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Abstract

This work presents a high-order Bernstein-Bézier finite element (FE) discretisation to accurately
solve time harmonic elastic wave problems on unstructured triangular mesh grids. Although high-
order FEs possess many advantages over standard FEs, the computational cost of matrix assembly
is a major issue in high-order computations. A key ingredient to address this drawback is to
resort to low complexity procedures in building the local high order FE matrices. This is achieved
in this work by exploiting the tensorial property of Bernstein polynomials and applying the sum
factorisation method for curved elements. An efficient implementation of the analytical rules
for affine elements is also proposed. Furthermore, element-level static condensation of the interior
degrees of freedom is performed to reduce the memory requirements. Additionally, the applicability
of the method with a variable polynomial order, based on a simple a priori indicator, is investigated.

The computational complexities of sum factorisation, analytical rules and standard quadrature
are first evaluated, in terms of the CPU time against the polynomial order. The analysis shows
that the achieved numerical complexities compare favourably to those expected theoretically. A
significant runtime saving is also obtained by using analytical rules and sum factorisation. The
performance of the Bernstein-Bézier FEs is then assessed on various benchmark tests, over a
wide range of frequencies. Results from the elastic wave scattering problem demonstrate the
effectiveness of this method in coping with the pollution error, and its accuracy in resolving high
order evanescent wave modes. Additionally, a wave transmission problem with high wave speeds
contrast and a curved interior interface is considered, where a simple a priori indicator is proposed
to assign the variable polynomial order. The study provides evidence of the great benefit of a non
uniform p-refinement in reducing the computational cost and enhancing accuracy.

Keywords. Finite elements; Bernstein-Bézier; Numerical integration; Sum factorisation; Static conden-

sation; Short wave Scattering; Linear elasticity.

1 Introduction

Computer modelling of elastic wave propagation and scattering is an effective tool for predicting and
testing in a wide variety of practical applications, including traffic-induced vibrations from roads and
railways, seismic induced vibrations, seismic inversion, design of foundation elements, geophysical
exploration, nondestructive evaluation and structural engineering.

The Finite Element Method (FEM) is a popular discretisation method commonly adopted for
the numerical solution of wave problems. It is favoured over other methods, owing to its ability
in accurately handling complex geometries, material heterogeneity and anisotropy. When typically
piecewise linear FEs are used, around ten grid points per wavelength are needed to ensure a satisfactory
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resolution of the wave pattern. It is noteworthy that this rule of thumbnail of ten nodal points per
wavelength enables to control the local approximation error [1]. However, due to the pollution effect
in the mid or high frequency regimes [1–4], even more than ten nodal points are required to achieve
an acceptable level of accuracy, and thus the procedure becomes prohibitively expensive and less
effective.

The past few decades have seen many attempts to design robust numerical schemes alleviating the
pollution phenomenon. A substantial improvement was made in developing wave based, or Trefftz,
methods enabling to achieve engineering accuracy with a significant reduction in the computational
effort. The common idea in these approaches is to incorporate the oscillatory behaviour of the solution
into the approximate space by including plane waves or Bessel functions. Examples of such methods,
among others, are the Partition of Unity Finite Element Method (PUFEM) [5–14], the Generalized
Finite Element Method (GFEM) [15, 16], the Ultra Weak Variational Formulation (UWVF) [17–19],
the least-squares method [20], the Discontinuous Enrichment Method (DEM) [21, 22] and the wave-
based discontinuous Galerkin method [23–25]. It is worth noticing that all the aforementioned methods
(except PUFEM, GFEM and DEM) share the same discontinuous Galerkin framework and differ only
in the used numerical fluxes to ensure continuity between elements [26].

Wave based methods generally make use of the plane wave basis decomposition by pressure and
shear waves in the approximation of time harmonic elastic wave problems. Perrey-Debain et al. [27]
proposed the partition of unity boundary element method. Huttunen et al. [28, 29] developed the
UWVF in two and three space dimensions. Also, Zhang et al. [30] extended the DEM to frequency
domain elastic wave computations. Note that inter-element continuity in the UWVF and DEM is,
respectively, enforced weakly by means of numerical fluxes and Lagrange multipliers. In References
[31–35] and [36], PUFEM was successfully applied to time harmonic elastic wave problems, in two
and three space dimensions. More recently, Yuan and Liu [37] proposed another approach in the
discontinuous Galerkin setting based on plane wave basis and local spectral elements.

Higher-order polynomials such as those used in the hp-version of FEM and spectral elements are
less vulnerable to the pollution effect [3, 4, 38, 39]. In the context of Helmholtz problems, Petersen et
al. [40] assessed the efficiency of various p-FEM shape functions including Lagrange Gauss-Lobatto,
integrated Legendre and Bernstein polynomials. They pointed out the advantage of high-order polyno-
mials in reducing the pollution error and the good performance of Bernstein-Bézier FEs in conjunction
with Krylov subspace solvers. Further, Lieu et al. [41] compared the performance of p-FEM, with
Lobatto polynomials, and the wave-based discontinuous Galerkin method on various benchmarks.
Similarly, El Kacimi et al. [42] compared the performance of the Bernstein-Bézier Finite Element
method (BBFEM) and PUFEM. It was concluded from these comparative studies that high-order
polynomial methods in combination with static condensation are able to deliver comparable or, in
some cases, even superior performance. On the other hand, high order hp-discontinuous Galerkin
methods have been demonstrated as competitive discretisation schemes (see, e.g., [43, 44] and the
references cited therein), due to their flexibility in dealing with hp-adaptivity and general shaped
elements, and their ability in achieving the exponential convergence rate of spectral techniques.

Another alternative to cope with the pollution error is the use of high-order isogeometric ele-
ments. The Isogeometric Analysis (IGA) [45] has gained popularity in recent years, due to a number
of advantages afforded by spline basis functions, such as exact representation of geometries, higher
order continuity and improved convergence properties. This methodology was successfully applied in
a number of applications, as e.g. acoustic [46–49], elastodynamic [50–53] and electromagnetic [54–56]
waves. Peake et al. [57, 58] extended the IGA concept within the framework of boundary elements
for exterior acoustic problems, using the partition of unity in two and three space dimensions. They
reported superior convergence compared to the partition of unity boundary element method. More
recently, Ayala et al. [59] studied the performance of the enriched isogeometric collocation method
in time-harmonic acoustics. They found improved convergence compared to the isogeometric colloca-
tion method. Willberg et al. [50] assessed the performance of isogeometric elements with non-uniform
rational B-splines (NURBS) against high order SEM and p-FEM in Lamb wave propagation analysis.
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They concluded that higher order schemes deliver much improved accuracy, with a significant reduc-
tion in the total number of degrees of freedom (DoF), compared to conventional FEMs. Moreover,
they pointed out that isogeometric elements enable to achieve high convergence rates.

In contrast to standard low order FEMs, where most of the CPU time is spent in the solution
process, the computational burden of high order methods shifts to the evaluation of the element
matrices and assembling (see, e.g., [60]). Therefore, the design of efficient quadrature rules is crucial
to alleviate this major drawback. On tensor product elements, sum factorisation dating back to
Orszag [61], has proven fundamental in the efficient implementation of SEMs. This technique relies
mainly on a tensor-product structure of the shape functions and enables to achieve near optimal
complexity. For simplicial elements, Karniadakis and Sherwin [62] designed special bases preserving
a tensor product property. Recently, Ainsworth et al. [63] have shown that the Bernstein-Bézier basis
naturally possesses the tensorial property needed for the sum factorisation method. They proposed
an algorithm to set up the element mass and stiffness matrices with optimal complexity. Kirby and
Thinh [64] developed low complexity matrix-free algorithm with Bernstein polynomials for applying
the local finite element operators.

The main focus of this paper is to extend BBFEM to accurately solve time-harmonic elastic wave
problems. As one of the key ingredients of the method, particular attention is paid to the computation
of the element mass and stiffness matrices. Here, analytical rules are used for affine triangular elements
and the sum factorisation method together with Stroud quadrature [76] is applied for elements with
curved edges, where the geometry of such elements is interpolated via the linear blending map of
Gordon and Hall [65–67]. The applicability of BBFEM with a variable polynomial order, using a
simple a priori indicator, is also investigated throughout a benchmark dealing with the transmission
of elastic waves.

