with a high kurtosis (kurtosis > 1.0), which
can be explained by the presence of outliers: in this case,
students who tried many times to solve a given problem.
In average, students have attempts of 7.52 and a median
of 7.62 per problem, with a moderate to high variation
(std = 3.47, CV =.45, IQR = 3.74). The high average
and variation in the first two weeks might be explained
due to the students learning to manage the online judge
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system. To deal with the outliers, we applied a root
square transformation, to make the distribution normal.
comments: High positive skewness and Kkurtosis
(skewness > 1.0 and kurtosis > 1.0), suggesting that,
in general, the students do not document their code
(mean = 2.86, median = 3.00), which is expected
from novice programmers solving easy problems.
Nonetheless, we observe a high variation (std = 2.86,
CV =.99, IQR = 4.00) and the presence of outliers.
As for attempts, here we also applied the root squared
transformation.

lloc: Symmetric distribution (skewness = —0.28,
kurtosis = —0.82) with a moderate kurtosis, with a
mean similar to the median, indicating a bell-shaped
distribution. The average of total /loc (mean = 111.71,
median = 110.10) is low, as the learners are submit-
ting solutions for problems of arithmetic operations and
sequential structures, which require just a few lines of
code. Moderate to high variation (mean = 111.71, std =
58.98, CV =.52, IQR = 86.0) is observed.
systemAccess: Most of the students have the number
of access to the system in the first 2 weeks of the
course concentrated in the lowest values, as the distri-
bution is highly positively skewed (skewness > 1.0 and
kurtosis > 1.0), with an average of 32.89 access and high
variation (std = 30.98, CV =.94, IQR = 87.00).

o firstExamGrade: As the first exams had only 2 problems,

students can achieve 0, 5 or 10, if they solve O, 1 or
2 questions, respectively. That explains the multimodal
nature of this distribution, with three potential values
of 0, 5 and 10. A different grade is possible when stu-
dents solve one of the problems partially, receiving a
grade proportional to the number of test cases accepted.
In average, students solve one problem from the first
exam (mean = 5.01, median = 5.00). Notice that the
nature of this distribution explains the high variation
(std = 4.64, CV =.92, IQR = 10.00).

events: Most students have a lower value of events as
the distribution is high positively skewed (skewness >
1.0 and kurtosis > 1.0), with an average of 290.63 events
and high variation (std = 180.96, CV =.62, IQR =
201.86).

correctness: Moderate negative skewed distribution
(skewness = —0.94 and kurtosis = —0.39), which indi-
cates that most students take the first assignment list
seriously and solve the problems. In average, students
solved approximately 69% of the problems (mean =
6.91, median = 8.44) in an assignment list comprising
10 or 12 problems. We also observe a moderate variation
(std = 3.21, CV =.46, IQR = 4.84).
correctnessCodeAct: Most of students have an average
value (mean = 4.68, median = 4.75) of correctness-
CodeAct, as the distribution is symmetrical (skewness =
—0.14 and kurtosis = —0.95). However, a high variation
was observed (std = 2.77, CV = 0.59, IQR = 4.31).
Notice that the values of these distributions tend to be
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lower than for the correctness distribution, which means
that, potentially, some students solved the problems
just by copying and pasting, thus, generating only few
events.

copyPaste: Highly skewed with a long tail (skewness >
1.0 and kurtosis > 1.0), with an average value of.59 and
high variation (std = 0.90, CV = 1.52, IQR = 0.67).
As in attempts, here we also applied the root squared
transformation due to the presence of outliers (values
greater than 1, in this case). Notice that a value greater
than 1 means that the learner has pasted more characters
than typed (e.g., 50 characters pasted and 10 characters
types would lead for a copyPaste = 5 (50/10)).
syntaxError: Highly skewed, with a long tail (skew-
ness > 1.0 and kurtosis > 1.0). In average, 29% of
the attempts (mean = 0.29, median = 0.24) to solve
problems in the first two weeks have this typical error.
A high variation was observed (std =.25, CV =.84,
IQR =.27).

ideUsage: Highly skewed, with a long tail (skewness >
1.0 and kurtosis > 1.0). In average, students spend
133.93 minutes trying to solve problems in the embed-
ded IDE (mean = 133.93, median = 120.52). A high
variation was observed (std = 98.08, CV =.73, IQR =
126.21).

keystrokeLatency: Highly skewed, with a long tail
(skewness > 1.0 and kurtosis > 1.0). The keystroke
average latency of the learners is 2.59 (mean = 2.59,
median = 2.61) and a moderate to high variance was
observed (std = 1.04, CV =.73, IQR =.97). As in
attempts, here we also applied the root squared trans-
formation, due to the outliers.

errorQuotient. Highly skewed distribution (skewness >
1.0), but with no long tail (kurtosis =.04). We found
a low value of errorQuotient penalty in pair of errors
between submission (mean = 4.19, median = 3.19).
A high variation was observed (std = 3.54, CV =.84,
IQR = 3.79).

watWinScore: Highly skewed, with a long tail (skew-
ness > 1.0 and kurtosis > 1.0). Students spent a few
minutes (mean = 3.34, median = 1.90) between a pair
of submissions with errors. A high variation (std = 4.35,
CV = 1.30, IQR = 3.99) was observed, due to the
presence of some outliers. As in attempts, here we also
applied the root squared transformation.

countVar: A moderate to high negative skewed dis-
tribution (skewness = —0.72), but with no long tail
(kurtosis =.39), with an average of 22.38 (mean =
22.38, median = 3.19) variables in all the code instances
submitted by learners. This relatively lower number of
variables is due to the easy nature of the initial prob-
lem assignments. In addition, a moderate variation was
observed (std = 10.56, CV =.47, IQR = 9.89).
deleteAvg: Highly skewed, with a long tail (skewness >
1.0 and kurtosis > 1.0). In average, students make
little use of delete (mean = 35.13, median = 29.72).
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A high variation was observed (std = 26.93, CV =.76,
IQR = 27.88), due to the presence of some outliers.
As in attempts, here we also applied the root squared
transformation. Notice that learners who make more
use of delete are potentially rewriting their code more
frequently.

e finalGrade: Our target variable is a relatively symmet-

rical (skewness =.2) bimodal distribution (kurtosis >
1.0). Indeed, the left peak of the distribution concentrates
most of the failed students and the right peak, the ones
that passed. Students achieved an average final grade
of 3.93 (mean = 3.93, media = 4.00). A high variation
was observed (std = 3.45, CV =.96, IQR = 6.74).
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