The remainder of this paper is organized as follows. Section 2 introduces the model problem and
its weak form. The Bernstein-Bézier FE approximation of the governing equations is presented in
Section 3. Section 4 gives a description of the analytical and quadrature rules used for evaluating
element integrals. Section 5 is devoted to numerical results. Finally, some concluding remarks are
made in Section 6.

Notation
The following notation will be used throughout this paper. Each point x in R2 is identified by its

components (x1, x2) relative to the Cartesian vector system denoted (e1, e2), i.e. x = x1e1 + x2e2.
The dot product of two vectors a and b in C2 is a scalar given by a · b =

∑
i=1,2 aibi. The double dot

product of two second-order tensors A and B in C2×2 is a scalar given by A : B =
∑

i,j=1,2AijBij .

The double dot product of a fourth-order tensor C ∈ C2×2×C2×2 and a second-order tensorB ∈ C2×2

is a second order tensor D = C : B given by Dij =
∑

k,l=1,2CijklBkl. We denote the scalar product

either in C2 or C2×2 by (·, ·), that is, (a, b) = a · b and (A,B) = A : B, where the notation ’ ’ refers
to the complex conjugate. The induced norms in C2 or C2×2 will be denoted by ‖ · ‖.

We also denote the usual inner product on the complex-valued Sobolev space Hs(D), where
s = 0, 1, by (·, ·)s,D, with H0(D) = L2(D). We keep for simplicity the same notation for the inner
products on the space of vector and tensor valued functions [Hs(D)]2 and [L2(D)]2×2, that is,

(u,v)s,D =

2∑
i=1

(ui, vi)s,D, ∀u,v ∈ [Hs(D)]2,

(σ, τ )0,D =
2∑

i,j=1

(σij , τ ij)0,D, ∀σ, τ ∈ [L2(D)]2×2.

(1.1)

Likewise, for a given Σ ⊂ ∂D, the L2 inner products on L2(Σ) and [L2(Σ)]2 are denoted by (·, ·)0,Σ.
We further introduce the induced norm ‖ · ‖s,D in [Hs(D)]2 and the semi-norm | · |1,D in [H1(D)]2,
where |v|21,D = (∇v,∇v)0,D, ∇ = (∂1, ∂2)> is the gradient operator, and the superscript ’>’ denotes
the transpose.
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Standard multi-index notation will be used. For α ∈ Z3
+ and λ ∈ R3, we set |α| =

∑3
i=1 αi,

λα =
∏3
i=1 λ

αi
i , α! =

∏3
i=1 αi! and

(|α|
α

)
= |α|!

α! . If α,β ∈ Z3
+ such that β > α, i.e., βi > αi, 1 6 i 6 3,(

β
α

)
=
∏3
i=1

(
βi
αi

)
. We denote by ei ∈ Z3

+ the multi-index whose the ith entry is unity and remaining
entries are zero.

2 Mathematical model

Let Ω be a bounded Lipschitz domain in R2, consisting of a solid, homogeneous, isotropic and linear
elastic material. We denote by Γ = ∂Ω its boundary, n and t the outward unit normal and tangent
vectors to Γ. In the absence of a source, the time harmonic Navier equation reads as [68]

−ρω2u−∇ · σ(u) = 0 in Ω. (2.1)

Herein, ω is the angular frequency, ρ is the material density, u is the displacement field and ∇· is
the divergence operator. The Cauchy stress tensor σ(u) is linearly related to the infinitesimal strain
tensor ε(u) by the well-known Hookes law

σ(u) = C : ε(u), (2.2)

where

ε(u) = (∇u+ ∇u>)/2, (2.3)

and C is the fourth order stiffness tensor whose coefficients are given component-wise by

Cijkl = λδijδkl + µ(δikδjl + δilδjk), 1 6 i, j, k, l 6 2.

Herein λ and µ are the Lamé coefficients and δij is the Kronecker symbol.
For simplicity, equations (2.1)-(2.3) are completed as in [28,31] by a Robin type boundary condi-

tion:
σ(u)n = iρω(cPunn+ cSutt) + g on Γ, (2.4)

where i =
√
−1 is the imaginary unit number, un and ut are the normal and tangent components of

the displacement u, respectively, cP =
√
λ+ 2µ/ρ and cS =

√
µ/ρ are the compressional (P) and

shear (S) wave speeds, respectively, and g ∈ L2(Γ) is a source term.
It is worth mentioning that the boundary condition (2.4), when g = 0, corresponds to an absorbing
boundary condition of the first order. Here, the source term g is introduced in order to enforce
the analytical solution. This enables us to avoid the error due to either the interpolation of curved
geometries or the truncation of the infinite domain, when dealing with radiation conditions.

To derive the variational setting of the time-harmonic elastic wave problem (2.1)-(2.4), we multiply
(2.1) by the complex conjugate of a test function v ∈ V = [H1(Ω)]2 and integrate by parts over Ω:

−ρω2(u,v)0,Ω +
(
σ(u),∇v

)
0,Ω
−
(
σ(u)n,v

)
0,Γ

= 0. (2.5)

Thus by substituting the Robin boundary condition (2.4) into (2.5) and using the symmetry property
of σ(u), we get the weak form: Find u in V , such that

a(u,v) = f(v), ∀v ∈ V ,
(2.6)

where f(v) = (g,v)0,Γ, a(u,v) = aΩ(u,v) + aΓ(u,v) and

aΩ(u,v) =− ρω2(u,v)0,Ω +
(
C : ε(u), ε(v)

)
0,Ω
,

aΓ(u,v) =− iρω
[
cP(un, vn)0,Γ + cS(ut, vt)0,Γ

]
.

(2.7)
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The boundedness of the antilinear and sesquilinear forms f : V → C and a : V × V → C follows
from the trace theorem and Cauchy-Schwarz inequality. Assume that the coefficients ρ, λ and µ are
piece-wise positive constant functions, then it can be seen that the stiffness tensor C is uniformly
positive definite and that the following bounds hold

2µ‖τ‖2 6 (C : τ , τ ) 6 2(λ+ µ)‖τ‖2, (2.8)

for any symmetric tensor τ ∈ C2×2. Since Ω is assumed to be a bounded Lipschitz domain, Korn’s
second inequality [69] yields

‖ε(v)‖20,Ω > c1|v|21,Ω − c2‖v‖20,Ω, ∀v ∈ V , (2.9)

where c1 and c2 are positive constants. So, it follows that a : V ×V → C satisfies G̊arding’s inequality:

Re a(v,v) = aΩ(v,v) = −ρω2‖v‖20,Ω +
(
C : ε(v), ε(v)

)
0,Ω

> −(ρω2 + 2µc2)‖v‖20,Ω + 2µc1|v|21,Ω, ∀v ∈ V .
(2.10)

Thus, the same argument as that of [70] based on the Fredholm alternative [71] and the unique
continuation principle for elliptic problems [72], allows to establish the existence and uniqueness for
the variational problem (2.6).

3 Bernstein-Bézier FE approximation

Let Th be a conforming partition of the domain Ω into triangular elements such that Ωh = ∪T∈Th
T ,

where Ωh is an approximation of Ω and h is the mesh size of Th given by h = maxT∈Th
hT , with

hT = diam(T ). Each T ∈ Th is the image of the triangular master element T̂ defined by

T̂ =
{
ξ = (ξ1, ξ2) : 0 6 ξ1 6 1, 0 6 ξ2 6 1− ξ1

}
, (3.1)

i.e. T = FT (T̂ ), where FT is a suitable reference map. For p > 1, let V h be the finite dimensional
approximation space defined by

V h =
{
v ∈ [C0(Ωh)]2 : v ◦ FT ∈ [Pp(T̂ )]2, ∀T ∈ Th

}
,

where Pp(T̂ ) is the space of polynomials of total degree at most p. Then the discrete analogous
expression of the weak form (2.6) is given byFind uh in V h such that

ah(uh,vh) = fh(vh), ∀vh ∈ V h.
(3.2)

Here fh(vh) = (g,vh)0,Γh
and ah(uh,vh) = aΩh

(uh,vh) + aΓh
(uh,vh), with

aΩh
(uh,vh) =− ρω2(uh,vh)0,Ωh

+
(
C : ε(uh), ε(vh)

)
0,Ωh

,

aΓh
(uh,vh) =− iρω

[
cP(un, vn)0,Γh

+ cS(ut, vt)0,Γh

]
.

(3.3)

Let us consider the barycentric coordinates relative to the master element T̂ defined by

λ1(ξ) = ξ1, λ2(ξ) = ξ2, λ3(ξ) = 1− ξ1 − ξ2. (3.4)

Then the Bernstein polynomials of degree p formulated on the reference element T̂ reads as

Bp
α(ξ) =

(
p

α

)
λα(ξ), (3.5)
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where |α| = p. These polynomials are linearly independent. Indeed, dividing∑
|α|=p

cαλ
α = 0

by λp3 gives ∑
|α|=p

cαx
α1
1 xα2

2 = 0,

in which xi = ξi/λ3. Since the monomials xα1
1 xα2

2 are linearly independent, it follows that all cα are
zero. Furthermore, they are

(
p+2

2

)
Bernstein polynomials. Hence, they form a basis for the space

Pp(T̂ ). It should be noted that Bernstein polynomials are non-negative and form a partition of unity.
Moreover, they are only interpolatory at the vertices of T̂ .
The approximate Bernstein-Bézier FE solution of (3.2) can be written element-wise in the form

uh(x) =
∑
|α|=p

Bp
α(ξ)uα, (3.6)

where the global coordinate x = FT (ξ) and {uα} ⊂ C2 are the unknown column vectors. An
orientation of the element edges enabling the matching edge modes of similar shapes is mandatory to
ensure C0 conformity of high order FEs (see [62,73] for more details).

The matrix formulation of the discrete weak form (3.2) can be written as

Ay = b, (3.7)

where A is a ndof×ndof sparse, complex symmetric matrix and b is the right-hand side column vector
of Cndof and ndof is the total number of DoF and y is the unknown column vector of dimension
DoF. The global matrix A and the right-hand side vector b are evaluated by assembling the element
contributions AT and bT . The element matrix can be written as

AT = −ρω2MT + KT − iρωST . (3.8)

Let us denote by NL the mapping from the indices (k,γ) in the local FE basis

∪|γ|=p
{
Bp

γek : k = 1, 2
}

to the local DoF number NL(k,γ). Let set i = NL(i1,α) and j = NL(i2,β), where 1 6 i1, i2 6 2
and |α| = |β| = p. Then, the entries of the element matrices MT and KT are given by

MT
ij = δi1i2

(
|JT | Bp

β, B
p
α

)
0,T̂
, (3.9)

STij =
∑

E⊂T∩Γh

(
lE
[
cPn

E
i1n
E
i2 + cSt

E
i1t
E
i2

]
Bp

β, B
p
α

)
0,Î
, (3.10)

KTij =
(
|JT | C : ε(Bp

βei2), ε(Bp
αei1)

)
0,T̂
, (3.11)

with nE = nE1e1 +nE2e2, tE = tE1e1 +tE2e2 and |α| = |β| = p. Here, JT =
(

DFT
Dξ

)>
denotes the Jacobian

matrix, |JT | its determinant, E is an edge of T and lE =

√
x′21(s) + x′22(s), with s ∈ Î = [0, 1] = F−1

T (E).

For the element right hand side bT , its entries are defined by

bTi =
∑

E⊂T∩Γh

(
lEg · ei1 , Bp

α

)
0,Î
. (3.12)

By setting

Mp
α,β =

(
|JT | Bp

β, B
p
α

)
0,T̂
, (3.13)
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we have MT
ij = δi1i2M

p
α,β. From the view point of implementation in the FEM, it is customary to

use engineering notation when evaluating the element stiffness matrix. The components of the strain
tensor are then rearranged into a column vector ε(v) = [ε11(v), ε22(v), 2ε12(v)]> . Following [74], it
can be shown that

KTij =
(
|JT | D ε(Bp

βei2), ε(Bp
αei1)

)
0,T̂
. (3.14)

The applications dealt with herein fall in the plane strain setting. The expression of the second order
tensor D can be found in textbooks, for example [74].
Let us denote by J−1

T,k the kth row of the inverse matrix J−1
T and set

GT (w) =

 J−1
T,1w 0

0 J−1
T,2w

J−1
T,2w J−1

T,1w

 , (3.15)

for a given column vector w in R2. Then, by noting that

ε(Bp
αek) =

 ∂1B
p
α 0

0 ∂2B
p
α

∂2B
p
α ∂1B

p
α

 ek = GT (∇̂Bp
α) ek, (3.16)

where ∇̂ is the gradient operator with respect to the local coordinate ξ, equation (3.14) can be written
as

KTij =
(
|JT |D GT (∇̂Bp

β) ei2 ,GT (∇̂Bp
α) ei1

)
0,T̂
. (3.17)

The next section describes the computation procedures for evaluating the element integrals involved
in the element matrices and right hand side vectors.

4 Computation of element integrals

This section is devoted to the computation strategies of the element matrices and right hand side
vectors of the stated problem. For ease of presentation, we suppose the polynomial order p to be
uniform.

4.1 Case of elements with straight edges

Interior elements in the computational mesh grid are often taken with straight edges. Hence, in this
case, FT reduces to a standard linear FE map and the analytical integration rules described in [63,64]
can be used. Bernstein polynomials possess some nice properties, namely the integral of a Bernstein
polynomial on a simplex has a simple form, which reads in two-dimensional space on the reference
triangle T̂ , as ∫

T̂
Bn

α dξ =
|T̂ |(
n+2

2

) , |α| = n. (4.1)

Moreover, the product of two Bernstein polynomials is, up to a scaling factor, a Bernstein polynomial.
More precisely, we have

Bn
αB

m
β =

(
α+β
α

)(
n+m
m

)Bn+m
α+β , with |α| = n, |β| = m. (4.2)

Hence, thanks to (4.1), simple algebra shows that

Mp
α,β =

|T |
|T̂ |

∫
T̂
B2p

α+β dξ =
|T |(

2p+2
2

)cα,β, (4.3)

where the coefficients cα,β =
(α+β

α )
(2pp )

are evaluated as in [63], based on the procedure described below:
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Algorithm 1 Evaluation of the multinomial coefficients

1: Compute and store all the binomial coefficients
(
n+m
m

)
, 0 6 n,m 6 2p, using Pascal’s formula.

2: for α1 = 0 to p do
3: for β1 = 0 to p do
4: c←

(
α1+β1
α1

)
/
(

2p
p

)
;

5: for α2 = 0 to p− α1 do
6: for β2 = 0 to p− β1 do
7: d← c×

(
α2+β2
α2

)
;

8: cα,β ← d×
(
p−α1−α2+p−β1−β2

p−α1−α2

)
.

9: end for
10: end for
11: end for
12: end for

Using Algorithm 1, the cost to set up the element mass matrix is O(p4).
Additionally, the gradient of Bernstein polynomials can be written as

∇̂Bp
α = p

3∑
k=1

Bp−1
αk

∇̂λk, (4.4)

where αk = α− ek and Bp−1
αk = 0 if αk has a negative component. Thanks to (3.17), these lead to a

closed form for the element stiffness entries:

KTij = p2
3∑

k,l=1

[
[GT (∇̂λk)]

>D GT (∇̂λl)
]
i1,i2

Mp−1
αk,βl

, (4.5)

where the quantities Mp−1
αk,βl

can be deduced from expression (4.3). It is noteworthy that the above
analytical rules apply in the case of piecewise constant coefficients.

4.2 Case of elements with curved edges

The element contributions STi and bTi , reducing to edge integrals, are evaluated using a high order
Gauss-Legendre quadrature, for any element T sharing an edge E with the curved boundary Γh. The
geometry of such elements is interpolated with the six-noded Lagrange map, i.e.

FT (ξ) =
∑
i

λi(ξ)(2λi(ξ)− 1)qi + 4
∑
i<j

λi(ξ)λj(ξ)qij , (4.6)

where the definition of the nodal points {qi} and {qij} of T is given in Figure 1. Since the analytical
solution is enforced by the Robin boundary condition (2.4), the error due to the interpolation of the
geometry does not affect the overall discretisation error, as the computed numerical solution would
be compared to the imposed analytical one.

Interior elements with curved edges may be encountered as well in some applications, as for
example, in elastic wave transmission problems dealt with in the present work. In such applications, an
interface-fitted mesh grid is needed, and the Lagrange map (4.6) may result in a significant error [75],
especially on coarse mesh grids with high polynomial order. To account here for curved geometries,
we use the linear blending map method of Gordon and Hall [65–67]. Suppose there is an element with
a curved edge, described by its parametric form q = q(s), where 0 6 s 6 1, and that this edge is
(q1, q2), with q(0) = q1 and q(1) = q2 (see Figure 1). Then this map can be defined as

FT (ξ) = λ1(ξ)q1 + λ2(ξ)q2 + λ3(ξ)q3 +
λ1(ξ)λ2(ξ)

ξ2 (1− ξ2)
[q (ξ2)− ((1− ξ2) q1 + ξ2q2)] . (4.7)
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It should be noted that this method can also be applied to elements with many curved edges [67]. In
the sequel, we will make use of the Gauss-Jacobi quadrature defined by∫ 1

0
(1− η)aηbf(η) dη '

q∑
r=0

w(a,b)
r f(η(a,b)

r ), (4.8)

where the nodes {η(a,b)
r } are located in the open interval (0, 1) and the weights {w(a,b)

r } are all positive,
with a, b > −1.

Figure 1: Reference map for a curved triangular element.

Suppose, for example, that edge E is edge (q1, q2) (see Figure 1). Then Bp
α reduces to a univariate

Bernstein polynomial on the unit interval Î. More precisely, we have Bp
α(ξ) = Bp

α2(ξ2), with α =
(α1, α2, 0). Thus applying the above quadrature rule, with a = b = 0 corresponding to the well-known
Gauss-Legendre rule, the edge contribution in (3.12), denoted by bT,Ei , can be approximated as

bT,Ei =
(
lEei1 · g, Bp

α

)
0,Î
'

q∑
r=1

w(0,0)
r lE(η

(0,0)
r )Bp

α2
(η(0,0)
r ) ei1 · g(xr), (4.9)

where xr = FT (1− η(0,0)
r , η

(0,0)
r ). In a similar way, for the edge contribution in (3.10), we have

ST,Eij =
(
lE

[
cPn

E
i1n
E
i2 + cSt

E
i1t
E
i2

]
Bp

β, B
p
α

)
0,Î

'
q∑
r=1

w(0,0)
r lE(η

(0,0)
r )

[(
cPn

E
i1n
E
i2 + cSt

E
i1t
E
i2

)
(xr)

]
Bp
α2

(η(0,0)
r )Bp

β2
(η(0,0)
r ), (4.10)

in which β = (β1, β2, 0). The approximate edge integrals given by (4.9) and (4.10) require the
evaluation of univariate Bernstein polynomials Bp

α, for all α = 0, · · · , p, on the Gauss-Legendre

quadrature points {η(0,0)
r }. They are computed based on the recursion formula

Bm+1
α (η) = ηBm

α−1(η) + (1− η)Bm
α (η), (4.11)

where Bm
−1 = Bm

m+1 = 0 and B0
0 = 1. These translate into the following algorithm:
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Algorithm 2 Evaluation of the univariate of Bernstein polynomials.

1: B0
0(η)← 1;

2: for n = 1 to p do
3: Bn

0 (η)← (1− η)×Bn−1
0 (η);

4: end for
5: for n = 1 to p do
6: for m = n to p do
7: Bm

n (η)← η ×Bm−1
n−1 (η) + (1− η)×Bm−1

n (η).
8: end for
9: end for

It remains to evaluate numerically the element integrals defined by (3.13) and (3.17). For this
purpose, we introduce the Duffy transform which maps the unit square Ŝ = Î × Î with coordinates
η = (η1, η2) to the reference triangle T̂ :

ξ = F (η) = (η1, (1− η1)η2)> . (4.12)

This transformation yields a tensorial construction of the Bernstein-Bézier basis on simplices. Hence,
sum-factorisation can be applied to efficiently evaluate and integrate Bernstein polynomials [63]. In
particular, the case of two space variables gives

Bp
α(ξ) = Bp

α1
(η1)Bp−α1

α2
(η2). (4.13)

Figure 2: Reference triangular element and unit square.

Taking advantage of the key property (4.13) and the transformation (4.12), the element mass
integrals in (3.13) become

Mp
α,β =

∫ 1

0

(∫ 1

0
|JT |Bp

α1
(η1)Bp

β1
(η1)(1− η1) dη1

)
Bp−α1
α2

(η2)Bp−β1
β2

(η2) dη2. (4.14)

So, making use of the Stroud quadrature rule [76] in conjunction with the Gauss-Jacobi quadrature
(4.8) gives

Mp
α,β '

q∑
s=1

w(0,0)
s Bp−α1

α2
(η(0,0)
s )Bp−β1

β2
(η(0,0)
s )×

( q∑
r=1

grs w
(1,0)
r Bp

α1
(η(1,0)
r )Bp

β1
(η(1,0)
r )

)
, (4.15)
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where grs = |JT (ξrs)|,
ξrs = F (ηrs) and ηrs = (η(1,0)

r , η(0,0)
s )>. (4.16)

A routine evaluating the element mass entry Mp
α,β is described below:

Algorithm 3 Evaluation of the entry Mp
α,β.

1: Mp
α,β ← 0;

2: for s = 1 to q do
3: c(s,α1,β1) ← 0;
4: for r = 1 to q do

5: c(s,α1,β1) ← c(s,α1,β1) + grs × w(1,0)
r ×Bp

α1(η
(1,0)
r )×Bp

β1
(η

(1,0)
r );

6: end for
7: Mp

α,β ← Mp
α,β + c(s,α1,β1) × w

(0,0)
s ×Bp−α1

α2 (η
(0,0)
s )×Bp−β1

β2
(η

(0,0)
s );

8: end for

The element mass matrix consists of O(p4) entries and the evaluation of the auxiliary field
(c(s,α1,β1)) (see Algorithm 3) requires O(qp2) floating point operations. Thus, the cost to set up
the element mass matrix is O(qp2) +O(qp4). However, the required number q q of quadrature points
to perform a sufficiently accurate numerical integration should be chosen such that q = O(p). There-
fore, the total cost is O(p5). It is worth noticing that a naive evaluation of the element mass matrix
will results in O(p6) operations. The key idea to achieve a low operation count in the assembly
of the element matrices is the use of the tensorial construction of the Bernstein-Bézier basis (4.13)
combined with sum-factorisation. This technique is considered to be a crucial factor in the efficient
implementation of high order p-FEMs and SEMs [62]. Fast algorithms achieving optimal complexity
can be found in References [63,77]. But they are not considered here.
The analogous expression of (3.17) with a non constant Jacobian can be written as

KTij = p2
3∑

k,l=1

(
|JT |

[
[GT (∇̂λk)]

>D GT (∇̂λl)
]
i1,i2

Bp−1
βl

, Bp−1
αk

)
0,T̂

. (4.17)

Thus, by setting

g(i1,i2,k,l) = |JT |
[
[GT (∇̂λk)]

>D GT (∇̂λl)
]
i1,i2

, (4.18)

and using once again property (4.13) and the Duffy transform (4.12), we get

KTij = p2
3∑

k,l=1

(
g(i1,i2,k,l)B

p−1
βl

, Bp−1
αk

)
0,T̂

= p2
3∑

k,l=1

∫ 1

0

(∫ 1

0
g(i1,i2,k,l)B

p−1
αk,1

(η1)Bp−1
βl,1

(η1)(1− η1) dη1

)
×

B
p−1−αk,1
αk,2 (η2)B

p−1−βl,1
βl,2

(η2) dη2, (4.19)

where (αk,1, αk,2, p − 1 − αk,1 − αk,2) = αk and (βl,1, βl,2, p − 1 − βl,1 − βl,2) = βl. These give, by
applying the Stroud quadrature rule,

KTij ' p2
3∑

k,l=1

[
q∑
s=1

w(0,0)
s B

p−1−αk,1
αk,2 (η(0,0)

s )B
p−1−βl,1
βl,2

(η(0,0)
s ) ×

(
q∑
r=1

grs(i1,i2,k,l)
w(1,0)
r Bp−1

αk,1
(η(1,0)
r )Bp−1

βl,1
(η(1,0)
r )

)]
, (4.20)
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in which the auxiliary field grs(i1,i2,k,l)
refers to the evaluation of the right hand side in equation (4.18)

at the Stroud quadrature points {ξrs}, defined by equation (4.16). From the above formula, it can
be seen that the cost to set up the element stiffness matrix is O(p5). It should be noted that the
proposed quadrature rules also work in the case of variable coefficients.

5 Numerical results

In this section, numerical results are presented to assess the performance of the proposed approach
on various two dimensional benchmark problems. The BBFEM is efficiently implemented via static
condensation such that the internal DoF are eliminated at the element level. This leads to a condensed
linear system involving only DoF attached the mesh skeleton. Once the solution related to the vertex
and edge modes is computed, the internal DoF can be recovered at the post-processing stage by
solving element-wise local small linear problems. This procedure enables a substantial reduction of
the size of the global system matrix and its bandwidth. The resulting condensed linear system is
assembled in an element-by-element fashion, based on coordinate storage format, and solved by using
the multi-frontal sparse direct solver MUMPS [78]. The latter is interfaced with METIS package [79] in
order to reduce the bandwidth and the extra fill-in of the global matrix.
The accuracy of BBFEM is assessed by the following L2 error

ε2 =
‖uh − u‖0,Ωh

‖u‖0,Ωh

× 100%. (5.1)

In the sequel, we will denote by Re(uh) the real part of the approximate displacement field uh and
by |Re(uh)| the corresponding Euclidean norm. We will use the same notations as in (3.7) for the
statically condensed matrix and right hand side. The wave resolution, in the case of homogeneous
media, can be defined by the parameters

τP = λP

√
ndof

|Ωh|
and τS = λS

√
ndof

|Ωh|
, (5.2)

giving the numbers of DoF per P and S wavelengths λP and λS, respectively. Herein, ndof is the total
number of DoF of the condensed linear system and |Ωh| is the surface area of the approximate elastic
domain Ωh.

We will denote by nnz the number of non zero entries in the condensed global matrix, and by κA
the condition number of the resulting condensed linear system, evaluated by MUMPS using the metric
defined in [80] by

κA =
|| |A| |A−1| |x̂| + |A−1| |b| ||∞

||x̂||∞
. (5.3)

Herein x̂ is the computed solution, || · ||∞ is the usual l∞ norm, |A| = (|aij |) and |b| = (|bi|). The
above defined quantities are used in the following numerical analysis to assess the performance of the
BBFEM modelling in solving various elastic wave problems.

The next subsection is devoted to a performance study of the computation procedures used for
evaluating the local mass and stiffness matrices.

5.1 Computation of element matrices: performance and timing results

We present here some numerical results that compare the CPU times of the standard quadrature,
sum factorization based quadrature and analytical rules. The local mass and stiffness matrices are
evaluated on a single mesh element, with straight edges. All the computations are performed in
double precision on an Intel Core i5 CPU Laptop (with 2.70GHz × 2).
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Figure 3: CPU time needed for the evaluation of element matrices: (a) element mass matrix and (b)
element stiffness matrix.

Figure 3 displays the CPU time needed to set up the element mass and stiffness matrices versus the
polynomial degree p, for each procedure. The above results show clearly that the standard quadrature,
sum-factorization based quadrature and analytical rules yield, respectively, O(p4), O(p5) and O(p6)
operations. These confirm the predicted complexity costs discussed in Section 3. As expected, analytic
rules outperform the other integration procedures. Moreover, the cost of sum-factorization based
quadrature is at least one order of magnitude below that of the standard quadrature.

A description of the benchmark tests dealt with and numerical results are given in the next
subsections.

5.2 Harmonic elastic waves from a pulsating cavity

5.2.1 Description of the problem

This first benchmark concerns the propagation of harmonic waves generated from an infinite cylin-
drical cavity of radius a in an elastic medium subject to a uniform harmonically varying stress, where
the traction T = σ(u)n is prescribed on the cavity boundary. The computational domain Ω has an
annular shape with inner and outer radii a and R = 2a, respectively (see Figure 4).

Figure 4: Computational domain and problem specification.

A compression stress of amplitude p0, i.e., T = −p0er gives rise to a purely propagating compression
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wave expressed in terms of the displacement field as [68]

u =
aH ′0 (kPr) p0

(λ+ 2µ)kPaH0 (kPa) + 2µH ′0 (kPa)
er, (5.4)

while a shear stress with a prescribed traction T = −σ0eθ produces a purely propagating shear wave
for which the displacement field is given by

u = − aH ′0 (kSr)σ0

µζSH0 (kSa) + 2µH ′0 (kSa)
eθ. (5.5)

Herein, H0 is the Hankel function of the first kind and zero order and the prime denotes a derivative
with respect to the argument.

In this example, which serves to study the convergence of h and p versions of BBFEM, we will
use the parameters summarized in Table 1, where the elastic properties of the medium are taken to
be those of Aluminium.

Description Value

p0 Compression stress amplitude [N/m2] 1013

σ0 Shear stress amplitude [N/m2] 1013

a Cavity radius [m] 1

E Young’s modulus [ N/m2] 69× 109

ν Poisson’s ratio 0.32

ρ Density [kg/m3] 2700

Table 1: Parameters used in the pulsating cavity problem

Hence, the P and S wave speeds are cP = 6047.26m/s and cS = 3111.29m/s, respectively; which
yields a ratio cP/cS = kS/kP ' 1.94.

5.2.2 Error analysis: h-refinement

To investigate the h-convergence of BBFEM, a sequence of five gradually refined mesh grids are
considered, with three typical examples being shown in Figure 5.

Figure 5: Examples of unstructured mesh grids used for the pulsating cavity problem; from left to
right: M1 (h = 0.54a), M3 (h = 0.20a) and M5 (h = 0.13a).

In Figure 6, the relative L2 error ε2 is plotted against the number τP of DoF per P wavelength at
the frequencies f = 1.0 × 104 Hz, f = 2.0 × 104 Hz and f = 4.0 × 104 Hz, for different values of the
polynomial order p in the P wave stress case. Similarly, results of the S wave stress case are shown in
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Figure 7, where the relative L2 error ε2 is now shown versus the number τS of DoF per S wavelength.
As expected, the h-convergence is the faster, the higher polynomial order p is. More precisely, an
asymptotically algebraic decay of the L2 error ε2 scaling as τ−p−1

P is clearly seen from Figure 6. The
same trend concerning h-convergence is observed for the shear wave problem, especially in the results
of Figures 7(a) and 7(b) corresponding to the frequencies f = 1.0 × 104 Hz and f = 2.0 × 104 Hz,
respectively. However, as a consequence of the pollution error, a further increase of the frequency
f leads to a pre-asymptotic region of slower convergence involving large values of the mesh size h
(see Figure 7(c)). Since the ratio kS/kP ' 1.94, an important difference in error levels, for a given
frequency and with the same hp resolution, is observed by comparing the results of Figures 6 and 7.
This is due to the fact that the S wavelength is shorter than the P wavelength, and thus a higher
resolution is needed to resolve S waves.
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Figure 6: The L2 error versus τP (P wave stress); h-refinement for different values of the polynomial
order p: (a) f = 10, 000 Hz, (b) f = 20, 000 Hz and (c) f = 40, 000 Hz.
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Figure 7: The L2 error versus τS (S wave stress); h-refinement for different values of the polynomial
order p: (a) f = 10, 000 Hz, (b) f = 20, 000 Hz and (c) f = 40, 000 Hz.

5.2.3 Error analysis: p-refinement

All the numerical experiments in this study are performed on mesh grid M3, where h = 0.20a, with
the same frequencies as in the previous subsection. Results of p-convergence analysis are shown in
Figures 8(a) and (b), for both P and S wave stress cases. As expected, and since these benchmark tests
make use of smooth analytical solutions, an exponential convergence is achieved. However, due to the
pollution error, the decay of the L2 error slows down when the frequency increases, as can be seen
from Figure 8 at a frequency f = 4.0× 104 Hz. A pre-asymptotic region of slower convergence with
low polynomial orders can be again observed in Figure 8(b), where the S wave is not well resolved.
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Figure 8: The L2 error versus the polynomial order for different frequencies; p-refinement with h =
0.20a: (a) P wave stress and (b) S wave stress.

When a highly accurate solution is sought, the p (or h) refinement procedure may lead to a slow
decay (or even an increase) of the L2 error as can be observed in Figure 8(b), at f = 1.0 × 104 Hz.
This is likely due to round-off errors which become very significant as the condition number of the
linear system to be solved reaches a certain high level.

Figure 9: Pulsating cavity; contour plots of |Re(uh)| at f = 8.0× 104 Hz, with h = 0.13a and p = 12:
(left) P wave stress; ε2 = 9.16e-5% and τP = 7.87, and (right) S wave stress; ε2 = 0.28% and τS =4.04.

Figure 9 displays the contour plot of |Re(uh)| at f = 8.0× 104 Hz, for both P and S wave stress
cases, where computations are carried out on mesh grid M5 with a polynomial order p = 12. As
previously mentioned, the notable difference in error levels for both test cases is due to the ratio
λP/λS ' 1.94 between propagating P and S wavelengths. A good accuracy is achieved in the case of
S wave stress (see Figure 9(b)), with only τS = 4.04. It should be noted that elements of mesh grid
M5 in this example may contain up to h/λS ' 3.34 S wavelengths.

5.3 Scattering of elastic plane waves by a rigid cylinder

5.3.1 Description of the problem

As a second benchmark, we deal with the scattering of waves by a rigid body, where an incident plane
wave uin travelling from left to right along the horizontal direction impinges on an infinite cylinder
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of radius a. Even though the first numerical example gives insight into the accuracy of BBFEM, the
corresponding analytical solutions do not represent a realistic problem, with a wave field including
both propagating and evanescent modes. It should be noted that conventional discretisation schemes
may fail to resolve the fast decay of high order evanescent modes. These motivate, accordingly, to
investigate wave scattering problems. Here, we use the same model geometry and elastic material
parameters as those of the previous benchmark. Two scenarios are considered. The first one concerns
P wave scattering, in which the incident displacement field is given by uin = ikP exp(ikPx1)e1 and
the analytical solution of the scattered field is given in the polar coordinate system by [31]:

ur =

+∞∑
m=0

[
εmimkPJ

′
m (kPr) + kPAmH

′
m (kPr) +mBm

Hm (kSr)

r

]
cos(mθ)

+
[
kPCmH

′
m (kPr)−mDm

Hm (kSr)

r

]
sin(mθ)

uθ =
+∞∑
m=0

−
[
εmimm

Jm (kPr)

r
+mAm

Hm (kPr)

r
+BmkSH

′
m (kSr)

]
sin(mθ)

+
[
mCm

Hm (kPr)

r
−DmkSH

′
m (kSr)

]
cos(mθ).

(5.6)

The second scenario concerns S wave scattering, where uin = −ikS exp(ikSx1)e2. The analytical
solution of this problem is similarly given by

ur =

+∞∑
m=0

[
kPAmH

′
m (kPr) +mBm

Hm (kSr)

r

]
cos(mθ)

+
[
−mεmim

Jm (kSr)

r
+ kPCmH

′
m (kPr)−mDm

Hm (kSr)

r

]
sin(mθ)

uθ =
+∞∑
m=0

−
[
mAm

Hm (kPr)

r
+BmkSH

′
m (kSr)

]
sin(mθ)

+
[
− εmimkSJ

′
m (kSr) +mCm

Hm (kPr)

r
−DmkSH

′
m (kSr)

]
cos(mθ).

(5.7)

Herein, Jm and Hm are, respectively, the Bessel and Hankel functions of the first kind and order m
and the sequence {εm} is defined by ε0 = 1, and εm = 2 for all m ≥ 1. The constants Am, Bm, Cm
and Dm are chosen such that u = 0 on the scatterer boundary. In what follows, the above infinite
series are truncated to a finite number Nt of terms.

5.3.2 Error analysis: h-refinement

Likewise, we perform h-convergence analysis using the same mesh grids of Figure 5, by taking Nt '
kSa. It is noteworthy that the choice of Nt does not affect accuracy, because the truncated analytical
solution is enforced by the Robin boundary condition (2.4). This choice involves propagating S
wave modes (m 6 kSa), propagating (m 6 kPa) and evanescent (kPa < m 6 Nt) P wave modes,
respectively.
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Figure 10: The L2 error versus τS; P wave scattering: h-refinement for different values of the polyno-
mial p: (a) f = 10, 000 Hz, (a) f = 20, 000 Hz and (c) f = 40, 000 Hz.

1014×100 6×100 2×101

τS

10−7
10−6
10−5
10−4
10−3
10−2
10−1
100
101
102

L2
 e
rro

r i
n 
%

(a)
p=4
p=6
p=8

τ−5S
τ−7S
τ−9S

1013×100 4×100 6×100

τS

10−7
10−6
10−5
10−4
10−3
10−2
10−1
100
101
102

L2
 e
rro

r i
n 
%

(b)
p=6
p=8
p=10

τ−7S
τ−9S
τ−11S

2×100 3×100 4×100 6×100
τS

10−7
10−6
10−5
10−4
10−3
10−2
10−1
100
101
102

L2
 e
rro

r i
n 
%

(c)

p=8
p=10
p=12

τ−9S
τ−11S

τ−13S

Figure 11: The L2 error versus τS; S wave scattering; h-refinement for different values of the polynomial
p: (a) f = 10, 000 Hz, (a) f = 20, 000 Hz and (c) f = 40, 000 Hz.

Results of P wave scattering are shown in Figure 10, with the L2 error being plotted versus the
number τS of DoF per S wavelength at f = 1.0 × 104 Hz, f = 2.0 × 104 Hz and f = 4.0 × 104 Hz,
for increasing polynomial orders. It should be noted that the analytical solution (5.6) of the P wave
scattering problem involves both P and S waves and hence L2 error is plotted against τS. In the same
fashion, those of S wave scattering are reported in Figure 11.

Results of Figures 10 and 11 reveal a similar trend in terms of h-convergence behaviour, compared
to those of the previous benchmark with a prescribed S stress. In particular, the asymptotically
algebraic decay of the L2 error is well recovered, and pre-asymptotic regions of slower convergence,
where the mesh size h is large compared to the S wavelength, are again observed at f = 40, 000 Hz
(see Figures 10(c) and 11(c)).

5.3.3 Error analysis: p-refinement

We now investigate p-convergence analysis. Numerical experiments are performed on mesh grid M3

shown in Figure 5, at the same frequencies as before. In Figure 12, the L2 error ε2 is shown versus
the polynomial order p for different frequencies and both P and S wave scattering problems. Results
of Figure 12 indicate a similar trend in terms of p-convergence compared to those of the p-refinement
analysis, carried out previously in the pulsating cavity problem with a prescribed S wave stress. Most
importantly, an exponential decay of the L2 error is again observed from Figures 12(a) and 12(b).
Additionally, pre-asymptotic regions of slower convergence with lower polynomial orders are seen
as well. Results of Figure 12(a) also show that the L2 error stagnates at f = 1.0 × 104 Hz when
high accuracy is sought. This is likely due, as mentioned previously, to round-off errors which are
significantly affected when the condition number is large.
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Figure 12: The L2 error versus the polynomial order p for different frequencies; p-refinement with
h = 0.20a: (a) P wave scattering; (b) S wave scattering.

Figure 13 displays the contour plot of |Re(uh)| at f = 8.0×104 Hz, with Nt ' 2kSa. Computations
been performed, for both P and S wave scattering problems, on mesh grid M5 with a polynomial order
p = 12. It is worth mentioning that with the choice Nt ' 2kSa, the analytical solution also involves
high order evanescent S wave modes (kSa� m 6 2kSa).

Figure 13: Wave scattering; contour plot of |Re(uh)| at f = 8.0 × 104 Hz; Nt ' 2kSa: (left) P wave
scattering and (right) S wave scattering; ε2 = 0.21% and τS =4.04.

Good quality results are obtained with only τS =4.04 for both P and S wave scattering problems,
using mesh grid M5, where elements may contain up to h/λS ' 3.34 S wavelengths.

5.4 Elastic wave transmission

5.4.1 Description of the problem

This last benchmark deals with wave scattering problems in an elastic medium with an interface.
It was designed to demonstrate the ability of BBFEM combined with a non uniform p-refinement
procedure, in efficiently handling cases of high wave speed contrast between two media, where an
accurate representation of the interior interface is mandatory. We analyze the transmission of elastic
plane waves through a homogeneous elastic cylinder of radius a, embedded in an infinite homogeneous
elastic medium of different material. The geometry of the problem is sketched in Figure 14 (left),

19



where the outer radius R = 2a. The elastic properties of medium Ω2 are chosen such that ν2 = ν,
E2 = E and ρ2 = ρ, where ν, E and ρ are given in Table 1, while those of medium Ω1 are given by

ν1 = ν, E1 = n2E and ρ1 = ρ, with n = 2 or 4. These yield a ratio k
(2)
S /k

(1)
S = n, where k

(1)
S and k

(2)
S

are the S wavenumbers in the elastic media Ω1 and Ω2, respectively.
As before, we consider two scenarios with P and S incident plane waves travelling from left to right

in the horizontal direction along the x1-axis. For the case of P incident plane wave, the analytical
solution can be found in [81], while for that of S incident plane wave, it is given in Appendix A. A
similar example was dealt with in [28]. All computations are performed on the interface fitted mesh
grid depicted in Figure 14 (right), where the geometry of curved elements sharing an edge with the
interface Σ is interpolated using the blending map of Gordon and Hall defined in Subsection 4.2.

Figure 14: (Left) Schematic diagram defining the parameters of the elastic wave transmission problem;
(right) typical interface fitted mesh grid, with h = 0.22a.

5.4.2 Non uniform p-refinement

Since the transmission problem occurs in heterogeneous regions with many elastic properties of media,
it is useful to vary the polynomial degree in each area. According to the choices made above of the

elastic material properties, two ratios are considered: k
(2)
S /k

(1)
S = 2 and k

(2)
S /k

(1)
S = 4, respectively.

Let p be the polynomial order chosen to resolve the wave in medium Ω2, where k
(2)
S > k

(1)
S . Then, we

take p2 = p as the polynomial order for vertex, edge and cell shape functions of elements located in
Ω2. A simple procedure is used in order to choose the polynomial order p1 in Ω1:

k
(1)
S h1

p1
w

1

γ

k
(2)
S h2

p2
, with γ ∈

]
1, k

(2)
S /k

(1)
S

[
, (5.8)

where hi denote the mesh size of region Ωi for i = 1, 2. It is not intended here to provide a sophisticated
p-adaptive procedure, but rather to show the applicability of BBFEM with non uniform polynomial
order.

In all that follows, we set γ = 1
2

(
1 +

k
(2)
S

k
(1)
S

)
. Formula (5.8) is used to specify the polynomial order p1

for all the shape functions of elements located in medium Ω1 not sharing a vertex or edge with the
interface Σ, as shown in Figure 15 (left). For those having a vertex or an edge in common with Σ,
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the polynomial order of the corresponding cell shape functions is set equal to p2, and the one of the
edge shape functions is obtained by enforcing the minimum order rule for H1-conforming FEs [73],
as illustrated in Figure 15 (right).

Figure 15: Schematic diagrams showing: (left) the chosen polynomial order for vertex, edge and cell
shape functions; (right) minimum order rule.

Table 2 reports the L2 error ε2 and condition number κA obtained using both uniform and non-

uniform p-refinement procedures for the same frequencies as before, when the ratio k
(2)
S /k

(1)
S = 2 in

the case of S incident plane wave. The total numbers of DoF ndof and non-zero entries nnz in the
condensed global matrix, and CPU time in seconds spent in solving the condensed linear system, are
also reported. Results of Table 2 indicate that the non uniform p-refinement enables us to achieve a
reduction by up to 18%, 30% and 34% in the total numbers of DoF and non-zero entries, and CPU
time, respectively, while keeping comparable accuracy and condition number. This procedure may
also help in improving the L2 error, especially for highly accurate solutions, as can be seen from Table
2 when f = 1.0× 104 Hz and p = 12.

Uniform p-refinement Non uniform p-refinement

f p ndof nnz CPU ε2[%] κA (p1, p2) ndof nnz CPU ε2[%] κA
4 12,206 262,589 0.35 0.25 0.92e+3 (3,4) 9,702 180,369 0.28 0.33 0.87e+3
6 19,498 610,779 0.95 2.35e-3 0.18e+4 (5,6) 16,994 479,695 0.76 2.46e-3 0.18e+4

10 kHz 8 26,790 1,102,377 2.05 2.10e-5 0.10e+5 (6,8) 21,782 766,593 1.35 5.91e-5 0.10e+5
10 34,082 1,737,383 3.49 4.81e-7 0.10e+6 (8,10) 29,074 1,303,871 2.67 4.30e-7 0.10e+6
12 41,374 2,515,797 6.25 4.22e-7 0.12e+7 (9,12) 33,862 1,755,105 4.14 3.68e-8 0.11e+7

4 12,206 262,589 0.38 4.45e+1 0.10e+4 (3,4) 9,702 180,369 0.27 48.25 0.96e+3
6 19,498 610,779 0.99 0.43 0.19e+4 (5,6) 16,994 479,695 0.74 0.43 0.19e+4

20 kHz 8 26,790 1,102,377 2.09 8.82e-3 0.77e+4 (6,8) 21,782 766,593 1.33 9.42e-3 0.77e+4
10 34,082 1,737,383 3.65 2.21e-4 0.80e+5 (8,10) 29,074 1,303,871 2.56 2.25e-4 0.80e+5
12 41,374 2,515,797 5.41 4.33e-6 0.97e+6 (9,12) 33,862 1,755,105 3.90 5.99e-6 0.97e+6

8 26,790 1,102,377 2.28 61.01 0.49e+6 (6,8) 21,782 766,593 1.36 60.49 0.48e+6
10 34,082 1,737,383 3.80 1.02 0.19e+7 (8,10) 29,074 1,303,871 2.68 1.02 0.19e+7

40 kHz 12 41,374 2,515,797 6.43 2.03e-2 0.26e+8 (9,12) 33,862 1,755,105 4.11 2.04e-2 0.26e+8
14 48,666 3,437,619 9.24 1.08e-3 0.54e+9 (11,14) 41,154 2,530,335 6.80 1.08e-3 0.54e+9

Table 2: Uniform p-refinement vs. non-uniform p-refinement results: S incident plane wave;

k
(2)
S /k

(1)
S = 2.
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In the same fashion, results with a ratio k
(2)
S /k

(1)
S = 4 are reported in Table 3. When f = 1.0×104

Hz, the non-uniform p-refinement procedure provides an accuracy which is one order of magnitude
higher for some moderate values of the polynomial order p. To avoid this drawback, we can increase
the parameter γ in Formula (5.8). But this comes at the price of increasing the total numbers of DoF
and non-zero entries as well. However, as the polynomial order increases a significant improvement in
accuracy for the same frequency (f = 1.0× 104 Hz) is seen with a reduction by up to 24%, 38% and
42% in the total numbers of DoF and non-zero entries, and CPU time, respectively. By increasing
now the frequency, similar reductions in the total numbers of DoF and non-zero entries are achieved,
with comparable accuracy and condition number, as can be observed in Table 3.

Uniform p-refinement Non uniform p-refinement

f p ndof nnz CPU ε2[%] κA (p1, p2) ndof nnz CPU ε2[%] κA
4 12,206 262,589 0.36 5.75 0.99e+4 (3,4) 9,702 180,369 0.25 6.47 0.95e+4
6 19,498 610,779 1.00 3.07e-3 0.14e+5 (4,6) 14490 372723 0.58 1.19e-2 0.11e+5

10 kHz 8 26,790 1,102,377 2.28 2.07e-5 0.25e+5 (5,8) 19,278 634,869 1.09 1.85e-4 0.18e+5
10 34,082 1,737,383 3.48 1.32e-6 0.10e+6 (7,10) 26,570 1,123,283 2.12 1.05e-6 0.10e+6
12 41,374 2,515,797 5.21 5.50e-6 0.10e+7 (8,12) 31,358 1,549,765 3.03 9.63e-8 0.10e+7

4 12,206 262,589 0.36 97.25 0.24e+4 (3,4) 9,702 180,369 0.25 97.28 0.20e+4
6 19,498 610,779 0.97 0.75 0.25e+4 (4,6) 14,490 372723 0.56 0.75 0.25e+4

20 kHz 8 26,790 1,102,377 2.04 1.07e-2 0.61e+4 (5,8) 19,278 634,869 1.10 1.07e-2 0.59e+4
10 34,082 1,737,383 3.50 2.92e-4 0.57e+5 (7,10) 26,570 1,123,283 2.12 2.92e-4 0.57e+5
12 41,374 2,515,797 5.65 6.38e-6 0.73e+6 (8,12) 31,358 1,549,765 3.06 6.30e-6 0.73e+6

8 26,790 1,102,377 2.07 72.77 0.55e+6 (5,8) 19,278 634,869 1.34 72.66 0.55e+6
10 34,082 1,737,383 3.61 2.27 0.58e+6 (7,10) 26,570 1,123,283 2.16 2.27 0.58e+6

40 kHz 12 41,374 2,515,797 6.40 5.51e-2 0.10e+8 (8,12) 31,358 1,549,765 3.16 5.51e-2 0.10e+8
14 48,666 3,437,619 8.42 3.11e-3 0.19e+9 (9,14) 36,146 2,046,039 4.91 3.52e-3 0.19e+9

Table 3: Uniform p-refinement vs. non-uniform p-refinement results; elastic wave transmission prob-

lems: S incident plane wave; k
(2)
S /k

(1)
S = 4.

Figure 16 displays the contour plot of |Re(uh)| at f = 4.0×104 Hz, using a non uniform polynomial

order and Nt ' k(2)
S a, for both P and S elastic wave transmission problems.
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Figure 16: Contour plot of |Re(uh)| at f = 4.0 × 104 Hz, with Nt ' k
(2)
S a, (p1, p2) = (9, 12), τS =

6.10 and k
(2)
S /k

(1)
S = 2; elastic wave transmission problems: (left) P incident wave; ε2 = 0.01%, and

(right) S incident wave; ε2 = 0.02%.

Good accuracies are achieved with τS = 6.10, where elements in the computational mesh grid may

contain up h2/λ
(2)
S ' 2.8 S wavelengths.

6 Conclusions

In this paper, BBFEM has been extended to efficiently solve time-harmonic elastic wave problems,
using unstructured triangular mesh grids. Key aspects of the method rely on the use of analytical
rules to set up the local FE matrices for affine elements, while the tensorial construction of Bernstein
polynomials amenable to sum factorisation is exploited for curved elements to speed up the assembly
process. These yield a notable saving in terms of computational cost and hence afford high order
computations. In addition, static condensation is applied at the element level to efficiently solve the
resulting condensed linear system.

The performance of BBFEM has been assessed, in terms of accuracy and memory requirements,
on various benchmark tests. Results of h and p convergence analysis show that the proposed method
enables us the recovery of the expected exponential and algebraic convergence rates. Furthermore,
the p version of BBFEM has proven more effective in mitigating the pollution effect and accurately
resolving high order evanescent P and S wave modes, involved in the elastic wave scattering problems.
Besides, the applicability of BBFEM with a variable polynomial order, based on a simple a priori
indicator has been demonstrated by considering elastic wave transmission problems, with high wave
speed contrast. The results show the benefit of the non uniform p-refinement procedure in improving
accuracy and efficiency, and how the high geometric flexibility of BBFEM in conjunction with a blend-
ing map method makes it possible to simulate computational domains including a curved interface
with very high accuracy.

The computational efficiency of the Bernstein basis functions can be fully exploited by extending
the optimal assembly algorithm proposed in [63]. This is of a relevant importance, especially when
tackling wave problems with variable coefficients and three-dimensional space computations. Since
the overhead for performing numerical integration on curved elements is negligible, given that such
elements are a small percent of all the mesh grid elements in the benchmarks dealt with in this work,
a nearly optimal procedure has been adopted for ease of implementation.

This present work focuses solely on the computation cost of assembly. A thorough study, including
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the computation costs of the solution processing and static condensation, is crucial for providing a
clear insight on the overall efficiency of BBFEM, for different hp discretisations and at a predefined
level of accuracy. The optimal choice of the element order minimizing the computational effort is,
however, not trivial as it heavily depends on the wavenumber [60].

A future work should account for hp-adaptivity to further enhance computational efficiency and
take full benefit of BBFEM. Other possible research directions include the use of a robust precondi-
tioned iterative solver to reduce memory requirements. Building on these encouraging results, it is
also planned to extend the method to 3D elastic wave computations.

A Analytical solution of the transmission problem: incident S plane
wave

The elastic constants of the medium Ω1 = (a < r < R) and its density are denoted respectively by
ν1, E1 and ρ1, and those of the elastic cylinder Ω2 = (r < a) are denoted by ν2, E2 and ρ2. Assume
ν1, E1 and ρ1, differ from ν2, E2 and ρ2. Then the incident S plane wave

ψin = exp(ik
(1)
S x1) (A.1)

will travel through the elastic medium until it hits the elastic cylinder, then it will be reflected from
the boundary of the cylinder resulting in a wave that propagates outward. While the refracted part
of the incident waves will be confined in the cylinder and generates a standing wave. Therefore, the
analytical solution for this problem consists of the total wave outside the cylinder denoted by u1,
which is a superposition of the incident and the reflected waves, and the total wave inside the cylinder
denoted by u2 which is a refracted wave. Thus, we have{

u1 = uin + uR

u2 = uF ,
(A.2)

where uin is derived from the potential ψin, i.e.

uin = ∇× ψin. (A.3)

The reflected displacement uR is the solution of the following Navier equation:

−ρω2uR −∇ · σ(uR) = 0 in Ω1

uR + uin = 0 on Σ = (r = a).
(A.4)

The refracted displacement uF is the solution of the following Navier equation:

−ρω2uF −∇ · σ(uF ) = 0 in Ω2

uF = 0 on Σ.
(A.5)

By using the Helmholtz decomposition theorem, the displacements uR and uF can be written in
terms of the potentials (ϕR, ψR) and (ϕF , ψF ) as follows:{

uR = ∇ϕR + ∇× ψR
uF = ∇ϕF + ∇× ψF ,

(A.6)

where the curl operator ∇× is defined for a given scalar field φ by ∇ × φ = (∂2φ,−∂1φ)> and
ϕR, ψR, ϕF and ψF are solutions for the following Helmholtz equations:

−k2
PϕR −∆ϕR = 0, −k2

SψR −∆ψR = 0

−k2
PϕF −∆ϕF = 0, −k2

SψF −∆ψF = 0.

(A.7)
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The displacement potentials for the reflected waves are:

ϕR =
+∞∑
m=0

AmH
(1)
m (k

(1)
P r) sin(mθ), ψR =

+∞∑
m=0

BmH
(1)
m (k

(1)
S r) cos(mθ), (A.8)

while the displacement potentials for the refracted standing waves inside the circular cylinder can be
represented as:

ϕF =
+∞∑
m=0

CmJm(k
(2)
P r) sin(mθ), ψF =

+∞∑
m=0

DmJm(k
(2)
S r) cos(mθ). (A.9)

The Jacobi-Anger expansion for the incident potential ψin reads as

ψin =

+∞∑
m=0

εmi
mJm(k

(1)
S r) cos(mθ), (A.10)

where the sequence {εm} is defined by ε0 = 1, and εm = 2 for all m ≥ 1. Thus, by using (A.3) and
(A.6), we have: {

u1 = ∇× ψin + ∇ϕR + ∇× ψR
u2 = ∇ϕF + ∇× ψF .

(A.11)

Finally, the analytical solution for this problem can be written in the polar coordinate system (er, eθ)
as u1 = u1rer + u1θeθ

u2 = u2rer + u2θeθ,
(A.12)

where

u1r =

+∞∑
m=0

[
−mεmim

Jm(k
(1)
S r)

r
+Amk

(1)
P H ′m(k

(1)
P r)−mBm

Hm(k
(1)
S r)

r

]
sin(mθ)

u1θ =

+∞∑
m=0

[
− εmimk(1)

S J ′m(k
(1)
S r) +mAm

Hm(k
(1)
P r)

r
−Bmk(1)

S H ′m(k
(1)
S r)

]
cos(mθ)

u2r =
+∞∑
m=0

[
Cmk

(2)
P J ′m(k

(2)
P r)−mDm

Jm(k
(2)
S r)

r

]
sin(mθ)

u2θ =
+∞∑
m=0

[
mCm

Jm(k
(2)
P r)

r
−Dmk

(2)
S J ′m(k

(2)
S r)

]
cos(mθ),

(A.13)

and the constants Am, Bm, Cm and Dm in equations (A.13) are to be determined by enforcing the
transmission boundary conditions :

u1 = u2 and σ(u1)n1 + σ(u2)n2 = 0 on Σ.
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